
Received 12 August 2022; revised 18 September 2022; accepted 9 October 2022. Date of publication 14 October 2022; date of current version 26 October 2022.

Digital Object Identifier 10.1109/OJCOMS.2022.3214578

Fast Simulation of Coded QAM Transmission in
White Gaussian Noise at Low Packet Error Rates
YOU-ZONG YU (Graduate Student Member, IEEE), DAVID W. LIN (Life Senior Member, IEEE),

AND TZU-HSIEN SANG (Member, IEEE)

Institute of Electronics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan

CORRESPONDING AUTHOR: Y.-Z. YU (e-mail: yozongyu@gmail.com)

This work was supported in part by the Ministry of Science and Technology of R.O.C. under
Grant MOST 108-2221-E-009-099 and Grant MOST 111-2221-E-A49-156-MY3.

ABSTRACT Today’s communication system design heavily depends on computer simulation for
performance evaluation. The burgeoning ultra-reliable communication systems, however, pose a signif-
icant simulation challenge as such systems operate at very low packet error rates (PERs) whereas the
required simulation time of the conventional Monte Carlo (MC) method is many times the inverse of the
PER. Various importance sampling-type techniques have been developed for more efficient simulation of
channel-coded transmission, but they typically rely on exploiting code weaknesses (for the generation of
error-causing noise samples) and most works on soft-decision decoding only treat binary signaling. In this
paper, we propose to use a function, termed the noise gauging function (NGF), that roughly measures the
error-causing propensity of noise samples and we present a way to adaptively optimize the noise sampling
under such a function for simulation efficiency. Both binary and nonbinary signalings are considered.
And the proposed technique does not require detailed knowledge of the code weaknesses, although some
high-level understanding of the code properties can benefit the design of efficient NGFs. We investigate
the application of the proposed technique to several common channel codes. Numerical results indicate
an approximately 10- to 1,000-fold speedup versus MC.

INDEX TERMS BCH codes, channel coding, convolutional codes, fast simulation, importance sampling,
Monte Carlo, packet error rate, polar codes, ultra reliable and low latency communication (URLLC).

I. INTRODUCTION

THE FIFTH generation (5G) wireless communication
standards spearheaded ultra reliable and low latency

communication (URLLC) to support mission-critical com-
munication in application scenarios such as factory automa-
tion and intelligent transportation. Later generations of
standards and practical systems are expected to further
such capability [1]. Low latency aspects notwithstanding,
the ultra reliability aspects, as currently conceived, involve
packet error rates (PERs) in the range of 10−5 to 10−9

with packet sizes on the order of 32 bytes [2], [3]. To
achieve the required performance, proper channel coded
modulation is indispensable. In this regard, current 5G
specifications have continued the common recent practice
of bit-interleaved coded modulation (BICM) in standard

wireless communication systems [4], [5] and employed
BICM built on low-density parity check (LDPC) and polar
codings [6], [7]. There is no doubt that a similar prac-
tice will continue as related research continues to progress,
e.g., [8], [9].

Now, today’s communication system design makes heavy
use of computer simulation for performance evaluation, for
which the Monte Carlo (MC) method is a most ready choice
due to its simplicity and general applicability. For error-
probability evaluation, however, it requires on the order of
1/(ε2pe) simulation runs to attain a relative precision of
ε at an (a priori unknown) error probability pe. Hence it
encounters difficulty in dealing with low error probabili-
ties (such as PERs below 10−7), especially for complicated
systems. Usually, one is not interested only in obtaining the
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error performance at one particular operating point, but in
tracing out the PER performance over some range of signal-
to-noise (SNR) values for various design alternatives. At
times the extreme-value theory or some understanding of
the tail probability property can be invoked to extrapolate
the MC-obtained error performance for lower SNR values
to higher SNR values [10], [11]. This can certainly reduce
the MC simulation burden significantly. But the prerequisite
is that one has reached the tail part of the error performance
curve in MC simulation. Otherwise, the extrapolation would
be based on an incorrect slope which may result in substan-
tial over- or underestimation of the error probabilities for
higher SNRs [12]. But for complicated coded transmission
it can be difficult to ascertain whether one has reached the
tail part of the performance curve. Hence one may be obliged
to conduct simulation over the full range of SNR or PER
of concern. The deficiency in MC efficiency thus strongly
calls for a robust and efficient alternative for simulation of
ultra-reliable communication systems.
One long-standing approach to fast simulation (versus

conventional MC) is importance sampling (IS), for which
various techniques have been developed [10]. The basic idea
of IS is to increase the frequency of error-causing events
by generating simulation samples with a biased probability
distribution. Lu and Yao [13] consider uncoded transmis-
sion over noisy intersymbol-interference (ISI) channels and
find that biasing the Gaussian noise by mean translation is
increasingly more efficient than biasing by variance scaling
as the SNR increases. Making use of the large deviations
theory, Sadowsky and Bucklew [14] show that, for Gaussian
noise, proper mean-translation biasing is asymptotically effi-
cient at high SNR values. As a result, translation of a
Gaussian noise’s mean to the decision boundary becomes
a standard practice in IS simulation [15].
For coded transmission, take LDPC coding as an example.

The decoding of such codes is known to be plagued by bit
patterns called “trapping sets” which lead to error floors in
high SNR. There exist efforts in using mean translation to
simulate LDPC decoding in additive white Gaussian noise
(AWGN) and Rayleigh fading [11], [16], [17], [18], [19],
as mean translation on the trapping sets constitutes an effi-
cient means to estimating the error floors. However, finding
the full trapping set is an nondeterministic polynomial-time
(NP)-hard problem [20] which is generally much more dif-
ficult than estimating the PER itself. Adaptive IS [21], [22]
and universal simulation distributions [23], [24] can help the
finding of proper mean translations, but they are effective
only in low-dimensional code spaces.
Taking a different route, Minja and Šenk [25] propose a

quasi-analytic simulation method for so-called “star domain”
decoding. The method yields highly remarkable reduction in
simulation runs but its application has been limited to several
classical decoders for the binary symmetric channel or for
binary signaling in AWGN.
The above simulation methods exploit known code weak-

nesses or the decoder property to concentrate simulation

samples in the regions of the noise space that have higher
probabilities of causing errors. The issue is that, in a high-
dimensional space, the amount of effort required to determine
such regions can loom large over the gain in simulation runs.
One approach to mitigating this problem is to “map” the
multi-dimensional simulation space into a single dimension
judiciously and design proper noise sampling over properly
organized subsets (or bins) of this one-dimensional (1D)
space. In this regard, Holzlöhner et al. [26] define a scalar
function of the noise vector whose values are positively cor-
related with the probability of decoding error and employ
the multicanonical Monte Carlo (MMC) method to sample
the noise to yield a flat histogram in the function’s values. A
subsequent study based on a similar flat-histogram approach
also shows prominent efficiency advantage over MC [27].
However, a nonflat histogram may be more efficient for a

given 1D mapping. For example, in simulating hard-decision
decoding performance, Mahadevan and Morris [28] (natu-
rally) use Hamming distance between bit patterns as the
1D mapping and generate more samples in the vicinity of
half the minimum Hamming distance of the code. Indeed,
Liang et al. [29] derive a general formula for the optimal his-
togram. Yet, there have been few studies that try to employ
such an optimal histogram in simulating coded transmis-
sion. The reason is that it requires knowing the a priori
unknown conditional error probabilities associated with the
1D mapped bins. In addition, for either a flat or nonflat
histogram design, an issue is the efficient generation of prop-
erly distributed samples for each bin of the employed 1D
mapping, as the distribution can be very complicated for a
mapping of choice.
In previous works [30], [31], we considered simulating

coded transmission performance employing a 1D mapping
of the noise space termed the noise gauging function (NGF).
More particularly, in [30] we developed a prototypical
adaptive sampling method that can estimate the optimal
(nonflat) histogram on the run, and in [31] we considered
specifically the simulation of convolutionally coded systems
and enhanced the method for their simulation efficiency.
However, one limitation of these works is that they in effect
only considered binary signaling, as is the case with all the
reported studies on fast simulation techniques. (More exactly,
the works considered quadriphase shift keying [QPSK], but
that is mathematically equivalent to the direct sum of two
biphase shift keying [BPSK] signals.) In the present paper,
we revisit the design of the NGF as well as the adaptive
sampling method under different situations. In particular, we
consider quadrature amplitude modulation (QAM) in addi-
tion to QPSK, develop new NGFs along with revamped
adaptive sampling mechanisms, and conduct a more in-depth
analysis into the associated performance. To reiterate, our
proposed technique is essentially code-agnostic in that it
does not require detailed knowledge of the code weaknesses.
However, some high-level understanding of the code prop-
erties can benefit the design of efficient NGFs. We will
illustrate this point in several cases, one of which being
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FIGURE 1. Key features of the proposed simulation technique (bottom) illustrated in comparison to that of the conventional MC and IS techniques (top). In all plots, green oval
signifies the sample space of received signal samples corresponding to a certain transmitted signal sample (purple dot). Jagged red polygon signifies the corresponding
decision boundary in decoding (which may or may not be maximum likelihood). Asterisks and crosses of various colors signify the received noisy signal samples generated in
simulation, with their distributions illustrating typical sample distributions in the different simulation methods. Details of the proposed technique are explained in later text.

burst-error codes. Fig. 1 illustrates, conceptually, some key
features of the conventional MC, conventional IS, and the
proposed simulation techniques.
The remainder of this paper is organized as follows.

Section II describes the system model and common PER
measures. Section III introduces the proposed fast simula-
tion approach. Section IV presents several practical NGFs
and develops associated methods for noise sampling condi-
tioned on given NGF values. Section V develops a method
for adaptive shaping of the NGF histogram towards the
optimal pattern. Section VI presents some numerical results.
Section VII extends the proposed technique to simulation of
burst-error coding. Finally, Section VIII concludes the paper.
Some notational conventions are as follows. P(·) denotes

the probability of an event. Random variables are denoted
using uppercase italic letters and random vectors uppercase
boldface letters. Corresponding lowercase letters denote their
sample values. Depending on whether X (resp. X) is dis-
crete or continuous, fX(·) (resp. fX(·)) denotes its probability
mass or probability density function. E[ ] denotes expecta-
tion; any subscript to E denotes the random quantity over
which the expectation is taken. V(·) denotes the variance of a
random variable. Bernoulli(p) denotes Bernoulli distribution
with success probability p, andN (μ,�) denotes multivariate

FIGURE 2. System model.

Gaussian probability distribution with mean vector μ and
autocovariance matrix �.

II. SYSTEM MODEL
Fig. 2 shows the considered system model, where B is a
vector of k information bits that observe independent and
identical Bernoulli(0.5) distribution. Let n denote the code-
word length. The channel encoder, of rate r = k/n, encodes
B into a binary codeword vector C = [C1, . . . ,Cn] and a
modulator operates on C to yield a channel symbol vec-
tor W = [W1, . . . ,Wl] where l depends on the modulation
method. For convenience, we represent the in-phase and
quadrature parts of a QAM (including QPSK) symbol sep-
arately in W so that W is a real vector and l is equal to
two times the number of QAM symbols corresponding to C.
Each two successive elements of W make up a QAM symbol
of the form W2i−1 + jW2i, where j =

√−1 and 1 ≤ i ≤ l/2.
We shall often refer to W as a packet in this work.
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FIGURE 3. Gray-coded QPSK and 16QAM, where odd-indexed bits in a binary word
determine the real part value of the modulated signal and even-indexed bits, imaginary
part value (with bit indices in a word proceeding from left to right and starting at 1).

We let E[W2
i ] = Es/2 for 1 ≤ i ≤ l where recall that E[ ]

denotes expectation, and Es is the average QAM symbol
energy. The packet W is sent over an AWGN channel with
two-sided noise power spectral density N0/2, which yields
a received symbol vector Y = [Y1, . . . ,Yl] =W+ Z where
Z = [Z1, . . . ,Zl] ∼ N (0, σ 2

2 I), i.e., a white Gaussian noise

vector with autocovariance σ 2

2 I where σ 2 = N0 and I denotes
an identity matrix. The receiver demodulates Y into V =
[V1, . . . ,Vn] and decodes it into a binary data vector B̂.
A packet error occurs when any bit in B̂ is different from

the corresponding bit in B so that B̂ �= B. Under our system
model, the PER is given by

pe = EB
[
pe(B)

] = EB[P(Z ∈ F(B))]
= EB

[∫
IF (B, z)fZ(z)dz

]
= EB[EZ[IF (B,Z)]] (1)

where pe(b) denotes the PER of b, F(b) = {z|b̂ �= b} is
the set of z that would cause a decoding error for b, and
IF (b, z) is an indicator function defined as IF (b, z) = 1 if
z ∈ F(b) and IF (b, z) = 0 otherwise. For linear codes with
BPSK or Gray-coded QPSK modulation, pe(b) is equal ∀b
so that pe can be evaluated by evaluating pe(b) for any b,
such as b = 0. For convenience, define � � (B,Z), and we
shall refer to F(b) either as an error region or an error set.

For reliability reason, URLLC has favored use of low-
order modulations. Fig. 3 shows the Gray-coded QPSK and
16QAM constellations [6]. For QPSK, l = n and the bits
are mapped to symbol values as

Wi = 1√
2
(1− 2Ci), i = 1, . . . , l. (2)

Except for the scaling factor of 1/
√

2, a Gray-coded QPSK
symbol is just the direct sum of two BPSK symbols. Hence,
in AWGN, maximum likelihood (ML) decoding under coher-
ent Gray-coded QPSK is mathematically no different from
that under coherent BPSK. For 16QAM, l = n/2 and

Wi =
{

1√
10
(1− 2C2i−1)(1+ 2C2i+1), if i is odd,

1√
10
(1− 2C2i−2)(1+ 2C2i), otherwise,

(3)

where 1 ≤ i ≤ l.
For the time being, consider QPSK only. Let ai be

the number of codewords of Hamming weight i, where

0 ≤ i ≤ n. It is well-known that, for coherent BPSK, a union
bound on the PER under ML decoding and a high-SNR
approximation are given by [32, Ch. 10]

pe ≤
n∑

i=1

aiQ
(√

iEs/N0

)
≈ aminQ

(√
dminEs/N0

)
(4)

where dmin is the minimum Hamming weight of the code-
words (excluding 0), amin is the number of minimum-weight
codewords, and Q(·) is the Gaussian Q function.

III. APPROACH TO FAST SIMULATION
While (4) provides a concise characterization of the PER
under coherent Gray-coded QPSK (or BPSK), for an arbi-
trary code dmin and amin are not always known, not to say
the full weight distribution. Indeed, the evaluation of (1)
can be highly more intractable for more complicated coding
and modulation schemes. As a result, simulation invariably
becomes the recourse for determining the PER performance.
However, an efficient simulation setup can be obtained often
only with substantial design effort. In this section, we intro-
duce the proposed technique for fast simulation of digital
communication systems. To put it in perspective, we first
review some features of the MC simulation technique and
the IS approach. IS reduces the required simulation time by
biasing the distribution of the random variables (typically the
noise vectors) in the system. Such biasing is conventionally
effected by mean translation, that is, translating the mean of
the noise to points which best discriminate between error-
causing and non-error-causing noise vectors. However, the
determination of proper mean translations can be difficult for
complicated codes. We develop a method that divides the
simulation space into a number of regions (“bins”) employ-
ing a function that roughly measures the propensity to yield
error from a noise vector (a point in the noise space). The
method carries out MC simulation in each bin, but seeks to
distribute the simulation samples among the bins in a way
for best efficiency. The resulting technique is thus termed
histogram-shaping Monte Carlo (HSMC).

A. PERFORMANCE OF THE MONTE CARLO TECHNIQUE
Consider (1). MC replaces the last expectation by the sample
mean to obtain an estimate of pe as

p̂MC = 1

nMC

nMC∑

j=1

IF
(
θ (j)
)
= NE
nMC

(5)

where nMC is the number of simulation runs, NE is the
number of packet errors obtained in simulation, and θ (j) is
the jth simulation sample of �. By the fact that NE has the
binomial distribution arising from nMC Bernoulli(pe) trials,
the variance of p̂MC is given by

V
(
p̂MC

) = pe(1− pe)
nMC

. (6)

Normalizing the standard deviation of the estimate by its
mean provides a way to characterize the estimation quality
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known as the relative precision, given by

εMC =
√
V
(
p̂MC

)

pe
≈
√

1

nMCpe
(7)

where the approximation holds for small pe. To attain
a relative precision εMC ≤ ε, therefore, MC requires
nMC ≥ (ε2pe)−1 simulation runs. But since pe is the a pri-
ori unknown parameter to be estimated, one cannot use it
to fix nMC. A common practice is to substitute p̂MC for pe
in (7) and obtain nMCp̂MC ≈ ε−2

MC. Then, for example, for
a 10% relative precision, one may stop after collecting 100
packet errors.

B. IMPORTANCE SAMPLING
For small PER values, MC becomes computationally pro-
hibitive because, at given relative precision, nMC is inversely
proportional to pe. IS seeks to reduce the number of simula-
tion runs by drawing samples of � from a biased probability
density function (PDF) f ∗�(·), for each b, more concentrated
around F(b). The PER is then given by

pe = E�[IF (�)] =
∫
IF (θ∗)

f�(θ∗)
f ∗�(θ∗)

f ∗�(θ∗)dθ∗

= E∗�[IF (�∗)W(�∗)] (8)

where E∗�[ ] denotes the expectation with respect to f ∗�(·) and
the ratio W(·) � f�(·)/f ∗�(·) is called the weight function.
Similar to MC, IS replaces the last expectation in (8) by

the sample mean to yield an estimate of pe as

p̂IS = 1

nIS

nIS∑

j=1

IF
(
θ
(j)∗
)
W
(
θ
(j)∗
)

(9)

where θ
(j)∗ is the jth simulation sample of � generated using

the biased PDF. The variance of p̂IS is given by

V
(
p̂IS
) = E∗�

[
(IF (�∗)W(�∗)− pe)2

]

nIS
. (10)

The well-known “unconstrained optimal” biased probability
distribution is given by [33]

f ∗,opt� (·) = IF (·)f�(·)/pe (11)

with associated W(θ) = peIF (θ) ∀θ . The optimal biased
PDF requires knowing pe and is hence unworkable.
Nevertheless, it has been considered useful in suggesting
some IS design heuristics [15]. In particular, it has been
used to motivate mean translation as has the large deviations
theory [14].
To illustrate the mean translation technique and its issues,

consider linear codes with Gray-coded QPSK modulation.
Without loss of generality, consider transmitting the all-
zero codeword so that � = (0,Z). By (2), wi = 1/

√
2 ∀i.

Consider ML decoding. As indicated in (4), minimum-weight
codewords dictate the PER performance in high SNR so that

pe ≈
amin∑

a=1

∫

z∈Fa

fZ(z)dz = aminpmin (12)

where a is the index of the minimum-weight codewords,
Fa is the set of noise vectors that would cause a pairwise
decision error to codeword a, and pmin = Q(√dminEs/N0)

is the corresponding pairwise error probability (PEP). Let
�a(1), . . . ,�a(dmin) be the indices of the 1-bits in code-
word a. Ideal mean translation captures all the pairwise error
conditions with a Gaussian mixture [14]

f ∗Z(z∗) =
1

amin

amin∑

a=1

fZ+μa(z∗) (13)

where Z + μa (� Z∗) denotes a translation of Z by μa,
that is, Z + μa ∼ N (μa,

σ 2

2 I), with μa being a vector
whose elements are all zero except for those having indices
�a(1), . . . ,�a(dmin), which have value −1/

√
2. In other

words, Z + μa is centered at the nearest decision bound-
ary associated with pairwise decision error to codeword a.
(Incidentally, the simulation for the aforementioned effects
of the trapping sets in LDPC codes can be done similarly
[11], [16], [17], [18], [19], [20].)
For a first-order understanding of the efficiency of mean

translation, consider the hit rate of Z∗ ∈ Fa and the expected
value of the weight function in Fa. The probability of Z∗ ∈
Fa can be obtained as

P(Z∗ ∈ Fa) = 1

amin

amin∑

a′=1

P
(
Z+ μa′ ∈ Fa

)

≈ 1

amin
P
(
Z+ μa ∈ Fa

) = 1

2amin
∀a, (14)

where the approximation is due to that P(Z + μa ∈ Fa) =
0.5� P(Z+ μa′ ∈ Fa) ∀a′ �= a. The expected value of the
weight function conditioned on Z ∈ Fa is then given by

EZ∗∈Fa [W(Z∗)] ≈ pmin

/
1

2amin
= 2aminpmin = 2pe (15)

∀a. Thus, with such mean translation the overall hit rate
P(Z∗ ∈ F) = ∑

a P(Z∗ ∈ Fa) is raised to 0.5 and the
expected value of the weight function is of a similar order
as pe. This comes close to the “unconstrained optimal”
solution [15] and is optimal in a large deviations theory
sense [14].
Its fundamental appeal notwithstanding, an application of

the technique to complicated systems requires the apprecia-
tion of two issues as follows.

1) UNDERESTIMATION OF PER DUE TO INCOMPLETE
KNOWLEDGE OF ERROR STRUCTURES

As already indicated, the “error-prone structures” of a code
are not always known, such as the set of minimum-weight
codewords of a linear code or the trapping sets of an LDPC
code. One could do a computer search for these structures,
but for complicated codes this is not necessarily practical,
as it can be an NP-complete problem [20], [34]. Hence
one may need to settle for a simulation based on known
structures only. This could result in underestimation of the
PER with mean-translating IS. We explain the mechanism
in Appendix A.
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2) EXTENSION TO HIGHER-ORDER QAM

Mean translation works only when the nearest points on the
error region’s boundary are well-characterized [14]. This is
the case with Gray-coded QPSK under a channel code with
known distance structures. For higher-order QAM, however,
the (nonlinear) mapping between code bits and constella-
tion points can drastically complicate the structure of the
error region associated with a codeword. For example, the
16QAM plot in Fig. 3 shows that one noise element (say,
Zi) impacts the reliabilities of multiple code bits (two in
this case). Moreover, an inner constellation point has more
nearest neighbors than an outer point and is thus more sus-
ceptible to error than the latter. Further, one cannot only
simulate the all-zero codeword because, unlike Gray-coded
QPSK, code linearity is not preserved in the QAM domain.

C. HISTOGRAM-SHAPING MONTE CARLO
In view of the above issues of mean translation, we look for
a different IS method. Existing theory [14], [15] indicates
that an efficient method should seek to identify the error set
F(B) and sample it frequently enough.

To identify the error set, we consider defining a real-
valued function (or random variable) Q(B,Z) whose values
are correlated with the PER. In other words, the function
measures, in some way, the likelihood that a certain noise
vector z will cause a decoding error to a certain information
vector b and in this way provides a “soft identification”
of the error set. (An unrealistic ideal is to have a binary-
valued Q(B,Z) that unambiguously indicates whether any
given z will result in a decoding error for any given b and
thereby provides a “hard identification” of the error set.)
From elementary probability theory, the marginal PDF of
Q � Q(B,Z) is given by

fQ(q) =
∑

b

fB(b)
[∫

{z:Q(b,z)=q}
fZ(z)dz

]
(16)

and, by independence between Z and B, the conditional PDF
of Z on B is given by

fZ(z) = fZ|B(z|b) =
∫ ∞

−∞
fQ,Z|B(q, z|b)dq. (17)

We may therefore rewrite pe as (cf. (1))

pe = EQ,B,Z[IF (B,Z)] = EQ

⎡

⎢⎢
⎣EB,Z|Q[IF (B,Z)]︸ ︷︷ ︸

�pe(Q)

⎤

⎥⎥
⎦

=
∫

q
pe(q)fQ(q)dq (18)

where pe(q) is the PER contributed by all b and z for which
Q(b, z) = q.

Fig. 4 illustrates typical shapes of fQ(q), pe(q), and
fQ(q)pe(q) that we can normally attain. (Examples will be
given later.) Practicality limits us to consider only a finite
range of q such as [qmin, qmax] � � as shown in the figure,

FIGURE 4. Typical shapes of fQ (q), pe(q) and fQ (q)pe(q).

where � should be large enough so that the approxima-
tion pe ≈

∫ qmax
qmin

pe(q)fQ(q)dq holds. Also for practicality, we
divide � into a number of bins (intervals) as illustrated.
Having obtained a “soft identifier” of the error set, we

now consider the simulation method. The conventional MC
is such that the simulation samples would observe the dis-
tribution fQ(q), while only a limited portion of the q values
contribute significantly to the PER. Efficient IS should bias
the sampling of Z such that the corresponding q values fall
more in the range where fQ(q)pe(q) has more substantial
values. For this, let � be divided into nb bins denoted �m,
m = 1, 2, . . . , nb, respectively, and denote the number of
simulation samples in the mth bin by nm. We thus have
nIS = ∑nb

m=1 nm and the set {nm,m = 1, . . . , nb} consti-
tutes a histogram of the q values. The corresponding biased
(sampling) PDF is given by

f ∗Q(q) =
nb∑

m=1

nm
nIS

fQ|�m(q) =
nb∑

m=1

nm
nIS

I�m(q)fQ(q)

pm
(19)

where I�m(q) is the indicator function for �m and pm �
P(Q ∈ �m). Contextualizing (8)–(9) to this setting, the
corresponding PER estimator is given by

p̂e = 1

nIS

nIS∑

j=1

IF
(
b(j)∗ , z(j)∗

) fQ
(
q(j)∗
)

f ∗Q
(
q(j)∗
)

=
nIS∑

j=1

IF
(
b(j)∗ , z(j)∗

)
[ nb∑

m=1

pm
nm
I�m

(
q(j)∗
)
]

=
nb∑

m=1

pm
Em
nm

(20)

where q(j)∗ is the jth sample from f ∗Q(q), (b
(j)∗ , z(j)∗ ) is the

associated sample of (B,Z) conditioned on Q(B,Z) = q(j)∗ ,
and Em �

∑nIS
j=1 IF (b

(j)∗ , z(j)∗ )I�m(q
(j)∗ ) ∀m constitute the his-

togram of decoding errors. Note that the ratio Em/nm is
precisely the MC estimate of the conditional PER perr|m in
�m from nm simulation samples, where

perr|m = EQ|�m
[
EB,Z|Q[IF (B,Z)]

]

=
∫

q∈�m
pe(q)fQ|�m(q)dq. (21)
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By the fact that MC estimations are unbiased, p̂err|m �
Em/nm provides an unbiased estimate of perr|m, and hence p̂e
from (20) provides an unbiased estimate of pe. We refer to the
simulation technique summarized in (20) as HSMC, which
performs MC estimation of the conditional PER in each
bin and averages over the bin-wise estimates to obtain the
overall PER estimate. The technique is denoted “histogram-
shaping” because a key work in its proceeding is to control
the histogram {nm}, as discussed below.
In HSMC, the set {pm} constitutes the weight function.

In contrast to conventional IS, the function is deterministic
rather than random and, depending on the design, can be
evaluated beforehand so that it does not have to be evaluated
per sample. A known weight function also facilitates a simple
closed-form characterization of the estimator variance. In
particular, since p̂e is a weighted sum of MC estimates, its
variance is given by a square-weighted sum of MC variances
(see (6)) as

V
(
p̂e
) =

nb∑

m=1

p2
m
perr|m

(
1− perr|m

)

nm
. (22)

Minimization of the variance therefore depends on
optimization of the histogram {nm} subject to a constraint
on the total simulation samples nIS. A routine application of
the Lagrange multiplier method yields

nm
nIS
=

pm
√
perr|m

(
1− perr|m

)

∑nb
m=1 pm

√
perr|m

(
1− perr|m

) � ρm ∀m. (23)

Substituting it into (22) gives the minimum variance as

V∗Q
(
p̂e
) = 1

nIS

( nb∑

m=1

pm
√
perr|m

(
1− perr|m

)
)2

(24)

where subscript Q indicates that the minimum depends on
the distributions of pm and perr|m which in turn depend on
how Q(B,Z) is defined. A useful measure of the efficiency
of HSMC versus MC is provided by the ratio nMC/nIS at
V(p̂MC) = V∗Q(p̂e), which may be termed the ideal speedup
factor and is given by

G∗ = pe(1− pe)
(∑nb

m=1 pm
√
perr|m

(
1− perr|m

))2
. (25)

Since perr|m ∀m can only be estimated after simula-
tion, (23) cannot be used to set the histogram beforehand.
But we can use it in an adaptive manner to update the
histogram as simulation progresses and some estimates of
perr|m are available. The details are discussed in a subsequent
section. In Appendix B, we show (essentially) that V∗Q(p̂e)
is upper bounded by V(p̂MC) and that the upper bound is
attained when perr|m is constant ∀m. In other words, any
function Q(B,Z) that yields a nonconstant perr|m over m
would be more efficient than MC under the optimal his-
togram. Indeed, from (24), zero variance can be achieved by

having perr|m = 0 or 1 ∀m and, from (21), this is the case
when

Q(b, z) = IF (b, z) =
{

1, if z ∈ F(b),
0, otherwise.

(26)

Unsurprisingly, this is in general as unrealizable as the
“unconstrained optimal” biased distribution of (11), despite
any difference in the underlying mechanism. But it suggests
that we find a function that marks well the propensity to
cause error by any noise vector z to any information vector
b. We have termed such a function a noise gauging function
(NGF) in previous work [31].
It can be expected that, for complicated transmission

systems, a close-to-ideal NGF may be hard to come by and,
if obtainable, the computational complexity may be very
high. In particular, the corresponding evaluation of pm and
sampling of �m for any m may be highly arduous work.
In this situation, it should be sensible to employ an NGF
that may be less ideal but is easy to work with, such as
one with a closed-form expression for the PDF of Q and
facilitating the sampler design. With a view on the trade-
off between efficiency and complexity, we develop several
practical NGFs in the next section. The following section
develops the proposed method for adaptive shaping of the
sample histogram towards its optimal form under a chosen
NGF.

IV. PRACTICAL NOISE GAUGING
In this section, we present several practical NGFs for which
the PDF of Q can be readily obtained and the corresponding
sampling of �m for given m is also relatively straightforward.

To start, we define � = [qmin, qmax] as such that
P(Q < qmin) = P(Q > qmax) ≈ pout where pout = 0.01 pe so
as to make � cover at least 98% of the total probability of
fQ(q)pe(q). For example, to simulate ultra-reliable commu-
nication we may let pout = 10−11. In absence of knowledge
of pe(q), we divide � uniformly into nb bins with bin width
�q = (qmax− qmin)/nb, so that �1 = [qmin, qmin+�q] and
�m = (qmin + (m − 1)�q, qmin + m�q] for 2 ≤ m ≤ nb.
For convenience, let qm = qmin + (m − 0.5)�q ∀m. In this
manner, pm can be calculated from the PDF of Q and only
perr|m needs to be evaluated by simulation for any m.

To facilitate sampling of noise vectors conditioned on
some value of Q, say Q = q ∈ �m, we note from [35]
that the sampler is particularly easy to implement when
Q(B,Z) is a sufficient statistic for some parameter of the
PDF of Z. In particular, the PDF of a Gaussian random vec-
tor is characterized by its mean and autocovariance, which
have well-known sufficient statistics [36]. In general, the
sampling of a random vector conditioned on a certain suf-
ficient statistic having a certain value can be effected by
unconditioned sampling of the random vector followed by
adjusting of the sample values to satisfy the given condition
on the sufficient statistic [35]. Thus in the case of a white
Gaussian random Z, its sampling conditioned on a sufficient
statistic for mean or variance having a certain value can be
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effected by unconditioned sampling followed by shifting or
scaling of the sample values properly to satisfy the given
condition.
In the above regard, in this section we develop two noise

gauging methods designated Q1(·) and Q2(·) that are closely
associated with the sufficient statistics for mean and vari-
ance of Z, respectively. Both are code-agnostic in the sense
that they assume no knowledge of the error-prone structures
of a code. Between them, Q1(·) is linear in Z. Part of its
attractiveness is its amenability to theoretical performance
analysis, and it can be shown to be asymptotically (as
n → ∞) optimal under random linear coding. But it has
some limitations, which prompts our designing the NGF
Q2(·) that takes into account only the noise elements that
are conducive to decoding error.

A. CODE-AGNOSTIC LINEAR NOISE GAUGING
Consider QPSK. From (2), we see that a Zi having a differ-
ent sign than Wi should be more evocative of decoding error
than one having a similar sign. Thus let Z̃i � −

√
2WiZi. For

a linear code, it is understood that, in high SNR, the max-
imum of

∑�a(dmin)
i=�a(1)

Z̃i over all minimum-weight codewords
a well correlates with the ML soft-decision decoding error
probability. But using it for noise gauging implies a code-
specific design for which some issues have been discussed
previously. An appealing code-agnostic NGF appears to be

Q1(b, z) = −1

l

l∑

i=1

√
2wizi = 1

l

l∑

i=1

z̃i (27)

(where recall that wi and z̃i denote sample values of Wi and
Z̃i, respectively). By the assumption that Z ∼ N (0, σ 2

2 I),
we also have Z̃ � [Z̃1, . . . , Z̃l] ∼ N (0, σ 2

2 I), and thus the

random variable Q1 � Q1(B,Z) has PDF N (0, σ 2

2l ) and pm
can be readily evaluated.
After evaluating pm, HSMC requires the evaluation of

perr|m ∀m. For linear coding with QPSK modulation, by
symmetry of the signal structure we only need to simulate
the transmission of b = 0 to determine the complete system
performance. But for generality, in the below we also con-
sider sampling over B. Then by the law of total expectation,
we can rewrite (21) as

perr|m = EBEQ1|�mEZ|Q1,�m[IF (B,Z)]
= EBEQ1|�mEZ|Q1 [IF (B,Z)] (28)

where EQ1|�m is expectation with respect to the PDF

fQ1|�m(q) =
1

√
πσ 2/l

exp

(
− q2

σ 2/l

)/

pm, q ∈ �m, (29)

and the last equality in (28) holds because the second expec-
tation has made Q1 ∈ �m and hence the conditioning of the
innermost expectation on �m becomes redundant.
According to the sequence of conditioning set forth

in (28), the generation of each simulation sample (indexed j)
progresses in the order B→ Q1 → Z. To start, we draw an

Algorithm 1 Sample Generation Method Under Proposed
Linear Noise Gauging

1: b(j)← fB(b)
2: Encode b(j) into c(j); modulate c(j) into w(j)

3: q(j)1 ← fQ1|�m(q) (via A/R with (29))

4: z̄(j)← N (0, σ 2

2 I)
5: Set μ̂ = q(j)1 − 1

l

∑
i z̄
(j)
i

6: Set z(j)i = (z̄(j)i + μ̂)/(−
√

2w(j)i ) ∀i
7: Return b(j), c(j), w(j), z(j) = [z(j)1 , . . . , z

(j)
l ]

information vector sample b(j) and encode it into c(j) and
obtain w(j) = [w(j)1 , . . . ,w

(j)
l ]. Then we employ the accep-

tance/rejection (A/R) method [10, Sec. 7.2.2.4] to draw q(j)1
according to fQ1|�m(·). Finally, to generate the noise vec-
tor sample z(j) = [z(j)1 , . . . , z

(j)
l ] conditioned on Q1 = q(j)1 ,

we first draw a Gaussian vector sample z̄(j) according to
N (0, σ 2

2 I) and add an equal bias to each element of z̄(j) to
make their sum equal to lq(j)1 . This, according to [35], yields a
proper sample of Z|(Q1 = q(j)1 ), which we denote z̃

(j). Simple
algebra shows that its elements are given by z̃(j)i = z̄(j)i + μ̂
∀i where μ̂ = q(j)1 − 1

l

∑
i z̄
(j)
i . The desired noise vector sam-

ple z(j) is then obtained by letting z(j)i = z̃(j)i /(−
√

2w(j)i ) ∀i.
Algorithm shows a summary of the sampling method.
It is of interest to understand how Q1(·) performs sta-

tistically over different codes. Thus consider random linear
(n, k) coding, for which the probability of any binary n-
vector being a codeword is 2k−n and thus the average number
of codewords of weight i is equal to

(n
i

)
2k−n. Then for PER

at Q1 = q, we have an average union bound as

pe(q) ≤
n′∑

i=1

(
n

i

)
2k−npe(i, q) (30)

where pe(i, q) is the PEP of decoding to a particular weight-i
codeword and n′ < n may be chosen to yield a suitably tight
bound. As

∑i
i′=1 Z̃i′ |(Q1 = q) ∼ N (iq, i n−in σ 2

2 ), we get

pe(i, q) = P

(
i∑

i′=1

Z̃i′ ≥ i
√
Es
2

∣∣∣∣∣
Q1 = q

)

= Q
⎛

⎝
√
Es −
√

2 q
√(

i−1 − n−1
)
N0

⎞

⎠. (31)

The conditional PER perr|m can be evaluated by evaluating
the mean of pe(Q1) over Q1 ∈ �m.

Fig. 5(a) shows the ideal speedup factors for some code
lengths under different bin counts. It is not surprising that
a finer division of the noise space tends to enable a better
optimization of the histogram, and V∗Q(p̂e) should converge
to (

∫ √
pe(q)(1− pe(q))fQ1(q)dq)

2/nIS when the bin count
goes to infinity. The fluctuations in speedup factor at low
nb values, which are particularly prominent for n ≥ 512,
come about because for some values of nb, a bin edge
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FIGURE 5. Ideal speedup factor of code-agnostic noise gauging method Q1( · ) under random linear coding at rate 1/2. (a) Speedup vs. number of bins (Es/N0 = 3 dB).
(b) Speedup vs. code length (nb = 1000).

fortuitously falls on a value of q which dichotomizes �
into an error-causing subset (where fQ(q)pe(q) > 0) and
an almost non-error-causing subset (where fQ(q)pe(q) ≈ 0).
(Recall the illustration in Fig. 4.) Consequently, they result
in a higher speedup than their immediate neighboring values
which make less clear-cut division between the two subsets.
And the effect is especially prominent when nb is small
because the binning of � is coarse.
From Fig. 5(a), a reasonable rule of thumb seems to be

to let nb = 20 if the ideal speedup factor < 1000 and
let nb = 100 otherwise. Fig. 5(b) shows the ideal speedup
factors at different SNR values. It indicates that HSMC with
Q1 should be increasingly efficient as the code length and
SNR increase. As an example, it can be 109 times faster
than MC with n = 2048 at Es/N0 = 5 dB.

It is known from information theory that, as n → ∞,
typical random linear codes have a minimum distance that
grows linearly with n in the sense that H(dmin/n) = 1 − r
where H(p) = p log2 p + (1 − p) log2(1 − p) is the binary
entropy function [37]. Let α � n/dmin. Then with i = dmin
in (31) we have

pe(dmin, q) = Q
⎛

⎝
√
Es/2− q√
(α − 1) σ

2

2n

⎞

⎠. (32)

When n→∞ or σ 2 → 0 (SNR→∞), we have σ 2/(2n)→
0 and pe(dmin, q) approaches a unit step function in q with
the step located at q = √Es/2. Hence the set {z|Q1(b, z) ≥√
Es/2} is precisely the error region F(b) pertaining to some

minimum-distance codeword corresponding to a given b, and
Q1(·) becomes an optimal NGF in the sense of (26).
However, the above results for random coding may not

hold for common practical codes, because a practical lin-
ear code may have dmin � n as n → ∞ (e.g., common
convolutional codes). From (23), the optimal histogram

ρm ∝ pm
√
perr|m(1− perr|m) where pm→ fQ1(q) as nb→∞.

But since Q1 ∼ N (0, σ 2

2l ) and
√
perr|m(1− perr|m) ≤ 0.5

for 0 ≤ perr|m ≤ 1, the optimal histogram for q becomes
concentrated at 0 as n → ∞, resulting in pe(dmin, q) →
Q(√dminEs/N0). In other words, the optimal HSMC degen-
erates to MC in this situation. In addition, Q1(·) is applicable
only to QPSK (as well as binary signaling). Thus we turn
to another way of code-agnostic noise gauging, which can
alleviate these deficiencies of Q1(·).

B. CODE-AGNOSTIC QUADRATIC NOISE GAUGING
Based on (26), an efficient NGF should distinguish well
between error-causing and non-error-causing noise vectors.
Consider QPSK for the moment. Noting that a noise vector
with a greater Euclidean norm is more likely to induce a
decoding error than one with a smaller Euclidean norm, but
a noise component (however large it may be) that increases
the distance of a transmitted signal point from other points
does not induce error, we define a quadratic NGF as

Q2(b, z) =
∑

i∈
(b,z)
z2i (33)

where 
(b, z) � {ψ1, . . . , ψd} is the set of noise indices
such that i ∈ 
(b, z) if z̃i ≥ 0 and i /∈ 
(b, z) otherwise.
In this way, zi contributes to Q2(b, z) only if the direc-
tion of noise is towards a neighboring constellation point.
The squaring of zi not only accords with the error-inducing
propensity of large noise but also facilitates the derivation of
the PDF of Q2 � Q2(B,Z). For this, since z̃i has equal prob-
ability being positive or negative, the cardinality of 
(B,Z),
D � |
(B,Z)|, is binomial-distributed with probability mass
function (PMF)

fD(d) =
(
l

d

)
2−l, 0 ≤ d ≤ l. (34)
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As a result, Q2 is a mixture of scaled chi-squared random
variables with cumulative distribution function (CDF)

FQ2(q) =
l∑

d=1

fD(d)P(Q2 < q|D = d) (35)

=
l∑

d=1

( l
d

)

2l
F(d)χ

(
q

σ 2/2

)
(36)

where F(d)χ (·) represents the CDF of a chi-squared random
variable with d degrees of freedom (DoF).
HSMC requires the evaluation of pm and perr|m ∀m. As pm

can be evaluated from the above CDF, the below concentrates
on how to estimate perr|m. Similar to Q1(·), by the law of
total expectation we can rewrite (21) as

perr|m = EBEZ,D,Q2|�m[IF (B,Z)]
= EBED|�mEQ2|D,�mEZ|D,Q2 [IF (B,Z)] (37)

where the sampling of Q|�m in (21) has been replaced by
sampling of D|�m and Q2|D,�m.

According to the sequence of conditioning set forth
in (37), the generation of each simulation sample (indexed
j) progresses in the order B→ D→ Q2 → Z. To start, we
draw an information vector sample b(j) and encode it into c(j)

to obtain w(j). Based on the probability distributions of D|�m

and Q2|D,�m (detailed expressions given in Appendix C),
we employ the A/R method to draw d(j) and q(j)2 . Then we
draw the noise vector sample z(j) = [z(j)1 , . . . , z

(j)
l ] with the

simultaneous requirements that 
(j) � 
(b(j), z(j)) satisfies
|
(j)| = d(j) and that

∑
i∈
(j) (z

(j)
i )

2 = q(j)2 . For this, we first
draw a standard Gaussian vector sample s̄(j) = [s̄(j)1 , . . . , s̄

(j)
l ]

from N (0, I) and flip the signs of its elements randomly
until we have |
(j)| = d(j). Let the resulting vector be
s(j) = [s(j)1 , . . . , s

(j)
l ]. Second, we scale the elements in s(j)

whose indices belong to 
(j) to make their sum-of-squares
equal to q(j)2 (which by [35] yields the proper conditional
noise PDF). Specifically, we set σ̂ 2 = 2q(j)2 /

∑
i∈
(j) (s

(j)
i )

2

and obtain the jth sample of Z|D,Q2 as

z(j)i =
⎧
⎨

⎩

√
σ̂ 2

2 s
(j)
i , i ∈ 
(j),√

σ 2

2 s
(j)
i , otherwise.

(38)

Algorithm shows a summary of the sampling method. The
most computationally demanding part in it is the numerical
evaluation of the chi-squared CDF needed for (60) and (62)
(see Appendix C), but the CDF can be precomputed and
tabulated so as to make the computational overhead of sam-
pling much lower than the decoding complexity required to
determine if the received signal vector y(j) ∈ IF (b(j), z(j)).

C. EXTENSION OF QUADRATIC NOISE GAUGING TO
HIGHER-ORDER QAM
The above discussion on noise gauging has been restricted
to QPSK. In this section, we extend the quadratic NGF to
deal with 16QAM, whose idea can be further extended to

Algorithm 2 Sample Generation Method Under Proposed
Quadratic Noise Gauging

1: b(j)← fB(b)
2: Encode b(j) into c(j); modulate c(j) into w(j)

3: d(j)← fD|�m(d) (via A/R with (60))
4: q(j)2 ← fQ2|D,�m(q|d(j)) (via A/R with (62))
5: s̄(j)← N (0, I); randomly flip the signs of elements until
|
(j)| = d(j) and let the result be s(j)

6: Set σ̂ 2 = 2q(j)2 /
∑

i∈
(j) (s
(j)
i )

2

7: Set z(j) = [z(j)1 , . . . , z
(j)
l ] according to (38)

8: Return b(j), c(j), w(j), z(j)

deal with other higher-order QAMs. The idea is to redefine

(b, z) (the set of noise indices over which their sum-of-
squares is computed) according to the modulation method:
an index i is included in 
(b, z) only if zi shifts wi towards
a neighboring constellation point. Consider the 16QAM con-
stellation in Fig. 3. In the case wi takes an “outer value,”
i.e., wi = ±3/

√
10, index i is included in 
(b, z) if zi has

an opposite sign with respect to wi (a case similar to that
of QPSK). But in the case wi takes an “inner value,” i.e.,
wi = ±1/

√
10, index i is always included in 
(b, z) because

wi is surrounded by other constellation points. In this way,
the distribution of D = |
(B,Z)| depends on the numbers
of inner and outer values in W.
An exact evaluation of fD(d) can be very complicated

because it depends on the details of the QAM mapping
(see Fig. 3) although, in principle, it can be evaluated as
fD(d) =∑b fB(b)fD|B(d|b). Nevertheless, we find that fD(d)
can be well approximated in the following way. To begin, let
Di denote the number of terms contributed by Zi in 
(B,Z),
so that D =∑l

i=1 Di. We have

fDi(d) =
∑

w

P(Wi = w)fDi|Wi=w(d) ∀i (39)

where, for 16QAM, w ∈ {±1/
√

10,±3/
√

10} and

f
Di|Wi∈

{
±1/
√

10
}(d) =

{
0, d = 0,
1, d = 1,

(40)

f
Di|Wi∈

{
±3/
√

10
}(d) =

{
0.5, d = 0,
0.5, d = 1.

(41)

The approximation consists in assuming that P(Wi = w) =
0.25 ∀w ∀i and that Di are independent, so that fDi(d) are
the same ∀i and that

fD(d) ≈ fD1(d) ∗ . . . ∗ fDl(d) � f ∗lD1
(d), (42)

where ∗ denotes convolution and superscript ∗l denotes l-fold
self-convolution of the given function. The approximation is
particularly appropriate when the QAM mapping is random-
ized, such as with an interleaver or scrambler. Substituting
fD(d) into (35) yields an approximation to FQ2(·) which can
be used to evaluate pm.

To estimate perr|m, we need to sample (B,Z)|�m. Different
fromQPSK, the nonlinearity in the bit-to-signal valuemapping
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of 16QAM (or any other higher-order QAM) breaks the
symmetry about b = 0 in a linear code, making sampling
of B a necessity rather than an option. Moreover, B and
�m are no longer mutually statistically independent because
the modulated signals associated with an information vector
may have different counts of inner and outer values than
that associated with another information vector, resulting in
a distribution of D that depends on B, and hence dependence
between Q2 and B or between �m and B. Therefore, in
contrast to the QPSK case in (37) we have

perr|m = EB|�mED|B,�mEQ2|D,�mEZ|D,Q2 [IF (B,Z)]. (43)

Compared to (37), the two outermost expectations are addi-
tionally conditioned on Q2 ∈ �m and B, respectively. We
derive the corresponding conditional probability distributions
of B|�m and D|B,�m in Appendix D.
To draw samples b(j) according to fB|�m(·) under given

�m, the A/R method requires a good grasp of the shape
of fB|�m(·) over the sample space of B. Otherwise it may
risk a very high rejection rate, resulting in a low sampling
efficiency. Hence the A/R method is only suitable for very
short B (say k < 30) because for long vectors it is difficult
to scrutinize the sample spaces sufficiently exhaustively for a
detailed understanding of fB|�m(·). Therefore, we resort to the
Metropolis algorithm [38]. Different from the A/R method
which determines the acceptance/rejection of each random
sample individually according to fB|�m(·), the Metropolis
algorithm makes the decision according to the relative prob-
ability of two successive samples. Specifically, suppose we
have generated b(j−1). To generate b(j), we first draw a candi-
date sample bt from fB(·) and a value ut from U [0, 1] (where
U [0, 1] denotes uniform distribution over [0, 1]). Then we
set b(j) = bt if fB|�m(bt)/fB|�m(b(j−1)) > ut and b(j) = b(j−1)

otherwise. In the end, the set of samples {b(j), j = 1, 2, . . . }
will follow the distribution fB|�m(·).
Due to the setting of some b(j) = b(j−1), the samples gen-

erated by the Metropolis algorithm are not all independent.
So the estimator variance is no longer as given in (22) but
is changed to

VM
(
p̂e
) =

nb∑

m=1

p2
m
perr|m

(
1− perr|m

)
(1+ δm)

nm
(44)

where δm is the correlation coefficient between samples in
the mth bin [39]. This coefficient is system-dependent and
generally unknown beforehand, but can be estimated during
the simulation along with perr|m to provide a correction to
the optimal histogram in (23).
Given b(j), the sampling of D according to fD|B,�m(·|b(j))

does not suffer the dimensionality issue as the sampling of B.
Hence we employ the A/R method to draw d(j) based on
fD|B,�m(·|b(j)). Then we follow the steps in Algorithm to
draw q(j)2 and z(j), except that |
(j)| = d(j) is satisfied by only
randomly flipping the signs of elements in s̄(j) corresponding
to signal values±3/

√
10 but not those corresponding to signal

values ±1/
√

10, as the latter are always included in 
(j).

Before proceeding further, a remark may be ready: While
the above discussion has focused on Gray-coded QPSK and
16QAM, it is not hard to see that the working principle of
the proposed method is also applicable to other kinds of sig-
nal constellation and other kinds of bit-to-symbol mapping.
What needs to be attended to in NGF design for a spe-
cific constellation is the error behavior of each signal point
in noise. The bit-to-symbol mapping does not affect NGF
design but will affect the distance property of the modulated
codewords and thus the PER. In the end, each different case
may come with a different simulation complexity.

V. ADAPTIVE SHAPING OF HISTOGRAM
As shown in (23), the optimal simulation histogram ρm that
minimizes the estimator variance under a particular NGF
depends on both pm and perr|m ∀m. However, it is seen in
the last section that, even for relatively simple NGFs, perr|m
needs to be estimated by running simulations (not to say
that, for more complicated NGFs, even pm may also need to
be estimated using simulations). Hence the determination of
ρm and estimation of perr|m become intertwined. In this sec-
tion, we develop an adaptive method to shape the simulation
histogram. We assume that the NGF is suitably designed so
that fQ(q) and pe(q) exhibit the typical shapes of distribution
depicted in Fig. 4 and that perr|m is an increasing function of
m as a higher NGF value q should indicate that the packets
are subject to more noise and suffer a higher PER.
The proposed approach to adaptive histogram shaping is

illustrated in Fig. 6. Some of the detailed design is geared
toward convenience of coarse-grain parallel implementation
on multiple processors. Since perr|m increases with m, the
upper part of the bins contribute more to pe. So we start by
concentrating the simulation samples there. As indicated in
Fig. 6(a), we initially try to generate a flat histogram over
the bins to the right of the peak in pm (see bars denoted
nm in Fig. 6(a)). Via the A/R formalism, we initialize the
sampling with an “acceptance rate vector” over all the bins
as

β(1)m =
{

0, if m < argmaxm′pm′ ,
1, otherwise,

(45)

where the parenthesized superscript is the iteration index.
For convenience, each iteration consists of nw simulation
runs (distributed evenly to all parallel processors). For each
simulation run, sampling is conducted by first obtaining an
accepted bin (say m) and then generating a sample of (B,Z)
in it using Algorithm (for Q1(·)) or Algorithm (for Q2(·),
with the minor tuning stated in the penultimate paragraph of
Section IV in the case of 16QAM). Let the sample generated
in the jth simulation run be (b(j), z(j)). The sample count and
error count for the bin (denoted nm and em, respectively) are
incremented by 1 and IF (b(j), z(j)), respectively. Iterations
continue until p̂e =∑m pmp̂err|m > 0 where

p̂err|m =
{
em/nm, if nm > 0,
0, otherwise.

(46)
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FIGURE 6. The proposed adaptive histogram shaping method. We plot pm , p̂err|m and β
(t)
m as continuous functions for convenience. In each plot, the dotted upward arrow (in

red) indicates the location of the value q(t)
mean, and q(t)

c is a shorthand for max{2q(t)
std, qinit}. The dashdot curve (in grayish blue) illustrates p̂err|m and the solid horizontal line

segment (also in grayish blue) connected to the p̂err|m curve illustrates the extension of p̂err|m over the bins where em = 0; the two, together, make up the whole of p̂(t)
err|m .

(a) Initialization (iteration 1), with step-like histogram. (b) Typical intermediate condition. (c) Simulation stops when ε̂ ≤ ε.

Fig. 6(a) illustrates a case where, after the first iteration, nm
is indeed a step-like function and packet errors are observed
so that em �= 0 for some m.

To proceed, we need to address two points: first, whether
we have attained the desired precision in p̂e so that no further
simulations are needed and, second, how to perform further
simulations when they are needed. We address the second
point first. The conditional PER estimates in (46) facilitate
a rough estimate of the optimal normalized histogram as

ρ̂m = pm
√
p̂err|m

∑
m pm

√
p̂err|m

. (47)

We cannot base further simulations solely on it, however,
particularly because those bins with p̂err|m = 0 would be
excluded from subsequent sampling, yet the reason that we
get p̂err|m = 0 in those bins in the early iterations may not
be due to a zero perr|m but due to an insufficient number
of total simulation runs to make errors show up therein. To
address this issue, we include some bins that have so far
yielded no errors in the next iteration of simulations in the
following way. First, define the sample mean and standard
deviation of ρ̂m as

q(t)mean =
nb∑

m=1

qmρ̂m, q(t)std =
√√
√√

nb∑

m=1

(
qm − q(t)mean

)2
ρ̂m, (48)

where t is the iteration index. By Cantelli’s inequality, a
random variable has at most 20% of probability being smaller
than its mean minus two times its standard deviation. Hence
we consider the set of bins

H(t) =
{
m | qm ≥ q(t)mean −max

{
2 q(t)std, qinit

}}
(49)

where qinit is to guard against a too-small q(t)std, which may
occur due to insufficient observation of perr|m. Experiments
show that a good setting of qinit is qinit = (qmax− qmin)/10,
which forces at least 10% of the bins being selected. For
each bin in H(t), we re-parametrize p̂err|m as p̂(t)err|m = p̂err|m+
where m+ is the index of the nearest bin where packet errors
are observed. This makes p̂(t)err|m �= 0 ∀m ∈ H(t). If there are
two nearest bins (i.e., one on each side), we take the one with

the larger index, which tends to yield a larger p̂(t)err|m. Then
the estimated normalized optimal histogram is updated as

ρ̂(t)m =
pm
√
p̂(t)err|m

∑
m pm

√
p̂(t)err|m

. (50)

For the next iteration, we update the acceptance rate as

β(t+1)
m =

⎧
⎨

⎩

ρ̂
(t)
m −nm/n(t)IS

maxm
{
ρ̂
(t)
m −nm/n(t)IS

} , if ρ̂(t)m > nm/n
(t)
IS ,

0, otherwise,
(51)

where n(t)IS =
∑

m nm, so as to steer nm towards the optimal
distribution. Fig. 6(b) illustrates a typical intermediate con-
dition, where the acceptance rate vector β(t+1)

m has been
generated at the end of iteration t for iteration t + 1. The
progressively increasing samples over the iterations improve
the accuracy of p̂err|m, leading towards a better estimate of
ρm and a reduced variance in p̂e. The looping decision is
made by checking the estimated current precision given by

ε̂ =
√
V̂
(
p̂e
)

p̂e
=
√∑nb

m=1 p
2
mp̂

(t)
err|m/nm

∑
em �=0 pmp̂err|m

(52)

where p̂(t)err|m is used in the numerator to effect a conservative
estimate of the current precision.
Fig. 6(c) illustrates a typical condition at the conclusion

of the simulation. Not all bins are sampled and not all the
sampled bins have yielded packet errors. But the conservative
setting of H(t), p̂(t)err|m, and ρ̂

(t)
m should contribute to ensuring

having sufficient samples in the bins of nonnegligible perr|m
for a robust PER estimate.
The proposed adaptive HSMC simulation method is

summarized in Algorithm .

VI. SOME NUMERICAL RESULTS
In this section, we present some numerical results on several
aspects of the proposed adaptive HSMC. To save simulation
time, we do coarse-grain parallel computing on 50 processors
and set nw = 104 and nb = 20 to avoid excessive data
exchanges among the processors.
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TABLE 1. Speedup factors of HSMC vs. MC for BCH coding with QPSK modulation†.

Algorithm 3 Adaptive Histogram-Shaping Monte Carlo

1: Initialize β(1)m by (45), t = 0, nm = em = 0 ∀m
2: repeat
3: t← t + 1
4: for j = 1 to nw do
5: Select m based on β(t)m by A/R method
6: Draw (b(j), z(j)) in bin m by Algorithm or
7: nm← nm + 1, em← em + IF (b(j), z(j))
8: end for
9: if

∑
m em > 0 then

10: Evaluate p̂err|m by (46) and ρ̂m by (47) ∀m
11: Determine H(t) by (48) and (49)
12: Re-parametrize p̂(t)err|m and ρ̂(t)m for m ∈ H(t)

13: Determine β(t+1)
m ∀m by (51)

14: else
15: β

(t+1)
m ← β

(t)
m ∀m

16: end if
17: until ε̂ ≤ ε

We first verify the precision of the HSMC using some
BCH codes, where we consider QPSK modulation and
employ ML decoding in HSMC. We compare the PER
performance obtained under HSMC with the union bound
in (4). The (n, k) values of the BCH codes are (63, 7),
(127, 8), and (255, 9), where the values of k are small to
ease ML decoding. The minimum distances of these codes
are 31, 63, and 127, respectively, which are approximately
linearly proportional to n (with a decreasing r as n increases).
To facilitate QPSK modulation, we add a filler bit to each
codeword to make the word length even. Fig. 7 compares
the PER estimates of HSMC under Q2(·) with the union
bound. We see that they closely match each other.
We next look at the efficiency of HSMC. For this, Table 1

lists the speedup factors at some PER values under Q1(·) and
Q2(·), where G∗ is the ideal speedup factor (25), Ĝ∗ is an
estimate of the ideal speedup factor evaluated using (25)
by setting perr|m therein equal to p̂err|m and pe equal to∑

m pmp̂err|m, and G is the actual speedup factor given by
nMC/nIS with nMC � 100/pe and nIS obtained from running
HSMC with ε = 10% in Algorithm . Commensurate with
the theory in Section IV-A, the ideal speedup under Q1(·)
increases with n. Interestingly, Q2(·) outperforms Q1(·) in
ideal speedup for the (63, 7) code but is outperformed by
Q1(·) for the longer codes. We deem this relative behavior
to have to do with the selective exclusion of some noise

FIGURE 7. PER results for BCH coding at k = 7, 8, and 9, where HSMC employs
Q2( · ) and “UB” indicates the union bound.

elements in Q2(·), but a more detailed theoretical analysis
of this relative behavior appears difficult and is not pursued
in this work. Overall, the actual speedup ranges approxi-
mately from 10- to 1000-fold. The suboptimality embodied
in the adaptive histogram shaping has led to approximately
one order-of-magnitude loss in speedup compared to using
the optimal histogram.
We now investigate the performance of HSMC under polar

coding, where we consider both the QPSK and 16QAM
modulations and hence only examine Q2(·). Let code rate
r = 1/2 and n = 256, and let the code be of the cyclic redun-
dancy code (CRC)-aided kind with 24 CRC bits attached to
the information sequence. We also apply the bit interleav-
ing in [7, Sec. 5.4.1.3], which legitimizes the approximation
in (42). At the receiver, we employ successive cancellation
list decoding (SCLD) with different list sizes for differ-
ent decoding complexities. Fig. 8 shows some PER results,
where L denotes the list size. Note that we have run MC
only down to a PER of approximately 10−7 due to simu-
lation time concern. Similar to the earlier BCH cases, the
HSMC and MC results closely match each other.
Concerning the speedup factors, Table 2 shows some

results (with “actual speedup factor” defined similarly to
Table 1). The proposed HSMC shows better efficiency as L
increases. To better understand this intriguing performance
feature of HSMC, we analyze the corresponding code-
word error patterns. Specifically, we re-encode the decoded
information vector in the case of a packet error and compute
the Hamming distance between the re-encoded codeword
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FIGURE 8. PER results for polar coding under different modulations and list sizes,
where HSMC employs Q2( · ). The solid lines show MC results down to pe ≈ 10−7.

TABLE 2. Actual speedup factors of Q2( · )-based HSMC vs. MC for polar coding.

TABLE 3. Distribution of error patterns in MC simulation of polar decoding at
different list sizes, in A total of 100 errors for each list size.

and the transmitted codeword. Table 3 tallies the MC results
from 100 packet errors for each of three list sizes. As can be
seen, the number of smaller-distance errors (in particular, dis-
tance ≤ 16) increases significantly with decreasing list size.
This indicates that, when the decoding is further away from
being ML (which is the case with a smaller list size), the
performance of HSMC with Q2(·) would suffer more from
the presence of lower-weight error patterns. This has some
resemblance to the declining of performance of Q1(·) with
decreasing dmin. On the negative side, this seems to indicate a
deficiency in the proposed HSMC under code-agnostic noise
gauging, in that it does not fully surmount the effect of code
weaknesses or decoder suboptimality. But on the other hand,
this may also indicate that, aside from being a simulation
tool, the method can possibly be used to assist system design
by detecting code weaknesses or decoder suboptimality via
observing how the speedup factor vary with the transmission
mechanism or transceiver parameters. Further examination of
this perspective is left to potential future work.
Lastly, an aspect of interest is how serious the sample cor-

relation is in the Metropolis algorithm used in Q2(·)-based
HSMC 16QAM simulation. For this, Fig. 9 shows pm, p̂err|m,
the estimated δm and acceptance rates of codeword samples
for the bins where packet errors are observed. As can be

FIGURE 9. Distributions of pm and p̂err|m and the effect of the Metropolis algorithm

in Q2( · )-based HSMC 16QAM simulation, where pe ≈ 10−5.

seen, the acceptance rate decreases with increasing m (i.e.,
increasing q), because the codeword distribution progres-
sively deviates from the unconditioned fB(·) as q increases,
and the Metropolis algorithm tends to reject a randomly
generated codeword samples and keep the previous sample
that has sufficient inner signal values to yield the required
q value. The correlation factor increases due to increasing
rejections. But the high-m bins have low probabilities (pm).
In the end, we find that VM(p̂e)/V(p̂e) = 1.029. That is, the
effect of the correlation on estimator variance is minor and
can be ignored.

VII. EXTENSION TO BURST-ERROR CODES
It is well-known that there is much difficulty in applying
IS to complex systems with high dimensions [15]. One way
to combat this difficulty is to break the system into several
interconnected subsystems of lower dimensions. For PER
simulation, insight for how to do this may be gained by
considering how packet errors relate to code structures. In
the case of burst-error codes, such as a convolutional code, it
is known that the Viterbi decoding delay has much to do with
decoding performance and hence should serve well to define
the subsystem dimension. More generally, any segmentation
of the received signal may serve this purpose as long as the
segment properties correlate highly with the PER. Thus we
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propose a code-aware NGF as

Qc(b, z) = max
1≤λ≤l/lm

Q(λ)2 (b, z) (53)

where lm is a proper segment length which divides the whole
received signal into l/lm segments, λ is the segment index,
and Q(λ)2 (b, z) is the segmental NGF given by

Q(λ)2 (b, z) =
∑

i∈
(λ)(b,z)
z2i (54)

where 
(λ)(b, z) � {i|i ∈ 
(b, z), (λ − 1)lm < i ≤ λlm}.
The reason for taking the maximum of the segmental NGF
values is based on the intuition that the noisiest segment in
the signal may largely determine the error probability (as is
the case in Viterbi decoding of convolutional codes).
Recall that HSMC requires the evaluation of pm and

perr|m, where pm is now determined by the distribution of
Qc � Qc(B,Z). For simplicity, we only treat QPSK herein,
although the approach is applicable to higher-order QAM.
Define segmental cardinality D(λ) � |
(λ)(b, z)|. From the
discussion on D in Section IV-B we see that D(λ) has PMF
f (λ)D (d) = (lm

d

)
/2lm where 0 ≤ d ≤ lm. Since Q(λ)2 (B,Z),

1 ≤ λ ≤ l/lm, are independent and identically distributed
random variables, their maximum Qc has CDF

FQc(q) =
[
P
(
Q(λ)2 < q

)]l/lm
�
(
F(λ)Q2

(q)
)l/lm ∀λ (55)

where Q(λ)2 � Q(λ)2 (B,Z). Now, Q(λ)2 is similarly distributed
as Q2 and hence F(λ)Q2

(q) can be evaluated using (36)
by letting l = lm. The above suffices for the evaluation
of pm ∀m.
Now consider the evaluation of perr|m, for which we need

to sample B,Z|�m. The symmetry with respect to b under
QPSK in AWGN (as noted in Section IV) makes the sam-
pling of B independent of Z and �m (the latter being
totally depending on Z). To deal with the maximization
in (53), which selects the “noisiest” signal segment based
on segmental NGF, let �c � argmax1≤λ≤l/lmQ

(λ)
2 (B,Z) and

Dc � |
�c(B,Z)|. By the AWGN assumption, every signal
segment is equally probable to be the noisiest, and hence �c

is uniformly distributed over {1, 2, . . . , l/lm} and the distri-
bution of Dc is just that of D(λ) for any λ. We thus have
(cf. (37))

perr|m = EB,�c,Dc,Qc,Z|�m[IF (B,Z)]
= EBE�cEDc|�mEQc|Dc,�mEZ|�c,Dc,Qc [IF (B,Z)]. (56)

The generation of simulation samples thus proceeds as
B → �c → Dc → Qc → Z. The conditional probability
distributions of Dc|�m and Qc|Dc,�m, which are needed
in performing the sampling, are derived in Appendix E,
where we show that, under narrow bins (i.e., small �q),
fDc|�m(·) ≈ fD|�m(·) and fQc|Dc,�m(·) ≈ fQ2|D,�m(·), with
l replaced by lm. These approximations work well for
nb ≥ 100, especially for the bins associated with larger
q values for which the CDF F(λ)Q2

(q) ≈ 1. We draw d(j)c

TABLE 4. Speedup factors for the (256,128) TBCCs†.

and q(j)c similarly to d(j) and q(j)2 in Algorithm , except with
fDc|�m(·) and fQc|Dc,�m(·) replacing fD|�m(·) and fQ2|D,�m(·),
respectively. For the λ(j)c th segment of the noise vector, the
sampling method is similar to lines 5–7 in Algorithm . For
every other segment, we merely iterate the same way of
sampling until its corresponding segmental NGF value is
less than q(j)c .
To verify the performance of the proposed code-aware

NGF, we evaluate the ideal speedup factors for some
tail-biting convolutional codes (TBCC). Specifically, we con-
sider the convolutional codes of optimal distance spectra
of constraint lengths 3, 7, and 11 given in [40], with
(n, k) = (256, 128). The generator polynomials are given
by (in octal numbers) [5, 7], [133, 171], and [3345, 3613],
respectively, with their free distances equal to 5, 10, and 14,
respectively. (Although these codes are originally not opti-
mized for TBCC, we find them well-suited for it in our case.
For one thing, the number of minimum-distance codewords
of a resulting TBCC is dominated by that associated with the
zero initial state. In particular, the [133, 171] code has formed
the basis of some standardized TBCC schemes [5], [41].)
It is known that for a rate-1/2 convolutional code, Viterbi

decoding yields near ML performance at decoding delays on
the order of 5 constraint lengths [32], [42]. Hence typical
burst errors under proper convolutional decoding would not
exceed this duration. This hints that an lm on order of 5
times the constraint length or greater may be a good choice.
Experiments show that a good choice of lm for the code-
aware NGF is approximately 3lc/r where lc is the constraint
length. Table 4 and Fig. 10 present some numerical results,
where we have used the wrap-around Viterbi decoding tech-
nique [43] and adjusted the SNR to make pe ≈ 10−5 for
each code. And we have set nb = 100.
First, Table 4 shows that the speed gain of Q1(·) is very

little and is lower than either Q2(·) or Qc(·). This is not
surprising in view of the property of Q1(·) discussed in
Section IV-A, for a convolutional code has a fixed free dis-
tance (or minimum distance) although one may lengthen the
codewords at will. In addition, Table 4 shows that Q1(·)
and Q2(·) yield greater efficiency as lc increases, but the
advantage of Qc(·) over them is significant, although its
performance decreases with increasing lc. Fig. 10 shows that,
under Q2(·), the p̂err|m curve becomes notably steeper as
lc increases whereas under Qc(·) this is not the case. This
should account for the gain in speedup factor with increasing
lc under Q2(·).
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FIGURE 10. Distributions of pm and p̂err|m under Q2( · ) and Qc ( · ) for the (256,
128) TBCCs. The kink in the conditional PER curve for the lc = 3 TBCC is due to a
large percentage of decoding errors to code sequences at Hamming distances greater
than the free distance at lower SNR values.

We have also run a simulation using the suboptimal decod-
ing algorithm of [44]. It turns out the speedup behaviors are
substantially similar.
Several remarks are in order. First, if the code is particu-

larly prone to noise over a certain codeword segment, then it
is effectively a burst-error code that the approach of this sec-
tion can be applied. Second, if the codewords do not show
a burst-error nature but they can be made so with a permu-
tation of the code bits, then the technique of this section
can be applied. And third, breaking the code into disjoint
segments does not really capture the burst-error nature of a
convolutional code, as an error burst could run across a seg-
ment boundary. A more pertinent NGF should thus consider
arbitrarily located (and thus overlapping) segments [31]. But
in this case, pm does not have a closed-form expression and
the sampling mechanism becomes more complicated.

VIII. CONCLUSION
Today’s communication system design heavily depends on
computer simulation for performance evaluation. In this
work, we examined the principles and key issues of the
importance sampling approach to efficient simulation and
developed a histogram-shaping Monte Carlo (HSMC) tech-
nique for coded communication systems simulation. The
technique employs a noise gauging function (NGF) to mea-
sure the error-causing propensity of channel noise samples

and adaptively learns the proper histogram of simulation
samples under the NGF.
Concerning the NGF, we proposed two basic kinds that

are advantageous in two respects: first, they claim relative
ease of sample generation (by being closely related to some
sufficient statistics of AWGN parameters); and second, they
require no detailed understanding of code properties (and
thus code-agnostic in this sense, although some crude knowl-
edge of the code properties can benefit their choice). One of
the two is linear and the other is quadratic. The linear one is
asymptotically efficient under random coding when the code
length and SNR approach infinity but is applicable only
under QPSK (or equivalently, BPSK). The quadratic one,
with a proper sampling method, can be applied to higher-
order modulations. They can therefore be chosen based on
code and modulation properties. Under QPSK (or BPSK),
the linear one is preferable when the code has a large mini-
mum Hamming distance. Otherwise the quadratic one should
be preferable.
We further considered the case of burst-error codes whose

minimum distance properties are far inferior to that of ran-
dom codes, and proposed a quadratic-type NGF to exploit
the burst-error property of such codes to improve the sim-
ulation efficiency. Use of this NGF requires a little more
knowledge of the code properties than the two basic kinds
above and it is thus dubbed a code-aware one.
We presented the detailed method of how to adaptively

learn the optimal sample histogram under a given NGF.
Simulations on short-length coding typically considered

for ultra-reliable communication showed approximately 10-
to 1,000-fold speedup of the proposed HSMC versus con-
ventional MC. Some directions of potential future work were
pointed out along the way.

APPENDIX A
MECHANISM OF PER UNDERESTIMATION
For a linear code, the Hamming distance dH between a
known and an unknown minimum-weight codeword satisfies
dmin ≤ dH ≤ 2dmin. This can be understood by considering
how the 1-bit positions may be related between them:

Known (codeword a) :

d
︷ ︸︸ ︷
11 · · · 1

dmin−d︷ ︸︸ ︷
11 · · · 1 00 · · · 0 00 · · · 0

Unknown (codeword u) : 11 · · · 1︸ ︷︷ ︸
d

00 · · · 0 11 · · · 1︸ ︷︷ ︸
dmin−d

00 · · · 0

In the above, d denotes the number of overlapping 1-bit posi-
tions. Since dH is equal to 2(dmin − d), it is always even.
In simulating QPSK transmission of the all-zero codeword
(term it codeword 0), μa has its first dmin elements equal
to −1/

√
2 with all the remaining elements being zero. Let

wi denote the packets associated codewords i, i = 0, a, u,
respectively. A pairwise ML decoding error to codeword
u results if w0 + μa + Z is closer to wu than to w0.
Straightforward algebra shows that this error probability is
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given by

P

⎛

⎝
�u(dmin)∑

i=�u(1)

Zi ≥ dH/2√
2

⎞

⎠ = Q
⎛

⎝

√
d2
H

4dmin
Es/N0

⎞

⎠. (57)

Since dmin ≤ dH ≤ 2dmin, we have the hit rate p � P(Z +
μa ∈ Fu) satisfying

Q
(√

dminEs/N0

)

︸ ︷︷ ︸
=pmin

≤ p ≤ Q
(√

dmin

4
Es/N0

)

︸ ︷︷ ︸
�pub

, (58)

where the upper bound applies when dH = dmin.
By the property of the Q function, pub < 1/2. While we

cannot characterize pub more specifically in general, note that
p will be small in two conditions: 1) very high SNR and
2) when dH is close to 2dmin. Therefore, while mean transla-
tion substantially increases the hit rate of known codewords
(see (14)), the hit rate of unknown codewords may remain
low. When nIS is small (which is the objective of IS), it is
highly possible that decoding errors to unknown codewords
are insufficiently represented, making p̂IS underestimate the
true PER.

APPENDIX B
UPPER BOUND ON THE MINIMUM VARIANCE
For simplicity, assume � encompasses the complete support
of fQ(q) so that

∑
m pm = 1 and

∑
m pmperr|m = pe. By

the Cauchy-Schwarz inequality, the minimum variance given
in (24) is upper bounded as

V∗Q
(
p̂e
) = 1

nIS

( nb∑

m=1

√
pmperr|m

√
pm
(
1− perr|m

)
)2

≤
(∑

m pmperr|m
)(∑

m pm
[
1− perr|m

])

nIS

= pe(1− pe)
nIS

= V
(
p̂MC

)
, (59)

where the bound is attained when 1 − perr|m = νperr|m
for some constant ν ∀m. When this is the case,
perr|m = 1/(1+ ν) ∀m, resulting in perr|m = pe ∀m.

APPENDIX C
PROBABILITY DISTRIBUTIONS USED IN (37)
By Bayes’ rule, the PMF of D|�m is given by

fD|�m(d) =
fD(d)P(Q2 ∈ �m|D = d)

P(Q2 ∈ �m)
, 0 ≤ d ≤ l (60)

where fD(d) is as in (34), P(Q2 ∈ �m) = pm by definition,

and

P(Q2 ∈ �m|D = d)

= F(d)χ

(
qm +�q/2
σ 2/2

)
− F(d)χ

(
qm −�q/2
σ 2/2

)
. (61)

For the PDF of Q2|D,�m, we have

fQ2|D,�m(q|d) =
f (d)χ

(
q

σ 2/2

)

P(Q2 ∈ �m|D = d)
, ∀q ∈ �m, (62)

where f (d)χ (·) is the chi-squared PDF with DoF = d.

APPENDIX D
PROBABILITY DISTRIBUTIONS USED IN (43)
By Bayes’ rule, the PMF of B|�m is given by

fB|�m(b) =
P(Q2 ∈ �m|B = b)fB(b)

P(Q2 ∈ �m)

=
∑l

d=0 P(Q2 ∈ �m,D = d|B = b)
2kpm

=
∑l

d=0 P(Q2 ∈ �m|D = d)fD|B(d|b)
2kpm

(63)

where P(Q2 ∈ �m|D = d) is as given in (61) and

fD|B(d|b) = f ∗ni
D1|W1=±1/

√
10
(d) ∗ f ∗no

D1|W1=±3/
√

10
(d). (64)

where ni and no are counts of inner and outer signal values,
respectively.
For the PMF of D|B,�m, we get, again by Bayes’ rule,

fD|B,�m(d|b) =
P(Q2 ∈ �m,D = d|B = b)

P(Q2 ∈ �m|B = b)
, 0 ≤ d ≤ l,

(65)

where both the numerator and denominator are already
obtained as byproducts in evaluating fB|�m(b).

APPENDIX E
PROBABILITY DISTRIBUTIONS USED IN (56)
Differentiating (55) yields the PDF of Qc as

fQc(q) =
l

lm
f (λ)Q2

(q)
(
F(λ)Q2

(q)
)l/lm−1

(66)

(with λ arbitrary). To obtain fDc|�m(·) and fQc|Dc,�m(·) for
sampling use, we first obtain the joint distribution of Dc
and Qc. Since Dc applies only to the maximum of Q(λ)2 , we
have

fDc,Qc(d, q) =
l

lm
f (λ)D (d)f (λ)Q2|D(q|d)

(
F(λ)Q2

(q)
)l/lm−1

(67)

where f (λ)Q2|D(·) is chi-squared PDF with DoF D(λ). Due to the

term F(λ)Q2
(q), fDc|�m(·) and fQc|Dc,�m(·) do not have simple

closed-form expressions. To facilitate sampling computation,
consider the case of narrow bins under a large nb. We approx-
imate (l/lm)(F

(λ)
Q2
(q))l/lm−1 ∀q ∈ �m by a constant ξm to

obtain an approximate PMF of Dc|�m as

fDc|�m(d) =
∫
�m

fDc,Qc(d, q)dq

P(Qc ∈ �m)
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≈ ξm

P(Qc ∈ �m)
f (λ)D (d)

∫

�m

f (λ)Q2|D(q|d)dq

= ξm

P(Qc ∈ �m)
f (λ)D (d)P

(
Q(λ)2 ∈ �m|D(λ) = d

)
. (68)

And similarly as for (62), it follows that

fQc|Dc,�m(q|d) ≈
ξm · f (d)χ

(
q

σ 2/2

)

P
(
Q(λ)2 ∈ �m|D(λ) = d

) ∀q ∈ �m. (69)

Comparing (68) and (69) to (60) and (62), we see (by
the normalization property of probability) that, under a
small bin width, fDc|�m(d) ≈ fD|�m(d) and fQc|Dc,�m(q|d) ≈
fQ2|D,�m(q|d), with lm in place of l.
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