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ABSTRACT Various applications for inter-machine communications are on the rise. Whether it is
for autonomous driving vehicles or the Internet of everything, machines are more connected than ever
to improve their performance in fulfilling a given task. While in traditional communications the goal
has often been to reconstruct the underlying message, under the emerging task-oriented paradigm, the
goal of communication is to enable the receiving end to make more informed decisions or more precise
estimates/computations. Motivated by these recent developments, in this paper, we perform an indirect
design of the communications in a multi-agent system (MAS) in which agents cooperate to maximize
the averaged sum of discounted one-stage rewards of a collaborative task. Due to the bit-budgeted
communications between the agents, each agent should efficiently represent its local observation and
communicate an abstracted version of the observations to improve the collaborative task performance.
We first show that this problem can be approximated as a form of data-quantization problem which
we call task-oriented data compression (TODC). We then introduce the state-aggregation for information
compression algorithm (SAIC) to solve the formulated TODC problem. It is shown that SAIC is able
to achieve near-optimal performance in terms of the achieved sum of discounted rewards. The proposed
algorithm is applied to a geometric consensus problem and its performance is compared with several
benchmarks. Numerical experiments confirm the promise of this indirect design approach for task-oriented
multi-agent communications.

INDEX TERMS Task-oriented communications, semantic communications, data quantization, machine
learning for communications, communications for machine learning.

I. INTRODUCTION

THEDESIGN of traditional communication systems has
often been carried out according to task-agnostic prin-

ciples. Information and coding theories drive the major
analytical and design techniques, where the former sets the
upper bounds on the system capacity, and the latter focuses
on techniques for approaching the bounds with infinitesimal
error probabilities. Accordingly, digital communications have
made astonishing strides in terms of performance, enabling
robust information transmission even under adverse channel
conditions. However, in the era of cyber-physical systems,
the effectiveness of communications is not solely dictated by
the traditional performance indicators (e.g., bit rate, latency,
jitter, fairness etc.), but most importantly by the efficient

completion of the task in hand, e.g., remotely controlling
a robot, automating a production line or collaboratively
sensing/communicating through a drone swarm.
Machine to machine communications occur since the

received signals can help the receiving end to make more
informed decisions or more precise estimates/computations.
In this context, the reliability of the communications is
not essential beyond serving the specific needs of the con-
trol/estimation/computational task that the receiving end
machine is trying to accomplish. This calls for a fresh
look into the design of communication systems that have
been engineered with reliability as one of their ultimate
goals. The emerging literature on semantic communications
as well as goal/task-oriented communications is trying to
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take the first steps towards the above-mentioned goal, i.e.,
incorporating the semantics as well as the goal/usefulness
of the message exchange into the design of communication
systems [1], [2], [3]. By jointly analyzing the features of
the collaborative task and the constraints on the underlying
communication infrastructure, the communication strategies
can be adapted or tailored such that they will be specifically
effective for the task.
This paper attempts to take the first steps towards design-

ing an indirect task-effective data compression theory. While
the data compression algorithm proposed by this paper is
designed in an indirect1 fashion, i.e., not for a specific task,
we demonstrate its applicability in a specific task: a geo-
metric consensus problem under finite observability [6]. As
attested by [7], “a unified framework to support various tasks
is still missing in multi-user semantic communications.”.
Unlike earlier task-oriented quantization techniques that tai-
lor a quantization scheme to certain application [8], this work
proposes an indirect design for its task-oriented quantization
scheme - SAIC. The indirect design is carried out in a fashion
that the it never benefits from any explicit domain knowledge
about any specific task, e.g., geometric consensus problems.
Accordingly, the indirect design of the algorithms allows
them to be applied beyond the geometric consensus prob-
lems and to a much wider range of tasks. The framework
can be applied where a major communication bottleneck
is in place between multiple cooperative decision makers.
This bottleneck can occur due to a multitude of reasons
(i) the energy lifetime of the communicating agents, e.g., in
the case of UAV/LEO satellite communications, that forces
agents to communicate with low-energy high-range com-
munication protocols [9], [10] (ii) the limitations imposed
by the environment on the communication channel, e.g.,
in space/underwater missions or (iii) limited communication
resources of the network through which agents communicate.
For more on the applications of TODC see [1], [11].

A. TASK-ORIENTED DATA COMPRESSION
In particular, we consider a cooperative scenario where our
goal is to optimize the expected return of a multi-agent
system that is run on top of an underlying Markov deci-
sion process. The system’s return is an unknown function
of joint observations and control actions of all agents. The
system’s expected return can be controlled or optimized by
selecting the proper joint controls actions at all agents. The
partial observability of each agent together with their limita-
tion to merely select local actions necessitates the presence

1. By using the word indirect here we are not referring to the concept
of indirect access to the source of information [4] - this usage of the word
falls in the nomenclature of source coding and information theory. In fact,
we are referring to the concept being introduced by the control theory
nomenclature in which an indirect design is generic enough to be used
for an unmodelled system dynamics and not a certain dynamic [5]. Thus
the schemes - such as SAIC - which enjoy from an indirect design can
be applied to all/a wider range of tasks. In contrast to indirect schemes,
“the direct schemes aim at guaranteeing or improving the performance of
the cyber-physical system at a particular task by designing a task-tailored
communication strategy” [1].

of inter-agent communications to improve the coordination
across the multi-agent system. We assume a full mesh com-
munication network between all agents and that all the
communication channels in the network are bit-budgeted
but error-free. That is, the communication channels are all
error-free fixed-rate bit pipes [12] and not variable rate bit-
pipes [13] - the fixed rate of communications is constant
across all inter-agent communication channels. Under these
circumstances, rate-limited communication channels between
agents drive the need for task-oriented data compression,
i.e., the usefulness of each message exchange should be
incorporated into the design of the data compression strat-
egy. The communicated messages between agents are useful
only when they positively affect the decision-making of the
receiving agents towards improving the system’s expected
return.
The problem we address would be a classic multi-agent

Markov decision process (MAMDP) [14] if, each agent’s
communication message could include all the information
inside the agent’s observations. We assume, however, that
the communication message of each agent is sent over a
bit-budgeted communication channel, i.e., per each chan-
nel use each agent will be able to reliably communicate
a bit sequence with a length less than the entropy rate of
the observation process. With this information constraint in
place, it becomes imperative to carry out the communications
at each agent such that they lead to the optimal expected
return performance of the MAS. Each agent has to jointly
select its control and quantized message at each time step
with the aim of optimizing the expected return.
Due to the bit-budgeted communications between the

agents, it is necessary for agents to compactly represent
their observations in communication messages. As we ulti-
mately measure the performance of the MAS in terms of the
expected return, the loss of information caused by the com-
pact representation of the agents’ observations needs to be
managed in such a way that it minimally affects the obtained
return [15], [16]. As such, in this form of compression
scheme which we call task-oriented data compression, the
goal of abstraction is different from conventional compres-
sion schemes whose ultimate aim is to reduce the distortion
between the original signal and the decoded/reconstructed
signal [17] - see [8], [18], where a similar task-based notion
is introduced and a comparison of it with our work in
Table 1.

B. LITERATURE REVIEW
As we study the joint communication and control design of a
MAS, the topic of this paper falls under the general category
of multi-agent communications [19]. In contrast to many
other cooperative multi-agent systems [20], the full state
and action information are not available here to each agent.
Accordingly, agents are required to carry out communication
to overcome these barriers [19]. Earlier works used to address
the coordination of multiple agents through a noise-free com-
munication channel, where the agents follow an engineered

1868 VOLUME 3, 2022



communication strategy [21], [22], [23], [24], [25]. Later
the impact of stochastic delays in multi-agent communica-
tion was considered on the multi-agent coordination [24],
while [25] considers event-triggered local communications.
Deep reinforcement learning with communication of the gra-
dients of the agents’ objective function was proposed in [26]
to learn the communication among multiple agents. In con-
trast to the above-mentioned works, the presence of noise
in the inter-agent communication channel was first studied
by [27] where exact reinforcement learning was used to
design the inter-agent communications. Later, the authors
of [16] proposed a deep reinforcement learning approach to
address a similar problem. Papers [8], [16], [18], [27], [28]
and [29] have contributed to the rapidly emerging literature
on task-oriented communications [1]. Noteworthy are also
some novel metrics that are introduced in [30] to measure
the positive signaling and positive listening amongst agents
which learn how to communicate [26], [27], [29].
The current work can also be seen as designing a

state aggregation algorithm. In this paper, state aggregation
enables each agent to compactly represent its observations
through communication messages while maintaining their
performance in the collaborative task. Classical state aggre-
gation algorithms, however, have been used to reduce the
complexity of the dynamic programming problems over
MDPs [31], [32], [33], [34] as well as Partially Observable
MDPs [35]. One similar work is [36], which studies a task-
based quantization problem. In contrast to our work, the
assumption there is that the parameter to be quantized is only
measurable and cannot be controlled. In our problem, agents’
observations stem from a generative process with memory,
an MDP. Similarly, in [37], the authors have introduced a
gated mechanism so that reinforcement learning-aided agents
reduce the rate of their communication by removing mes-
sages which are not beneficial for the team. However, their
proposed approach mostly relies on numerical experiments.
In contrast, this paper relies on analytical studies to design
a multi-agent communication policy which efficiently coor-
dinates agents over a bit-budgeted channel - the benefits of
our analytical approach are briefly explained in the contri-
butions Section I-C. State aggregation algorithms are often
developed for single-agent scenarios and are used to reduce
the complexity of MDPs. To the best of our knowledge,
we are the first to design a TODC algorithm using state-
aggregation schemes. In particular, we use state-aggregation
to design a data compression scheme to compactly repre-
sent the observation process of each agent in a multi-agent
system.
Conventionally, the communication system design is dis-

joint from the distributed decision-making design [21], [22],
[23], [24], [26], [38]. The current work can also be inter-
preted as a demonstration of the potential of the joint design
of the data compression/quantization and control policies.
Determining the existence of a quantizer operating at a cer-
tain bit-budget to achieve a given figure of expected return
is known to be an “intriguing open problem” [15] - even for

single agent scenarios. Here we set a non-closed form upper
bound on the expected-return performance of the multi-agent
system given a quantization data rate/ the finite size of the
discrete alphabet of the quantizer. We show how this joint
quantization and control design problem is connected to min-
imizing an absolute error distortion measure via Theorem 1.
A similar interpretation of the TODC problem can also be
seen in [39]. While relevant, their setup is different from
our work as they consider two distortion criteria for the
rate-distortion problem.
We will show in Section II-B, that, in fact, the decen-

tralized problem we target can be translated as the joint
constrained design of the control policies as well as the
observation function of a Dec-POMDP to maximize the
expected return. While in classic Dec-POMDP problems
the observation function is considered to be a fixed func-
tion [40], by a constrained design of the observation function,
our problem setting offers more flexibility in designing a
multi-agent system. The design of the observation function
helps to filter the non-useful observation information of each
agent while meeting the problem’s constraint, i.e., the com-
munication bit-budget. The mathematical framework being
used here is neither a classic MDP as we have the issue
of partial observability, nor is a partially observable MDP
(POMDP) [41] as the action vector is not jointly selected at
a single entity. Our problem setting is differentiated from
Dec-POMDPs due to the fact that in Dec-POMDPs the par-
tial observability is accepted as is, where as in our problem
setting we design the lens through which the agents acquire
a partial observation/perception of the environment.
Nevertheless, a similar class of problems - often referred

to as task-oriented, goal-oriented or efficient communication
approaches, has recently received significant attention from
the communication society, see, e.g., the extensive surveys
on similar problems in [1], [2], [3]. Table 1 positions the
current work against some of the recent research that is
closely related. To date, there is no work in the literature that
we are aware of, which provides an analytical approach to the
design of task-based communications for the coordination of
multiple cooperative agents.

C. CONTRIBUTIONS
The contributions of this paper are as follows:
Firstly, we develop a general cooperative multi-agent

framework in which agents interact over an underlying
MDP environment. Unlike the existing works which assume
perfect communication links [26], [29], [38], [42], we
assume the practical bit-budgeted communications between
the agents. We formulate a multi-agent cooperative problem
where agents interact over an underlying MDP and can
communicate over a bit-budgeted channel. Our goal is
to derive the optimal control and communication strate-
gies to maximize the expected return. We will show in
Section II-B, that an underlying difference in our setting
from the Dec-POMDP is that here we carry out a con-
strained design of each agent’s perception function - which
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TABLE 1. Comparison between our work and the related prior art.

is also referred to as the observation function in the literature
of the Dec-POMDP [43]. The constraints of this design are
dictated by the bit-budget of the inter-agent communication
channels.
Secondly, Theorem 1, in Section III, derives the

interconnection between the joint control and commu-
nication/quantization problem and a generalized version
of the data quantization problem: TODC problem. In
fact, the TODC problem distils all the relevant features
of the control task and takes them into account in a
novel non-conventional communication design problem.
This is the underlying reason behind the effectiveness of
the designed communications and is one the contribu-
tions in this work differentiating it from existing works
in [8], [15], [16], [18], [26], [27], [30], [44]. Our analytical
studies show that how the value function - the function that
estimates the expected return of the system given the current
observation - can be considered as a proper indirect mea-
sure of the usefulness of the data to be compressed. Thus,
Theorem 1, shows how the usefulness of the (observation)
data can be incorporated into the design of the TODC policy.
Thirdly, we propose a novel algorithm - SAIC - as a

multi-agent state-aggregation algorithm which designs indi-
rect task-effective communication strategies via solving (an
approximated version of) the TODC problem. As a result,
the performance of SAIC in terms of the system’s expected
return is on par with the jointly optimal strategies. To the best
of our knowledge, this is the first use of state-aggregation
algorithms for data-compression applications (in multi-agent
systems) according to which our work differs from the clas-
sic state-aggregation literature [31], [32], [33], [34] as well
as the recent advancements in multi-agent communication
literature [26], [30].
Moreover, we extend the existing results in the single-

agent state-aggregation literature [33] on the gap between
the optimal control and the state-aggregated control schemes,
where the former has access to the true state of the environ-
ment and the latter has access to an aggregated state of the
environment - to reduce the computational complexity. We
quantify the same gap for a multi-agent system - Theorem 2.
In our work, however, the gap is due to the bit-budget
that is introduced on the inter-agent communication chan-
nels, whereas in classic state-aggregation literature the gap

was a consequence of the constraints on the computational
complexity. In addition to that, our theoretical results show
that if our proposed method, SAIC, is applied the expected
return of the multi-agent communication system - with the
bit-budget in place - can stay in close proximity to the
optimal expected return that is obtained under jointly optimal
strategies.
Last but not least, numerical experiments are carried out on

a geometric consensus problem to compare the performance
of SAIC with several other benchmark schemes in terms of
the optimality of the expected return, for a multi-agent sce-
nario.2 It is shown that when communication bit-budgets are
in place, SAIC is of significant advantage over the bench-
marks. In particular, we observe a very tight gap between the
performance of SAIC and the optimal control strategy where
only the latter runs over perfect communication channels and
the former runs over bit-budgeted channels.

D. ORGANIZATION
Section II describes the system model for a cooperative
multi-agent task with rate-constrained inter-agent commu-
nications. Section III Proposes a scheme for the joint design
of communication and control policies that takes the value
of information into account to perform data compression.
We also provide analytical results on how distant the result
of this algorithm can be from the optimal centralized solu-
tion. The numerical results and discussions are provided in
Section IV. Finally, Section V concludes the paper.

E. NOTATION
For the reader’s convenience, a summary of the notation
that we follow in this paper is given in Table 2. Bold font
is used for matrices or scalars which are random and their
realizations follows simple font.

II. SYSTEM MODEL
In the multi-agent system, comprised of n agents, at any time
step t each agent i ∈ N makes a local observation oi(t) ∈ �

on environment while the true state of the environment

s(t) = 〈o1(t), . . . , on(t)〉 (1)

2. Due to the complexity related issues explained in Section V & VI,
the numerical results are limited to two-agent and three-agent scenarios.
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TABLE 2. Table of notations.

is a member of S = �n. The alphabets � and S define
observation space and state space, respectively. The particu-
lar observation structure of agents’ observations, is referred
to as collective observations in the literature [19]. Under
collective observability, individual observation of an agent
provides it with partial information about the current state of
the environment, however, having knowledge of the collec-
tive observations acquired by all of the agents is sufficient to
realize the true state of environment - eq. (1). The columns
of the state vector are orthogonal to each other. Note that
even in the case of collective observability, for agent i to be
able to observe the true state of environment at all times,
it needs to have access to the observations of the other
agents j ∈ N − {i} � N−i through communications at all
times.
The true state of the environment s(t) is controlled by

the joint actions m(t) = 〈m1(t), . . . , mn(t)〉 ∈ Mn of
the agents, where each agent i can only choose its local
action mi(t) ∈ M. The environment runs on discrete time
steps t = 1, 2, . . . ,M, where at each time step, each agent
i selects its domain level action mi(t) upon having an
observation oi(t) of the environment. Dynamics of the
environment are governed by a conditional probability mass
function (CMF)

T(s(t + 1)|s(t), m(t)) = p(s(t + 1)|s(t), m(t)) (2)

which is unknown to the agents. T(·) : �2n ×Mn→ [0, 1]
determines the future state of the environment s(t+1) given
its current state s(t) and the joint actions m(t). We recall that
each agent i’s domain level action mi(t) can, for instance,
be in the form of a movement or acceleration in a particular
direction or any other type of action depending on the domain
of the cooperative task.
A deterministic reward function r(·) : �n ×Mn → R

indicates the reward of all agents at time step t, where the
arguments of the reward function are the joint observations
s(t) and the domain-level joint actions m(t) of all agents. We
assume that the underlying environment over which agents

interact can be defined in terms of an MDP3 determined
by the tuple {�n,Mn, r(·), γ,T(·)}, where � and M are
discrete alphabets, r(·) is a function, T(·) is defined in (2)
and the scalar γ ∈ [0, 1] is the discount factor. The focus of
this paper is on scenarios in which the agents are unaware of
the state transition probability function T(·) and of the closed
form of the function r(·). However we assume that, further
to the literature of reinforcement learning [45], a realization
of the function r(s(t), m(t)) will be accessible for all agents
at some time steps. Since the tuple {�n,Mn, r(·), γ,T(·)}
is an MDP and the state process s(t) is jointly observable
by agents, the system model of this cooperative multi-agent
setting, under perfect communications, is also referred to as
a multi-agent MDP (MAMDP or MMDP) in the literature
of multi-agent decision making [14], [46], [47].
In what follows two problems regarding the above-

mentioned setup is detailed, i.e., centralized and decentral-
ized control problems. The main intention of this paper is to
address decentralized control which also incorporates inter-
agent communications for a system of multiple agents. The
centralized control problem, however, is also formalized in
Section II-A as the optimal expected return obtained for
the centralized problem can serve as a lower-bound/(upper-
bound) for the decentralized scheme. Moreover, the simpler
nature and mathematical notations used for the centralized
problem, allow the reader to have a smoother transition to the
decentralized problem which is of a more complex nature.

A. CENTRALIZED CONTROL
We consider a scenario in which a central controller has
instant access to the observations o1(t), . . . , on(t) of both
agents through a free (with no cost on the objective
function) and reliable communication channel. From the
central controller’s point of view, the environment is the
same as the underlying MDP that governs the system
{�n,Mn, r(·), γ,T(·)}. The goal of the centralized con-
troller is to maximize the expected sum of discounted
rewards (3). The expectation is computed over the joint PMF
of the whole system trajectory s(1),m(1), . . . , s(M),m(M)

from time t = 1 to t = M, where this joint probability
mass function (PMF) is generated if agents follow pol-
icy π(·), eq. (4), for their action selections at all times
and the initial state s(1) ∈ S is randomly selected by the
initial distribution s(1) ∼ αs. For the sake of having a
more compact notation to refer to the system trajectory,
hereafter, we represent the realization of a system trajec-
tory at time t by tr(t) which corresponds to the tuple
〈o1(t), . . . , on(t), m1(t), . . . , mn(t)〉 and the realization of
the whole system trajectory by {tr(t)}t=Mt=1 . Accordingly, the
problem boils down to a single agent problem which can be

3. As defined in the literature [10], the underlying MDP’ is the horizon-
T ′ MDP defined by a hypothetical single agent that takes joint actions
m(t) ∈Mn and observes the nominal state s(t) � 〈o1(t), . . . , on(t)〉 that
has the same transition model T(·) and reward model R(·) as the environment
experienced by our multi-agent system.
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denoted by

max
π(·)

Epπ

({tr(t)}t=Mt=1

)

{
M∑

t=1

γ t−1r(s(t),m(t))

}

(3)

where the policy π can be expressed as a CMF

π
(
m(t)

∣
∣∣s(t)

)
= p

(
m(t)

∣
∣∣s(t)

)
, (4)

and pπ (s(t+1)|s(t)) is the probability of transitioning from
s(t) to s(t+1) when the joint action policy π(·) is executed
by the central controller. Similarly, pπ ({tr(t)}t=Mt=1 ) is the joint
PMF of tr(1), tr(2), . . . , tr(M) when the joint action policy
π(·) is followed by the central controller.
On one hand, problem (3) can be solved using single-

agent Q-learning [45] and the solution π∗(·) obtained by
Q-learning is guaranteed to be the optimal control policy,
given some non-restricting conditions [48]. On the other
hand, the use-cases of the centralized approach are limited
to the applications in which there is a permanent communi-
cation link with an unlimited bit-budget between the agents
and the controller. Whereas these conditions are not met in
many remote applications, where there is no communication
infrastructure to connect the agents to the central controller.
Given sufficient training time, and channels with the

sufficient rate of communication between the agents and
the central controller, the centralized algorithm provides
us with a performance upper bound in maximizing the
objective function (3). Perfect communication between the
central controller and distributed agents, however, may not
exist due to the resource limitations of the telecommunica-
tion/communication network. Thus, the aim of this paper is
to introduce decentralized approaches which are run over
practical bit-budgeted communication channels, yet show
comparable performance levels. In the distributed scenario,
the agents do not communicate with a central controller, but
the bit-budgeted communications are performed for inter-
agent message exchange. The centralized problem can be
presented by an MDP and be solved efficiently by a sin-
gle agent reinforcement learning algorithm. As explained in
Section I-C, the decentralized problem is a more compli-
cated/general form of Dec-POMDP, where we know that a
Dec-POMDP is already much more complex than an MDP to
solve [43] - to see further insights about the significance and
the applications of the decentralized problem see, e.g., [1].

B. PROBLEM STATEMENT
Here we consider a scenario in which the same objective
function explained in Eq. (3) needs to be maximized by
the multi-agent system in a decentralized fashion, Fig. 1.
Namely, agents with partial observability can only select
their own actions. To prevail over the limitations imposed
by the local observability, agents are allowed to have direct
(explicit) communications, and not indirect (implicit) com-
munications [44], [49]. However, the communication is done
through a bit-budgeted but reliable channel. The bit-budget
of the channel is R-bits per time step. Equivalently, each

FIGURE 1. An illustration of the decentralized cooperative two-agent system with
rate-limited inter-agent communications.

agent i at every time step t produces and transmits a single
digit communication message ci(t) ∈ C such that

log2|C| ≤ R, (5)

i.e., the size of the code-books C for all agents is the same
and is less than 2R. The communication message ci(t) pro-
duced by agent i is broadcast and received every agent
j ∈ N−i. It should be noted that the design of the channel
coding is beyond the scope of this paper and the main focus
is on the compression of agents’ observations. In particular
we consider R to be time-invariant and to follow:

R < min {H(o1(t)), . . . ,H(on(t))}. (6)

The above-mentioned information constraint which will be
in place throughout this paper together with the observation
structure assumed in eq. (1) are of the aspects that distinguish
our work from many of the related works in the literature of
multi-agent communications [16], [27]. Now let the function
g(t′) denote the system’s return:

g
(
t′
) =

∑M

t=t′γ
t−1r(s(t),m(t)). (7)

Note that g(t′) is a random variable and a function of t′ as
well as the trajectory {tr(t)}t=Mt=t′ . Due to the lack of space,
here we drop a part of the arguments of this function. In con-
trast to the centralized problem, the goal of the decentralized
problem is to jointly design the communication/quantization
as well as πc

i (·) control policies πm
i (·) for each agent i ∈ N

to maximize the average return of the system. The control
policy πm

i : M × Cn−1 × � → [0, 1] of each agent i is
defined as CMF

πm
i

(
mi(t)

∣∣∣oi(t), c−i(t)
)

= Pr
(
mi(t) = mi(t)

∣∣∣oi(t) = oi(t), c−i(t) = c−i(t)
)
, (8)

in which, c−i(t) ∈ Cn−1 is a vector that includes all com-
munication messages cj(t), ∀j ∈ N−i. The communication
policy πc

i : �×Cn−1 → C of each agent i is a deterministic
data quantization (many to one) function:

ci(t) = πc
i (oi(t), c−i(t)), (9)

which has a discrete domain � × C, making the quan-
tizer a discrete quantizer. The joint control policy πm is a
tuple made of n elements with its i-th element being πm

i (·).
1872 VOLUME 3, 2022



Similarly, The joint communication policy πc is another
tuple with its i-th element being πc

i (·).
According to the above definitions, the decentralized joint

control and communication design problem is formalized as

max
πm
i ,πc

i

Epπm,πc
({tr(t)}t=Mt=1

){g(1)}, i ∈ N
s.t. log2|C| ≤ R, (10)

where the expectation is taken over pπm,πc({tr(t)}t=Mt=1 ) which
is the joint PMF of tr(1), tr(2), , . . . , tr(M) when each agent
i ∈ N follows the action policy πm

i (·) and the communica-
tion policy πc

i (·) and the initial state s(1) ∈ S is randomly
selected by the initial distribution s(1) ∼ αs. Given commu-
nication policy πc

i (·) ∀i ∈ N , we now define the perception
function hi(·) : S → Cn−1 × � of agent i which is the
lens through which agent i perceives the state s(t) of the
environment.

hi(s(t))

= 〈
πc

1 (o1(t)), π
c
2 (o2(t)), . . . , oi(t), π

c
i+1(oi+1(t)), . . . , π

c
n (on(t))

〉

(11)

Agent i’s perception of the environment is characterized by
the communication policy πc

j (·) of each agent j ∈ N−i.
Accordingly, agent i uses its sensory signal oi(t) together
with the received communication signals c−i(t) to acquire its
perception of the environment. While the perception function
defined here plays a role very similar to the observation func-
tion in Dec-POMDPs [40], the main difference is that here
we design communication policies such that they directly
affect the perception of agents from the environment. In con-
trast, in the case of Dec-POMDPs, the observation function
is given. Communication policies πc

j (·)∀j ∈ N−i partially
define the perception function of agent i.
To make the problem more concrete, further to (8) and (9),

here we assume the presence of instantaneous and syn-
chronous communications between agents, contrasting with
the delayed [27], [50] and sequential communication models.
Fig. 2 demonstrates this communication model during a sin-
gle time-step. As such, each agent i at any time step t prior
to the selection of its action mi(t) receives the communi-
cation vector c−i(t) that encodes the observations of each
agent j ∈ N−i at time t.
In a general approach, the selection of communication

action ci(t) at agent i could be conditioned on both oi(t)
and c−i(t). Since we assume instantaneous and synchronous
inter-agent communications, here we are focused on com-
munication policies of type πc

i (oi(t)), where communication
actions of each agent at each time are selected only based on
its observation at that time. For clear reasons, it is not pos-
sible to adopt a synchronous and instantaneous inter-agent
communication model and yet take the communication mes-
sage c−i(t) into account when selecting the communication
ci(t) at agent i. Here we assume that the communication
resources are split evenly amongst the agents, by consider-
ing the bit-budget of all communication channels to be equal

FIGURE 2. Ordering of observation, communications and action selection for
synchronous and instantaneous communication model in a multi-UAV object tracking
example, with 0 < t′ < t′′ < t′′′ < 1. At time t = t0 both agents (UAVs) make local
observations on the environment. At time t = t0 + t′ both agents select a
communication signal to be generated. At time t = t0 + t′′ agents receive a
communication signal from the other agent. At time t = t0 + t′′′ agents select a domain
level action, here it can be the movement of UAVs or rotation of their cameras etc.

to R. As such, each agent i ∈ N encodes its observation oi(t)
to ci(t) using a code-book C of the same length |C| - with
the constraint (5) in place.

III. STATE AGGREGATION FOR INFORMATION
COMPRESSION (SAIC) IN MULTI-AGENT COORDINATION
TASKS
The main result of this section - provided by Theorem 1 -
is to show that finding the quantization policy in the joint
control and quantization problem (10) can be approximated
by a TODC problem. The goal of this problem is to quantize
the observations of all agents according to how valuable
these observations are within any specific task. The value
of observations should be measured by the value function
V∗(·) - eq. (13). Lemma 1 approximates the TODC to a k-
median clustering of the of observations according to their
values, while lemma 2 computes the value function of each
agent’s observation. The concluding remarks of this section
study the convergence and the optimality of the decentralized
control policies.
Fig. 3 is brought to demonstrate the chronological order

according to which a joint communication and quantization is
solved by SAIC. Our proposed scheme, SAIC, breaks down
the joint communication and quantization problem to smaller
problems that are feasible to solve. In this section, however,
the sections are organized according to the logical order that
these smaller problems are encountered: (A) in Section III-A,
we address the communication design of multi-agent com-
munications by transforming the primary joint control and
quantization problem (10) to a novel problem (12) called
TODC - step “b” of the Fig. 3. (B) Since solving the TODC
problem relies on the knowledge of the value function V∗(·),
it is necessary to obtain the value function V∗(·) prior to
solving the TODC problem. In Section III-B, the optimal
value function V∗(·) is obtained via a centralized training
phase - step “a” of the Fig. 3. Given the knowledge of the
value function V∗(·), the TODC problem incorporates the
features of the specific control task in the communication
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FIGURE 3. Here we show how we approached solving the joint control and communication problem for a distributed multi-agent system in a sequence of steps. According to
the legend, one can understand that at the end of each step what are the known and unknown policies. a. This step solves the problem (3) for a centralized multi-agent system
where the objective is to design one centralized control strategy. b. This step solves the problem (13) for a distributed multi-agent system where the objective is to design the
communication policies of all agents. c. this step solves the problem for a distributed multi-agent system where the objective is to design the control policies of all agents.

FIGURE 4. The subplots of this figure illustrate how in SAIC we transform a
high-dimensional (σ -dimensions) and high-precision observation space into
aggregated one-dimensional low-precision/digitized communication message space.
This figure is plotted for a scenario where R = 2 (bits per channel use) and thus,
observation values are clustered at 2R = 4 different levels. a. A 2D demonstration of
the original high-dimensional and high-precision observation space of agents is
shown here in black and white. b. After carrying out the centralized training phase we
will obtain the value function V∗( · ) - which acts as indirect measure of the usefulness
of observation data to be communicated. Now by applying the value function V∗( · ) at
every point of the original observation space we get valued observations - a
one-dimensional high-precision space as the output space of the value function
V∗( · ). c. By clustering the observation points according to their corresponding
values for each agent i we would get a one-dimension and low-precision/digitized
communication message space. The quantization illustrated in this diagram is using
only 4 levels of quantization that are represented by 4 colours. All the points in the
observation space of the agent i which are represented by the same colour, in subplot
c, will be represented by a unique communication message - i.e., the accuracy of the
original data is reduced and hence requires fewer communication bits to be
transmitted. Accordingly, agent 1, after observing o1(t) transmits the communication
message c1(t) which is a compressed version of o1(t) while it maintains the
performance of the multi-agent team in maximizing their expected return.

design problem. Accordingly, we can separately solve the
communication problem with very little compromise on the
optimality of the system’s expected return. (C) As the final
step, in Section III-C, decentralized training phase is carried

out to distributively design the control policy of each agent
given the communication/quantization policy obtained via
solving the TODC problem. Decentralized training is shown
in step “c” of the Fig. 3. Since we follow standard methods
to carry out the centralized training - steps “a” of the Fig. 3 -
we will be mainly focused on deriving and solving the TODC
problem and providing guarantees on the performance of the
MAS in the decentralized training phase - steps “b” and “c”
of the Fig. 3 respectively. Fig. 4 illustrates how SAIC per-
forms data compression while it maintains the performance
of the multi-agent system in its task.

A. TASK-ORIENTED DATA COMPRESSION PROBLEM
The main result of this section is provided by
Theorem 1. This theorem departs from the joint commu-
nication/quantization and control problem and arrives at the
task-oriented data compression problem (12).
Theorem 1: The design of the communication policy in

problem (10) can be approximated as a generalized data
quantization problem

min
πc
i (·)

Epπm,πc (hi(s(1)))

{∣∣V∗(s(1))− V∗(hi(s(1)))
∣∣}

s.t. log2|C| ≤ R, (12)

in which the measure of distortion is the absolute differ-
ence of the value functions V∗(s(t)) and V∗(hi(s(1))) with
the source of information s(t) ∈ �n being a Markovian
stochastic process. The function V∗(hi(s(1))) measures the
optimal value of the perceived state hi(s(1)) from agent i’s
perspective.
Proof: Appendix A.
In Appendix A-C, we provide more details on how to

obtain the value V∗(hi(s(1))) of the perceived state from
the agent i’s point of via Lemma 5. This value function
allows us to indirectly quantify the usefulness of agent
i’s observation. With this interpretation in mind, in the
TODC problem (12), unlike conventional quantization prob-
lems, we are not minimizing the absolute difference between
the original signal s(1) and its quantized version hi(s(1)).
Instead, we are minimizing the distance between how use-
ful/valuable the original signal s(1) is and how useful the
quantized version of the signal hi(s(1)) are for the task at
hand. This is in-line with what many believe as the mis-
sion of the goal-oriented/task-oriented communications. Let
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us recall that the value function here is an indirect measure
of usefulness, as it can be obtained for any task that can
be expressed via Markov Decision Processes - making it
a measure of usefulness that is applicable to a plethora of
scenarios [1], [11].

The significance of the result obtained by Theorem 1
is multi-fold: (i) Multi-dimensional observations will be
transformed to one-dimensional output space of the value
functions, reducing the complexity of the clustering algo-
rithm, (ii) It can be shown that the observation points
will be linearly separable when being clustered accord-
ing to the problem (12), (iii) It is widely accepted that
the mission of goal oriented communications is to incor-
porate the usefulness/value of the data for the task when
designing the task-effective communications. The result of
Theorem 1, in which the design of the quantizer relies on the
value/usefulness of observations resonates well with this pur-
pose of goal-oriented communications. (iv) It is known that
the value of observations starts to grow as we get closer to
the ultimate target of the task in hand. With this interpretation
of “target” in mind, the finding of Theorem 1 is in line with
the adaptive quantization schemes, which stretch the quan-
tization intervals when the observations are far from the
target and sharpen the quantization when the observations
are closer to the target [13], [51]. This interpretation is also
confirmed by our numerical results in Section V, Fig. 8.

To solve a quantization problem as (12) using non-
variational techniques, it is customary to approximate/convert
a quantization problem by/to a clustering problem [52], [53].
Lemma 1 approximates the quantization problem (12) by a
clustering problem.
Lemma 1: The quantization problem (12) can be approx-

imated by a clustering problem

min
Pi

∑|C|
k=1

∑

oi(t)∈Pi,k

∣
∣∣V∗(oi(t))− μ′k

∣
∣∣, (13)

where μ′k is the centroid of the k-th cluster Pi,k and
Pi = {Pi,1, . . . ,Pi,|C|} is a partition of the observation space
�. Similar to any other quantization function, the quantizer
πc
i (·), can be uniquely described by the partition Pi together

with C.
Proof: Appendix B provides proof and discussions.
The problem (13), can be solved via k-median clustering.

In order to that, one can first perform the k-median clustering
on the observation values by solving

min
Vi

∑2B

k=1

∑

V∗(oi(t))∈Vi,k

∣∣
∣V∗(oi(t))− μ′′k

∣∣
∣,

where Vi is the set of all observation values of agent i
and {Vi,1, . . . ,Vi,|C|} is its partition. Afterwards, as shown
in Figure 4, the observation points should be clustered
according to the clustering of their corresponding values.
That is, any two distinct observation points o′i, o′′i ∈ �

are clustered together in Pi,j if and only if their values
V∗(o′i),V∗(o′′i ) ∈ Vi,j are in the same cluster Vi,j.

Theorem 1 together with lemma 1 allows us to find a com-
munication/quantization policy πc

i (·) by clustering the input
space � of the communication policy according to the values
V∗(oi(t)) of the input points. The performance guarantees
for the obtained communication/quantization policy will be
shown in Section IV. One can obtain V∗(oi(t)) via solving
the centralized problem (3) by Q-learning. The Section III-B,
details a centralized training approach for obtaining the value
observations V∗(oi(t)).

B. CENTRALIZED TRAINING PHASE
While solving the TODC problem can provide us with a
task-effective design of quantization policy, to solve (12) we
need to know the value of observations according to the
optimal centralized control policy. By solving the central-
ized problem (3), the value of joint observations and actions
Q∗(s(t), m(t)) can be obtained. Let us recall that the cen-
tralized training phase will only yield an optimal policy
if the environment is jointly observable - as described by
condition 1.
Condition 1:

s(t) = 〈o1(t), . . . , on(t)〉. (14)

Accordingly, following the lemma 2 we can compute the
value of each agent’s observations V∗(oi(1)). But before
lemma 2, let us first give an intuitive/philosophical mean-
ing of the centralized training and distributed execution. We
know that in task-oriented communication design, our goal
is to take into account the usefulness/value of the data for
the task in hand. Thus we need to first be able to measure
the usefulness/value of the data to be transmitted. The cen-
tralized training phase is needed to come up with a precise
measure of usefulness for the specific task in hand. We have
already shown in Theorem 1, that this measure of useful-
ness is nothing but the value observations V∗(oi(1)) - yet the
exact function values can be known only after the central-
ized training phase. During the centralized training phase,
we assume perfect communication between all agents and a
central controller - this is a common practice in the literature
of multi-agent communications and coordination [26], [54].
Whereas, in the decentralized training - step “c” of the Fig. 3
- as well as in the execution phase, we assume bit-budgeted
communications. That is, all the results reported for SAIC
in Section V are obtained via bit-budgeted communications.
Lemma 2: One can compute the V∗(oi(1)) following

V∗(oi(t)) =
∑

o−i(t)∈�n−1

max Q∗(s(t), m(t))p(o−i(t) = o−i(t)).

Proof: Appendix C.
Based on (15), V∗(oi(1)) can be computed both analyti-

cally (if transition probabilities of environment are available)
and numerically. As detailed in Algorithm , SAIC first solves
a centralized control problem to compute the value V∗(o)

for all o ∈ � - this is equivalent to the step “a” of the Fig. 3
and subplot (b) of the Fig. 4. Afterwards, SAIC solves the
approximated TODC problem (12) by converting it to a
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k-median clustering (13), leading to an observation aggre-
gation/quantization function for each agent i determined by
πc
i (·) - this is equivalent to the step “b” of the Fig. 3 and the

subplot (c) of the Fig. 4. By following this aggregation func-
tion, the observations oi(t) ∈ � will be aggregated/quantized
such that the performance of the multi-agent system in terms
of the objective function it attains is optimized. As SAIC
uses a deterministic mapping of observation oi to produce
the communication message ci, SAIC is guaranteed to have
positive signalling [30].

C. OBTAINING DECENTRALIZED CONTROL POLICIES
VIA A DECENTRALIZED TRAINING PHASE
Upon the availability of the πc

i (·), ∀i ∈ N , which was
obtained by solving problem (13), we need to find control
policies for all agents corresponding to the communica-
tion policies πc

i (·), i ∈ N . That is, we now solve the
problem (10) by plugging the exact communication pol-
icy πc

i (·) ∀i ∈ N into it. Within this training phase -
referred to as the decentralized training phase - control
Q-tables Qmi (·) ∀i ∈ N are obtained - step “c” of the
Fig. 3. This training phase, as well as the execution phase of
the algorithm, can both be carried out distributively, while
agents communicate over bit-budgeted channels using the
communication policies obtained before in Section III-A.
The following remarks are brought to characterize the
performance of SAIC, in the decentralized training phase.
We now first define the concept of lumpablity, according

to which we will then set a condition - Condition 2 - for
the correctness of remarks 3 and 4.
Definition 1 (Lumpability of an MDP): Let αs be the prob-

ability distribution of the initial state of an MDP at the initial
step. The MDP is called (strongly) lumpable with respect
to the perception function hi(·) if the transitions between all
the perceived states hi(s(t)) - which are perceived through
the lens of hi(·) - follow Markov rule for every probability
distribution αs of the initial state of the original MDP [34].
Condition 2: Let the environment as perceived from

the perspective of agent i within the decentralized train-
ing phase be called an aggregated MDP denoted by {� ×
Cn−1,M, r(·), γ,T ′(·)}, whereas the state space of the aggre-
gated MDP �×Cn−1 is an image of �n under the perception
function hi(·). Now given the definition 1, assuming the
lumpability of the underlying MDP {�n,Mn, r(·), γ,T(·)}
with respect to hi(·) is equivalent to the assumption that the
aggregated {� × Cn−1,M, r(·), γ,T(·)} is an MDP under
every possible αs. This assumption is in place for the
correctness of remarks 3 and 4.
Remark 1: The optimal policy π∗(·) is achievable by the

centralized training phase. Assuming Condition 1 to hold,
the environment is fully observable for the central controller
while the central controller posses the ability to jointly select
the actions for all agents. The problem will thus reduce to a
single agent Q-learning applied on an MDP with asymptotic
convergence to the optimal policy π∗(·).

Algorithm 1 State Aggregation for Information
Compression (SAIC)
1: Input: γ , α, c
2: Initialize all-zero table Nmi

(
oi(t), c−i(t), mi(t)

)
, for i ∈ N

3: and Q-table Qmi (·)← Qm,(k−1)
i (·), for i ∈ N

4: and all-zero Q-table Q
(
oi(t), oj(t), mi(t), mj(t)

)
.

5: Obtain π∗(·) and Q∗(·) by solving (3) using Q-learning [45].
6: Compute V∗

(
oi(t)

)
following eq. (15), for ∀oi(t) ∈ �.

7: Solve problem (13) by applying k-median clustering to obtain
πci (·), for i ∈ N .

8: for each episode k = 1 : K do
9: Randomly initialize local observation oi(t = 1), for i ∈ N

10: for tk = 1:M do
11: Select ci(t) following πci (·), for i ∈ N
12: Obtain message c−i(t), for i ∈ N
13: Update Qmi

(
oi(t− 1), c−i(t− 1), mi(t− 1)

)
, for i ∈ N

14: Select mi(t) ∈M following UCB, for i ∈ N
15: Increment Nmi

(
oi(t), c−i(t), mi(t)

)
, for i ∈ N

16: Obtain reward r
(
s(t), m(t)

)
, for i ∈ N

17: Make a local observation oi(t), for i ∈ N
18: tk = tk + 1
19: end
20: Compute

∑M
t=1 γ trt for the lth episode

21: end
22: Output: Qmi (·),
23: and πmi

(
mi(t)|oi(t), c−i(t)

)
by following greedy

policy for i ∈ N

Remark 2: During the decentralized training phase, each
agent, instead of viewing the environment as the original
underlying MDP denoted by {�n,Mn, r(·), γ,T ′(·)}, views
an aggregated form of the original MDP denoted by {� ×
Cn−1,M, r(·), γ,T ′(·)}. The aggregated MDP experienced
by agent i will be an MDP itself, if the conditions 1 and 2
hold.
Remark 3: The MAS, during the decentralized training

phase, will be composed of n different MDPs with identical
state space � × Cn−1, action space M and reward signal.
The resulting multi-agent environment will be, according to
the definition, a multi-agent MDP (MMDP) [47].
Remark 4: Within the distributed training phase, dis-

tributed Q-learning is applied to a deterministic MMDP,4

which leads to an asymptotically optimal control pol-
icy [14].5 For this remark to be true conditions 1 and 2
must hold.
Note that the control policy π

m,SAIC
i (·) that is obtained

within the distributed training phase of SAIC is optimal for
the given communication policy πc,SAIC(·), that was obtained
within the centralized training phase. Therefore, π

m,SAIC
i (·)

is not necessarily an optimal solution to the problem (10).
In Theorem Section IV, however, we set an upper-bound on

4. The definition of MMDP in [47] is identical to the definition of
cooperative MAMDP used in [14].

5. This training phase can result in an asymptotically optimal control
policy of all agents for non-deterministic MMDPs. This, however, will
require n additional centralized training phases prior to the decentralized
training phase, where n is the number of agents.
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the possible loss on the expected return of the system due
to the joint selection of π

m,SAIC
i (·) and πc,SAIC(·).

IV. CHARACTERIZING THE ERROR BOUND OF SAIC
As discussed in Section III, SAIC uses two approximations
to solve the original joint quantization and control problem.
It was not, however, explained that how these approxima-
tion would impact the performance of SAIC in terms of the
system’s average return. By extending the results of [33] to a
multi-agent scenario, we characterize the performance gap of
SAIC proposed in Section III. Instead of measuring the dif-
ference between the average return obtained by SAIC with
that of the jointly optimal policies for the problem (10),
in Theorem 2, we measure the performance gap between
the average return attained by SAIC with that of the cen-
tralized controller - whereas the latter has had access to
perfect communications and as well as full observability of
the environment. The measured gap is, indeed, larger than the
performance gap between SAIC and a hypothetical jointly
optimal solution to (10), as in the case of the central con-
troller there is no communication/observation limitation in
place. The performance gap between SAIC and the central-
ized solution provided by Theorem 2 is proposed in terms
of the discount factor λ of the task and a positive scalar ε.
Definition 2 details the notion of ε-cost uniform. Lemma 3
is proposed to compute the value of ε for SAIC.
Definition 2: Given a positive number ε a subset Pi,k ⊂ �

is said to be ε-cost-uniform with respect to the policy π(·) if
the following conditions hold for two arbitrary observations
o′, o′′ ∈ Pi,k:
c1 : Mπ

(
o′

) =Mπ

(
o′′

)
(15)

c2 : For any m ∈Mπ

(
o′

)
: |Qπ

(
o′, m

)− Qπ
(
o′′, m

)| < ε, (16)

where Mπ (o′) = {m ∈M : π(m|o′) > 0}.
Theorem 2: Consider a multi-agent system in which agents

are subject to local observability and local action selection. If
agents are allowed to communicate through communication
channels with a bit-budget R-bits at each time step, the max-
imum achievable expected return of the multi-agent system
following SAIC algorithm will be in a small neighbourhood
of the same MAS if it was controlled with a centralized unit
under perfect communications:

E
pπ∗

(
{tr(t)}t=Mt=t0

){g(t0)} − E
pπmi ,πci

(
{tr(t)}t=Mt=t0

){g(t0)} <
2 ε

(1−γ )2 , (17)

where γ is the discount factor and ε should be computed
according to lemma 3, conditioned on the lumpability of the
original MDP - Condition 1.
Proof: Appendix D.
In Theorem 2, we will show that the error gap between
Lemma 3: Given the partition Pi = {Pi,1, . . . ,Pi,2R} that is

obtained by solving eq. (38) during the centralized training
phase, all subsets Pi,k for k ∈ {1, 2, . . . , 2R} are ε-cost-
uniform with respect to the optimal joint policy π∗(·) where

ε can be obtained by the following

ε/2 = max
k,oi

∣∣∣V∗(oi(t))− μ′k
∣∣∣. (18)

Proof: Following definition 2 and eq. (13) the proof is
straightforward.

V. PERFORMANCE EVALUATION
In this section, we evaluate our proposed schemes via numer-
ical results for a particular geometric consensus problem
with finite observability called the rendezvous problem.
Geometric consensus problems arise in numerous emerging
applications such as UAV/vehicle platooning - making them
a meaningful application area for the framework proposed
by this paper [6]. The numerical results achieved by SAIC
will prove the suitability of the proposed framework as a
potential enabling technology for vehicle/UAV platooning
under limited communications.
The rendezvous problem, which is a sub-category of the

geometric consensus, has been previously investigated in
the literature [42], [55], whereas in our case the inter-agent
communication channel is set to have a limited bit-budget.
The rendezvous problem is of particular interest to us,
also because it allows us to consider a cooperative MAS
comprising of multiple agents that are required to commu-
nicate for their coordination task. In particular, as detailed
in Section V-A, if the communication between agents is not
efficient, at any time step t each agent i will only have access
to its local observation oi(t), which is its own location in
the case of rendezvous problem. This mere information is
insufficient for an agent to attain the larger reward C2, but is
sufficient to attain the smaller reward C1. Accordingly, com-
pared with cases in which no communication between agents
is present, in the set up of the rendezvous problem, efficient
communication policies can increase the attained objective
function of the MAS up to six-folds, as will be seen in Fig. 4.
The system operates in discrete time, with agents taking
actions and communicating in each time step t = 1, 2, . . . We
consider a variety of grid worlds with different size values N
and different locations for the goal-point ωT . We compare the
proposed SAIC and LBIC with (i) the centralized Q-learning
scheme and (ii) the Conventional Information Compression
(CIC) scheme which is explained in Section V-B. Changing
the reward function can also build new scenarios. For exam-
ple, a reward function that encourages the agents to come
together as close as possible but not collide with each other
can emulate a vehicle platooning scenario. While useful, it is
outside the scope of our work to investigate the response of
the multi-agent system to different rewarding schemes. Note
that, according to Theorem 1, regardless of the definition of
the reward function, the geometric consensus problem (or
in general the joint quantization and control problem) can
be solved by SAIC if the necessary Conditions 1 and 2 are
met, and centralized training phase is feasible. As the num-
ber of agents n increases, the Q-learning for the centralized
training phase becomes increasingly demanding in terms of
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FIGURE 5. The rendezvous problem when n = 2, N = 4 and ωT = 15: (a) illustration
of the observation space, �, i.e., the location on the grid, and the environment action
space M, denoted by arrows, and of the goal state ωT , marked with gray
background; (b) demonstration of a sampled episode, where arrows show the
environment actions taken by the agents (empty arrows: actions of agent 1, solid
arrows: actions of agent 2) and the B = 4 bits represent the message sent by each
agent. A larger reward C2 > C1 is given to both agents when they enter the goal point
at the same time, as in the example; (c) in contrast, C1 is the reward accrued by
agents when only one agent enters the goal position [27].

computational complexity; this is where SAIC’s bottleneck
lies.

A. RENDEZVOUS PROBLEM
As illustrated in Fig. 5, in a rendezvous problem, multiple
agents operate on an N × N grid world and aim at arriving
at the same time at the goal point on the grid. Each agent
i ∈ N at any time step t can only observe its own loca-
tion oi(t) ∈ � on the grid, where the observation space is
� = {0, 1, . . . , n2 − 1}. Each episode terminates as soon as
an agent or more visit the goal point which is denoted as
ωT ∈ �. That is, at any time step t that the observation of
each agent i ∈ N is a member of �T , the episode will be
terminated - so the time horizon M is non-deterministic. The
subset ST ⊂ S also defines all state realizations where one
or more agents are in the goal location, i.e.,

ST =
{
〈o1(t), . . . , on(t)〉 ∈ S | ∃i ∈ N : oi(t) ∈ ωT

}
.

We also define the subset STn′ ⊂ ST that includes all the
terminal states where only n′ number of agents have arrived
at the goal location i.e.,

STn′ =
{
〈o1(t), . . . , on(t)〉 ∈ S | ∀i ∈ N ′ : oi(t) ∈ ωT

}
,

where N ′ ⊆ N is a subset of all agents with size |N ′| = n′.
Following the same definition for STn′ , the subset STn is equiv-
alent to the set of all terminal states where all agents are
at the goal location. At time t = 1, the initial position of
all agents is randomly and uniformly selected amongst the
non-goal states, i.e., for each agent i ∈ N the initial position
of the agent is oi(1) ∈ �− {ωT}.
At any time step t = 1, 2, . . . , each agent i observes

its position, or environment state, and acquires information
about the position of the other agents by receiving a com-
munication message vector c−i(t) sent by the other agents
j ∈ N−i at the time step t. Based on this information, agent
i selects its environment action mi(t) from the set M =
{Right,Left,Up,Down,Stop}, where an action mi(t) ∈ M
represent the horizontal/vertical move of agent i on the grid
at time step t. For instance, if an agent i is on a grid-
world as depicted on Fig. 5 (a), and observes oi(t) = 4
and selects “Up” as its action, the agent’s observation at

the next time step will be oi(t + 1) = 8. If the position
to which the agent should be moved is outside the grid,
the environment is assumed to keep the agent in its current
position. We assume that all these deterministic state transi-
tions are captured by T(o1(t), . . . , on(t), m1(t), . . . , mn(t)),
which can determine the observations of agents in the next
time step t + 1 following

〈o1(t + 1), . . . , on(t + 1)〉 = T(o1(t), . . . , on(t), m1(t), . . . , mn(t)).

Accordingly, given observations 〈oi(t + 1), . . . , on(t + 1)〉
and actions 〈m1(t+ 1), . . . , mn(t+ 1)〉, all agents receive a
single team reward

r(o1(t), . . . , on(t), m1(t), . . . , mn(t)) =
⎧
⎨

⎩

C1, if P1

C2, if P2,

0, otherwise,

(19)

where C1 < C2 and the propositions P1 and P2 are defined
as P1 : T(o1(t), . . . , on(t), m1(t), . . . , mn(t)) ∈ ST−STn and
P2 : T(o1(t), . . . , on(t), m1(t), . . . , mn(t)) ∈ STn . When only
a subset N ′, |N | = n′ < n of agent arrives at the target
point ωT , the episode will be terminated with the smaller
reward C1 being obtained, while the larger reward C2 is
attained only when all agents visit the goal point at the same
time. Note that this reward signal encourages coordination
between agents which in turn can benefit from inter-agent
communications.
Furthermore, at each time step t agents choose a commu-

nication message to send to the other agent by selecting a
communication action ci(t) ∈ C = {0, 1}R of R bits, where
R (bits per channel use / per time step) is the fixed bit-
budget of all inter-agent communication channels. The goal
of the MAS is to maximize the average return by solving
the problem (10).

B. CONVENTIONAL INFORMATION COMPRESSION IN
MULTI-AGENT COORDINATION TASKS
As a baseline, we consider a conventional scheme that selects
communications and actions separately. For communication,
each agent i sends its observation oi(t) to the other agents by
following policy πc

i (·). According to this policy the agent’s
observation oi(t) will be mapped to a binary bit sequence
ci(t), using an injective (and not necessarily surjective) map-
ping f1 : � → {0, 1}R. Consequently, the communication
policy πc

i becomes deterministic and follows

πc
i (ci(t + 1)|oi(t)) = δ(ci(t + 1)− f1(oi(t))). (20)

Agent i obtains an estimate cj(t) of the observation of all
agents j ∈ N−i by having access to a quantized version of
oj(t). This estimate is used to define the environment state-
action value function Qmj (oi(t), c−i(t), mi(t)). This function
is updated using Q-learning and the UCB policy in a manner
similar to Algorithm 1, with no communication policy to be
learned.
This communication strategy is proven to be optimal [19],

if the inter-agent communication does not impose any cost
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FIGURE 6. A comparison between all seven schemes in terms of the achievable
objective function with the bit-budget of R = 2 bits per channel use/time steps and
number of training iterations/episodes K = 200k .

on the cooperative objective function, the communication
channel is noise-free and the bit-budget of communication
channels are larger than the entropy rate of the observation
process R ≥ H(oi). Under these conditions, and when the
dynamics of the environment are deterministic, each agent i
can distributively learn the optimal policy πm

i (·), using value
iteration or its model-free variants, e.g., Q-learning [14].
While this communication policy is optimal only with a
channel bit-budget R ≥ H(oj), in this paper, we are focused
on the scenarios with R ≤ H(oj). Therefore, due to the bit-
budget of the communication channel, a form of TODC is
required.
Note that compression before a converged action policy

is not possible, since all observations are a priori equally
likely. Thus, we first train the CIC on a communication
channel with unlimited capacity. Afterwards, when a proba-
bility distribution for observations is obtained, by applying
Lloyd’s algorithm [52], we define an equivalence relation
on the observation space � with 2R numbers of equivalence
classes Q1, . . . ,Q2R . According to the defined equivalence
relation by Lloyd’s algorithm, we can uniquely define the
mapping f1 : � → {0, 1}R that maps each agent i’s obser-
vation oi(t) to a communication message ci(t). The inverse
f−1
1 (·) of the quantization mapping that maps agent j’s quan-
tized observation cj(t) into a estimated observation is not an
injective mapping anymore. That is, by receiving the com-
munication message cj(t) ∈ Qk ⊂ C agent i can not retrieve
oj(t) but understands the observation of agent j has been a
member of Qk. Note that CIC algorithm has a limitation,
as it requires the first round of training to be done over
communication channels with unlimited capacity.

C. RESULTS
To perform our numerical experiments, rewards of the
rendezvous problem are selected as C1 = 1 and C2 = 10,

FIGURE 7. A comparison between SAIC, HOC and HNC within a three-agent system
in terms of the system’s average return with the bit-budget of R = 1 bit per time steps
and number of training iterations/episodes K = 20k . The shaded area around SAIC’s
curve shows the standard deviation of SAIC in its performance.

while the discount factor is γ = 0.9. A constant learning rate
α = 0.07 is applied, and the UCB exploration rate c = 12.5.
In any figure that the performance of each scheme is reported
in terms of the averaged discounted cumulative rewards, the
attained rewards throughout training iterations are smoothed
using a moving average filter of memory equal to 10% of
the experiment iterations. We will use the terms “value of
the collaborative objective function”, “value of the objective
function” and “average return” interchangeably throughout
this section. Regardless of the grid-world’s size and goal
location, the grids are numbered row-wise starting from the
left-bottom as shown in Fig. 5-a. Apart from Fig. 7 that
illustrates the result related to a rendezvous problem for a
three-agent system, other figures have been obtained when
experimenting in a two-agent environment. Fig. 6 illustrates
the performance of the proposed SAIC as well as six other
benchmark schemes

• Centralized Q-learning under perfect communications.
• Learning based information compression (LBIC) is
a different indirect scheme to design task-oriented
communications which performs the joint design of
communication and control policies through reinforce-
ment learning following an algorithm similar to the one
proposed in [27].

• CIC, see the details of CIC in Section V-B.
• Heuristic non-communicative (HNC) algorithm is a
direct heuristic scheme which exploits the domain
knowledge of its designer about the rendezvous task -
making it not applicable to any other task rather than the
rendezvous problem. The domain knowledge is utilized
to design a control policy where no communication is
present. In HNC, agents approach the goal point and
wait next to it for a large enough number of time-steps
to make sure the other agent has also arrived there.
Only after that, they will get into the goal point. Note
that this scheme requires communication/coordination
between agents prior to the starting point of the task.
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• Heuristic optimal communication (HOC) algorithm is
a direct heuristic scheme which exploits the domain
knowledge of its designer about the rendezvous task -
making it not applicable to any other task rather than the
rendezvous problem. The domain knowledge is utilized
to design jointly optimal communication and control
policies. In HNC, agents approach the goal point and
wait next to it until they hear from the other agent it
also has arrived there. Only after that, they will get into
the goal point. Note that this scheme requires communi-
cation/coordination between agents prior to the starting
point of the task.

• Hybrid scheme uses the abstract representation of
agents’ observations according to SAIC with R = 2
bits and feeds these latent observations to a centralized
controller. The central controller learns the joint action
selection of both agents using Q-learning.

It is imperative to recall that, not all the schemes eval-
uated by Fig. 6 are benefit from indirect designs - making
them not sufficiently general to be applied to all other multi-
agent communication problems with rate-limited inter-agent
channels. Regardless of their effectiveness, SAIC, LBIC,
CIC and Hybrid are indirect schemes potentially applicable
to any other task-oriented compression problem. Whereas,
HNC and HOC are tailor-made for the rendezvous problem.
In other words, the knowledge that we have about the ren-
dezvous task is already embedded in HNC and HOC to
enable the most effective communication/control strategies.
HNC and HOC, however, allow us to understand how effec-
tive other indirect approaches are even when no knowledge
about the specific rendezvous task is embedded in them.
The performance is measured in terms of the expected sum

of discounted rewards in a rendezvous problem. The grid-
world is considered to be of size N = 8 and its goal location
to be ωT = 22. The bit-budget of the channel between the
two agents is R = 2 bits per time step. Since centralized
Q-learning is not affected by the limitation on the channel’s
bit-budget, it achieves optimal performance after sufficient
training, 160k iterations. The CIC, due to the insufficient
bit-budget of the communication channel, never achieves the
optimal solution. The LBIC, however, is seen to outperform
the CIC, although it is trained and executed fully distribut-
edly. While enjoying a fast convergence, it is observed
that the SAIC can achieve optimal performance by less than
1% gap, whereas the performance gap for the LBIC and
CIC are much more pronounced ranging from 20% to 30%.
The yellow curve showing the performance of the CIC with
no communication between agents would show us the best
performance of distributed reinforcement learning that can
be achieved if no communication between agents is in place
without having any domain knowledge - that is present in
the HOC and HNC. In fact, the better performance of any
scheme compared with the yellow curve, is the sign that
the scheme is either benefiting from some effective commu-
nication between agents or from some domain knowledge.

Note that, when inter-agent communication is unavailable,
i.e., R = 0 bit per time step, there would be no difference in
the performance of the CIC, SAIC or LBIC as all of them
use the same algorithm to find out the action policy πm

i (·).
We also recall the fact that both the CIC and SAIC require
a separate training phase which is not captured by Fig. 5.
SAIC requires a centralized training phase - to perform the
computations demonstrated in line 5 of the Algorithm 1 -
and CIC a distributed training phase with unlimited capacity
of inter-agent communication channels. The performance of
these two algorithms in Fig. 5 is plotted after the first phase
of training.
Similar to Fig. 6, the performance of SAIC is illustrated

in Fig. 7, this time in a n = 3 three-agent system. In this
case, the grid-world is considered to be of size N = 3
and its goal location to be ωT = 9. The bit-budget of the
inter-agent communication channels is set to be R = 1 bits
per time step. The shaded area around the curve corre-
sponding to SAIC, shows the standard deviation of SAIC
in the training as well as the execution phases - at any
given training episode k the width of the shaded curve
is equal to the standard deviation of SAIC’s return from
the training episode k to the episode k − 1000. This fig-
ure illustrates the very robust performance of SAIC in a
three-agent scenario. For this particular experiment we used
decaying epsilon greedy policies with the starting value of
ε = 1 and the ending value of ε = 0.03. To overcome
the issue of credit assignment in multi-agent systems - see,
e.g., [54] to get familiar with the concept, here we used a
different reward function via which we trained the agents.
Accordingly, given observations 〈oi(t + 1), . . . , on(t + 1)〉
and actions 〈m1(t+ 1), . . . , mn(t+ 1)〉, all agents receive a
single team reward

r(o1(t), . . . , on(t), m1(t), . . . , mn(t)) =
{
Cn
′−1

2 , if P3,

0, otherwise,

(21)

where the proposition P3 is defined as
P3 : T(o1(t), . . . , on(t), m1(t), . . . , mn(t)) ∈ ST ′n . When a
subset N ′, |N | = n′ ≤ n of agent arrives at the target point
ωT , the episode will be terminated with the reward Cn

′−1
2

being obtained, while the largest reward Cn−1
2 is attained

only when all agents visit the goal point at the same
time. Note that this reward signal encourages coordination
between agents which in turn can benefit from inter-agent
communications.
To explain the underlying reasons for the remarkable

performance of the SAIC, Fig. 8 is provided so that equiv-
alence classes {Pi,1, . . . ,Pi,2R} computed by the SAIC can
be seen - all the locations of the grid shaded with the same
colour belongs to the same ε-cost-uniform equivalence class.
The SAIC is extremely efficient in performing state aggre-
gation such that the loss of observation information barely
incurs any loss on the achievable sum of discounted rewards
- also depicted in Fig. 5. The Fig. 8-(a), illustrates the state
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FIGURE 8. State aggregation for multi-agent communication in a two-agent
rendezvous problem with grid-worlds of varied sizes and goal locations. The
observation space is aggregated to four equivalence classes, R = 2 bits, and the
number of training episodes has been K = 1500k , K = 1000k and K = 500k for
figures (a) and (b) and (c) respectively. Locations with similar colours represent all the
agents’ observations which are grouped into the same equivalence class. The data
compression ratio Rc has been seen to be 6:2, 5:2 and 4:2 in subplots a), b) and
c) respectively. It is also observed that the observation clusters identified by SAIC
have not been linearly separable under their original representation. In contrast, when
clustered according to their values, observation points become linearly separable -
see also Fig. 9.

FIGURE 9. Left grid-world shows the observation space �, amongst which one
particular observation is chosen oi (t) = 20. While agent i makes this observation,
agent j can potentially be at any other 64 locations of the greed. The value function
V∗(oi (t) = 20, oj (t)) for all oj (t) ∈ � is depicted in the right grid-world, e.g., a number
at location 22, shows the value function V∗(oi (t) = 20, oj (t) = 22) = 10. You can also
see the values of V

πm∗,πc (oi (t),cj (t)) for oi (t) = 20 and all possible cj (t) ∈ C with
R = 2 bits.

aggregation adopted by the SAIC, for which the average
return is illustrated in Fig. 4. It is illustrated in Fig. 8-(a)
that how the SAIC performs observation compression with
ratio Rc = 3 : 1, while it leads to nearly no performance loss
for the collaborative task of the MAS. Here the definition
of compression ratio follows Rc = �H(oi(t))�/�H(ci(t))�.

It was observed in 8 that the observation clusters identi-
fied by SAIC have not been linearly separable under their
original representation. In contrast, when clustered according
to their values, as seen in Fig. 9, observation points become
linearly separable. Fig. 9, allows us to see how precise the
approximation of Vπm∗,πc(oi(1), c−i(1)) by the value func-
tion V∗(oi(t), c−i(t)) is - suggested by lemma 5. The figure
illustrates the values for both Vπm∗,πc(oi(1), c−i(1)) and
V∗(oi(t), o−i(t)), where oi(t) = 21 and o−i(t) can take on
possible values in �. For instance the values 7.2 mentioned
on the right down corner of the grid demonstrates the value
of V∗(oi(t), oj(t)) when oi(t) = 20 and oj(t) = 7. This fig-
ure also allows finding the value of ε for all ε-cost-uniform
groups.
We also investigate the impact of channel bit-budget R on

the value of average return achieved by the LBIC, SAIC and
CIC, in Fig. 10. In this figure, the normalized value of aver-
age return achieved for any scheme at any given R is shown.

FIGURE 10. A performance comparison between several multi-agent
communication and control schemes under different achievable bit rates. All
experiments are performed where N = 8 and ωT = 21, similar to the grid-world of
Fig. 8 -a. The number of training episodes/iterations for any scheme at any given
channel bit-budget R has been K = 200K .

As per (22), the average return for the scheme of interest is
computed by Epπm,πc ({tr(t)}t=Mt=1 ){g(1)}, where πm

i (·) and πc
i (·)

are obtained by the scheme of interest after solving (10) with
a given value of R. The average return is then normalized by
dividing it to the average return Epπ∗ ({tr(t)}t=Mt=1 ){g(1)} that is
obtained by the optimal centralized policy π∗(·). The policy
π∗(·) is the optimal solution to (3) under no communications
constraint.

Epπm,πc
({tr(t)}t=Mt=1

){g(1)}
Epπ∗

({tr(t)}t=Mt=1

){g(1)} . (22)

Accordingly, when the normalized objective function of a
particular scheme is seen to be close to the value 1, it
implies that the scheme has been able to compress the obser-
vation information with almost zero loss with respect to the
achieved objective function. On one hand, it is demonstrated
that the SAIC achieves the optimal performance while run-
ning with 2 bits of inter-agent communications, while it takes
the CIC at least R = 4 bits to get to achieve a sub-optimal
value of the objective function. The LBIC, on the other hand,
provides more than 10% performance gain in very low rates
of communication R ∈ {1, 2, 3} bits per time step, compared
with CIC and 20% performance gain compared with SAIC
at R = 1 bits per time step.

Fig. 11, studies the normalized objective functions
attained by the LBIC, SAIC and CIC under different com-
pression ratios Rc. A whopping 40% performance gain is
acquired by the SAIC, in comparison to the CIC, at high
compression ratio Rc = 3 : 1. This is equivalent to 66%
of saving in the bit-budget with no performance drop with
respect to the collaborative objective function. The SAIC,
however, underperforms the LBIC and CIC at very high
compression ratio of Rc = 6 : 1. This is due to the fact that
the condition mentioned in remark 2 is not met at this high
rate of compression. Moreover, the CIC scheme is seen not
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FIGURE 11. A performance comparison between several multi-agent
communication and control schemes under different rates of data compression. All
experiments are performed where N = 8 and ωT = 21. The number of training
episodes/iterations for any scheme at any given bit-budget R has been K = 200K .

to achieve the optimal performance even at the compression
rate of Rc = 6 : 5 which is due to the fact that by exceeding
the compression ratio Rc = 1 : 1 each agent i may lose some
information about the observation oj(t) of the other agent
which can be helpful in taking the optimal action decision.
As demonstrated through a range of numerical exper-

iments, the weakness of conventional schemes for com-
pression of agents’ observations is that they may lose/keep
information regardless of how useful they can be towards
achieving the optimal objective function. In contrast, the
task-based compression schemes SAIC and LBIC, for com-
munication bit-budgets (very) lower than the entropy of the
observation process, manage to compress the observation
information not to minimize the distortion but to maximize
the achievable value of the objective function. Even though
the numerical example provided in Section IV, evaluates the
performance of SAIC in a problem with a very low commu-
nication bit-budget, our theoretical results are applicable in
scenarios with higher communication rates, as long as the
processing unit that is deployed to solve the problem (3) is
of sufficient computational resources to solve the problem
in the desire time window.

VI. CONCLUSION
We have investigated the distributed joint design of com-
munications and control for an MAS under bit-budgeted
communications with the ultimate goal of maximizing the
system’s expected return. Since we consider a limited
bit-budget for the multi-agent communication channels, task-
based compression of agents’ observations has been of the
essence. Our proposed scheme, SAIC, which derives and
solves the TODC problem can be differentiated from the
conventional data quantization algorithms in the sense that
it does not aim at achieving minimum possible distortion
between the original signal and its reconstructed version
- given a bit-budget for inter-agent communications. In

contrast, SAIC aims at achieving the minimum possible
distortion between the (learned) usefulness/value of the orig-
inal observation signal and the learned usefulness/value of
the reconstructed observation signal - given a bit-budget
for inter-agent communications. We have demonstrated the
outstanding performance of SAIC compared with the con-
ventional data compression algorithms, by up to a remarkable
40% improvement in the achieved objective function, when
being imposed with tight constraints on the communication
bit-budget.
To maximize the system’s expected return, we could show

analytically, how one can disentangle the TODC from the
control problem - given the possibility of a centralized
training phase. Our analytical studies confirm that despite
the separation of the TODC and control problems, we can
ensure very little compromise on the MAS’s average return -
compared with the jointly optimal control and quantization.
Since the computational complexity of Q-learning in the
centralized training phase is order of |�n×Mn| time com-
plexity [56], the addition of one single agent will multiply
the complexity of the centralized training by |�×M|. Thus,
the complexity of the centralized training phase becomes a
hurdle for the scalability of SAIC to a high number of agents.
Accordingly, improving the scalability of the algorithm as
well as extending the results for non-symmetric variable bit-
budgets can be useful avenues to improve the applicability
of the proposed schemes.

APPENDIX A
PROOF OF THEOREM 1
To prove this theorem we first introduce a definition
in Appendix A-A, together with two lemmas and their
proofs in Appendix A-B and A-C. Lastly, we complete
the proof of Theorem 1, in Appendix A-D leveraging the
above-mentioned.

A. TASK-BASED INFORMATION COMPRESSION
PROBLEM: A DEFINITION
Definition 3 [Task-Based Information Compression (TBIC)
Problem]: Let the higher order function 
m∗ be a map
from the vector space Kc of all possible joint commu-
nication policies πc = 〈πc

1(·), . . . , πc
n(·)〉 to the vector

space Km of optimal corresponding joint control policies
πm = 〈πm∗

1 (·), . . . , πm∗
n (·)〉. Upon the availability of 
m∗ ,

by plugging it into the problem (10), we will have a new
problem

max
πc
i

Ep

m
∗

,πc
({tr(t)}t=Mt=1

){g(1)}, i ∈ N
s.t. log2|C| ≤ R, (23)

where we maximize the system’s return only with respect
to the joint communication policies πc. The joint optimal
control policies 〈πm∗

1 (·), . . . , πm∗
n (·)〉 are automatically com-

puted by the mapping 
m∗(πc
1(·), . . . , πc

n(·)). The problem
is called here as the TBIC problem.
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B. REFORMULATING THE OBJECTIVE FUNCTION:
A LEMMA
Lemma 4: The objective function of the decentralized
problem (10) can be expressed as

E
pπm,πc

(
{tr(t)}t=M

t=t′
)
{
g
(
t′
)}

= Epπm,πc (hi(s(t′)))
{
Epπm,πc

({tr(t)}t=Mt=2 |hi(s(t′))
)
{
g
(
t′
)|hi

(
s
(
t′
))}}

= Epπm,πc (hi(s(t′)))
{
Vπm,πc

(
hi

(
s
(
t′
)))}

, (24)

for all i ∈ N , where Vπm,πc(hi(s(t′))) is the solution to
the Bellman equation corresponding to the joint control and
communication policies πm, πc.
Proof: Considering the definition of the value function,

given in (25), the proof is immediately concluded when
applying Adam’s law on the expectation of the value function

Vπm,πc
(
hi

(
s
(
t′
))) = E

pπm,πc
(
{tr(t)}t=M

t=t′+1

)
{
g
(
t′
)|hi

(
s
(
t′
))}

. (25)

C. VALUE OF THE PERCEIVED STATE OF
ENVIRONMENT: A LEMMA
Lemma 5: Using the knowledge of the solution π∗(·) to
the centralized problem, we can find the optimal value of
a perceived state V∗(hi(s(t))) in terms of the value of the
underlying state V∗(s(t)) by

V∗(hi(s(t))) =
∑

o1(t)∈�
· · ·

∑

on(t)∈�
V∗(s(t)) p(o−i(t)|c−i(t)). (26)

Proof:

V∗
(
hi

(
s
(
t′
)))

) (27)

= E
p
(
{tr}M

t′ |hi(s(t′))
)
{∑M

t=t′γ
t−1r(s(t),m(t))

∣∣hi
(
s
(
t′
))}

= E
p
(
{tr}M

t′ |hi(s(t′))
)
{
g
(
t′
)|hi

(
s
(
t′
))}

=
∑

{tr}M
t′
g
(
t′
)
p
(
{tr}Mt′ |hi

(
s
(
t′
)))

, (28)

where the conditional probability p({tr}Mt′ |hi(s(t′))) can be
extended following the law of total probabilities

V∗
(
hi

(
s
(
t′
))) =

∑

{tr}M
t′
g
(
t′
)
⎡

⎣
∑

o1(t)∈�
, . . .

∑

on(t)∈�

p
(
{tr}Mt′ |oi

(
t′
)
, o−i

(
t′
)
, c−i

(
t′
))
p
(
o−i

(
t′
)|c−i

(
t′
))

⎤

⎦,

(29)

where o−i(t′) is the observation vector of all agents i ∈ N−i.
In eq. (29) oi(t′), o−i(t′) are sufficient statistics and can be
replaced by s(t′) and the second summation can be shifted
to have

V∗
(
hi

(
s
(
t′
)))

=
∑

o1(t)∈�
· · ·

∑

on(t)∈�

∑

{tr}M
t′

g
(
t′
)
p
(
{tr}Mt′ |s

(
t′
))

)p(o−i(t)|c−i(t)),

(30)

where
∑
{tr}M

t′
g(t′)p({tr}Mt′ |s(t′))) can be replaced with

V∗(s(t)), concluding the proof.

D. PROOF OF THEOREM 1
Proof: Further to the result of Lemma 4 and eq. (24), the
original problem (10) can be expressed by

max
πm
i (·),πc

i (·)
Epπm,πc (hi(s(1)))

{
Vπm,πc(hi(s(1)))

}
,

s.t. log2|C| ≤ R, (31)

for i ∈ N . Now by following definition 3 and plugging

m∗(·) into the problem (31) we obtain the TBIC problem

max
πc
i (·)

Ep

m
∗

(πc),πc
(hi(s(1)))

{
V
m∗ (πc),πc(hi(s(1)))

}
,

s.t. log2|C| ≤ R, i ∈ N . (32)

We continue by following lemma 5, to be able to substitute
V
m∗ (πc),πc(hi(s(1))) with its approximator V∗(hi(s(1))).
This brings us to the approximated TBIC problem

max
πc
i (·)

Epπ∗,πc (hi(s(1)))

{
V∗(hi(s(1)))

}
i ∈ N

s.t. log2|C| ≤ R. (33)

Note that the optimizers of the problem (33) and (34) are
identical since the additional term E{V∗(s(t))} is indepen-
dent from the communication policy πc

i (·). Furthermore, the
problem (34) is now expressed as a form of data quantization
problem with mean absolute difference of the value func-
tions V∗(s(t)) and V∗(hi(s(1))) as the measure of distortion.
This interpretation of problem (34) can be better understood
later by seeing the eq. (35).

min
πc
i (·)

Epπm,πc (hi(s(1)))

{
V∗(s(1))− V∗(hi(s(1)))

}

s.t. log2|C| ≤ R, (34)

and since V∗(s(1)) is always larger than V∗(hi(s(1))), the
problem above can also be written as

min
πc
i (·)

Epπm,πc (hi(s(1)))

{∣∣V∗(s(1))− V∗(hi(s(1)))
∣∣}

s.t. log2|C| ≤ R, (35)

concluding the proof of Theorem 1.

APPENDIX B
PROOF OF LEMMA 2
Proof: The term Epπm,πc (hi(s(1))){V∗(s(1)) − V∗(hi(s(1)))}
can be estimated by computing it over the empirical distri-
bution of s(1). Note that the empirical joint distribution of
hi(s(1)) can be obtained by following the communication
policy πc

i (·) on the empirical distribution of s(1). Therefore,
the problem (34) can be rewritten as

min
πc
i (·)

∑

oi(1)∈�
· · ·

∑

on(1)∈�

∣
∣∣V∗(s(t))− V∗(hi(s(t)))

∣
∣∣, ∀i ∈ N

s.t. log2|C| ≤ R. (36)
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Quantization levels are disjoint sets Pi,k ⊂ �, where their
union ∪2R

k=1Pi,k will cover the entire �. Each quantization
level is represented by only one communication message
cj(t) = ck ∈ C. Further to lemma 5, the value of V∗(hi(s(t)))
can be computed by empirical mean (26).
The quantization problem (36) becomes a k-median

clustering problem

min
Pi

∑

oj(t)∈�
j∈N−i

2R∑

k=1

∑

oi(t)∈Pi,k

∣∣∣V∗
(
oi(t), oj(t)

)− μk

∣∣∣, (37)

where Pi = {Pi,1, . . . ,Pi,2R} is a partition of �, and the first
summation

∑
oj(t)∈�
j∈N−i

is a concatenation of n−1 summations

each one acting over oj(t) ∈ � where j ∈ N−i.
By taking the mean of V∗(s(t)) over the empirical dis-

tribution of oj(t), ∀j ∈ Ni, we can also marginalize out
oj(t), ∀j ∈ Ni. Again, it does not change the solution of the
problem and we will have

min
Pi

∑2R

k=1

∑

oi(t)∈Pi,k

∣∣
∣V∗(oi(t))− μ′k

∣∣
∣, (38)

in which μ′k =
∑

oj(t)∈Pi,k
μk will approximate V∗(ci(t)).

To gain more insight about the meaning of this task-
based information compression, it is useful to take a look
at the conventional quantization problem which is adapted
to our problem setting in eq. (39), where cj = πc

j (oj(1)). In
fact, the compression scheme applied in the CIC, explained
in Section (V-B), is obtained by solving the following
problem

min
πc
i (·)

∑

oi(1)∈�
∣∣∣oi(t)− ci(t)

∣∣∣
2
, s.t. log2|C| ≤ R, (39)

which can be solved optimally by the Lloyd’s algorithm [52].

APPENDIX C
PROOF OF LEMMA 4
Proof: Further to the law of iterated expectations, V∗(oi(t′))
can be expressed as

V∗
(
oi

(
t′
)) = Ep(o−i(t′))

{
E
pπ∗

(
{tr(t)}t=M

t=t′+1
|oi(t′),o−i(t′)

)

{
g
(
t′
)|oi

(
t′
) = oi

(
t′
)
, o−i

(
t′
)}}

=
∑

o−i(t′)∈�n−1

p
(
o−i(t) = o−i

(
t′
))
Eπ∗

{
g
(
t′
)|oi

(
t′
)
, o−i

(
t′
)}

(40)

where the expectation of the last term is the optimal
value of the state s(t′) = 〈oi(t′), o−i(t′)〉 of the
underlying MDP

V∗
(
s
(
t′
)) = Eπ∗

{
g
(
t′
)|oi

(
t′
)
, o−i

(
t′
)}

. (41)

Following Bellman optimality equation V∗(s(t′)) can be
obtained by centralized Q-learning following

V∗
(
s
(
t′
)) = max

∈Mn
Q∗

(
s
(
t′
)
, m

(
t′
))

= E
pπ∗

(
{tr(t)}t=M

t=t′+1
|oi(t′),o−i(t′)

)
{
g
(
t′
)|oi

(
t′
)
, o−i

(
t′
)}

. (42)

Using (40) and (42) we can simply compute V∗(oi(t′)) by

V∗(oi(t)) =
∑

o−i(t)∈�n−1

max Q∗(s(t), m(t))p(o−i(t) = o−i(t)).

(43)

APPENDIX D
PROOF OF THEOREM 8
Proof: Without loss of generality, we have written the
proof of this theorem for a two agent scenario to improve
the readability. Given the proof for the two-agent system,
the extension to a multi-agent system is straightforward.
According to the [33] (Lemma 1), optimal state values of the
aggregated MDPs (the environment as is seen by one agent
during the decentralized training phase of SAIC) are in a
small neighbourhood of the optimal values corresponding to
the optimal solution to the original underlying MDP:

∀oj ∈ � and and ∀i ∈ {1, 2}, j �= i :

|V∗(oi, oj
)− Vmi

(
oi, c

(k)
j

)
| < 2ε

(1− γ )2
, (44)

where Vmi (·) is the value function corresponding to
π
m,SAIC
i (·). The communication signal c(k)j ∈ C is agent j’s

communicated message and at the same time is the k-th ele-
ment of the communication space C = {c(1), c(2), . . . , c|C|}
i.e., c(k)j = c(k). Following the eq. (24), one can write the
expected return of the system under centralized scheme as:

E
pπ∗

(
{tr(t)}t=Mt=t0

){g(t0)} = E
{
V∗

(
oi(t0), oj(t0)

)}

=
∑

oj∈�

∑

oi∈�
V∗

(
oi(t0), oj(t0)

)
poi,oj

(
oi(t0), oj(t0)

)
, (45)

where the second expectation is taken over the joint probabil-
ity distribution pπ∗(oi(t0), oj(t0)) of oi and oj when following
the action policy π∗(·). This equation can be extended for
multi-agent case only by taking a summation over each
agent’s observation space on the left-hand side. Similarly,
following the eq. (24), one can write the expected return of
the system that is run by SAIC as:

E
pπm,πc

(
{tr(t)}t=Mt=t0

){g(t0)} = E

{
Vm

(
oi(t0), c

(k)
j (t0)

)}

=
|C|∑

k=1

∑

oi∈�
Vm

(
oi(t0), c

(k)
j (t0)

)
poi,cj

(
oi(t0), c(k)

j (t0)
)
. (46)

We can rewrite the joint probability poi,cj(oi(t0), c(k)
j (t0)) as

poi,cj
(
oi(t0), c(k)

j (t0)
)
=

∑

oj(t0)∈Pi,k

poi,oj
(
oi(t0), oj(t0)

)
,

(47)
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where the subset Pi,k ⊂ � stands for the set of all observa-
tion realizations oj that are represented by c(k)

j (t0) according

to the policy π
c,SAIC
i (·). Given eq. (47), one can express

eq. (46) - the expected return of the MAS under SAIC -
also as

E
pπm,πc

(
{tr(t)}t=Mt=t0

){g(t0)} = E

{
Vm

(
oi(t0), c

(k)
j (t0)

)}

=
|C|∑

k=1

∑

oj(t0)∈Pi,k

∑

oi∈�
Vm

(
oi(t0), c

(k)
j (t0)

)
poi,oj

(
oi(t0), oj(t0)

)
.

(48)

In order for eq. (45) to have the arrangement of its summa-
tions similar to eq. (48), it is sufficient to break its left-hand
summation to two parts

E
pπ∗

(
{tr(t)}t=Mt=t0

){g(t0)} = E
{
V∗

(
oi(t0), oj(t0)

)}

=
|C|∑

k=1

∑

oj(t0)∈Pi,k

∑

oi∈�
V∗

(
oi(t0), oj(t0)

)
poi,oj

(
oi(t0), oj(t0)

)
,

(49)

Further to equations (49)-(48), the difference between the
achievable expected return of the centralized scheme and
SAIC can be explained by

E
pπ∗

(
{tr(t)}t=Mt=t0

){g(t0)} − E
pπmi ,πci

(
{tr(t)}t=Mt=t0

){g(t0)}

=
|C|∑

k=1

∑

oj(t0)∈Pi,k

∑

oi∈�
V∗

(
oi(t0), oj(t0)

)
poi,oj

(
oi(t0), oj(t0)

)

−
|C|∑

k=1

∑

oj(t0)∈Pi,k

∑

oi∈�
Vm

(
oi(t0), c

(k)
j (t0)

)
poi,oj

(
oi(t0), oj(t0)

)
.

(50)

We now proceed by factorizing the joint probability
poi,oj(oi(t0), oj(t0)) which yields

E
pπ∗

(
{tr(t)}t=Mt=t0

){g(t0)} − E
pπmi ,πci

(
{tr(t)}t=Mt=t0

){g(t0)}

=
|C|∑

k=1

∑

oj(t0)∈Pi,k

∑

oi∈�
poi,oj

(
oi(t0), oj(t0)

)[
V∗

(
oi(t0), oj(t0)

)

− Vm
(
oi(t0), c

(k)
j (t0)

)]
(51)

Since [V∗(oi(t0), oj(t0)) − Vm(oi(t0), cj(t0))] is upper-
bounded by a constant term 2ε

(1−γ )2 , its weighted sum is

also upper bounded by the same term 2ε

(1−γ )2 . Thus we con-
clude the proof of Theorem 2. We are unsure if the suggested
bound is tight. The results obtained in the performance evalu-
ation indicates a large difference between the bound offered
above and the performance bound between SAIC and the
optimal centralized control.

REFERENCES
[1] A. Mostaani, T. X. Vu, S. K. Sharma, Q. Liao, and

S. Chatzinotas, “Task-oriented communication system design in cyber-
physical systems: A survey on theory and applications,” 2021,
arXiv:2102.07166.

[2] D. Gunduz et al., “Beyond transmitting bits: Context, semantics, and
task-oriented communications,” 2022, arXiv:2207.09353.

[3] E. C. Strinati and S. Barbarossa, “6G networks: Beyond Shannon
towards semantic and goal-oriented communications,” Comput. Netw.,
vol. 190, May 2021, Art. no. 107930.

[4] H. Witsenhausen, “Indirect rate distortion problems,” IEEE Trans. Inf.
Theory, vol. 26, no. 5, pp. 518–521, Sep. 1980.

[5] P. Ioannou and J. Sun, “Theory and design of robust direct and indirect
adaptive-control schemes,” Int. J. Control, vol. 47, no. 3, pp. 775–813,
1988.

[6] A. Barel, R. Manor, and A. M. Bruckstein, “COME TOGETHER:
Multi-agent geometric consensus,” 2017, arXiv:1902.01455.

[7] H. Xie, Z. Qin, X. Tao, and K. B. Letaief, “Task-oriented multi-user
semantic communications,” IEEE J. Sel. Areas Commun., vol. 40,
no. 9, pp. 2584–2597, Sep. 2022.

[8] N. Shlezinger and Y. C. Eldar, “Task-based quantization with
application to MIMO receivers,” 2020, arXiv:2002.04290.

[9] M. R. Palattella and N. Accettura, “Enabling internet of everything
everywhere: LPWAN with satellite backhaul,” in Proc. Global Inf.
Infrastruct. Netw. Symp. (GIIS), 2018, pp. 1–5.

[10] L. Chaari, M. Fourati, and J. Rezgui, “Heterogeneous LoRaWAN
& LEO satellites networks concepts, architectures and future direc-
tions,” in Proc. Global Inf. Infrastruct. Netw. Symp. (GIIS), 2019,
pp. 1–6.

[11] M. M. Azari et al., “Evolution of non-terrestrial networks from 5G to
6G: A survey,” IEEE Commun. Surveys Tuts., early access, Aug. 18,
2022, doi: 10.1109/COMST.2022.3199901.

[12] G. N. Nair and R. J. Evans, “Exponential stabilisability of finite-
dimensional linear systems with limited data rates,” Automatica,
vol. 39, no. 4, pp. 585–593, 2003.

[13] G. N. Nair and R. J. Evans, “Stabilizability of stochastic linear systems
with finite feedback data rates,” SIAM J. Control Optim., vol. 43, no. 2,
pp. 413–436, 2004.

[14] M. Lauer and M. A. Riedmiller, “An algorithm for distributed rein-
forcement learning in cooperative multi-agent systems,” in Proc. Conf.
Mach. Learn., 2000, pp. 535–542.

[15] V. Kostina and B. Hassibi, “Rate-cost tradeoffs in control,”
IEEE Trans. Autom. Control, vol. 64, no. 11, pp. 4525–4540,
Nov. 2019.

[16] T.-Y. Tung, S. Kobus, J. R. Pujol, and D. Gunduz, “Effective
communications: A joint learning and communication framework
for multi-agent reinforcement learning over noisy channels,” 2021,
arXiv:2101.10369.

[17] S. Arimoto, “An algorithm for computing the capacity of arbitrary
discrete memoryless channels,” IEEE Trans. Inf. Theory, vol. 18, no. 1,
pp. 14–20, Jan. 1972.

[18] N. Shlezinger and Y. C. Eldar, “Deep task-based quantization,”
Entropy, vol. 23, no. 1, p. 104, 2021.

[19] D. V. Pynadath and M. Tambe, “The communicative multiagent team
decision problem: Analyzing teamwork theories and models,” J. Artif.
Intell. Res., vol. 16, pp. 389–423, Jun. 2002.

[20] D. Lee, N. He, P. Kamalaruban, and V. Cevher, “Optimization for
reinforcement learning: From a single agent to cooperative agents,”
IEEE Signal Process. Mag., vol. 37, no. 3, pp. 123–135, May 2020.

[21] C. Zhang and V. Lesser, “Coordinating multi-agent reinforcement
learning with limited communication,” in Proc. Conf. Auton. Agents
Multi-Agent Syst., St. Paul, MN, USA, May 2013, pp. 1101–1108.

[22] F. Fischer, M. Rovatsos, and G. Weiss, “Hierarchical reinforce-
ment learning in communication-mediated multiagent coordination,”
in Proc. IEEE Joint Conf. Auton. Agents Multiagent Syst. (AAMAS),
Jul. 2004, pp. 1334–1335.

[23] T. Kasai, H. Tenmoto, and A. Kamiya, “Learning of communication
codes in multi-agent reinforcement learning problem,” in Proc. Soft
Comput. Ind. Appl. (SMCia) Conf., 2008, pp. 1–6.

[24] F. Wu, S. Zilberstein, and X. Chen, “Online planning for multi-agent
systems with bounded communication,” Artif. Intell., vol. 175, no. 2,
pp. 487–511, Feb. 2011.

[25] A. Amini, A. Asif, and A. Mohammadi, “CEASE: A collabora-
tive event-triggered average-consensus sampled-data framework with
performance guarantees for multi-agent systems,” IEEE Trans. Signal
Process., vol. 66, no. 23, pp. 6096–6109, Dec. 2018.

[26] J. Foerster, Y. Assael, N. de Freitas, and S. Whiteson, “Learning to
communicate with deep multi-agent reinforcement learning,” in Proc.
Adv. Neural Inf. Process. Syst., 2016, pp. 2137–2145.

VOLUME 3, 2022 1885

http://dx.doi.org/10.1109/COMST.2022.3199901


MOSTAANI et al.: TASK-ORIENTED DATA COMPRESSION FOR MULTI-AGENT COMMUNICATIONS

[27] A. Mostaani, O. Simeone, S. Chatzinotas, and B. Ottersten, “Learning-
based physical layer communications for multiagent collaboration,”
in Proc. IEEE Int. Symp. Pers. Indoor Mobile Radio Commun.,
Sep. 2019, pp. 1–6.

[28] A. Mostaani, T. X. Vu, S. Chatzinotas, and B. Ottersten, “State aggre-
gation for Multiagent communication over rate-limited channels,” in
Proc. IEEE Global Commun. Conf. (GLOBECOM), 2020, pp. 1–7.

[29] D. Kim et al., “Learning to schedule communication in multi-agent
reinforcement learning,” in Proc. Int. Conf. Learn. Represent., 2019.

[30] R. Lowe, J. Foerster, Y.-L. Boureau, J. Pineau, and Y. Dauphin, “On
the pitfalls of measuring emergent communication,” in Proc. Int. Conf.
Auton. Agents MultiAgent Syst., 2019, pp. 693–701.

[31] D. P. Bertsekas and D. A. Castanon, “Adaptive aggregation meth-
ods for infinite horizon dynamic programming,” IEEE Trans. Autom.
Control, vol. 34, no. 6, pp. 589–598, Jun. 1989.

[32] D. P. Bertsekas, “Feature-based aggregation and deep reinforcement
learning: A survey and some new implementations,” IEEE/CAA J.
Automatica Sinica, vol. 6, no. 1, pp. 1–31, Jan. 2019.

[33] D. Abel, D. Hershkowitz, and M. Littman, “Near optimal behavior
via approximate state abstraction,” in Proc. Int. Conf. Mach. Learn.,
2016, pp. 2915–2923.

[34] G. Rubino and B. Sericola, “On weak lumpability in Markov chains,”
J. Appl. Probabil., vol. 26, no. 3, pp. 446–457, 1989.

[35] D. Bertsekas, “Biased aggregation, Rollout, and enhanced policy
improvement for reinforcement learning,” 2019, arXiv:1910.02426.

[36] H. Zou, C. Zhang, S. Lasaulce, L. Saludjian, and P. Panciatici,
“Decision-oriented communications: Application to energy-efficient
resource allocation,” in Proc. Int. Conf. Wireless Netw. Mobile
Commun., 2018, pp. 1–6.

[37] H. Mao, Z. Zhang, Z. Xiao, Z. Gong, and Y. Ni, “Learning agent
communication under limited bandwidth by message pruning,” 2019,
arXiv:1912.05304.

[38] S. Sukhbaatar, A. Szlam, and R. Fergus, “Learning multiagent com-
munication with backpropagation,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 2244–2252.

[39] P. A. Stavrou and M. Kountouris, “A rate distortion approach to goal-
oriented communication,” in Proc. ISIT, 2022, pp. 590–595.

[40] F. A. Oliehoek, M. T. Spaan, and N. Vlassis, “Optimal and approx-
imate Q-value functions for decentralized POMDPs,” J. Artif. Intell.
Res., vol. 32, pp. 289–353, May 2008.

[41] G. E. Monahan, “State of the art—A survey of partially observable
Markov decision processes: Theory, models, and algorithms,” Manage.
Sci., vol. 28, no. 1, pp. 1–16, 1982.

[42] P. Xuan, V. Lesser, and S. Zilberstein, “Communication decisions in
multi-agent cooperation: Model and experiments,” in Proc. 5th Int.
Conf. Auton. Agents, 2001, pp. 616–623. [Online]. Available: https:
//doi.org/10.1145/375735.376469

[43] F. A. Oliehoek, M. T. Spaan, and N. Vlassis, “DEC-
PoMDPs with delayed communication,” in Proc. Multi-Agent
Sequential Decis.-Making Uncertain Domains, Honolulu, HI, USA,
May 2007.

[44] B. Larrousse, S. Lasaulce, and M. R. Bloch, “Coordination in
distributed networks via coded actions with application to power
control,” IEEE Trans. Inf. Theory, vol. 64, no. 5, pp. 3633–3654,
May 2018.

[45] R. S. Sutton and A. G. Barto, Introduction to Reinforcement
Learning, 2nd ed., vol. 135. Cambridge, MA, USA: MIT Press,
Nov. 2017.

[46] Y. Rizk, M. Awad, and E. W. Tunstel, “Decision making in multiagent
systems: A survey,” IEEE Trans. Cogn. Develop. Syst., vol. 10, no. 3,
pp. 514–529, Sep. 2018.

[47] C. Boutilier, “Multiagent systems: Challenges and opportunities for
decision-theoretic planning,” AI Mag., vol. 20, no. 4, pp. 35–35, 1999.

[48] T. S. Jaakkola, M. I. Jordan, and S. P. Singh, “Convergence of stochas-
tic iterative dynamic programming algorithms,” in Proc. Adv. Neural
Inf. Process. Syst., 1994, pp. 703–710.

[49] F. Heylighen, “Stigmergy as a universal coordination mechanism I:
Definition and components,” Cogn. Syst. Res., vol. 38, pp. 4–13,
Jun. 2016.

[50] F. A. Oliehoek and C. Amato, A concise Introduction to Decentralized
POMDPs, vol. 1. Cham, Switzerland: Springer, 2016.

[51] S. Yüksel, “Jointly optimal LQG quantization and control policies
for multi-dimensional systems,” IEEE Trans. Autom. Control, vol. 59,
no. 6, pp. 1612–1617, Jun. 2014.

[52] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf.
Theory, vol. 28, no. 2, pp. 129–137, Mar. 1982.

[53] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Commun., vol. 28, no. 1, pp. 84–95, Jan. 1980.

[54] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Proc. 32nd AAAI
Conf. Artif. Intell., 2018, pp. 2974–2982.

[55] C. Amato, J. S. Dibangoye, and S. Zilberstein, “Incremental policy
generation for finite-horizon DEC-POMDPs,” in Proc. 19th Int. Conf.
Autom. Planning Scheduling, 2009, pp. 2–9.

[56] M. G. Azar, R. Munos, M. Ghavamzadaeh, and H. J. Kappen, “Speedy
Q-learning,” in Proc. NIPS, 2011, pp. 2411–2419.

1886 VOLUME 3, 2022



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


