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ABSTRACT In this paper, we investigate a resource allocation problem for a Cellular Vehicle to
Everything (C-V2X) network to improve energy efficiency of the system. To address this problem,
self-organizing mechanisms are proposed for joint and disjoint subcarrier and power allocation procedures
which are performed in a fully distributed manner. A multi-agent Q-learning algorithm is proposed for the
joint power and subcarrier allocation. In addition, for the sake of simplicity, it is decoupled into two sub-
problems: a subcarrier allocation sub-problem and a power allocation sub-problem. First, to allocate the
subcarrier among users, a distributed Q-learning method is proposed. Then, given the optimal subcarriers,
a dynamic power allocation mechanism is proposed where the problem is modeled as a non-cooperative
game. To solve the problem, a no-regret learning algorithm is utilized. To evaluate the performance of
the proposed approaches, other learning mechanisms are used which are presented in Fig. 8. Simulation
results show the multi-agent joint Q-learning algorithm yields significant performance gains of up to
about 11% and 18% in terms of energy efficiency compared to proposed disjoint mechanism and the
third disjoint Q-learning mechanism for allocating the power and subcarrier to each user; however, the
multi-agent joint Q-learning algorithm uses more memory than disjoint methods.

INDEX TERMS Cellular vehicle-to-everything (C-V2X) communication, PD-NOMA, resource allocation,
learning algorithm.

I. INTRODUCTION

INRECENT years, the growing demand for local wireless
services have created various technical challenges in terms

of requiring higher throughput, lower end-to-end latency and
power consumption. Cellular vehicle-to-everything (C-V2X)
communication has been credited as a key technology in the
fifth-generation (5G) networks to improve the performance
of the systems. It allows closely located devices to directly
communicate with each other and share resources with other
devices and cellular users without requiring a centralized
controller. By contrast, reuse gain can be achieved by the
same radio resource for vehicles and D2D pairs in the C-V2X
environment [1]. Accordingly, a self-organizing network
(SON) has been considered as a key tool to improve the

performance of systems with minimal human intervention.
SON allows C-V2X communication to adapt to the changes
in the network’s conditions and lead their strategies to pro-
vide optimal performance in a distributed manner [2], [3].
This can enhance intelligent management while decreasing
complexity and operational costs.
Nonorthogonal multiple access (NOMA) techniques have

been recognized as a key solution for communication
networks of the future by providing spectral efficiency, user
fairness, enhanced data rates, and reduced latency. It is there-
fore expected that future wireless networks will use the
new technology power domain of NOMA for improving
resource allocation design schemes in ultra-dense topology
systems [4].
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In this paper, we aim to maximize the energy efficiency
of an uplink Power domain non orthogonal multiple access
(PD-NOMA) system. To reduce the delay during a vehicu-
lar conversation, D2D communication is introduced in the
V2X environment. In the proposed system, device-to-device
(D2D) pairs share the same uplink resources with other vehi-
cles, and interference produced in the network which impacts
on the system performance. Thus, we focus on intra-cell
interference and use the successive interference cancella-
tion (SIC) technique to manage the interference among the
users in a cellular frequency band [5]. An optimization
problem is formulated as a nonlinear integer programming
problem. Since users autonomously select their subcarriers
based on the environmental information about subcarriers,
using machine learning methods seems desirable to reduce
both signaling overhead and equipment costs in the system.
Q-learning is a recent form of Reinforcement Learning

algorithm that does not need a model of its environment
and it is able to compare the expected utility of the avail-
able actions without requiring a model of the environment.
Q-learning has emerged as a valuable machine learning tech-
nique for distributed SONs due to having low complexity and
converging to an optimal point. In addition, it is shown that
through our distributed Q-learning, D2D users not only are
able to learn their resources in a self-organized way, but also
achieve better system performance than that using traditional
method. Furthermore, SONs can allow systems to configure
themselves automatically without manual intervention [6].
Q-learning method is selected for solving the resource allo-
cation problem, which in turn leads to find an optimal policy
in the sense of maximizing the expected value of the total
reward function for the considered system model [7].

In this paper, we propose two machine learning
approaches. In the first, a multi-agent Q-learning algorithm
is applied for the joint power and subcarrier allocation. In
the second approach, the problem is decoupled into two
sub-problems: a power allocation sub-problem and a sub-
carrier allocation sub-problem. We propose a distributed
Q-learning method to allocate subcarriers among users.
Given an optimal subcarrier allocation, the power alloca-
tion sub-problem modeled as a non-cooperative game. To
solve the game, a no-regret algorithm which can be exe-
cuted in a distributed manner is used. To evaluate the
performance of our proposed approaches, we utilize a Q-
learning based mechanism presented in [8] for our power
allocation problem.

A. RELATED WORKS
Several related works have studied resource allocation for
C-V2X communication. In [1], a coalition formation game
was proposed to maximize the system sum rate in a statis-
tical average sense for cellular users and multiple C-V2X.
An OFDMA-based cellular network with specific frequency
bands are considered for each user. As far as, using the
fixed frequency band for each user does not seem to be

the optimal use in energy, we tried to propose a NOMA-
based system and learn the optimal subcarriers for the
users. In [9], the authors studied a coalition formation
game to address the uplink resource allocation problem
for multiple cellular users and C-V2X. In [10], the main
contribution was to propose a non-cooperative game and
real-time mechanism based on deep reinforcement learning
to deal with the energy-efficient power allocation problem
in C-V2X networks.. In [11], the authors studied the energy-
efficient channel assignment problem for a self-organizing
D2D network, and they proposed a distributed game theory-
based solution to solve it. In [12], a game theory based
learning approach to solve the joint power control and sub-
channel allocation problem for D2D uplink communications
was developed. In [13], the authors studied the behavior of
two devices attempting to communicate with a base station
from the perspective of non-cooperative game theory, spec-
ifying both pure and mixed Nash equilibrium. In [14], to
address a resource allocation problem, where C-V2X links
use resources common to multiple cells, a new game the-
ory based mechanism was proposed, which indicated that
each player had an incentive to conceal their information to
improve their profits.
However, the papers mentioned above used game theory

based mechanisms, they did not address the energy effi-
ciency issue in C-V2X networks with reinforcement learning
mechanisms. We exploit the non-cooperative game to model
the power allocation subproblem in a PD-NOMA energy-
efficient system, and utilize the no-regret learning method
for solving it. C-V2X players tried to learn their resources in
a self-organizing manner, independently, which in turn, leads
to converge to a Nash equilibrium convergence point more
quickly than other methods. Moreover, we utilize a Gibbs
sampling scheme to solve the proposed game which is a
probabilistic method compared to the approach developed
in [15].
In [16], the authors developed a carrier sensing multiple

access (CSMA) based algorithm to find the optimal dis-
tributed channel allocation of D2D networks. In [17], a
multi-agent reinforcement learning-based autonomous mech-
anism was proposed to achieve optimal channel allocation
and effective co-channel interference management for D2D
pairs. In [18], to improve the spectral efficiency of a C-V2X
network, a spectrum sharing scheme was proposed to provide
ad-hoc multi-hop access to a network, however, we proposed
the distributed Q-learning method for allocating subcarriers,
which in turn leads to reach the optimal resources for the
users in terms of maximizing the energy efficiency in the
C-V2X network.
In [19], an efficient power control algorithm was proposed

to maximize the sum rates. In [20], the authors discussed
recent advances in the C-V2X communication system design
paradigm from the perspective of a socially aware resource
allocation scheme. In [21], the authors first analyze the
main streams of the cellular-vehicle-to-everything (C-V2X)
technology evolution within the third generation Partnership
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Project (3GPP), with focus on the sidelink air interface. Then,
they provide a comprehensive survey of the related litera-
ture, which is classified and dissected, considering both the
Evolution-based solutions and the 5G New Radio-based lat-
est advancements that promise substantial improvements in
terms of latency and reliability. In [22], authors addressed the
problem of optimizing the energy efficiency of the system by
allocating the power and subcarriers in the SC-FDMAwireless
networks. The subcarriers are allocated to the users by adopt-
ing a multilateral bargaining model. Then, an optimization
problem with respect to user’s uplink transmission power is
formulated and solved. However, we investigate the problem
of energy efficiency of the system in the C-V2X communi-
cation network in the PD-NOMA system by using the SIC
technique to manage the interferences among the users.
Reference [23] presents Open C-V2X, the first publicly

available, open-source simulation model of the third genera-
tion partnership project (3GPP) release 14 Cellular Vehicle to
everything (C-V2X) sidelink, which forms the basis for 5G
NR mode 2 under later releases. In [15], the authors proposed
an energy-efficient self-organized cross-layer optimization
scheme in an OFDMA-based cellular network to maximize
the energy-efficiency of a D2D communication system, with-
out jeopardizing the quality-of-service (QoS) requirements
of other tiers. In [24], the authors studied interference man-
agement in hybrid networks consisting of D2D pairs and
cellular links, and they proposed a distributed approach that
required minimal coordination yet achieved a significant gain
in throughput. In [25], a two-phase resource sharing algo-
rithm was proposed for a D2D communication system whose
computational complexity could be adapted according to the
network condition. In [26], the authors used the concept
of convolution to derive a two-parameter distribution that
represented the sum of two independent exponential distri-
butions to enhance the performance of the system. In [27],
the authors investigated a power-efficient mode selection and
power allocation scheme based on an exhaustive search of
all possible mode combinations of devices in a D2D commu-
nication system. Note that we utilize an exhaustive search
method for joint power and subcarrier allocation problem
to compare the results of the proposed methods with the
optimal results for resource allocation problem. In [28],
the use of self-organized D2D clustering was advocated
over the physical random access channel (PRACH), and
two D2D clustering schemes were proposed to solve the
problem. In [8], the authors employed a Q-learning method
to jointly address the channel assignment and power allo-
cation problem to improve the system capacity. In [29], the
authors have pointed out D2D based vehicular communica-
tion in the V2X environment. In this, device discovery was
established using two different techniques that are direct
discovery and direct communication.
Most of the technologies have been employed in Table 1.
However, the aforementioned works did not address

the energy efficiency issue in C-V2X networks through
optimizing power and subcarrier allocations in a distributed

manner. In addition, they did not consider a PD-NOMA
system with SIC techniques for interference management
with QoS constraints. Moreover, using the fifth-generation
(5G) technology leads to increase the accuracy and speed
of achieving the optimal results compared with previous
works. Compared to other Q-learning based approaches,
our proposed model uses an novel reward function to
maximize the overall sum rate of cells and guarantee mini-
mum interference among users. Moreover, simulation results
show the better performances compared with the Q-learning
method adopted from the [8], GABS-Dinkelbach algorithm
adopted from the [30], VD-RL algorithm and Meta training
mechanism with VD-RL algorithm in [31], which are shown
in Fig. 8.

B. CONTRIBUTION
The main contribution of this paper is that it introduces a
framework for an energy efficiency optimization problem
in a C-V2X networks to allocate subcarrier and power
among users [32]. Furthermore, SIC technique is performed
in the PD-NOMA system to reduce interference among
users [33], [34]. To develop this framework, we present two
approaches [35].

• In the first approach, a distributed joint Q-learning
mechanism for power and subcarrier allocation is
proposed. Vehicles and D2D pairs select their transmit
power level based on a Gibbs probability distribution.
Optimal actions are determined according to the optimal
current policy of the proposed multi-agent Q-learning
method.

• In the second approach, the optimization problem is
divided into two sub-problems: a subcarrier allocation
sub-problem and a power allocation sub-problem, due
to both binary and continuous optimization variables.

– In the subcarrier allocation sub-problem, a dis-
tributed Q-learning algorithm to allocate the sub-
carriers is proposed. The value of this method is
shown in designing the reward function which con-
templates the SIC technique, probability of each
subcarrier and energy efficiency of the system. All
of the users in the coverage area of the BS choose
the subcarriers as the actions, and in each iteration
the maximum reward function would be selected
for each user, and whenever the agents select the
new subcarrier as an action, the current state would
be changed. Accordingly, the optimal subcarriers
are determined according to the optimal current
policy of the Q-learning method.

– In the power allocation sub-problem, we use a
distributed no-regret learning algorithm. In each
iteration, each user selects its strategy indepen-
dently. Furthermore, this distributed approach does
not require a control channel for information shar-
ing, and thereby the signaling overhead would
be decreased. This approach is suitable when the
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TABLE 1. Comparison of existing works with proposed algorithms.

number of users varies over time, and there is
no centralized controller. Furthermore, centralized
approaches rely on a single controller. If the con-
troller is compromised, it can lead to failures
throughout the network.

The advantage of the first proposed multi-agent joint algo-
rithm is its simplicity and convergence rate relative to the
second disjoint Q-learning approach, which requires feed-
back from UEs. However the proposed multi-agent joint
method is about 17% less complex compared with the second
disjoint Q-learning method. Increasing the number of subcar-
riers beyond the 15 cause to increase the complexity of the
first multi-agent joint algorithm about 26% than the second
disjoint Q-learning method. Moreover, we can show intu-
itively that the second approach manages the power among
UEs more effectively respect to receiving more information
from the users during the game. Thus, we can choose the
solution that best fits with the priorities of the system.

C. ORGANIZATION
The rest of the paper is organized as follows. In Section II,
we present the system model and formulate the resource
allocation problem. In Section III, we propose a multi-agent
joint distributed Q-learning algorithm and a distinct algo-
rithm for allocating the power and subcarrier to each user.
We analyze the convergence and complexity of the proposed
algorithms in Section IV and V, respectively. In Section VI,
we present simulation results. Finally, conclusions are given
in Section VII.

II. SOLUTION OF PROPOSED PROBLEM
A. SYSTEM MODEL
We consider a PD-NOMA single-cell system consists of
vehicles and D2D pairs shown in Fig. 1, and model the
interferences among users in the proposed system model.
Considering multi-base stations, just caused to increase in
the interferences produced in the system, in which the
results are predictable. Thus, to avoid from the complex-
ity of the computation of the interference formula of the
system model, we investigate the energy efficiency problem
with one base station (BS) located in the center of the area,
which is equipped with omni-directional antennas for cellu-
lar communications. We assume there are K vehicles labeled
as a set of C = {c1, c2, . . . , cK} which share their uplink
resources with D2D pairs. We denote the set of devices by

FIGURE 1. Illustration of resource sharing in the system, composed of two vehicles
C1 and C2 and three D2D pairs.

D = {d1, d2, . . . , dM}. We define a binary variable xdi,n for
C-V2X frequency, and thereby if xdi,n = 1, subcarrier n is
assigned to the device di; otherwise, xdi,n = 0. Similarly for
vehicles, ηci,n represents a binary variable that determines
the subcarrier assignment for vehicles [36].
The set of all subcarriers is shown by N , and the total

available system bandwidth is denoted by B divided into |N|
subcarriers with the bandwidth w = B/N. In a PD-NOMA
system, each subcarrier can be assigned to more than one
user, and the corresponding signal is detected by the SIC
technique [5]. In this technique, the signal with the highest
strength is decoded, subtracted from the combined signal,
and a signal with weaker strength is removed. Furthermore,
we assume the SIC technique is performed successfully for
the user i if

∀n ∈ N ,∀i,m ∈ C ∪ D, i �= m, |hi,n|2 > |hm,n|2. (1)

Since each D2D pair shares the same spectrum with the
vehicles or with other D2D pairs, system performance will
be reduced; therefore, we focus on the intra-cell interference
generated by the users sharing the same frequency band.
Three kinds of system interference are described here:

• The vehicle and its corresponding D2D pairs interfere
with each other because they share the same uplink
spectrum resources.
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• The received signals at the BS from the vehicle ci
interfere with the transmitters of the D2D communi-
cation system sharing the same spectrum resources in
the C-V2X environment.

• The signal at the D2D receiver di interferes with the
vehicle cj and the other C-V2X links sharing the same
spectrum resources.

The interference power received at vehicle ci on subcar-
rier n is defined as (2), shown at the bottom of the page.
Parameter hdi,b,n is a complex Gaussian random variable
for the channel coefficient between D2D pair di and the
BS on subcarrier n, with unit variance and zero mean. Let
Gcj denote the transmit antenna gain for vehicle cj and Gb
denote the receive antenna gain for the BS. The signal-
to-interference-plus-noise ratio (SINR) of vehicle ci over
subcarrier n is given by

υci,n = |hci,b,n|2GciGbL−β
ci,b,n

Pci,n

Pintci,n + Nci,nw
. (3)

The C-V2X receiver di suffers interference from the vehicle
ci and other D2D pairs sharing the same spectrum resources.
Therefore, we employ the parameter Pintdi,n as defined in (4),
shown at the bottom of the page, to denote the interference
power at D2D ′s receiver di. Here, hci,di,n is a complex
Gaussian random variable for the channel coefficient gain
between D2D pair di and vehicle ci with unit variance and
zero mean. Here, Gdi is the transmit antenna gain for D2D
pair di, and Gdj is the receive antenna gain for D2D pair dj.
The SINR of user di over subcarrier n is given by

υdi,n = |hdi,di,n|2G2
di
L−β
di,di,n

Pdi,n

Pintdi,n + Ndi,nw
. (5)

Accordingly, the problem of allocating resources among D2D
users in the C-V2X environment, to maximize the energy
efficiency of the system is formulated in the following section.

B. OPTIMIZATION FRAMEWORK
In this section, we formulate an outage-based energy
efficiency optimization problem, which is shown in (6),

shown at the bottom of the page, and allocates resources
effectively to each user, while guaranteeing the QoS require-
ments for both D2D pairs and vehicles in the C-V2X
environment. The system constraints are determined accord-
ingly.

C. SYSTEM CONSTRAINTS
Here, we describe the system constraints, including subcar-
rier allocation and power allocation constraints, separately.

1) SUBCARRIER ALLOCATION CONSTRAINTS

We define subcarrier allocation constraints in the following
form:

ηci,n, xdi,n ∈ {0, 1}, ∀di ∈ D, ci ∈ C, n ∈ N , (7)∑

n∈N
xdi,n ≤ 1, ∀di ∈ D, (8)

where (7) indicates the binary variables for cellular and D2D
subcarrier assignment, and the constraint defined in (8) indi-
cates that each D2D pair can be assigned to at most one
subcarrier.
The SIC technique guarantees that each subcarrier can be

reused at most for LT users. This constraint can be expressed as
∑

ci∈C
ηci,n +

∑

di∈D
xdi,n ≤ LT ,∀n ∈ N , (9)

where the system complexity increases as the value of LT
increases. Parameter LT depends on the signal process-
ing delay in the SIC technique and the receiver’s design
complexity.

2) POWER ALLOCATION CONSTRAINTS

Parameters pci,n and pdi,n need to satisfy the following
constraints:

pdi,n ≥ 0, ∀di ∈ D, n ∈ N , (10)

pci,n ≥ 0, ∀ci ∈ C, n ∈ N , (11)∑

n∈N
xdi,npdi,n ≤ Pmax

di,n , ∀di ∈ D, (12)

Pintci,n =
∑

di∈D,

|hci,b,n|2<|hdi,b,n|2

xdi,n|hdi,b,n|2GciGbL−β
di,b,n

Pdi,n +
∑

ci,cj∈C,ci �=cj,
|hci,b,n|2<|hcj,b,n|2

ηcj,n|hcj,b,n|2GcjGbL−β
cj,b,n

Pcj,n. (2)

Pintdi,n =
∑

ci∈C,

|hdi,di,n|2<|hdi,ci,n|2

ηci,n|hdi,ci,n|2G2
diL

−β
di,ci,n

Pci,n +
∑

di,dj∈D,i �=j
|hdi,di,n|2<|hdi,dj,n|2

xdi,n|hdi,dj,n|2GdiGdjL−β
di,dj,n

Pdj,n. (4)

EE =
w

(∑
di∈D log

(
1 + υdi,n

) + ∑
cj∈C log

(
1 + υcj,n

))

∑
di∈D Pdi,n + ∑

cj∈C Pcj,n
. (6)
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TABLE 2. The main parameters for the proposed resource allocation schemes.

∑

n∈N
ηci,npci,n ≤ Pmax

ci,n , ∀ci ∈ C, (13)

where (12) and (13) indicate the maximum requirement for
the transmit power threshold Pmax

di,n
and Pmax

ci,n of each D2D
pair and cellular user, respectively.

3) QUALITY OF SERVICE CONSTRAINTS

The QoS constraints of all users are expressed on the basis
of the minimum SINR demands for D2D pair and cellular
users according to (3) and (5) as follows:

υcj,n ≥ γc, ∀cj ∈ C, n ∈ N , (14)

υdi,n ≥ γd, ∀di ∈ D, n ∈ N . (15)

D. OPTIMIZATION PROBLEM
A network can be configured dynamically on the basis of
the transmission power vectors Pc, Pd, and subcarrier alloca-
tion vectors ηcj,Xdi , for cellular and D2D pairs, respectively.
Accordingly, the following optimization problem can be
expressed

max
Pc,Pd,ηc,Xd

EE,

s.t. (7), (8), (9), (10), (11), (12), (13), (14), (15).

(16)

where EE is the energy efficiency of the system,
ηc = [η111, . . . , η

N
1N, η121, . . . , η

N
2N, . . . , η1K1, . . . , η

N
KN],

Xd = [x111, . . . , x
N
1N, x121, . . . , x

N
2N, . . . , x1M1, . . . , x

N
MN],

Pc = [Pn1,P
n
2, . . . ,P

n
K] and Pd = [Pn1,P

n
2, . . . ,P

n
M]. “The

optimization problem (16) consists of non-convex objective
functions and both integer and continuous variables.
Therefore, we have an NP-hard problem, and the available
methods to solve the convex optimization problem can not
be applied directly. Furthermore, the formulated problem
in its original form is not easy to address in a distributed
manner [37]. For simplicity, we break problem (16) down
into two sub-problems: a subcarrier allocation sub-problem
and a power allocation sub-problem.

1) SUBCARRIER ALLOCATION

The subcarrier allocation sub-problem for vehicles and D2D
pairs in the C-V2X environment can be written as

max
ηc,Xd

EE,

s.t. (7), (8), (9), (14), (15). (17)

For the power allocation sub-problem, we replace constraints
(7), (8) and (9) by constraints (10), (11), (12), and (13).

2) POWER ALLOCATION

Here, by assuming the optimally allocated subcarrier from
subcarrier allocation sub-problem, an optimization problem
can be simplified and derived in the following way:

max
Pc,Pd

EE,

s.t. (10), (11), (12), (13), (14), (15). (18)

First, we investigate the joint subcarrier and power allocation
problem in Section IV. We then investigate sub-problems
(17) and (18) and propose distributed learning algorithms
for solving them in Sections V and VI, respectively.

III. MULTI-AGENT JOINT POWER AND SUBCARRIER
ALLOCATION
A. MULTI-AGENT JOINT POWER AND SUBCARRIER
ALLOCATION
In this section, we apply a distributed Q-learning mechanism
for joint power and subcarrier allocation based on reinforce-
ment learning. Reinforcement learning is an area of machine
learning where agents interact with the environment to reach
an optimal solution in an autonomous manner [38].
We use a multi-agent extension of the Markov deci-

sion process (MDP) to model multi-agent reinforcement
learning. An N-agent Markov game is determined by
(S,A, r1

t , . . . , r
(M+K)
t , p), where p is the transition proba-

bility p(sit+1|sit, at1, . . . , at(M+K)) where all the agents take
actions ait based on the policy πi.
We define a set of transmit power levels for vehicles and

D2D pairs as PL = {Pmin, aPmin, a2Pmin, a3Pmin, . . . ,Pmax}
where Pmax and Pmin represent the maximum and minimum
transmit power for all vehicles and D2D pairs, respectively.
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Parameter (a > 1) indicates the number of increasing from
one level to another fixed in the dBm domain. At first, each
agent selects one power level with uniform probability πpl(t)
for the vehicles and D2D pairs. Then, in each iteration, the
probability function of each power level would be updated.
Since the proposed method uses the Boltzmann-Gibbs dis-
tribution and probability law for power-levels, it estimates
power levels with specific probability distribution and causes
a noticeable change in the system. However, the training pro-
cess for the vehicles occurs at the BS, and the D2D pairs
obtain the trained weights for the actions from the BS in the
C-V2X environment. Following the actions lead to transits
to a new state sit+1 by agent i and get a reward rit. The
accumulated reward Rit over time t is expressed as

Rit+T =
T∑

n=0

βnr
i
t+n, (19)

where parameter 0 < β < 1 is a discounted factor. Since no
user has enough information about the optimal performance
of the network, the learner tries to learn the optimal strategy
π∗ to maximize the accumulated expected returned reward
over time t [8], [39], [40]. When the states are selected, the
expected return value can be obtained, and the policy for
the state action of agent i can be defined as follows:

Qit(s, a) = Rit(s, a) = rit(s, a) + βRi
∗
t (st+1, b). (20)

As a matter of fact, we developed non-cooperative mech-
anisms in a distributed manner to reduce the signaling
overhead in the system. In this regard, the reward function
needs to be improved to make each agent learn indepen-
dently from other agents, therefore it only captures the local
observations so that it yields sub-optimal solutions.
According to the optimal policy π∗, we can define the

Ri
∗
t (s, a) = arg maxQit(s, a). Therefore, the Q-function for

the expected state-action is updated with the learning rate α

shown in equation (21), shown at the bottom of the page.
The optimal value of the action for state s is defined

as [41], [42]

max
at

a∗ = maxQ(s, a). (22)

Here, we define the agents, states, actions, and reward
function.

• Agents. All the vehicles and D2D pairs.
• Actions. At each step, each agent i takes an action,
at ∈ A, which selects a subcarrier with a deci-
sion policy πi. The set of all actions is expressed as
A = {a1, a2, . . . , aN} where ai represents the subcarrier
of the agent i at time slot t. Moreover, a second case
study is also studied where the combined power level

and subcarriers are selected as an action. The subcarri-
ers distribution statically depends on the BS decisions,
however, power levels depend only on a probability
model. Therefore, this action result could not maximize
the energy efficiency.

• States. The key to affect the state of the network
environment is the channel and the transmit power
of the players. The QoS of users is restricted by
the network environment. We can consider a set of
states S(U ,A,PL) = {s0, s1, s2, . . . , st, . . . , sT}, where
U = {ud1, ud2 , . . . , udM , uc1 , uc2 , . . . , ucK } represents the
set of all users, A = {a1, a2, . . . , aN} represents the set
of actions, and PL = {pl1, pl2, . . . , plL} represents the
set of power levels for the vehicle and D2D users.
Here, st is the system state at time t and defined as
st = (ui, aj, plq) where 1 ≤ i ≤ M + K, 1 ≤ j ≤ N and
1 ≤ q ≤ |PL|. It indicates that the jth subcarrier and
qth transmit power level are assigned to the ith player
at time t. As a matter of fact, allocating the power and
subcarrier to the user ui is defined as a current state.
Hence, the state space contains NL(M+K) states as S =
{(u1, a1, pl1), . . . , (u1, aN, plL), . . . , (uM+K, aN, plL)}.

• Reward function. To maximize the energy efficiency of
the system, we define a distributed local reward function
related to the energy efficiency of the system as

rit = p
(
ui|aj

)
EE, (23)

where p(ui|aj) indicates the probability of the presence of
ui in the subcarrier j. To evaluate the system performance
at the end of each epoch, we define ε as the threshold of a
new state:

ϕ = Ei
[
Qit

(
sit, a

i
t

)
− Qit

(
sit−1, a

i
t−1

)]
. (24)

Whenever the network satisfies this threshold ϕ > ε, it will
start a new round of training based on the current state of
the system [38].

B. Q-LEARNING SUBCARRIER ALLOCATION
In this section, we apply distributed learning methods to
solve the primary problem by simplifying it into sub-
problems. Some subcarrier parameters are optimized at each
step, while others remain fixed. We propose an iterative
Q-learning mechanism for the subcarrier allocation and we
describe the action, state, and reward functions here.

• Agents. D2D and cellular transmitting nodes.
• Actions. The set of all actions is expressed as A =

{a1, a2, . . . , aN} where at represents the subcarrier of
the agent i at time slot t.

• States. We can consider a set of states S(U ,A) =
{s0, s1, s2, . . . , st, . . . , sT}, where U represents the set
of all players and A = {a1, a2, . . . , aN} represents

Qit+1(s, a) = (1 − α)Qit+1(s, a) + α
[
rit+1(s, a) + βmaxQit

(
s′, a′)] (21)
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the set of actions (subcarriers) [38]. Here, st is the
system state at time t, and is defined as st = (ui, aj)
where 1 ≤ i ≤ M + K and 1 ≤ j ≤ N. It indi-
cates jth subcarrier assigned to the ith user at time t.
Hence, the state space contains N(M + K) states as
S = {(u1, a1), . . . , (u1, aN), . . . , (uM+K, aN)}.

• Reward function. To maximize energy efficiency and
guarantee the QoS of the system, we define a reward
function related to the SINR constraints of all users. If
the SINR constraints are satisfied, the reward function
is positive; otherwise it is negative. Accordingly, the
following reward function for D2D pairs in the C-V2X
environment at time t is defined:

rti = λp
(
ui|aj

)
σ
(
ui|aj

)
υui , (25)

where λ indicates the SINR coefficient for the reward
function and is defined as follows:

λ =
{

1, if constraints (14) and (15) are satisfied,
−1, otherwise.

(26)

p(ui|aj) indicates the probability of presence of ui in
the subcarrier j and σ(ui|aj) is a binary parameter to
satisfy the SIC constraint. It is described below

σ
(
ui|aj

) =
{

1, if constraint (9) is satisfied,
0, otherwise.

(27)

1) 5G NR INTERFERFACE DECISION

Note that vehicles use the NR V2X PC5-interface for select-
ing the subcarriers. C-V2X employs two complementary
transmission modes, and vehicles autonomously select their
sub-channels in C-V2X mode 4. Therefore, C-V2X users
would be allocated resources according to the environment
information in Q-learning method [43]. In each iteration, the
feedback report includes information of the transmission and
retransmissions of the subcarriers, and cellular users report
an ACK to the base station. After receiving feedback report,
the BS evaluates if it has to allocate new subcarrier resources
to that C-V2X user or not [7], [44], [45]. After each transmis-
sion, new resources or sub-channels must be selected and
reserved. New resources must also be selected if selected
resources do not fit in the resources previously reserved
or do not maximize the energy efficiency of the system.
As a result, all the C-V2X users are allocated subcarriers
according to decisions of the BS.

C. GAME THEORY BASED FRAMEWORK FOR POWER
ALLOCATION
In this section, we aim to solve (18) by assuming optimal
subcarriers assigned to the users according to the proposed
Q-learning subcarrier allocation method. In the proposed
approach, we model the competition among vehicles and
D2D pairs as a non-cooperative game, where the vehicles
and D2D pairs are players and their transmit power levels are
selected independently. Then, we apply a no-regret learning

approach to solve the sub-problem. We model sub-problem
(18) as a non-cooperative game g = (U , {Su}u∈U , {ub}u∈U )

where U = C ∪ D represents the set of cellular and
D2D players. Here we assume Su = Sc ∪ Sd, where
Sc = {sc,1, . . . , sc,|sc|} represents the strategy set of vehi-
cles, and Sd = {sd,1, . . . , sd,|sd |} represents the strategy set
of D2D players. Therefore, Su = {su,1, . . . , su,|su|} is the
strategy set of player u, and su,i denotes the ith pure strategy
of player u. The players, strategy sets, and payoff functions
are defined as follows:

• Players: These include D2D pairs and vehicles.
• Strategy sets: The transmit power threshold of the play-
ers is defined as a strategy set of the players. We have
Sc = {Pmin

c , 1
|Sc|P

max
c , . . . ,

|Sc|−1
|Sc| P

max
c } where |Sc| > 1

for cellular users, and sci covers the space between P
min
c

and Pmax
c with uniform probability. For the C-V2X, the

strategy set is Sd = {Pmin
d , 1

|Sd |P
max
d , . . . ,

|Sd |−1
|Sd| P

max
d }

where |Sd| > 1 for C-V2X with uniform probability.
• Payoff function: The energy efficiency of the system is
defined as a payoff function (6).

A common method for updating the probability distribution
assigned to each player udi and uci at time t is a Boltzmann-
Gibbs probability distribution [46], [47]. It is proportional
with the energy of each state and system’s temperature. The
probability for all players can be expressed as follows:

PGibsbi (t) =
exp

(
1
kτ EE

)

∑
b∈B EE

, (28)

where EE is the energy of the system in state st, and a
constant kτ is the product of Boltzmann’s constant k and
thermodynamic temperature τ . In this regard, if kτ −→ ∞
there will be a uniform distribution over the strategy set of
player b, and if kτ −→ 0, it causes to select the strategy
which is mostly reported by the users [48].

1) NO-REGRET BASED LEARNING ALGORITHM

In a no-regret learning algorithm, players learn their envi-
ronment to choose transmission power levels along with
maximizing the energy efficiency of the system. The regret
function is defined as the difference between the aver-
age payoff function achieved by strategies of the given
algorithm until time t and the payoff function obtained
by other fixed sequence of decisions due to a change in
strategy [49]:

Dsb,i(t) = 1

t

∑

τ<t

u
(
sb,i, s−b(τ )

) − ûb(τ ), (29)

where s−b is the strategy of other players. Given a non-
cooperative game G = (B,Sb,i, ub∀b ∈ B), we can define
the correlated strategy p(s) as a probability distribution over
the strategy profile si ∈ Sb. Given these basic notions, the
concept of a ε-coarse correlated equilibrium can be defined
as the next theorem.
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Theorem 1: Given a game G, a distribution p(s) =
p(sb,i, sb,−i) is defined as a ε-coarse correlated equilib-
rium if no player can ever expect to unilaterally gain
by deviating from their recommendation, assuming the
other players follow their recommendations [50], [51]. If
(∀bi ∈ B), (s′b,i, sb,i) ∈ Sb and (sb,−i) ∈ S−b we have

∑
p
(
sc,i, sc,−i

)[
u
(
s′c,i, sc,−i

) − u
(
sc,i, sc,−i

)]
< ε, (30)

and for D2D pairs,
∑

p
(
sd,i, sd,−i

)[
u
(
s′d,i, sd,−i

) − u
(
sd,i, sd,−i

)]
< ε. (31)

Players estimate the payoff function concerning the bal-
ance between minimizing their regret and the average payoff
function for all their strategies. Therefore, for each D2D
player and sd,i ∈ Sd, the payoff estimation function can be
calculated by [49], [52]

ûd,sd,i(t + 1) = ûd,sd,i(t) +
(

1

t + 1

)γ (
ud(t + 1) − ûd,sd,i(t)

)
.

(32)

Similarly for each vehicle and sc,i ∈ Sc, the payoff estimation
function can be calculated by [49], [52]

ûc,sc,j(t + 1) = ûc,sc,j(t) +
(

1

t + 1

)γ (
uc(t + 1) − ûc,sc,j(t)

)
,

(33)

where ûd,sd,i(t+1) and ûc,sc,j(t+1) denote the estimated D2D
and cellular payoff function at time t. The strategy played
at the last iteration sees the corresponding estimated payoff
updated, independently. To calculate the regret, each player
needs the learning tool to update the estimated regret [53].
Each D2D player estimates its regret function for each sd,i ∈
Sd as follows:

R̂sd,i(t + 1) = R̂sd,i(t)

+
(

1

t + 1

)ζ (
ûd,sd,i(t + 1) − ud(t + 1) − R̂sd,i(t)

)
.

(34)

Similarly each vehicle estimates its regret for each sc,i ∈ Sc
as follows:

R̂sc,i(t + 1) = R̂sc,i(t)

+
(

1

t + 1

)ζ (
ûc,sc,i(t + 1) − uc(t + 1) − R̂sc,i(t)

)
.

(35)

The update probability function assigned to each strategy
sd,i ∈ Sd of D2D players is described next [49]

πd,sd,i(t + 1) = πd,sd,i(t) +
(

1

t + 1

)ν(
πd(t + 1) − π̂d,sd,i(t)

)
.

(36)

Similarly the probability assigned to each strategy sc,i ∈ Sc
of cellular users is updated as

Algorithm 1 Training Joint Q-Learning Algorithm

Input : N , u(t), p(ui|aj), Qit(s, a), rit, ∀ui ∈ U , πpl(t),
pl ∈ PL

Output : u(t), Pc, Pd, Xd, ηc
Initialiation: t = 1, T , D = {1, ..., |D|}, C = {1, ..., |C|}
1: All agents receive initial observation states S0 ={

s10, ..., s
N
0

}

2: while t ≤ Tmax do
3: for ∀di ∈ D ∨ ∀ci ∈ C do
4: Select: pdi(t), pcj(t) using πpl(t)
5: end for
6: All agents select actions ait according to the current

policy
7: for ∀di ∈ D ∨ ∀cj ∈ C do
8: Calculate: υcj,n(t), υdi,n(t) according to (3), (5)
9: end for

10: Obtain λ

11: Calculate: u(t) according to (6)
12: if λ > 0 then
13: All agents Observe immediate reward rit and next

state st+1
14: Update the Q table according to (21)
15: end if
16: All agents choose actions with maximum Q-value (22)
17: if σ(ui|ait) is satisfied according to (27) then
18: Adjust Xd, ηc according to the optimal action xndi =

1, ηncj = 1

19: Save (sit, a
i
t, r

i
t, s

i
t+1)

20: end if
21: t = t + 1,
22: end while

πc,sc,i(t + 1) = πc,sd,i(t) +
(

1

t + 1

)ν(
πc(t + 1) − π̂c,sc,i(t)

)
.

(37)

IV. CONVERGENCE ANALYSIS
In this section, we investigate the convergence of learning
algorithms.

A. Q-LEARNING ALGORITHM
For the Q-learning algorithms, Qt(s, a) converges to an
optimal value if the following two conditions are satis-
fied: (1) the learning rate is suitably reduced to 0; (2) each
state-action pair is visited infinitely [8], [54], [55].
Theorem 2: Given a finite MDP model, the Q-learning

algorithm, given by the update rule (21), converges to the
optimal Q-function if

∑

t

αt(st, at) → +∞, (38)

∑

t

α2
t (st, at) < +∞. (39)

Theorem 3: In the proposed Q-learning methods, each
agent i takes an action, ai ∈ A with a decision policy
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πi. Since the learning rate, 0 < αt(st, at) < 1, and all
state-actions of the users could be visited infinitely in (21),
Algorithms 1 and 2 converge to a fixed point.

B. NO-REGRET LEARNING ALGORITHM
The no-regret learning algorithm is based on stochastic
approximation theory and uses a Boltzmann-Gibbs dis-
tribution to allocate the initial transmit power. For the
convergence of the mechanism, the set of ι = {γ, ζ, ν} should
satisfy the following conditions [56], [57]:

lim
t→+∞

t∑

n=1

1

nι
→ +∞, (40)

lim
t→+∞

t∑

n=1

(
1

nι

)2

< +∞. (41)

Accordingly, the learning rates should be large enough to
overcome any undesirable conditions and small enough to
guarantee the convergence of no-regret algorithm. We should
choose all ι = {γ, ζ, ν} ∈ (0.5, 1) and follow ζ > γ ,
ν > ζ . To this end, the strategies converge if the learning
rate exponents satisfy the following criteria

lim
t→+∞

(
1
tζ

)

(
1
tγ

) = 0, (42)

lim
t→+∞

(
1
tν

)

(
1
tζ

) = 0. (43)

To obtain an optimal result, the convergence of the utility
function and stopping criteria should be verified.

V. COMPUTATIONAL COMPLEXITY ANALYSIS
In each iteration, the computational complexity depends on
the number of subcarriers (N) and the number of vehicle
and D2D pairs (M+K). Furthermore, the overall complexity
depends on the number of iterations (T) needed for conver-
gence. Here, we calculate the complexity of each proposed
algorithm.

A. SUBCARRIER ALLOCATION
The complexity of the exhaustive search algorithm for
the subcarrier allocation sub-problem can be calculated as
follows:

O(Λ1) = O
(
CM+K
N(M+K)

)
, (44)

which denotes all the probable combinations of selecting
(M + K) states from N(M + K) existing states.

For the Q-learning algorithm, there are N(M + K) states,
and the complexity can be represented in the following way:

O(Λ2) = O(TN(M + K)). (45)

Algorithm 2 Training Subcarrier Allocation Q-Learning

Input : N , p(ui|aj), Qit(s, a), rit, ∀ui ∈ U
Output : Xd, ηc
Initialiation: t = 1, T , D = {1, ..., |D|}, C =

{1, ..., |C|},Xd, ηc
1: for ∀di ∈ D ∨ ∀cj ∈ C do
2: Select a initial state s0 randomly
3: while t ≤ Tmax do
4: Select an action at based on strategy
5: Calculation: υcj,n(t), υdi,n(t) according to (3), (5)
6: Observe λ

7: if λσ(ui|at) > 0 then
8: Obtain immediate reward rit and next state st+1
9: Update the Q table according to (21)

10: end if
11: Choose the action for the user ui with maximum

Q-value (22)
12: Adjust Xd, ηc according to the optimal action xndi =

1, ηncj = 1
13: t = t + 1,
14: end while
15: end for

B. POWER ALLOCATION
For the no-regret learning algorithm, in each iteration, sub-
carrier allocation matrixes are updated with the complexity
of O(TN(M + K)) and then each vehicle and D2D player
chooses a power level with the complexity of O(1). Players
calculate their SINR and check the QoS with the complexity
of O(N(M+K)), and the learning functions are updated with
the complexity of O(N). To this end, the whole complexity
can be represented as follows:

O(Λ3) = O(T(M + K)(TN +M + K + 2)). (46)

C. MULTI-AGENT JOINT POWER AND SUBCARRIER
ALLOCATION
In this mechanism, all the agents take the actions with a
maximum Q-value according to the optimal policy. Hence,
the corresponding space complexity is reduced, and it can
be written as

O(Λ4) = O(T(M + K)(N +M + K + 3)). (47)

The above analysis provides the computational complexity
for the proposed algorithms [58], [59]. We can observe a
trade-off between the performance and convergence speed of
the proposed algorithms. The results are shown in Table 3
and Table 4.

VI. SIMULATION RESULTS
We consider a single-cell scenario, where D2D pairs and
vehicles are uniformly distributed over an area of 500 ×
500m2 with the BS located in the center of the C-V2X envi-
ronment. We consider a fixed number of vehicles and D2D
pairs determined according to the closest distance. When
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TABLE 3. The computational complexity and performance of the subcarrier allocation schemes.

TABLE 4. The computational complexity and performance of the power allocation schemes.

Algorithm 3 No-Regret Power Allocation Algorithm
Input : N , usdi,n(t), Rsdi,n(t), πsdi,n

(t), ∀di ∈ D and

sdi ∈ Sd, ˆuscj,n(t), Rscj,n(t), πscj,n(t), ∀cj ∈ C
and scj ∈ Sc

Output : u(t), usdi,n(t + 1), Rsdi,n(t + 1), πsdi,n
(t + 1),

∀di ∈ D and sd,i ∈ Sd, uscj,n(t+1), Rscj,n(t+1),
πscj,n(t + 1), ∀cj ∈ C and sc,j ∈ Sc

Initialiation: t = 1,D = {1, ..., |D|}, C = {1, ..., |C|}
1: while t ≤ Tmax do
2: Update: Xd, ηc
3: for ∀di ∈ D ∨ ∀ci ∈ C do
4: Select: pdi,n(t) using πsdi ,n

(t)
5: Select: pcj,n(t) using πscj ,n(t)
6: end for
7: for ∀di ∈ D ∨ ∀cj ∈ C do
8: Calculate: υcj,n(t), υdi,n(t) according to (3), (5)
9: end for
10: if

(
υc,n(t) > γc

) ∧ (
υd,n > γd

)
then

11: Calculate: u(t) according to (6)
12: end if
13: for ∀cj ∈ C do
14: Update: uscj,n(t + 1),Rscj,n(t + 1),πscj,n(t + 1)

according to (33), (35), (37)
15: end for
16: for ∀di ∈ D do
17: Update: usdi,n(t + 1),Rsdi,n(t + 1),πsdi,n(t + 1)

according to (32), (34), (36)
18: end for
19: t = t + 1,
20: end while

two D2D users are physically close, a Rayleigh C-V2X
communication channel is established. For a fixed number
of vehicles and D2D pairs, we ran 500 independent sim-
ulations, and we present the average of these results. The
pathloss model and shadow fading were considered for C-
V2X links, and we set the pathloss exponent in a free space
propagation model to be 2. Furthermore, we vary the num-
ber of vehicles and D2D pairs, and observe the performance
of the system. The simulation parameters are summarized in
Table 5.

In Figs. 2–4, we investigate our proposed disjoint
approach for allocating the subcarriers to each user by vary-
ing the number of subcarriers. However, to evaluate the

FIGURE 2. Average energy efficiency of the system versus number of iterations.

TABLE 5. Simulation parameters.

results of the Q-learning method for allocating the subcar-
riers, we utilize the Exhaustive search method for finding
the optimal subcarriers and comparing the results with each
other.
In Fig. 2, the proposed Q-learning algorithm for subcarrier

allocation brought about a convergence approximately as fast
as the exhaustive search method for subcarrier allocation. We
noted only a 14.5% difference between the two algorithms in
term of energy efficiency to achieve the same converge point,
while Q-learning algorithm implies a much lower complexity
than the exhaustive search method.
In Figs. 3 and 4, we varied the number of subcarriers to

demonstrate the impact of this on the performance of our
proposed Q-learning algorithm. We set the number of D2D
pairs and cellular users to be 10 and 5, respectively. As we
can see in Fig. 3, varying the number of subcarriers from
5 to 12 brings about a significant performance gain, due to
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FIGURE 3. Average energy efficiency versus number of subcarriers.

FIGURE 4. Average system rate versus number of subcarriers.

FIGURE 5. Average energy efficiency versus number of D2D pairs.

increasing allocated subcarriers to the users. Adopting the
proposed Q-learning algorithm for allocating the subcarriers
results in much better performance for the cellular and D2D
links. The proposed Q-learning approach can gain the value
as well as the exhaustive search method with only a 9%
difference in average energy efficiency.
In Fig. 4, we can see that an increase in the number of

subcarriers results in an increase in the spectrum available
for users and a decrease in the interference among users in
the system, which in turn lead to increase in the data rate of

FIGURE 6. Average system rate versus number of D2D pairs.

the system. There is only a difference about 13% compared
with the exhaustive search results.
In Figs. 5–7, we show how the performance of the

proposed no-regret learning algorithm for power allocation
in the non-cooperative game achieves better performance.
For the sake of simplicity, we set the number of subcarri-
ers and vehicles to 10 and 5, and we vary the number of
D2D pairs from 5 to 19. However, we determine the num-
ber of users and subcarriers as variable parameters in the
proposed algorithms and they could be assigned a large num-
ber. Furthermore, we compare our proposed self-organizing
mechanism with three following benchmark references:

• D2D pairs and vehicles choose their transmit power
level according to the roulette wheel method; it is
labeled as (Proposed, Pdmax = 18 dBm) and (Proposed,
Pdmax = 22 dBm).

• D2D pairs and vehicles choose maximum transmit
power threshold level; it is labeled as (Max, Pdmax
= 18 dBm) and (Max, Pdmax = 22 dBm).

• D2D pairs and vehicles choose random transmit power
level; it is labeled as (Random, Pdmax = 18 dBm) and
(Random, Pdmax = 22 dBm).

Fig. 5 shows the average utilities achieved by different
methods which is increased by varying the number of D2D
pairs. However, the proposed method using the Boltzmann-
Gibbs distribution to assign the probability to each subcarrier
indicates the higher value compared to the algorithm using
the two other methods for selecting the power level. Since the
proposed method using the Boltzmann-Gibbs distribution, is
based on probability law, estimates power level with specific
probability distribution and causes a noticeable change in
the system. Moreover, by increasing the power threshold
level (Pdmax) from 18 dBm to 22 dBm, the average energy
efficiency of the system decreased. This was due to the
fact that increasing the power level may lead to an increase
in energy consumption and result in a decrease in energy
efficiency.
As we can see in Fig. 6, the average data rate of the system

achieved with these methods increased by varying the num-
ber of D2D pairs. Furthermore, by using the roulette wheel
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FIGURE 7. Average power consumption versus number of D2D pairs.

FIGURE 8. Average energy efficiency of the system versus maximum power
threshold.

method, which is based on the probability distribution law,
the Nash equilibrium is reached faster than with the other
methods in the simulation. Simulation results show that the
first algorithm using the roulette wheel method can attain
data rates respectively 3% and 5% higher than the maximum
and random power levels. Furthermore, it can be observed
increasing the power threshold level (Pdmax) results in an
increase in the average system sum rate. This is due to
strong management of interference among the users. Since
the proposed mechanism performs well at a power thresh-
old of 22 dBm, it yields higher average result about 32%
compared with the result at a power threshold of 18 dBm.
Fig. 7 shows the power consumption of the system

achieved by these three methods. Using the roulette wheel
method for selecting the transmit power level results in a
faster convergence, and consumes less energy than the other
two methods that use the maximum and random power lev-
els. In addition, increasing the power threshold level (Pdmax)
from 18 dBm to 22 dBm increases the average energy
consumption of the system. This is due to the fact that
the number of the strategies in the game increases, which
may lead to greater competition among users to achieve an
optimal power level, thereby using more energy.

FIGURE 9. Average system rate versus maximum power threshold.

FIGURE 10. Average power consumption versus maximum power threshold.

In Figs. 8–10, we show the performance of the our
proposed two multi-agent joint Q-learning and disjoint Q-
learning algorithm compared with each other. To evaluate
the performance of our proposed joint and disjoint algo-
rithms, we use the Q-learning method adopted from the [8],
GABS-Dinkelbach algorithm adopted from the [30], VD-
RL algorithm and Meta training mechanism with VD-RL
algorithm in [31]. Moreover, to evaluate the optimality of
the proposed methods, the results would be compared with
exhaustive search method for allocating the optimal subcarri-
ers and powers to the users. Results show that increasing the
power threshold levels from 10 dBm to 40 dBm brings about
a significant performance; however, increasing the power
threshold beyond 40 dBm only achieves marginal benefits in
the above algorithms. We compare our proposed algorithms
with following benchmark references:

• Multi-agent joint Q-learning. This algorithm is executed
to allocate the joint power and subcarriers.

• No-regret disjoint algorithm. This algorithm is proposed
for power allocation. If the Q-learning algorithm is
implemented for allocating the subcarriers, it is labeled
as (Disjoint no-regret power, Q-learning). If an exhaus-
tive search method is implemented for subcarrier
allocation, it is labeled as (Disjoint no-regret power,
Exhaustive).
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• Q-learning disjoint algorithm. This algorithm is
developed in [8], and used for power allocation. If
a Q-learning algorithm is implemented for allocating
the subcarriers, it is labeled as (Disjoint Q-learning
power, Q-learning). If the exhaustive search method is
implemented for subcarrier allocation, it is labeled as
(Disjoint Q-learning power, Exhaustive).

• Disjoint GABS-Dinkelbach algorithm. This algorithm
is developed in [30], and used for power allocation.
Moreover, the exhaustive search method is implemented
for subcarrier allocation, which is labeled as ( Disjoint
GABS-Dinkelbach power, Exhaustive).

• Disjoint VD-RL algorithm. This algorithm is used
in [31] for power allocation, and exhaustive search
method is implemented for subcarrier allocation, which
is labeled as (Disjoint VD-RL power, Exhaustive).

• Disjoint meta learning VD-RL power. This algorithm
is developed in [31], and used for power allocation.
Moreover, the exhaustive search method is implemented
for subcarrier allocation, which is labeled as (Disjoint
meta learning VD-RL power, Exhaustive).

• Exhaustive search algorithm. This algorithm is executed
to allocate the joint power and subcarriers.

We evaluate the performance of our proposed algorithms
in terms of different power levels.
Fig. 8 shows the average energy efficiency of the system.

Increasing the power threshold puts the system within a max-
imum value range of 18-20 dBm, while increasing the power
threshold beyond the 20dBm, enhance the right to choose the
transmit power strategy and lead to consume more energy.
Thus, it drops down slowly. The proposed multi-agent joint
Q-learning algorithm converges to an optimal point faster
than other disjoint algorithms. This is due to the simultaneous
allocation of resources and low complexity. Accordingly the
second proposed disjoint algorithm which is involved with
the no-regret algorithm for power allocation has the faster
convergence rate than the disjoint Q-learning method and
GABS-Dinkelbach algorithm, which are taken from other
papers. It has a greater influence on the energy efficiency of
the system, due to the fact that the no-regret algorithm uses
the regret function and the probability-based which increases
the convergence rate. The multi-agent joint Q-learning algo-
rithm can yield a higher average energy efficiency, of up to
11%, 14% and 18%, than the proposed disjoint mechanism
with no-regret learning, GABS-Dinkelbach algorithm and
other Q-learning methods for power allocation, respectively.
The results also show that using the proposed meta training

mechanism with VD-RL algorithm in [31], can find optimal
solution in an unseen environment with faster convergence
speed than VD-RL algorithm. However, there is about 14%
differences between the proposed joint Q-learning algorithm
and the meta-learning with VD-RL methods. This is because
that, joint Q-learning proposed method is competitive and
users learn their strategies in a distributed manner with-
out the information of others. Moreover, past data from the
meta-training method, can be recycled to adapt the policy

on a new task in the proposed joint Q-learning method,
which in turn lead to reach more efficient results than the
meta-learning method. Therefore, the proposed Q-learning
method compares favorably with the state of the art in
meta-RL.
Furthermore, in order to evaluate the optimality of the

proposed methods, we utilize the Exhaustive search method
for finding the optimal convergence point. There is only
8% differences between the joint proposed method and the
Exhaustive search method in term of energy efficiency to
achieve the same convergence point, while Q-learning algo-
rithm implies a much lower complexity than the exhaustive
search method.
Fig. 9 shows the average throughput when the power

threshold level increases. Increasing the power threshold
causes an increase in the average throughput. The main
reason for this, is that the D2D links use the same radio
frequency band used by cellular links in the adjacent zones.
Therefore, the throughput of the D2D link is affected by the
transmission power of the cellular link and the surrounding
D2D links. Thus, if the transmission power of the D2D link
becomes greater than that of the cellular link, the throughput
of the system increases. For instance, the joint multi-agent
mechanism yields up to 18%, 26% and 35% improvement
in terms of throughput, relative to the proposed disjoint
mechanism with no-regret learning, GABS-Dinkelbach algo-
rithm and other Q-learning methods for power allocation,
respectively. Furthermore, by increasing the power threshold,
the average throughput in the disjoint mechanisms GABS-
Dinkelbach algorithm have the almost same performance as
no-regret algorithm for allocating the power.
Fig. 10 shows the average power consumption when the

power threshold level increases. As the Pdmax increases,
energy consumption increases because the interference
becomes stronger, and users require more power to meet
QoS constraints. The multi-agent joint Q-learning algorithm
consumes less energy, about 5.3%, 10.2% and 15.2% com-
pared with the proposed disjoint mechanism with no-regret
learning, GABS-Dinkelbach algorithm and other Q-learning
methods for power allocation, respectively. This is due to the
fact that, allocating the subcarrier and power simultaneously
in a distributed manner causes minimal human interference
and complexity. Moreover, for a given Pdmax, the second
and third disjoint algorithms with the proposed Q-learning
method for subcarrier allocation consume less energy com-
pared to the other approaches which involve exhaustive
search methods for subcarrier allocation. However, they have
almost the same performance.
In Fig. 11, we show the performance of our two proposed

methods in term of power consumption; first, multi-agent
joint power and subcarrier allocation algorithm and sec-
ond, the disjoint distributed learning algorithm. Varying the
number of subcarriers from 5 to 20 yields a significant
performance gains for the joint algorithm due to the more
efficient management of interference among users with the
Q-learning method. As a matter of fact, There is a gap about
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FIGURE 11. Average power consumption versus number of the subcarriers.

12% between the results of the joint and disjoint algorithm
in terms of energy efficiency of the system. This is because
the feasibility region of finding the optimal value of vari-
ables in the joint multi-agent Q-learning method is larger
than that of disjoint learning method. Thus, it is reasonable
that the joint method gives larger value rather than the dis-
joint method. Note that the disjoint method searches for the
optimal values in the smaller region (because in each sub-
problem one variable is fixed and the other is optimized),
so it gets a lower EE value.

However, the proposed multi-agent joint method has about
16.2% lower complexity compared with the second disjoint
Q-learning method, increasing the number of subcarriers
beyond 20 caused to increase the memory usage and the
complexity of the first joint algorithm about 11% over the
second proposed disjoint method.

VII. CONCLUSION AND FUTURE WORK
In this paper, we investigated the resource allocation problem
for a C-V2X network to improve the energy efficiency. We
proposed two approaches using machine learning. In the first,
a multi-agent Q-learning algorithm was applied for the joint
power and subcarrier allocation. In the second approach, we
broke the problem down into two sub-problems: a power
sub-problem and a subcarrier allocation sub-problem. To
allocate the subcarrier among users, a distributed Q-learning
algorithm was proposed. Then, given optimal subcarrier allo-
cation, we modeled the power allocation sub-problem as
a non-cooperative game. To solve the game, an algorithm
was used, which could be executed in a distributed manner.
Moreover, we compared the results with a third Q-learning
algorithm for power allocation. Simulation results showed
that the multi-agent joint Q-learning approach yielded sig-
nificant performance gains of about 36% and 27% in terms
of energy efficiency and sum rate over other disjoint learn-
ing algorithms. In addition, our no-regret based learning

approach for power allocation was shown to provide bet-
ter performance, of about 14% and 16% compared with a
disjoint benchmark algorithm which utilizes a Q-learning
algorithm for power allocation, in terms of the average
energy efficiency and average throughput. In the future work,
it is interesting to consider multi-base stations, which causes
to increase the interferences produced in the system, and try
to optimize the resource allocation in the system.

APPENDIX
A. PROOF OF THEOREM 1
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Similarly (31) is proved for D2D pairs [50]. �

B. PROOF OF THEOREM 2
We rewrite (21) as

Qt+1(st, at) = (1 − αt(st, at))Qt(st, at)

+ αt(st, at)[rt + β maxQt(st+1, b)].

�t(st, at) = (1 − αt(st, at)) �t (st, at))

+ αt(s, a)
[
rt + β maxQt(st+1, b) − Q∗

t (st, at)
]
.

If we define

Ft(s, a) = r(x, a,X(s, a)) + β maxQt(st+1, b) − Q∗(st, at),
we have

E[Ft(s, a)|Ft] =
∑

n∈N
Pa(x,X(s, a))

[
r(x, a,X(s, a))

β maxQt(st+1, b) − Q∗(st, at)
]
.

Since Q∗ = HQ∗, we can write

E[Ft(s, a)|Ft] = HQt(s, a) − HQ∗(s, a).
‖E[Ft(s, a)|Ft]‖∞ < β‖Qt − Q∗‖∞ = γ ‖ �t ‖∞.

var[Ft(s)|Ft] = E
[
(r(s, a,X(s, a)) + β maxQt(y, b)

−Q∗(s, a) − (HQt)(s, a) + Q∗(s, a)
)2

]

= var
[
(r(s, a,X(s, a)) + β maxQt(y, b)|Ft

]

Since r is bounded, this indicates

var[Ft(s)|Ft] ≤ C
(
1 + ‖ �t ‖2∞

)

for a given constant C [54], [60]. �
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C. PROOF OF THEOREM 3
Algorithm (1) solves (16) by alternating maximum Q-value
and calculating the energy efficiency of the system. Since
maximum reward function maximizes the Q-function, we
want to show that reward function in Algorithm (1) does not
increase the objective value of (16). According to line (16)
of Algorithm (1), computational resource allocation does not
increase the objective value of (16). In addition, based on
(38) and (39), convergence of Algorithm (1) is guaranteed.
In ith iteration of algorithm (1), energy efficiency of the
system depends on the numbers of users and their power
levels. As a matter of fact, it would be equal to EEk for
cellular and D2D users when the numbers of users are larger
than their maximum acceptable value. Therefore, we have
EE+

k , and need to show that EEk, does not increase after
ith iteration. If EEk = maxN EE after i iterations, varying
the number of users more than Ni caused to increase the
power consumption and decrease the energy efficiency of
the system. Thus, EEmax does not increase more than EEk

when increasing the number of users in other iterations.

EEi+1 ≤ EEi
k. (48)

Moreover, the learning rate is suitably reduced to 0, which
is vital for convergence of the algorithm (1). As a result, the
objective value of (16) is non-increasing in each iteration,
and since it is lower bounded by zero, Algorithm (1) is
convergent. �
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