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ABSTRACT Signal classification is a universal problem in adversarial wireless scenarios, especially
when an eavesdropping radio receiver attempts to glean information about a target transmitter’s patterns,
attributes, and contents over a wireless channel. In recent years, research surrounding the idea of Machine
Learning (ML)-based signal classification has focused on modulation classification, with the downstream
objective of demodulation. However, while the computer vision data domain has made significant progress
in ensuring robust classification of images despite crafted perturbations, this success has not been translated
to secure modulation classification. In this work, we perform the first-ever physical test of an eavesdropping
ML-based modulation classifier radio, which we trained offline using a ensemble of i.i.d. models. Each
model is trained with a weighted mixture of data perturbed by iterative, “least likely” white box attacks
and non-attacked data. We then tested the ensemble online using coaxial-connected Software Defined
Radios (SDRs). We conducted a case study comparing our results to the state-of-the-art computer vision
approaches to investigate the presence of “label leaking”, model capacity sensitivity, understand the viability
of parallel and sequential variations on perturbation training, and assess the effectiveness of iterative attack
training. Our results show that perturbations can result in guessing-level classification performance from
eavesdroppers, and that varying levels of robustness can be achieved against all presented attacks. These
findings confirm that any receiver presents a new attack vector by utilizing ML techniques for classification
tasks, and can be vulnerable to evasion attacks at little-to-no cost to transmitters. Consequently, we argue
for the use of our training scheme in all ML-based classifying radios where security is a concern.

INDEX TERMS Adversarial perturbations, adversarial training, modulation classification, supervised
learning, software defined radio.

I. INTRODUCTION

IN 2014, Goodfellow [1] presented a picture of a panda
that the world’s state-of-the-art Machine Learning (ML)

(Acronym Appendix) algorithms confidently decided is a
gibbon. Utilizing the classifier’s gradient, an 8-bit integer
resolution-bounded noise image was computed and added
to the original panda image. Ever since, an arms race has
been ongoing between crafting adversarial perturbations and
developing countermeasures [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15]. It is important that high-risk

wireless communications systems employed in applications
such as autonomous vehicles [16], agricultural Internet-of-
Things (IoT) [17], and military networks [18] are secure
from perturbation attacks because incorrect classifications
can result in catastrophic financial and/or human costs. Thus
the design of trained ML algorithms for these wireless
networks must prevent the introduction of additional attack
surfaces used by potential adversaries, which requires an
understanding of effective perturbation designs in realistic,
physical scenarios.
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As a relatively new field of research, wireless adversarial
perturbation papers present many open challenges that have
yet to be resolved. Papers that synchronously add physical
perturbations to other physical transmissions to fool physical-
layer classification systems [19] do not model realistic
synchronization errors between the two, with the excep-
tion of the time shifted Universal Adversarial Perturbation
(UAP) [6] attacks simulated in [20]. Works that simulate
transmitters that add optimized perturbations to their own
signals [21], [22] generously assume a white box eaves-
dropper and have not made attempts to design deterministic
perturbations that improve various loss metrics. Additionally,
several works [21], [22], [23], [24] have noted the fre-
quently used dataset for these studies are generated with
several ratio and labeling errors. There has also yet to
be an investigation on the effects of the wireless channel
applied to the ML-based detection and isolation of these
perturbations [7], commonly performed by a statistical dis-
tribution estimating algorithms such as Variational Auto
Encoders (VAEs) [25] or Generative Adversarial Network
(GANs) [26]. Additionally, there remains a need for exper-
imentation to confirm the overwhelmingly simulated works
published so far with respect to realistic real-world sce-
narios involving clock drift, Radio Frequency Front End
(RFFE) noise, and other real-world phenomena. Finally,
many simulated countermeasures [27], [28], [29] do not con-
sider state-of-the-art adversarial attacks published in the
computer vision domain.

A. RELATED WORK
The study of adversarial perturbations in the wireless data
domain is relatively new and lagging behind that of lead-
ing data domains such as computer vision. Sadeghi and
Larsson [20] synchronously added Fast Gradient Sign
Method (FGSM) [1] and UAP [6] attacks to received signals
over an Additive White Gaussian Noise (AWGN) chan-
nel model, highlighting how considerably less power is
needed to fool a Convolutional Neural Network (CNN)
with perturbations when compared with random jamming
signals, and that the UAP [6] attack is robust to time
shifts between it and the received signal that simulates
synchronization errors. Kim et al. [30] analyzed the same
threat model and explored how the adversary can use the
channel state information matrix to synchronously deliver
power and error-optimized white and black box pertur-
bations. Flowers et al. [24] use a different threat model,
where FGSM [1] perturbations were added by a transmit-
ter to its own signal to fool a CNN-based eavesdropper,
and investigated the trade-off between BER and adversar-
ial accuracy. The authors found that perturbations strong
enough to be effective at lowering eavesdropper classifi-
cation accuracy came at the cost of a significant number
of communication errors (especially higher order modula-
tion signals), that frequency and timing errors possessed a
small effect on perturbation effectiveness, and that relatively
large, single-step perturbations did not always increase loss

because of unstable gradient ascent. These lessons motivated
Flowers et al. [21] to design a feedback loop to the trans-
mitter from the adversary to optimize the multi-objective
loss functions, which design the perturbations to minimize
power consumption, minimize BER, and minimize eaves-
dropper accuracy. DelVecchio et al. [22] similarly optimized
the frequency-domain power and bandwidth of perturbations
to maximize communication effectiveness without increasing
eavesdropper accuracy. Lin et al. [31], [32], [33] performed
an analysis of many state-of-the-art attacks such as Projected
Gradient Descent (PGD) [34] against simulated modulation
classification datasets. Bao et al. [35] diverged from the mod-
ulation classification use-case to analyze the effectiveness of
state-of-the-art perturbations used to disrupt (IoT) networks
performing device identification. Maroto et al. [27] imple-
mented adversarial training robust to iterative attacks, but
experienced label leaking and weak models due to crafting
ground-truth-based perturbations that are overly correlated to
trained models, ground truth class, and the non-adversarial
data. Zhang et al. [28] performed defensive distillation to
protect the network from single-step adversarial perturba-
tions, but the process of fooling these networks is well
understood [36], [37]. Finally, Sahay et al. [29] performed a
4-class modulation classification adversarial training simula-
tion using both time and frequency domain features, showing
a clear improvement over using time-based features alone.
However, they did not show evidence that their novel fea-
ture extraction offered improvement upon the moment- and
cumulant-based features used in state-of-the-art works [38].
In this work, we explore defense approaches against adver-

sarial perturbations in a white box attack regime, as seen in
the state-of-the-art. Traditionally, the term “white box” is
used in adversarial perturbation scenarios to describe the
weights and architecture of the target ML classifier as fully
observable by the agent who is crafting perturbations. In
our white box scenario, the adversary can observe not only
the trained model and its weights, but all aspects of the
eavesdropper’s radio and ML systems, such as perturbation
detection networks or ensemble classification schemes. We
implement our methodology with this assumption because an
attack or defense executed with an informational advantage
is trivial to study, as it will usually succeed. Additionally,
if white box classifier knowledge has been obtained, as in
the state-of-the-art, via malware or reverse engineering, it
is unclear to us why the perturbation defense sub-system
would be unavailable.
Consequently, we do not investigate the use of semi-

supervised perturbation detection algorithms [7] because it
has been shown they increase the attack surface of the clas-
sifier when the adversary is aware of them [4]. We do not
investigate the use of gradient masking [5] or defensive dis-
tillation [9] because the process of fooling these networks is
well understood [36], [37], [39]. Finally, we do not investi-
gate the use of network verification [40], [41], [42], [43] as
these computational methods are still prohibitively expen-
sive for all but the smallest datasets and models. While
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our classification architectures are relatively small (see
Section II-A and Section II-B), we show in Section III-E
that making them any smaller such that network verifica-
tion would be possible, will make them more vulnerable to
adversarial perturbations.
Adversarial training has been described as a powerful reg-

ularization method [34] that performs a similar function to
L1 regularization on the activations of linear classifiers [1].
When a model is overfitting, adversarial training, defen-
sive distillation, and gradient masking schemes have all
doubled as defenses against adversarial perturbations, as
well as regularizers that increase the classification PPV of
non-adversarial test data.

B. RESEARCH CONTRIBUTIONS AND ORGANIZATION
In this work, we present a number of defensive contributions
to the state-of-the-art. These contributions confirm or deny
state-of-the-art best practices from the adversarial computer
vision domain, as well as establish new ones for wireless
communication scenarios through both simulated and exper-
imental demonstrations to make defenses more robust to
knowledgeable attackers. Those contributions are as follows:

• Evaluation of the effectiveness of perturbation training
to mitigate attacks on a modulation classification model
as measured by PPV, ensuring we measure common
defense pitfalls discovered in other contexts such as
“label leaking”;

• Improving network architectures for Radio Frequency
Machine Learning (RFML) signal classification in more
realistic settings by training models to be robust to
attacks and to avoid common defense pitfalls;

• Validation of the state-of-the-art and proposed tech-
niques in a physical setting utilizing unsynchronized
radios, such that real-world data demonstrates impact
and implementability.

This study impacts wireless communication privacy impli-
cations significantly by providing an example of real-world
perturbations disrupting an eavesdropper’s demodulation
efforts in the presence of channel and hardware noise
between two unsynchronized radios. A study of the eaves-
dropper’s trade-space in pursuit of demodulation despite
those disruptions is also provided.
This paper is organized as follows:

• In Section II, we introduce the real-world physical
scenario that motivates adversarial attack of a signal
classifier and define metrics of success for such an
adversary.

• In Section III, we present several novel studies of
state-of-the-art computer vision adversarial training
schemes applied to the problem of wireless adversarial
perturbation defense.

• In Section IV, we review our contributions and sug-
gest several open challenges to the wireless security
community.

II. SYSTEM MODEL
The state-of-the-art perturbation approaches assume one
of two diffrent three-player scenarios. In the first sce-
nario, a transmitter and receiver communicate while a
reactive adversary eavesdrops, computes the proper per-
turbation, then synchronously transmits those perturbations
to fool the receiving radio, which classifies the observed
sum of signals [20], [30]. Alternatively, a transmitter adds
pre-channel perturbations to fool an adversarial eavesdrop-
per, which classifies the transmissions while maximizing
communication capabilities between the transmitter and
receiver [21], [22], [24]. In this paper, we investigate the
latter scenario (Fig. 1) while leaving the former for future
work.

A. METHODOLOGY
State-of-the art methodology trends are as follows.
Adversarial perturbations in the wireless communications
domain are typically generated to fool classifiers trained
on the RML2016.10A [44] simulated dataset, its successor
the RML2018.01A [38] dataset, or datasets modeled after
the RML datasets that tune or fix the various channel model
parameters, meta-data, or SNR [23]. Previous papers that
apply adversarial attacks to this dataset use the same or
similar supervised learning model to compute perturbations,
the VT-CNN or VT-CNN2 models [45]. Finally, previous
papers typically compute white box attacks such as the
FGSM attack.
In this work, we create variations inspired by the

RML2018.01A [38] datasets in Section III. In a related
work [23], the RML2016.10A [44] dataset experiences sig-
nificant multicollinearity (correlated input data indices), uses
a pulse shaping filter without zero-crossings, and does not
properly compute energy per symbol ratios. These issues,
respectively, limit classifier performance, do not allow bit
estimation, and produce SNR-shifted classifier performance
results. Consequently, we chose to create a new dataset
similar to RML2016.10A in which we increase the num-
ber of samples per signal capture from 128 to 4096 to
reduce multicollinearity by providing more symbols and
symbol transitions per example. Finally, we implement a
slightly different Finite Impulse Response (FIR) Root Raised
Cosine [46] (RRC) with a rolloff α = 0.35 and 12 taps
since the RML2016.10A does not possess zero crossings
in its RRC filter, as the dataset is not designed for bit
estimation.
Our version of the dataset (Fig. 2) implements the cumula-

tive random walk of truncated Gaussian samples for Symbol
Rate Offset (SRO) and the cumulative random walk of
truncated Gaussian samples for CFO as:

xOi = F−1

{
F{x}

(
cos

(
2π i

N

i∑
k=1

SROk

)
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FIGURE 1. The transmitter, given both a signal and a perturbation power constraint, strategically amplifies certain samples of signals such that an adversarial eavesdropper
cannot correctly classify the modulation scheme of the observed signals. When successful, the transmitter avoids being demodulated correctly and its bits estimated by the
eavesdropper are random and lack any information. We measure the success of the perturbations by how low of a BER they achieve with the intended receiver and by how low of
a classification accuracy measured by the Positive Predictive Value (PPV) the eavesdropper achieves in this dual-objective scenario. Conversely, we measure the success of the
eavesdropper by how high of a classification PPV it can achieve on observed signals and how many bit errors it can force the transmitter to make in order to avoid correct
demodulation.

FIGURE 2. A summary of how we generate data for training and inference, evaluate the dual objective, implement attacks, and build robust defenses.

−1j sin

(
2π i

N

i∑
k=1

SROk

))}

× exp

(
−2jπ i

fs

i∑
k=1

CFOk

)
, (1)

for sample index i = 1, . . . ,N, vector length N = 4096, and
sample rate fs = 200 MHz, which are all equal to the values
used in [44].
Finally, we implemented an 11th order FIR

Butterworth [47] filter with a normalized frequency
cutoff of 0.65 to isolate the signals from OOB noise.
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TABLE 1. A summary of the mathematical terms found throughout this letter.

B. ADVERSARIAL TRAINING WAVEFORMS
AND CLASSIFIER
To address the issue of multicollinearity, we used time slices
of 4096 complex IQ samples instead of 128. By trial-and-
error, we found that by using more samples per signal, we
did not need to generate as many signals to achieve the same
test PPV, such that our training dataset contains 1.4 million
signals instead of 2 million [38]. We additionally imple-
mented the dataset with the following differences from the
GR channel model presented in [38]: α ∼ U(0.35, 0.45)

instead of α ∼ U(0.1, 0.4), σclk = 0.005 instead of
σclk = 0.01, τ = [0.0] instead of τ = [0.0, 0.5, 1.0, 2.0],
and SNR in the range Es/N0 ∈ [0, 30] dB instead of
Es/N0 ∈ [−20, 30] dB. For a summary of parameters,
coefficients, and other mathematical terms, see Table 1.
Since the training of models to be robust to perturbations

is an adjacent task to the training models that generalize well
to test data that differs statistically from training data [34],
we generated several physical test sets to see how well our
adversarial training schemes perform as regularizers. These
test sets are comprised of 1408 signals, which are also called
examples, where each of the 88 GR channel models generate
16 signals, as opposed to the training sets wherein 2728 GR
channel models generate 512 signals each. Each GR chan-
nel model has an independent, fixed modulation class, SNR,
and Samples Per Symbol (SPS), I. To generate the data, two
USRP N210 SDRs (Fig. 3) are connected via coaxial cable.
No digital gain or digital attenuation is used, the radios sam-
ple captures using a 1 MHz bandwidth and 20 MHz carrier
frequency. We add perturbations to these streams of data
via a synchronous Out-Of-Tree (OOT) block in GR imple-
mented before the USRP sink block, which loads the trained
Pytorch model, predicts and computes the gradient using the
time slice of data, and adds the perturbation to the output.
For consistency, we enforce a unit energy constraint on all
datasets before classification and perturbation crafting as:

xnorm = x
√
N

||x||2 , (2)

FIGURE 3. USRP N210 SDRs, their coaxial connection, and host computer. The
connection employs a 10 dB attenuator.

where N is the length of x. The received test signals do not
have an observable DC offset, such that mean subtraction is
not implemented in simulated data.
For our IQ data modulation classification adversarial train-

ing presented in Section III, we implemented a model deeper
than VT-CNN2 in Pytorch, which possesses a higher learn-
ing capacity necessary for this work (see Section III-E)
when performing adversarial training and training using
a dataset with a higher number of classes. We used,
as found by trial-and-error, a deep model inspired by
the Visual Geometry Group (VGG) 10 [48] CNN model
comprised of 9 convolutional layers with ReLU activa-
tions [49] and the following number of filters per layer:
[64, 64, 128, 128, 256, 256, 256, 256, 256]. The model is ter-
minated with two dense layers with 512 neurons and 22
outputs from the second dense layer. Max pooling is imple-
mented every two layers with stride 2 and size 2. All
convolutional layers used have stride 1 and kernel size 3,
totaling 18.2 × 106 parameters. All weights are initialized
using Kaiming initialization [50]. We did not find that
dropout [51] and weight regularization improve classification
performance.
The model is optimized in Pytorch by minimizing log soft-

max plus categorical cross entropy loss via the Adam [52]
quasi-Newton method over 20 epochs in mini-batches
of size 256. The following Adam parameters are used:
αadam = 0.0442, β = (0.9, 0.98), εadam = 1×10−9, γ = 0.1
with 4,000 warm up steps. No early stopping is imple-
mented, and batch normalization [53] is used. Currently,
the literature has observed the strongest perturbations are
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those crafted exploiting Neural Networks (NNs) with skip
connections, also known as ResNets [54], as a new attack
surface [55]. Consequently, we opt to forgo skip connec-
tions, despite their advantage in training deep models that
are robust to vanishing gradient problems.

C. ADVERSARY GOALS AND DESCRIPTION
An adversarial perturbation is defined as a signal that is
added to another signal which is given to a ML model during
either training or testing with the intent of causing incorrect
estimation or classification during inference. This interaction
can be generally described as:

x∗ = x+ εη, (3)

where the perturbation, η, is scaled by ε and added to the
original signal x to form a adversarial example, x∗. If the
trained ML model’s predictions are described as f (x) = ŷ,
then the perturbations are crafted using the observed or
estimated prediction loss function of the model given a
signal:

L(
f
(
x∗

)
, y

)
> L( f (x), y), (4)

with the expectation that increasing the loss will decrease
the performance metrics of the deployed model (i.e., F1-
score, precision, recall, AUC, ROC, IoU, mAP). The reason
for the scalar ε was originally to craft computer vision
perturbations that are imperceptible to the human eye, but
generally used to minimize the perturbation according to
the metric and scheme of choice. Surveys of adversarial
attacks and countermeasures are available on these topics
from references [2], [3], [4], [5].

In this work, we implemented several different attacks to
confirm, deny, or establish best practices presented in leading
ML data domains. Due to the variation of perturbations and
non-adversarial signals, we define a generalized, adaptive
scaling factor based on perturbation energy Ep for all attacks:

ε =
√

10
Es
Ep

/10 ∑n
i=1 |xi|2

||η||2 , (5)

where x is the information signal and η is the perturbation
signal, which achieves the desired signal (Es) to perturbation
energy ratio:

Es
Ep

= 10 log10

(∑n
i=1 |xi|2∑n
i=1 |ηi|2

)
. (6)

The choice of Es
Ep

represents the importance placed by the
transmitter on each of the two objectives, being receiver BER
and eavesdropper classification PPV.
Given a finite power constraint, it is intuitive that ampli-

fying all samples equally would result in the lowest BER.
Yielding some of that power to strategically amplify some
samples more than others grants the transmission a measure
of obfuscation from fragile ML-based classifiers, at a cost to
BER proportional to the power given up. If the transmitter

has an objective eavesdropper PPV, the optimal choice for
the Es

Ep
ratio cannot be determined without a PPV feedback

loop (see [21], [22]) from the eavesdropper to the trans-
mitter, even in a white box scenario where all ML weights
and classification rules are known. However, if the wireless
channel is well known, as it is in many full duplex links,
a BER objective could be used to choose a necessary sig-
nal energy, while using the remaining power constraint for
perturbation energy.
The attacks used in this work include FGSM [1]:

x∗ = x+ εsign(∇xJ(x, ytrue)), (7)

where ytrue is the ground truth label of x, a relatively simple
and efficient attack when compared to the others in this
work which minimizes p(ytrue|x∗). Additionally, we use the
One-Step Least Likely (stepLL) attack [34]:

x∗ = x− εsign(∇xJ(x, yLL)), (8)

where yLL is the least likely predicted class of x as deter-
mined by a classifier, which uses the least likely class of the
signal according to the class scores of the model to maximize
p(yLL|x∗). This attack is used for adversarial training [34]
because FGSM [1] perturbations are substantially determinis-
tic and correlated to the true label. Consequently, adversarial
models trained with FGSM attacks classified adversarial data
more accurately than non-adversarial test data, while those
trained with yLL attacks does not. We visualize some stepLL
perturbations in Fig. 4. Finally, we use the Iterative Least
Likely (iterLL) attack [34]:

x∗j+1 = Clipx,−ε,ε

{
x∗j − αitersign(∇xJ(x, yLL)

}
,

x∗0 = x, j = 0, . . . ,N (9)

which achieves more powerful perturbations than its one
step equivalent by recomputing the direction of the gradient
multiple times. In our work, we sample the number of iter-
ations N ∼ U(2, 10) and compute the iteration step size as
a ratio, αiter = 2ε

N . We leave the investigation of Projected
Gradient Descent (PGD) to future work.

III. ADVERSARIAL TRAINING
In this section, perturbation countermeasures are studied
by implementing the adversarial training scheme outlined
in [34] using our RML2018.01A [38] inspired dataset
and the VGG10 [48] inspired modulation classifier from
Section II-B, and all attacks presented in Section II-C.
We do so using perturbations crafted after first training
a non-adversarial model, as in [56], such that we trans-
fer the knowledge of the end results of training. The idea
behind adversarial training is to train the model using
mini-batches with both perturbations and non-adversarial
signals:
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FIGURE 4. One i.i.d. (including phase offset) captured perturbation and non-adversarial signal for each modulation class from the connected USRP N210 SDRs from our
implementation of the RML2018.01A [38] dataset. These scatter visualizations of the time-series data are over sampled by 8 SPS.

Loss = 1

(m− k) + λk

(
m−k∑
i=1

L(x, ytrue)

+ λ

k∑
i=1

L(
x∗, ytrue

))
, (10)

where m is the mini-batch size, k is the number of adver-
sarial examples per mini-batch, L(·) is categorical cross
entropy loss, and λ is the weighting of learning step size for
adversarial versus non-adversarial training examples. In this
work, we use m = 256, k = 38, and λ = 1 such that we
achieve what is an effectively equivalent training scheme as
seen in [34], who choose m = 32, k = 16, and λ = 0.3.
We quantify the similarity of these parameter choices as
mλ
k = 0.15. As in [34], we randomly vary perturbation
strength such that the adversarial trained model general-
izes well to test-stage perturbations of different strengths.
We accomplish this variation using a truncated Gaussian
distribution as:

ε∗ = Clipε,0,1{ε + δ},
δ ∼ N (0, 1/2), (11)

and refer to the value of Es/Ep for this scheme as “sweep-
ing”. We perform the costly, relative to computer vision,
training schemes presented in this section using a Intel
Xeon Gold 6248 CPU node with 20 cores and 192 GB of
RAM, and one NVIDIA Volta V100 GPU node with 32 GB
of RAM.

A. EVALUATION OF NON-ADVERSARIAL MODEL
We first evaluate the non-adversarial model as a base line,
unprotected classifier. In evaluating the non-adversarial train-
ing scheme, we made a number of discoveries. We found
that Frequency Shift Keying (FSK) modulation classes are
the most difficult to fool, with only three false positives
across all modulation orders of FSK in an FGSM attack.
This is due to the frequency shifts between each symbol
being large. We found that FSK modulation with smaller
shifts were easier to fool. The crafting of frequency-domain
perturbation is the subject of ongoing research and will be
the focus of a subsequent publication. When stronger attacks,
deeper models, or larger perturbation energy are used, more
FSK signals are fooled. We found that FGSM attacks perform
better than stepLL attacks, because they lower the class score
of the true class rather than increased the score of the least
likely class. We also observed the iterLL attack is the most
effective attack because it most accurately ascends the gradi-
ent due to taking multiple, smaller steps. Additionally, most
test sets showed that, when attacked, they attempt to fool
all classifications to be one of a few classes. For instance,
57% of false positives caused by iterLL attacks on the non-
adversarial trained model belonged to the 256FSK class, 23%
to the 8 Amplitude Shift Keying (ASK) class, and 20% to
all other classes. Finally, we observed that increasing per-
turbation strength decreases modulation classification PPV,
which is to be expected. Specifically, Es/Ep = 0 dB stepLL
attacks are required to approach a PPV equal to that of a
zero rule classifier, and that Es/Ep > 35 dB stepLL attacks
had no effect on physical test PPV. On average, perturbations
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FIGURE 5. A class-by-class analysis of the effectiveness of each attack and strength of attack on the non-adversarial trained VGG10 model. Most false positives belong to the
same one or two classes. IterLL attacks are the strongest, followed by FGSM, and stepLL. FSK classes are the most difficult to fool due to large frequency shifts between each
symbol. Perturbations sent over a physical channel are slightly less effective than perturbations transmitted over a simulated wireless channel.

sent over a physical channel are slightly less effective, rel-
ative to non-adversarial PPV, than perturbations transmitted
over a simulated wireless channel (Fig. 5). This is due to

a covariate shift between training phase simulated channels
and test phase physical channels. The size of the PPV ratio
gap is proportional to that covariate shift.
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FIGURE 6. Our offline adversarial training framework mostly follows that outlined in [34], although we decouple training by only generating perturbations from already trained
models, as in [2]. Additionally, unlike any other paper, we evaluate our model using perturbations crafted from gradients computed from the ultimate model, and do so using
online, physical signal captures. Our reasoning is that if our system is vulnerable to an attack once, it can be attacked again, and to assume that the attack is done without
knowledge of our countermeasure is overly optimistic. Each model and dataset is i.i.d., and the training of the ultimate model is always done with the same number of weight
updates as outlined in Section II-B. For instance, if we produce a parallel set of adversarial training data using three models, we would train the ultimate model using three sets
of 1.4/3 million signals for 20 epochs each.

TABLE 2. Effect of various adversarial training schemes on the modulation
classification PPV of different partitions of data. stepi−1 perturbations refers to
testing models using perturbations from the same distribution as training set
perturbations, where stepi perturbations refers to testing model using perturbations
crafted after adversarial training. The adversarial training maintains ∼ 26% of its
protection against current step physical attacks compared to physical attacks crafted
during training. Furthermore, as in [2], the model trained by the parallel training
scheme is more accurate when evaluated on adversarial data at the cost of
non-adversarial accuracy. In [2], this gain is seen only for black box attacks, not white
box attacks. Our current step white box attacks are analogous to black box attacks
from the perspective of adversarial training because test-phase perturbations are
crafted from a different set of weights than that from which training perturbations are
crafted. Finally, we observed that the cascade adversarial training scheme follows the
same trend as the parallel scheme but with greater magnitude.

B. EVALUATION OF CASCADE AND PARALLEL MODELS
Here we evaluate the performance of the protected classifier,
as well as the parallel and series extensions of that protec-
tion scheme. Parallel [2] (cascade [56]) adversarial training
is a parallel (sequential), method of decoupling the genera-
tion of adversarial training examples from the model being
trained. The theory behind parallel decoupling is that per-
turbations are transferable between models and that parallel
adversarial training schemes will achieve a better approxi-
mation of the underlying distribution of perturbations than
adversarial training using perturbations crafted from a sin-
gle pre-trained model, providing greater protection against

black box attacks or new white box attacks generated by the
fully trained model. The knowledge transferred by a parallel
set of perturbations is statistically diverse and high variance,
competing with non-adversarial training data for learning
capacity in small models [2], such that under fitting occurs
if the model size is not increased appropriately.
The theory behind cascade adversarial schemes is that each

iteration of training transfers additional information about
how perturbations are crafted from already trained models to
the ultimate model. We hypothesize there is some number of
cascade training iterations and parallel set size that is optimal
for a given scenario, and seek to identify the performance
trends of these schemes via physical experimentation on
models trained offline.
The number of training samples and number of training

epochs for the ultimate model were held constant across all
of these schemes (Fig. 6) such that the resulting PPV of
each scheme will be the result of the knowledge transferred
by training perturbations and not the duration of training or
quantity of data.
In Table 2, adversarial training maintains about 26% of its

protection against current step attacks compared to attacks
used in training. Additionally, the ultimate models trained
using the parallel training scheme perform worse in all sce-
narios except for attacks crafted using a model other than
that used in adversarial training, or that their robustness is
transferable at the cost of regularization. Finally, these mod-
els trained using the cascade scheme follow the same trends,
but to a greater magnitude than parallel training schemes.

C. LABEL LEAKING
Here we ensure that our protection scheme does not over
fit the classifier to depend on perturbations for good
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TABLE 3. An investigation of “label leaking” [34] occurring when using FGSM
adversarial training schemes, justifying the use of the stepLL attack in training over
the use of the FGSM attack. While we do not see evidence of label leaking for this
dataset, we find that stepLL training yielded higher protection against iterative and
FGSM attacks than FGSM training, which are the most dangerous attacks.

performance. Label leaking is described in [34] as when
adversarial training with the use of ground truth labels in
attacks such as FGSM [1] results in a trained model that
tests better on adversarial data than non-adversarial data for
an individual signal, with and without its added perturbation.
Specifically, a label has leaked for a test signal if x∗ is classi-
fied correctly but x is not. Label leaking is not possible in our
experiments since we disjoint crafting by discarding x when
we craft x∗, as in [2], which is one of the reasons we have
used such a technique. However, we can still interpret the
modulation classification PPV obtained on i.i.d. populations
of adversarial and non-adversarial test signals to determine
if models have been over trained with perturbations. This is
because the intuition behind label leaking is that ground truth
based attacks perform a deterministic transform on data that
is highly correlated to the ground truth. As a consequence,
if we define the PPV ratio of a model as the PPV of adver-
sarial data divided by the PPV of non-adversarial data, then
test sets with leaked labels will achieve a PPV ratio > 1.

To validate the presence and severity of label leaking in
wireless experiments and contrast those findings with those
in relatively high dimension, zero noise computer vision
works [34], we implement the adversarial training method-
ology presented by Fig. 6 with FGSM attacks. In Table 3, we
do not observe any evidence of label leaking, but we do see
evidence that stepLL training resulted in more robust models
against iterative and FGSM attacks than FGSM training.

D. EVALUATION OF MODELS TRAINED WITH ITERATIVE
ATTACKS
Here we investigate the trade-space of computational cost
and attack effectiveness against our protected model. In [34],
the authors found that adversarial training with iterative
attacks did not train models robust to iterative attacks.
They hypothesized that they did not have the computa-
tional resources to train their Inception v3 [57] model on
ImageNet [58] data with a large enough learning capacity to
learn the complex distribution of iterative attacks. In [59], the
authors reduced the computational cost of iterative Projected
Gradient Descent (PGD) [34] attack training by generat-
ing Canadian Institute for Advanced Research (CIFAR)-10
and CIFAR-100 [60] adversarial perturbations during train-
ing by using the gradient computed for SGD, rather than

TABLE 4. IterLL attacks are significantly more effective than stepLL attacks. StepLL
training offer almost no defense against iterLL attacks. We are able to achieve iterLL
trained models with a small level of defense against iterLL attacks, and higher defense
against stepLL and FGSM attacks with no significant loss to non-adversarial
performance.

re-computing. They achieve a moderate level of protection
at a very low computational cost.
In this work, we performed iterLL adversarial train-

ing using a RML2018.01A inspired dataset to see what
degree of protection we may obtain from iterLL and other
attacks. We do so without the dual-use of the gradient as
in [59] because crafting perturbations during training rather
than after does not result in disjoint crafting as in [2].
Additionally, we hypothesized that our relatively low dimen-
sion data (i.e., 8192 features/example for the RML2018.01A
inspired dataset versus 544509 average features/example for
ImageNet [58]), relatively smaller model (i.e., 18.2 × 106

parameters in our VGG10 inspired model versus 24 × 106

parameters in Inception v3), and several years of computa-
tional resource advancements (i.e., Volta 100 versus Tesla
K80 Graphics Processing Units (GPUs)) will render the
dual-use unnecessary.
In Table 4, we observed that iterLL attacks are 206% more

effective than stepLL attacks for our dataset, model, and
attack parameters. Additionally, stepLL training offered no
significant defense against iterLL attacks, prompting the need
for an iterLL training scheme. The results of our iterLL train-
ing are very positive, showing an increased defense against
all attacks without losing non-adversarial performance. Most
notably, it is the only training scheme that achieved any level
of protection against iterative attacks.

E. MODEL CAPACITY
Here we ensure that our protection scheme does not under
fit because it lacks enough trainable parameters to learn
both perturbed and non-perturbed data distributions. In other
works [34], the authors were unable to find a model deep
enough to over fit in the presence of adversarial training
using the stepLL method. We scale model width by increas-
ing the number of convolutional filters in every convolutional
layer by a factor ρ. While our model utilizes batch normal-
ization to some effect, we do not find dropout to improve
test-stage PPV.
In this work, we investigated the effectiveness of stepLL

adversarial training as a regularizer in wireless experiments.
We hypothesized the relatively low dimension data, relatively
small models, and several years of computational resource
improvements will make it more feasible to scale to extreme
ρ values.
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TABLE 5. Effect of model capacity on adversarial training, evaluated using physical test data. We find that adversarial training prevents overfitting from occurring when
training our VGG10 model scaled by ρ = 4. We additionally find that stepLL perturbations crafted after adversarial training are more effective against deeper models, indicating a
model capacity trade-off between non-adversarial and adversarial test classification PPV. Models that are too shallow additionally make lower confidence classifications than
deep models, such that they are easier to fool. “Clean” is short hand for non-adversarial data.

In Table 5, we were able to scale ρ ∈ [0.5, 4] before
running out of memory. We found that at ρ = 4 the non-
adversarial trained VGG10 began to over fit to training data
because it had a lower physical test data classification PPV
than the ρ = 2 non-adversarial trained model. However, with
adversarial training, the model is regularized and physical
test data classificaiton PPV continues to increase with ρ.
Additionally, deeper models were more vulnerable to adver-
sarial perturbations, which can be explained by [1], where it
was shown that FGSM perturbations increased the magnitude
of activations by ε×L×M, where M is the average value of
weights in a layer and L is the number of weights in a layer.
We hypothesized that by increasing ρ, we are increasing L,
such that perturbations, all else equal, will have a greater
impact on classification PPV. We tested this hypothesis by
computing the ratio of mean class score magnitudes between
clean physical and stepLL physical test data for adversarial
trained models with ρ = 1 and ρ = 4. We obtained result-
ing ratios of 0.39 and 0.33, failing to reject our hypothesis
that perturbations increase the magnitude of class scores, on
average, proportional to the number of weights in each layer
of a CNN.
We observed the shallow ρ = 0.5 model is also more

vulnerable to attacks. One potential explanation for this is it
made lower confidence classifications that are easier to fool.
To test this, we computed for physical test sets the average
difference in class scores between the largest and second
largest class scores for ρ = 0.5 and ρ = 1 adversarial trained
models. We found that they had an average top (second
top) class score difference of 71.97 (91.11), failing to reject
our hypothesis that the shallow model makes less confident
classifications.
Consequently, we determined that model width must

be carefully managed in adversarial training schemes to
ensure that the model is deep enough to learn the non-
adversarial and adversarial datasets, deep enough to make
high-confidence classifications that require large changes to
class scores to cause false positives, and shallow enough
as not to become vulnerable to the compounding attribute
of attacks. Additionally, we concluded this trade-off is rel-
atively advantageous for adversarial training of wireless
spectrum sensing, signal classification, and modulation clas-
sification when compared to computer vision tasks, which

tend to require much deeper models to learn relatively high
dimension data distributions that have large state spaces.

IV. CONCLUSION
We performed in Section III, and outlined the details in
Section II-B, the first physical adversarial ML-based modu-
lation class eavesdropping experiment. Given the significant
research interest in modulation classification [38], [44], [45],
[61], [62], [63], [64] and adversarial wireless ML [20], [21],
[22], [23], [24], [27], [28], [29], [30] this novel experiment
is a significant real-world validation for many theoretical
works that have experimented largely with simulated channel
models and signals.
These simulations and experiments yielded a number of

findings and confirmations to the state-of-the-art, including:
1) Training a CNN offline using channel models

can achieve high accuracy modulation classification
performance on physical signals.

2) Physical Adversarial perturbations of a transmitter can
reduce the classification accuracy of an eavesdropping
receiver’s trained ML classifier to as low as guessing
despite phase, frequency, and amplitude noise sources
from both the RFFE and the channel.

3) Adversarial training of the eavesdropping receiver
using simulated channel models can achieve some level
of defense against adversarial perturbations, where the
best results are achieved when adversarial training is
done using perturbations crafted from a fully trained,
i.i.d. non-adversarial model.

4) Label leaking does not appear to occur in low-
dimensional data domains.

5) Parallel and cascade adversarial training schemes
over-emphasize adversarial examples during training,
reducing testing accuracy for non-adversarial data.
This defeats the primary objective of adversarial train-
ing, which is to increase robustness without sacrificing
non-adversarial performance

6) A measure of protection against iterative attacks is
possible with iterLL training.

7) The model width of the eavesdropping receiver must
be carefully managed to achieve an “elbow” point in
the trade-off between non-adversarial and adversarial
test performance. Specifically, we found the CNN must
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be wide enough to make correct and high confidence
classifications, wide enough to have the learning capac-
ity for both adversarial and non-adversarial PDFs, and
thin enough as not to compound the increase to the
loss function caused by perturbations.

APPENDIX
ASK Amplitude Shift Keying
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BPF Band Pass Filter
CFO Carrier Frequency Offset
CIFAR Canadian Institute for Advanced Research
CNN Convolutional Neural Network
FGSM Fast Gradient Sign Method
FIR Finite Impulse Response
FSK Frequency Shift Keying
GAN Generative Adversarial Network
GPU Graphics Processing Unit
GR GNU Radio Companion
IoT Internet-of-Things
iterLL Iterative Least Likely
IQ In-phase Quadrature
LPF Low Pass Filter
ML Machine Learning
NN Neural Network
OOB Out-of-Band
OOT Out-of-Tree
PGD Projected Gradient Descent
QoS Quality of Service
ReLU Rectified Linear Unit
RFFE Radio Frequency Front End
RFML Radio Frequency Machine Learning
RRC Root Raised Cosine
SDR Software Defined Radio
SGD Stochastic Gradient Descent
SNR Signal-to-Noise-Ratio
SPS Samples Per Symbol
SRO Symbol Rate Offset
stepLL One-Step Least Likely
UAP Universal Adversarial Perturbation
USRP Universal Software Radio Peripheral
VAE Variational Auto Encoder
VGG Visual Geometry Group
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