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ABSTRACT We consider a multicarrier chirp-based waveform for joint radar and communication (JRC)
systems and derive its time discrete periodic ambiguity function (AF). A set of waveform parameters (e.g.,
chirp rate) can together with the transmit sequence be selected to shape the AF to be thumbtack-like, or
to be ridge-like, either along the delay axis or the Doppler axis. We demonstrate how these shapes are
applicable for different use cases, e.g., radar target detection or time- and frequency synchronization. The
results show that better signal detection performance than OFDM and DFT-s-OFDM can be achieved on
channels with large Doppler shift. Furthermore, it is shown how transmit sequences can be selected in
order to achieve low peak-to-average-power-ratio (PAPR) of the waveform.

INDEX TERMS Ambiguity function (AF), chirp, joint radar and communication (JRC), peak-to-average-
power ratio (PAPR), radar, sequence, synchronization.

I. INTRODUCTION

CHIRP waveform with linear frequency modulation (i.e.,
a linear chirp) appears in various transmission systems

and is, e.g., commonly used for radar [1], [2], [3] and ultra-
sonic positioning [4], as it provides precise ranging and
velocity estimation. This stems from its signal properties,
which enable efficient pulse-compression together with ful-
filling requirements on large time-bandwidth product and
low peak-to-average-power ratio (PAPR). A linear chirp has
good autocorrelation properties which also makes it suitable
as a synchronization signal [5]. Furthermore, multicarrier
chirp-based waveforms have been developed for data trans-
mission [6], [7], [8], [9]. Chirp-convolved data transmission
(CCDT) is a recently proposed multicarrier chirp wave-
form. This waveform includes parameters (e.g., chirp rate),
which when properly selected, exhibit gains over orthogonal
frequency division multiplexing (OFDM) and DFT spread
OFDM (DFT-s-OFDM) in terms of lower bit- and block
error rates on time-frequency selective channels with large
Doppler shift [10]. Waveforms which perform well in such
scenarios, e.g., for high speed trains, satellites [11] etc., are
of interest for 5G systems [12] because communications at
velocities up to 350 km/h should be supported, and in some
cases even as high as 500 km/h. Thereto, higher frequency
bands are introduced in 5G compared to 4G systems [13]. A
communication-centric joint radar and communication (JRC)

system, leverages on reusing its hardware and waveform,
e.g., OFDM, for radar applications [14], [15], [16], [17]. JRC
systems using the chirp waveform from [8] have also been
suggested [18], [19], [20], showing better communication-
and radar performance than for OFDM.
A key tool for waveform synthesis is the ambiguity func-

tion (AF), which is a two-dimensional correlation function
between a transmitted signal and its received time-delayed
and frequency-shifted version. The AF characterizes the out-
put of a matched filter [21] and is a relevant measure for
analyzing and synthesizing both synchronization- and radar
signals [22], [23]. In this paper, we specifically consider
the periodic AF, which mimics the behavior of continu-
ous wave (CW) radar and pulse radar, cf. [24], [25] and
references therein. Periodic multicarrier radar signals, e.g.,
OFDM radar, could be generated by transmitting multiple
OFDM symbols [26] or through an interlaced subcarrier
mapping within an OFDM symbol [27]. The periodic AF
is particularly convenient to study for waveforms with a
cyclic prefix (CP), since the received signal undergoes
a cyclic convolution with the channel impulse response.
Furthermore, the time discrete AF provides valuable insight
into how to design transmit sequences for radar appli-
cations [28]. The work in [29], [30], [31] focused on
constant amplitude zero autocorrelation (CAZAC) trans-
mit sequences and analyzed the time discrete periodic AF.
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CAZAC sequences have many desirable properties, e.g., low
PAPR due to the constant amplitude (CA) and good time-
localization estimation due to zero autocorrelation (ZAC),
i.e., they have an ideal autocorrelation function. For exam-
ple, Zadoff-Chu (ZC) sequences are CAZAC sequences [32]
and have been applied as reference signals, synchronization
signals and random access preambles in 4G/5G systems,
cf. [33], [34]. However, [29], [30], [31] only focused on
the transmit sequence and did not assume any wave-
form, therefore the derived AFs are not directly applicable
to multicarrier signals. Herein, we will close this gap
and take the waveform into account when determining
the AF.
Different shapes of the AF could serve different applica-

tions, e.g., a thumbtack-like AF is suitable for estimation
of range and velocity for radar, or for determining the
timing and the frequency offset for synchronization. With
thumbtack-like, we refer to an AF that has a distinct peak at
zero time- and frequency offset, while having low sidelobes
otherwise. In order to obtain the time- and frequency syn-
chronization with such a shape, the receiver could use a bank
of correlators, each corresponding to a certain frequency off-
set hypothesis, and select the correlator output with largest
magnitude [35]. On the other hand, a ridge-like AF allows
for detection of the presence of a signal under time delays
or Doppler shifts. With ridge-like, we refer to an AF that
has a broad peak along either the time- or frequency axis,
while having low sidelobes otherwise. It has been shown
that OFDM radar can decouple the range and Doppler shift,
since it has an AF which is symmetric around the delay axis
and around the frequency axis, respectively [36]. In [37], it
was shown that DFT-s-OFDM can produce an AF with lower
sidelobes than OFDM. A well-known issue with multicarrier
waveforms is the high PAPR which could require substan-
tial power back-off in the transmitter. While this issue has
been studied in depth for communications, it is also recog-
nized as important for radar [38], [39]. DFT-s-OFDM is a
low-PAPR waveform which is supported in 4G/5G, cf. [33].
It has also been suggested for radar [27], [37] and due to
the DFT-precoder, the PAPR is several dB smaller than for
OFDM.
In this paper, a multicarrier chirp-based waveform, CCDT,

is considered for JRC. It has been reported to outperform
OFDM and DFT-s-OFDM for data transmission and would
thus be a candidate waveform for JRC. However, its proper-
ties in terms of AF and PAPR were not considered in [10]. It
has been shown that the waveforms in [8], [10] can be rep-
resented as DFT-s-OFDM with a unitary frequency domain
chirp filter. This is a big advantage since DFT-s-OFDM is
already implemented in the 4G/5G terminals, and introducing
CCDT could be simple and not require significant com-
plexity increase. Furthermore, CCDT is more flexible than
OFDM and DFT-s-OFDM since, as will be shown herein,
with a judicious choice of the transmit sequence and param-
eters (e.g., the chirp rate), the AF could be shaped to be
either thumbtack-like or ridge-like.

Designing radar signals such that the AF is shaped to
the environment and to a certain desired form over a given
range-Doppler region, is a well-known problem, cf. [40], [41]
and references therein. Flexible AF shaping is also useful
for synchronization purposes, e.g., in the initial synchroniza-
tion between a terminal and the base station, the AF could
be ridge-like in the Doppler domain to allow the terminal
to perform time-domain synchronization acquisition. Once
the synchronization acquisition is achieved, the AF of the
transmitted signal could be switched to thumbtack-like, to
enhance time- and frequency synchronization tracking in the
terminal. It should be noted that contemporary systems, e.g.,
3GPP LTE and NR, do not exhibit such flexibility.
The contributions of the paper are summarized as follows.
• Ambiguity function: The AF is derived as a closed-
form expression for an arbitrary transmit sequence and
is shaped by the chirp rate and the transmit sequence.
It is shown that the AF becomes the convolution in
the time domain between the AF of the basis functions
of the multicarrier chirp-based waveform and the AF
of the transmit sequence. Moreover, we derive the AF
under arbitrary sampling rate and non-integer frequency
offsets.

• Transmit sequence: We then derive the AF assuming
specific transmit sequences, i.e., a ZC sequence, DFT
sequence or maximum length sequence. It is shown that
these can shape the AF to be either thumbtack-like or
ridge-like.

• Comparison to OFDM and DFT-s-OFDM: We derive
the AFs for OFDM and DFT-s-OFDM and compare to
that of CCDT. The results show that CCDT has better
detection performance on channels with large Doppler
shift.

• Joint radar and communications: We show that the
ambiguity functions of the communications signals
based on CCDT, DFT-s-OFDM and OFDM waveforms
modulated with random M-PSK symbols are of the
same thumbtack type; therefore such communications
signals can be used also for tracking the receiver’s range
and Doppler frequency.

• Low PAPR: We show that ZC and DFT transmit
sequences result in a signal with constant envelope.

The rest of the paper is organized as follows. In Section I,
the AF of CCDT and its properties are derived. The PAPR
properties are presented in Section II. Comparison to OFDM
and DFT-s-OFDM is contained in Section III. Numerical
evaluation of range acquisition and range/Doppler tracking is
contained in Section IV, the paper is concluded in Section V
and the mathematical proofs are contained in Appendix A-F.

II. AMBIGUITY FUNCTIONS
A. CHIRP-CONVOLVED DATA TRANSMISSION
Consider the CCDT waveform for 0 ≤ t < T defined by

s(t) =
N−1∑

m=0

x[m]g

(
t − mT

N

)
(1)
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where x[m], m = 0, 1, . . . ,N − 1 is taken from a set of
(real- or complex valued) modulation symbols. These sym-
bols either correspond to random data or a pre-determined
transmit sequence. The pulse shape (or basis function) g(t)
is periodic such that the time discrete representation of (1)
for t = nT/N, for a symbol with samples n = 0, 1, . . . ,N−1
is defined by [10]

s[n] =
N−1∑

m=0

x[m]g[n− m] (2)

g[k] = 1√
N
e−j

2π
N

(
αk2+βk+γ

)
(3)

gcd(2α,N) = 1 (4)

αN + β ∈ Z (5)

where α, β and γ are real-valued, Z is the set of integers, and
gcd(A,B) is the greatest common divisor of the integers A and
B. We refer to α as the chirp rate. A CP of length NCP can be
inserted by defining (2) for n = −NCP,−NCP + 1, . . . ,−1.
In the analysis of AFs, we will not assume a CP, while
it will be considered in the evaluations in Section V. The
set of basis functions g[n − m] are generated from cyclic
time-shifts of (3). It has been shown that the conditions (4)
and (5) imply that (3) is a CAZAC sequence, i.e., the cycli-
cally shifted basis functions are orthogonal. It has also been
shown that the CCDT waveform can be represented as DFT-
s-OFDM with an additional chirp filter prior to the Inverse
DFT (IDFT) [10]. Therefore, we will also make use of the
alternative representation of (2)-(5) given by:

s[n] = 1√
N

N−1∑

m=0

G[m]X[m]ej
2π
N mn (6)

G[m] =
N−1∑

k=0

g[k]e−j
2π
N km (7)

X[m] = 1√
N

N−1∑

k=0

x[k]e−j
2π
N km (8)

It can be shown that the DFT of a CAZAC sequence
is a CAZAC sequence [30]. Thus G[m] has CA and the
filter reduces to N phase shifts. Due to G[m] in (6),
the single-carrier property of DFT-s-OFDM is not main-
tained and modulation symbols become multiplexed in both
the time- and frequency domain, thus offering diversity
gains in time-frequency selective channels. This is in con-
trast to OFDM where modulation symbols are frequency
multiplexed, and to DFT-s-OFDM, where modulation sym-
bols are time-multiplexed.

B. TIME DISCRETE PERIODIC AMBIGUITY FUNCTION
We consider the sampled low-pass equivalent signal for this
analysis. For a time discrete signal s[n], the periodic AF is
defined as [30]

χ(�, τ)
def= 1

N

N−1∑

n=0

s[n]s∗[n+ τ (mod N)]ej
2π
N �n (9)

for a frequency offset � ∈ Z and time-delay τ ∈ Z, where
(·)∗ denotes complex-conjugate and (mod N) is the modulo-
N operator. In Section II-G, the case with non-integer
frequency offsets � is discussed. It is straightforward to ver-
ify that (9) has a period of N, i.e., χ(�, τ) = χ(�+N, τ ) =
χ(�, τ +N) = χ(�+N, τ +N). The AF (9) could be com-
puted efficiently by the Inverse DFT (IDFT) for each τ of the
product sequence s[n]s∗[n+τ (mod N)]. From Appendix A,
we obtain the following main result.
Property 1 (Ambiguity Function of CCDT): The ambiguity

function is:

χ(�, τ) = C
N−1∑

m=0

x

[
m− τ + r0N − �

2α
(mod N)

]
x∗[m]

× ej
2π
N �m (10)

C = √
Ng∗[τ ]g

[
τ + �/2α

]
g
[−r0N/2α

]
ej

2π
N γ ejπ

r0�

α

(11)

r0 = 2αk0 + � + 2ατ

N
(12)

2αk0 ≡ −� − 2ατ (mod N) (13)

k0 ∈ {0, 1, . . . ,N − 1} (14)

Since the magnitude of C is independent of τ and �, the
modulus AF of s[n] is the periodic modulus AF of x[m] at a
delay ε = −τ + (r0N − �)/2α, which is a function of both
τ and �. Moreover, the magnitude of (10) is independent
of β and γ , while the chirp rate α determines the delay.
Thus, the AF can be shaped by the transmit sequence x[m]
and the parameter α. In the following, we will only consider
the modulus AF, since the phase of C may not be used by
the receiver. The zero Doppler cut AF is obtained by setting
� = 0 in (10) and observing that r0 = 0 is a solution to (61).
Hence, the modulus AF can be simplified as

|χ(� = 0, τ )| =
∣∣∣∣∣

N−1∑

m=0

x[m]x∗[m+ τ (mod N)]

∣∣∣∣∣ (15)

which is the periodic autocorrelation function of the transmit
sequence x[m]. Notably, it is not dependent of α and is thus
only shaped by the transmit sequence.
The location and magnitude of sidelobes will depend on

the transmit sequence. However, a general property is that,
for any x[m] with CA, the AF is zero in certain locations
of the � − τ plane. Define the Kronecker delta function as
δ[k] = 1 for k = 0 and δ[k] = 0 for k �= 0, then from
Appendix A the following property holds.
Property 2 (Zeros in the � − τ Plane): If |x[m]| = 1 and

� + 2ατ ≡ 0 (mod N), then |χ(�, τ)| = δ[�].
A CAZAC sequence x[m] fulfills the following CA and

ZAC conditions:

|x[m]| = 1 (16)

1

N

N−1∑

m=0

x[m]x∗[m+ τ (mod N)] = δ[τ ] (17)
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It follows from Property 1 with � = 0 and (15) that, if x[m]
has an ideal autocorrelation function, i.e., fulfills the ZAC
property (17), also s[n] will be a ZAC sequence. However,
even if x[m] has CA, it does not generally guarantee that
s[n] has CA. Albeit, for some sequences x[m] it is fulfilled,
which we discuss in Section II. A general property for CCDT
using CAZAC sequences is given from Appendix A by the
following.
Property 3 (Sidelobes for CAZAC): If x[m] is a CAZAC

sequence, then
∑N−1

τ=0 |χ(�, τ)|2 = 1.
This property can be used to determine a bound on the

sidelobes of the AF. For example, if there exists a τ0 for
which |χ(�, τ0)| = 1, then |χ(�, τ1)| = 0 for any τ1 �= τ0.

C. RIDGE-LIKE AMBIGUITY FUNCTION
A ridge-like AF makes it possible to detect the presence of a
signal by a matched filter under any time delay or frequency
shift. According to Property 4 shown in Appendix B, a
ridge-like AF is generated from a DFT sequence, which is
illustrated in Fig. 1 (a). The ridge is along the τ -axis, i.e.,
τ and � are decoupled.
Property 4 (AF for DFT Sequence): If xk[m] = ej

2π
N km for

k = 0, 1, . . . ,N − 1, then |χ(�, τ)| = δ[�].
In this case, the ridge lies along the time axis and thus

the detection of the presence of a signal with any time delay
could be performed by a matched filter, which will produce
the maximum value for any time delay. This type of AF
could also be applicable for estimating the frequency offset,
e.g., by fixing a time delay and performing matched filtering
with one filter for each frequency offset hypothesis. Thereby,
the frequency offset is determined from the hypothesis that
produces the largest matched filter output.
An advantage of the CCDT waveforms is the possibility to

shape their AFs by modifying their parameter α. According
to Property 5 below (proven in Appendix B), the AF can
be shaped such that the ridge is rotated 90 degrees in the
� − τ plane, as illustrated in Fig. 1 (b).
Property 5 (AF for ZC Sequence): If xu[m] = ej

π
N um(m+1),

where N is odd, or xu[m] = ej
π
N um

2
, where N is even, and

α = u/2, then |χ(�, τ)| = δ[τ ]
In this case, the ridge lies along the frequency axis and

thus the detection of the presence of a signal with any
Doppler shift could be performed by a matched filter, which
will produce the maximum value for any Doppler shift. A
ridge-like AF of the CCDT waveform can be generated from
a ZC sequence with arbitrary root index u. Other selections of
α will generate different shapes, as illustrated by Fig. 1 (c).

D. THUMBTACK-LIKE AMBIGUITY FUNCTION
While ridge-like AFs can detect the presence of a signal, a
thumbtack-like AF may be needed for estimating parame-
ters such as range, velocity and synchronization timing. A
thumbtack-like AF is characterized by having a small value
of |χ(�, τ)| for � �= 0 and τ �= 0. This allows unambiguous
time- and frequency synchronization for communications or
range and velocity estimation for radar. An interesting case is

where a maximum length sequence, aka. m-sequence, is used.
Them-sequence is defined forN = 2p−1 for a positive integer
p, x[m] ∈ {−1, 1} and its periodic autocorrelation function is

ρ(τ) = 1

N

N−1∑

m=0

x[m]x[m+ τ (mod N)] =
{

1, τ = 0
− 1
N , τ �= 0.

(18)

The modulus AF is given by Property 6 shown in
Appendix B, which is illustrated in Fig. 2.
Property 6 (AF of m-Sequence): If x[m] is an m-sequence,

then

|χ(�, τ)| =

⎧
⎪⎪⎨

⎪⎪⎩

1, � = 0, τ = 0
1
N , � = 0, τ �= 0
0, � + 2ατ ≡ 0 (mod N)√

(N + 1)/N, otherwise.

(19)

E. AMBIGUITY FUNCTION WITH RANDOM DATA
For JRC systems, x[m] may consist of random, but for the
transmitter known, modulation symbols, e.g., used for trans-
mitting data. It is therefore important that the expected AF
has good properties. Analysis of the statistical properties
of the AF has similarly been performed for noise radar
systems, where the transmitted signal is obtained from a
stochastic process [42]. Suppose x[m] = e−j2πφ′

m and φ′
m is

chosen independently and randomly from a uniform distri-
bution φ′

m ∈ [0, 1). Let ε = −τ + (r0N−�)/2α �= 0, then it
follows that for � �= 0 and τ �= 0, x[m]x∗[m+ε (mod N)] =
ej2π(φ′

m+ε (mod N)
−φ′

m) and φm = φ′
m+ε (mod N) − φ′

m becomes
a random variable. The probability density function of the
difference between two uniform random variables can be
determined as

fφm(x) =
{
x+ 1, −1 < x ≤ 0
1 − x, 0 < x < 1.

(20)

Utilizing
∫
xeaxdx = (ax − 1)a−2eax, we can obtain the

expectation value, E[ · ], of (10) as

|E[χ(� �= 0, τ �= 0)
]| = 1

N

∣∣∣∣∣

N−1∑

m=0

E

[
ej2πφm

]
ej

2π
N �m

∣∣∣∣∣

= 1

N

∣∣∣∣
N−1∑

m=0

(∫ 1

−1
fφm(φ)ej2πφdφ

)
× ej

2π
N �m

∣∣∣∣

= 0. (21)

Thus the expectation value of the modulus AF exhibits
a thumbtack-like shape and good detection performance in
average sense is expected. Fig. 2 shows one realization of
the modulus AF where the modulation symbols are randomly
generated on the unit circle. Moreover, if the modulation
symbols are chosen independently and randomly from an
M-PSK constellation, φ′

m = ej
2π
M p with Pr [p = p′] = 1/M

and p = 0, 1, . . . ,M − 1, then φm will correspond to the
angle of one of the constellation points with uniform prob-
ability. Therefore, the expectation value of the AF will be
thumbtack-like since, by using (59)

|E[χ(� �= 0, τ �= 0)
]| = 1

N

∣∣∣∣∣

N−1∑

m=0

E

[
ej2πφm

]
ej

2π
N �m

∣∣∣∣∣
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FIGURE 1. Modulus AF based on different transmit sequences of length N = 127. (a) A ridge along the time domain from a DFT sequence. (b) A ridge along the frequency
domain from a Zadoff-Chu sequence with α = u/2. (c) An AF without ridge from a Zadoff-Chu sequence with α = 2u.

FIGURE 2. Modulus AF based on different transmit sequences of length N = 127 with α = 2 and β = 1. (a) m-sequence, (b) random unitary modulation symbols.

= 1

N

∣∣∣∣∣∣

N−1∑

m=0

⎛

⎝
M−1∑

p=0

1

M
ej

2π
M p

⎞

⎠ej
2π
N �m

∣∣∣∣∣∣
= 0. (22)

Thus CCDT would be suitable for JRC, where the x[m]
represents modulation symbols, which are known but not
pre-determined.

F. AMBIGUITY FUNCTION WITH UPSAMPLING
The AF of an upsampled signal can be obtained from (6)
by replacing N with Q (Q > N) in the exponential function.
As shown in Appendix C, when Q/N ∈ Z, the AF becomes

χ(�, τ) = N

Q

N−1∑

v=0

N−1∑

w=0

χg(�, v)χx(�,w)

×
sin
(
π
(
v+ w− N

Qτ
))

sin

(
π
(
v+w− N

Q τ
)

N

) e
π(N−1)

(
v+w−N

Q τ
)

N (23)

where χg(�, τ) and χx(�, τ) are the AFs of the sequences
g[k] and x[m], respectively. Fig. 3 shows the modulus AF
with Q = 10N, using an m-sequence for x[m]. This should
be compared to Fig. 2 (i.e., where Q = N) and it can be seen
that the thumbtack-like characteristics are maintained with
upsampling. An interesting case of (23) is when Q = N,
which gives an alternative expression for the AF with no
upsampling. From Appendix C, we obtain

χ(�, τ) = N
∑N−1

v=0 χg(�, v)χx(�, τ − v). (24)

In other words, the convolution over the delays of the AFs
χg(�, τ) and χx(�, τ) gives the AF for s[n]. The AF of (10)
could equivalently be obtained by inserting χg(�, τ) and
χx(�, τ) in (24), which is shown in Appendix D.

G. AMBIGUITY FUNCTION WITH NON-INTEGER
FREQUENCY OFFSET
The AF with upsampling and non-integer frequency offset
are given by (72) and (73) in Appendix C. Further simplifi-
cation can be done for the case without upsampling by using

1706 VOLUME 3, 2022



FIGURE 3. Modulus AF based on an m-sequence of length N = 127 with α = 2 and β = 1. (a) with Q/N = 10 times upsampling, (b) with non-integer frequency offset.

this identity for an arbitrary p

N−1∑

n=0

ej
2π
N np = sin(πp)

sin( πp
N )
ej

π(N−1)p
N (25)

in (58) with p = �−2α(m−k)+2ατ . Then the AF becomes
as follows.

χ(�, τ) =
N−1∑

m=0

N−1∑

k=0

x[k]x∗[m]e−j
2π
N

(
α
(
k2−m2

)+β(m−k)+2ατm
)

× C0
sin(π(� − 2α(m− k) + 2ατ))

sin
(

π(�−2α(m−k)+2ατ)
N

)

× ej
π(N−1)(�−2α(m−k)+2ατ)

N (26)

Fig. 3 shows the modulus AF (26) when � is assumed in
steps of 0.1, and similarly to Fig. 2, the thumbtack-like shape
is maintained.

III. PEAK-TO-AVERAGE-POWER-RATIO
A low PAPR allows less power back-off in the transmit-
ter and thus has benefits for coverage of the transmitted
signal. If |x[m]| = 1, it can be shown using (2) that
1
N

∑N−1
n=0 |s[n]|2 = 1. Thus, the PAPR (without upsampling)

is defined as:

PAPR = 10 log10

(
max

0≤n≤N−1
|s[n]|2

)
(27)

A CA sequence has by definition 0 dB PAPR, but that does
not generally guarantee that s[n] has 0 dB PAPR. However,
the following properties for ZC and DFT sequences shown
in Appendix E, confirm that it is the case for CCDT.
Property 7 (PAPR Using ZC Sequence): If xu[m] =

ej
π
N um(m+1), where N is odd prime and gcd(u,N) = 1,

PAPR =
{

10 log10 N, u = 2α

0, u �= 2α.

From (84), it follows that when u = 2α there exists an
n = n0 fulfilling α + 2αn0 + β ≡ 0 (mod N) and the signal

becomes

s[n] =
{√

Ne−j 2π
N

(
αn2

0+βn0+γ
)
, n = n0

0, n �= n0.
(28)

Thus, the PAPR of 10 log10 N for u = 2α is a consequence
of that the signal contains all energy in one sample, n0.
For any DFT sequence, PAPR = 0 dB, as shown by the
following property.
Property 8 (PAPR Using DFT Sequence): If xk[m] =

ej
2π
N km, for k = 0, 1, . . . ,N − 1, PAPR = 0 dB.

IV. COMPARISON OF AF AND PAPR WITH OFDM AND
DFT-S-OFDM
A. AMBIGUITY FUNCTIONS
As mentioned in Section II-A, CCDT is utilizing features of
both OFDM (i.e., transmitting a modulation symbol over the
whole OFDM symbol) and DFT-s-OFDM (i.e., transmitting
a modulation symbol over the whole bandwidth). Therefore,
we will compare the AF of CCDT with those of OFDM and
DFT-s-OFDM. Such expressions appear not to be available in
the literature, and for completeness we derive in Appendix F
the AFs with different transmit sequences. The OFDM signal
is defined by

s[n] = 1√
N

N−1∑

k=0

x[k]ej
2π
N kn (29)

which when inserted in (9) yields

|χOFDM(�, τ)| = 1

N2

∣∣∣∣
N−1∑

m=0

N−1∑

k=0

x[m]x∗[k]e−j
2π
N τk

×
N−1∑

n=0

ej
2π
N n(m−k+�)

∣∣∣∣

= 1

N

∣∣∣∣∣

N−1∑

m=0

x[m− � (mod N)]x∗[m]e−j
2π
N τm

∣∣∣∣∣
(30)
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TABLE 1. Comparison of ambiguity functions.

since the inner sum is equal to Nδ[m− k+� (mod N)] due
to (59). The DFT-s-OFDM signal is defined by inserting a
DFT-precoder prior to the OFDM modulator such that

s[n] = 1√
N

N−1∑

k=0

1√
N

N−1∑

l=0

x[l]e−j
2πkl
N ej

2πkn
N

= x[n] (31)

which when inserted in (9) yields

|χDFT-s-OFDM(�, τ)| = 1

N

∣∣∣∣∣

N−1∑

m=0

x[m− τ (mod N)]x∗[m]

× ej
2π
N �m

∣∣∣∣∣. (32)

There are several differences between (10) and (30), e.g., it
is the periodic AF of x[m] but with � and τ interchanged
compared to (10). The similarity between (10) and (32)
is that (32) is also the periodic ambiguity autocorrelation
function of x[m], but at a delay, τ , which is independent
of �.
Further simplifications can be done, e.g., the OFDM zero

delay cut AF follows directly from (30) as

|χOFDM(�, τ = 0)| = 1

N

∣∣∣∣∣

N−1∑

m=0

x[m− � (mod N)]x∗[m]

∣∣∣∣∣
(33)

and is thus the periodic autocorrelation function of x[m].
The DFT-s-OFDM zero Doppler cut AF follows directly
from (32) as

|χDFT-s-OFDM(� = 0, τ )| = 1

N

∣∣∣
N−1∑

m=0

x[m− τ (mod N)]

× x∗[m]
∣∣∣ (34)

and is thus the periodic autocorrelation function of x[m].
Furthermore, the OFDM zero Doppler cut AF is an impulse
as shown by the following.
Property 9 (Zero Doppler Cut AF for OFDM): When

|x[m]| = 1, then |χOFDM(� = 0, τ )| = δ[τ ].
The property implies that an OFDM signal with constant

modulus modulation symbols has ideal periodic autocorre-
lation, which was also shown in [43]. For DFT-s-OFDM, a
related property can be derived.
Property 10 (Zero Delay Cut AF for DFT-s-OFDM):When

|x[m]| = 1, then |χDFT-s-OFDM(�, τ = 0)| = δ[�]

A ridge-like shape could be achieved from a DFT sequence
according to the following property. It should be noted that
this ridge is the same as for CCDT with ZC sequence (i.e.,
Property 5 and a ridge along the frequency axis Fig. 1 (b)).
Property 11 (AF for DFT Sequence for OFDM): If

xk[m] = ej
2π
N km, for k = 0, 1, . . . ,N − 1, then

|χOFDM(�, τ)| = δ[τ ].
Moreover, a ridge-like AF can be produced, similarly as

for CCDT with a DFT sequence (i.e., Property 4 and a ridge
along the time axis Fig. 1 (a)).
Property 12 (AF for DFT Sequence for DFT-s-OFDM):

If xk[m] = ej
2π
N km, for k = 0, 1, . . . ,N − 1, then

|χDFT-s-OFDM(�, τ)| = δ[�].
In contrast to CCDT, a ZC sequence does not produce an

AF with a ridge with decoupled τ and � parameters, which
is shown by the following property.
Property 13 (AF for ZC Sequence for OFDM): If xu[m] =

ej
π
N um(m+1), N is odd and u = 1, . . . ,N − 1, then

|χOFDM(�, τ)| = δ[u� + τ (mod N)].
Notably, a ZC sequence was used for the primary syn-

chronization signal (PSS) in 3GPP LTE. However, it was
replaced by an m-sequence in 3GPP NR, much due to the
undesirable sidelobles and the coupling of τ and � in the
AF. As given by Property 13 for OFDM, a ZC sequence
does not produce an AF with a ridge with decoupled τ and
� parameters. This is also the case for DFT-s-OFDM, which
is shown by the following property.
Property 14 (AF for ZC Sequence for DFT-s-OFDM): If

xu[m] = ej
π
N um(m+1), N is odd and u = 1, . . . ,N − 1, then

|χDFT-s-OFDM(�, τ)| = δ[� − τu (mod N)].
The AFs are summarized in Table 1, showing that the

modulation sequences can be chosen such that CCDT pro-
duces a ridge along either the time- or frequency axis,
whereas for OFDM the ridge is along the time axis and
for DFT-s-OFDM the ridge is along the frequency axis. For
ZC sequences, neither OFDM or DFT-s-OFDM exhibit an
AF with decoupled τ and �, as for CCDT. Furthermore, by
using (30) or (32), it will be possible to use the same steps as
for (20)-(22) and show that when random unitary modulation
symbols are used, the expected AF is thumbtack-like. Hence,
the whole family of CCDT, OFDM and DFT-s-OFDM
waveforms may be suited for JRC systems.

B. PAPR
In practice, the PAPR is measured on the time continuous
signal. We model this by upsampling s[n], which implies that
the PAPR will become larger than the theoretically derived
value of 0 dB. Fig. 4 shows the PAPRs with Q = 4N, using
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FIGURE 4. PAPRs sorted in increasing order where a ZC sequence of length
N = 127 is used, for OFDM, DFT-s-OFDM and CCDT with α = 2 and β = 1.

TABLE 2. List of evaluation parameters and models.

a ZC sequence of length N = 127 with different root indices
u. The PAPRs are displayed in increasing order. With the
exception of the PAPR for CCDT with u = 2α, the PAPRs of
the waveforms are comparable. It should be noted that since
the DFT of a cyclically-shifted ZC sequence produces the
output sequence which is a complex-conjugated and per-
muted version of the DFT input sequence [44]. Thus the
PAPRs for DFT-s-OFDM are the same as for OFDM.

V. PERFORMANCE EVALUATIONS
A. RANGE ACQUISITION
We will evaluate timing detection probability of the dif-
ferent waveforms with an m-sequence, i.e., signals having
thumbtack-like AF. Additionally, we evaluate CCDT with
a ZC sequence and a ridge-like AF according to Property
5, which is robust against Doppler shifts and may improve
the detection performance. Timing detection relates to deter-
mining range of a target, or acquisition of a synchronization
signal. We assume an m-sequence of length N = 127, which
is used as primary synchronization signal sequence in 3GPP
NR [33]. Let us assume a time discrete channel model with
the assumptions in Table 2 as

h[n] =
L−1∑

l=0

√
Plh̃l[n]δ[n− τl] (35)

where the relative channel tap powers Pl and sample delays
τl = tl/fs of the L taps are obtained from a Vehicular
A channel assuming the sampling frequency fs = NfSCS,

TABLE 3. Multipath channel power delay profile.

according to Table 3. We are considering a time-variant
channel using Clarke’s two-dimensional isotropic scattering
Rayleigh fading model [45]

h̃l[n] = 1√
P

P∑

p=1

ej(2π fDn cos θp+φp) (36)

where P is the number of propagation paths per channel
tap, fD = v

c fc is the maximum Doppler frequency, v is the
velocity, c is the speed of light, fc the carrier frequency
and θp and φp are the angle of arrival and initial phase of
the pth propagation path, respectively. Both θp and φp are
uniformly distributed over [ − π, π) for all p and they are
mutually independent. For fD �= 0, the channel (36) varies
over a symbol and the subcarriers are no longer orthogonal
in the receiver and inter-carrier interference (ICI) occurs.
A CP of length NCP ≥ L is attached to s[n] and the

received signal r[n], is obtained from convolution with h[n],
and adding additive white Gaussian noise (AWGN), w[n].
After removing the CP, the signal can be expressed as
follows.

r[n] =
L−1∑

l=0

√
Plh̃l[n]s[n− τl (mod N)] + w[n] (37)

The periodic correlation, which is related to the AF at
� = 0, is then performed as follows to determine the timing
sample τ ∗.

ρ(τ) =
∣∣∣∣∣

1

N

N−1∑

n=0

r[n]s∗[n− τ (mod N)]

∣∣∣∣∣ (38)

τ ∗ = arg max
τ∈{0,1,...,N−1} ρ(τ) (39)

By defining the set of time delay samples of the channel
T = {τ0, τ1, . . . , τL−1}, the probability of misdetection, Pmd,
is defined by the events of not detecting the received signal
on any of the delays in T.

Pmd = Pr
[
τ ∗ �∈ T

]
(40)

Determining (40) on closed-form appears to be a formidable
task and we resort to Monte Carlo simulations for its evalua-
tion, for velocities in the range 0−500 km/h. At fc = 6 GHz,
a velocity of 500 km/h corresponds to a Doppler frequency
fD = 2.78 kHz or, equivalently, fD = 0.185fSCS. The effect
of the Doppler shift would be the same if fSCS scales with
fc, e.g., using fSCS = 60 kHz at fc = 24 GHz. The detec-
tion (38) is made from one symbol. With an m-sequence, the
AFs will be thumbtack-like for all the waveforms, implying
that Pmd should be relatively small and differ moderately
between the waveforms. Fig. 5 shows that CCDT performs
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FIGURE 5. Probability of misdetection using an m-sequence, or ZC sequence, of
length N = 127 for 0 km/h (left) and 500 km/h (right) on a Vehicular A channel, for
subcarrier spacing fSCS = 15 kHz, carrier frequency fc = 6 GHz, for the waveforms
OFDM, DFT-s-OFDM and CCDT with α = −2 and β = −2.

FIGURE 6. Mean and standard deviation of the timing error TE using an
m-sequence, or ZC sequence, of length N = 127 at 500 km/h on a Vehicular A channel,
for subcarrier spacing fSCS = 15 kHz, carrier frequency fc = 6 GHz, for the waveforms
OFDM, DFT-s-OFDM and CCDT with α = −2 and β = −2.

slightly better than OFDM and DFT-s-OFDM as the veloc-
ity increases. However, the detection probability is better for
CCDT using a ZC sequence with the parameters chosen to
produce an AF with a ridge along the frequency axis, i.e.,
Fig. 1 (b). Such a signal is robust against Doppler shifts and
performs better than the other signals when the velocity is
large. We define the timing error in the unit of seconds as

TE = min
τl∈T

1

fs
|τ ∗ − τl| (41)

and estimate the mean and standard deviation of TE from
the simulations. Fig. 6 confirms the trend of Fig. 5, that the
CCDT using a ZC sequence performs slightly better.
Synchronization signals may need to be detected under

large frequency offsets. For example, during initial cell
acquisition, prior to when the mobile device has estab-
lished frequency synchronization with the base station, an

TABLE 4. Required SNR [dB] for Pmd = 10−4, for different number of frequency
hypotheses using an m-sequence and frequency offset hypothesis testing.
Additionally, a ZC sequence is used for CCDT without any frquency offset hypothesis
testing.

oscillator inaccuracy in the order of 10 ppm is typically
assumed [11]. We introduce a frequency offset of fo Hz
between the transmitter and receiver as

r[n] =
L−1∑

l=0

√
Plh̃l[n]e

j 2π
N

fo
fSCS

n
s[n− τl (mod N)] + w[n] (42)

and signal detection which is based on the AF, i.e., a bank
of correlators, each corresponding to a frequency offset
hypothesis �f .

ρ
(
τf ,�f

) =
∣∣∣∣∣

1

N

N−1∑

n=0

r[n]s∗
[
n− τf (mod N)

]
e−j

2π
N �f n

∣∣∣∣∣ (43)

τ ∗ = arg max
τf ∈{0,1,...,N−1}

�f∈DH

ρ
(
τf ,�f

)
(44)

We assume that the frequency offset is a uniform
random variable fo/fSCS ∈ [−1, 1] and evaluate Pmd
with H = 3, 5 or 7 hypotheses, wherein D3 =
{−2/3, 0, 2/3}, D5 = {−4/5,−2/5, 0, 2/5, 4/5} and
D7 = {−6/7,−4/7,−2/7, 0, 2/7, 4/7, 6/7}. The number of
hypotheses is a trade off between the ability to cancel the
frequency offset fo and an increase in more false timing can-
didates. Simulations are made for a range of SNRs and the
required SNR to obtain Pmd = 10−4 is contained in Table 4,
which shows that with a velocity of 100 km/h, all schemes
perform similarly and there is no gain of using more than
3 hypotheses. With larger velocity, CCDT shows a slight
gain and using more hypotheses is better. The last row con-
tains the result for CCDT using a ZC sequence with the
parameters chosen to produce an AF with a ridge along the
frequency axis, and detection is made without any hypos-
esis testing, i.e., D1 = {0}. Clearly, this signal is insensitive
to frequency offsets and outperforms the other signals, with
more than 1 dB SNR gain at 100 km/h.

B. RANGE/DOPPLER TRACKING
To evaluate the radar properties, we will evalute the differ-
ent waveforms using thumbtack-like AF produced by either
random data symbols, or an m-sequence. We assume a time
discrete channel model (cf. [46]) for receiving reflections
from Y single point targets (Y = 1)

h[n] =
Y−1∑

y=0

√
Pye

jφyej
2π
N �ynδ

[
n− τy

]
(45)
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FIGURE 7. Average absolute timing error for different number of targets Y = 1 and
Y = 4, false alarm probability Pfa = 0.01, using QPSK or an m-sequence of length
N = 127 for CCDT with α = −2 and β = −2, OFDM and DFT-s-OFDM.

where Py are the relative target received powers, φy com-
prises phase rotations which are uniformly distributed over
[−π, π), τy are the round-trip time delays of the reflected
targets and �y are the Doppler shifts experienced at the
receiver due to the motion of the targets. The target speed
vy and range dy can be determined by vy = fSCS�yc

2fc
and

dy = τyc
2NfSCS

. We define the set P = {P0,Py, . . . ,PY−1},
assume that P0 ≥ P1 ≥ . . . ≥ PY−1 and that the delays are
uniformly distributed from the set τy ∈ {0, 1, . . . ,NCP}. The
Doppler shift is a continuous random uniform variable with
�y ∈ [−1, 1], i.e., it corresponds to frequencies limited by
±fSCS. After removing the CP, the received signal can be
described as

r[n] =
Y−1∑

y=0

√
Pye

jφyej
2π
N �yns

[
n− τy (mod N)

]+ w[n]. (46)

The objective is to estimate the delay τ ∗ and Doppler shift
�∗ for the strongest target, i.e., the other targets are undesired
clutter in this respect. Estimation is made by computing
a correlation function that is tightly related to the AF. It
is evaluated on a 2-D grid of delays and Doppler shifts,
which is a common practise [20], [46]. Here, the search
over Doppler shifts is limited to the set DN = {−(N −
1)/N,−(N − 3)/N, . . . , (N − 1)/N}.

ρ(�, τ) =
∣∣∣∣∣

1

N

N−1∑

n=0

r[n]s∗[n− τ (mod N)]e−j
2π
N �n

∣∣∣∣∣ (47)
(
�∗, τ ∗) = arg max

τ∈{0,1,...,NCP}
�∈DN

ρ(�, τ) (48)

The CP length is set to NCP = 12 samples. We evalu-
ate two cases: single target (Y = 1) and multiple targets
(Y = 4) with P = {1, 0.75, 0.5, 0.25}. A detection thresh-
old, �, is determined to control the probability of false
alarm, Pfa, such that Pr [ρ(�, τ) ≥ �] ≤ Pfa when the
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FIGURE 8. Average absolute Doppler shift error for different number of targets
Y = 1 and Y = 4, false alarm probability Pfa = 0.01, using QPSK or an m-sequence of
length N = 127 for CCDT with α = −2 and β = −2, OFDM and DFT-s-OFDM.

received signal is noise only, r[n] = w[n]. We evaluate by
Monte Carlo simulations the average absolute errors for the
strongest target, |τ ∗−τ0| and |�∗−�0|. Conversion to errors
for d0 and v0 can be made as described above for given
parameters of fSCS and fc. For transmit sequences, we use
an m-sequence and a random sequence of QPSK symbols,
respectively. As anticipated from Section II-E, both type of
sequences exhibit a thumbtack-like AF and the correlation
properties are expected to be similar among the sequences
and among the waveforms. That is confirmed by Fig. 7 and
Fig. 8, which shows that m-sequence is only slightly better
than a random QPSK sequence for the case with multiple
targets. Hence, we can conclude that all these waveforms
function as radar signals using the random data QPSK sym-
bols as the transmit sequence. Thereby, spectral efficiency
may be improved since dedicated time-frequency resources
and a predefined sequence are not needed for a signal serving
for radar.

VI. CONCLUSION
It was previously shown that multicarrier chirp waveforms
could offer lower bit error rate than OFDM and DFT-
s-OFDM [10], [19], [20]. Herein, it was found that the
multicarrier chirp waveform also has gains in detection
performance when used as a waveform for synchroniza-
tion or radar, making it a candidate for JRC. The AF for
the multicarrier chirp waveform differs from that of OFDM
and DFT-s-OFDM, and was shown to be equal to the AF
of the transmit sequence, evaluated at a delay which is a
function of τ , � and α. The selection of chirp rate, α,
and transmit sequence can shape the AF to become either
thumbtack-like or ridge-like, which are suitable for differ-
ent applications, e.g., time- and frequency synchronization,
or target detection. A signal with ridge-like AF makes it
possible to perform time synchronization with no frequency
offset hypothesis testing, which otherwise is needed for a
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signal with a thumbtack-like AF. In particular considering
JRC applications, where the modulation symbols are used for
both data transmission and radar detection, unitary random
modulation symbols produce thumbtack-like AF shape. As
in many practical communications systems, including 3GPP
cellular standards, high-order quadrature amplitude modula-
tions (QAMs) are used to transmit high-rate date, it remains
to be seen whether the thumbtack AFs can be produced with
some waveforms modulated by random QAM symbols.

APPENDIX A
PROOFS FOR PROPERTY 1 - 3
A. LEMMAS
Lemma 1: For given N,� and τ , and 2αkm = −� +
(m − τ)2α + rmN, where m ∈ {0, 1, . . . ,N − 1} and
km ∈ {0, 1, . . . ,N − 1}, then

rm =
{
r0, if m < A
r0 − 2α, if m ≥ A

where

A = N − k0

2αk0 ≡ −� − 2ατ (mod N)

r0 = 2αk0 + � + 2ατ

N

Proof: From (60), it follows that

km+1 ≡ km + 1 (mod N) (49)

since

2αkm = −� + (m− τ)2α + rmN (50)

implies that

2αkm = −� + (m− τ)2α (mod N) (51)

and

2αkm+1 = −� + 2α(m+ 1) − 2ατ (mod N)

= 2αkm + 2α (mod N). (52)

From (49), the elements of the sequence km belong to the
set km ∈ {0, 1, . . . ,N − 1} and can be expressed as

km+1 =
{
km + 1, if km + 1 < N
km + 1 − N, if km + 1 = N.

(53)

The case km + 1 = N will occur for a single value of
m = A− 1, because then km+1 ≡ 0 (mod N), and 0 appears
only once in the sequence km. Let us assume that A is a
positive integer such that A = N−k0, where k0 satisfies (51)
as

2αk0 = −� − 2ατ (mod N). (54)

Then from (51), (54) and using 2αN (mod N) = 0 since
2α ∈ Z [10], we have

2αkA ≡ −� + (A− τ)2α (mod N)

≡ −� − τ2α − k02α (mod N)

≡ −� − τ2α − (−� − τ2α) (mod N)

≡ 0

and thus rewrite (53) as

km+1 =
{
km + 1, if m �= A− 1
km + 1 − N, if m = A− 1.

(55)

The corresponding values can be obtained by inserting the
values of km+1 from (55) into (51). Thus, for m �= A − 1
we obtain rm+1 = rm and for m = A − 1 it follows that
rm+1 = rm − 2α. Since 2α ∈ Z, it follows that rm+1 ∈ Z.
Hence, we have

r0 = r1 = . . . = rA−1

rN−1 = rN−2 = . . . = rA = rA−1 − 2α

and obtain

rm =
{
r0, if m < A− 1
r0 − 2α, if m ≥ A− 1.

(56)

Using (50), it follows that

r0 = 2αk0 + � + 2ατ

N
.

Lemma 2: For any 0 ≤ m ≤ N−1 and integer �, ejπ
�rm

α =
ejπ

�r
α , for any r in the set r ∈ {r0, r1, . . . , rN−1}.
Proof: From Lemma 1, it follows that there are at most

two different values of rm, i.e., rm = r0 or rm = r0 − 2α.

Since ejπ
�(r0−2α)

α = ejπ
�r0
α , the Lemma follows.

Lemma 3: For any 0 ≤ m ≤ N − 1, e−j 2π
N (

r2mN
2

4α
−β

rmN
2α

) =
e−j 2π

N (
r20N

2

4α
−β

r0N
2α

).
Proof: From Lemma 1, it follows that there are at most

two different values of rm, i.e., rm = r0 or rm = r0 − 2α.
Thus, if rm = r0 − 2α we have

e
−j 2π

N

(
r2mN

2

4α
−β

rmN
2α

)

= e
−j 2π

N

(
(r0−2α)2N2

4α
−β

(r0−2α)N
2α

)

= e
−j 2π

N

(
r20N

2

4α
−β

r0N
2α

)

ej2πr0Ne−j2π(αN+β)

= e
−j 2π

N

(
r20N

2

4α
−β

r0N
2α

)

(57)

where the last step follows from (5).

B. PROOF FOR PROPERTY 1
Inserting (2) in (9) and utilizing that (5) makes (3) to have
a period N [10], i.e., g[k] = g[k (mod N)], we obtain

χ(�, τ) = 1

N

N−1∑

n=0

N−1∑

m=0

N−1∑

k=0

x[k]g[n− k]

× x∗[m]g∗[n+ τ − m]ej
2π
N �n

=
N−1∑

m=0

N−1∑

k=0

x[k]x∗[m]e−j
2π
N

(
α
(
k2−m2

)+β(m−k)+2ατm
)

× C0

N−1∑

n=0

ej
2π
N n(�−2α(m−k)+2ατ) (58)
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with C0 = g∗[τ ]e−j
2π
N γ

N
√
N

. A well-known identity is that for
k ∈ Z:

N−1∑

n=0

ej
2π
N nk = Nδ[k (mod N)] (59)

Therefore, the inner sum in (58) is non-zero and equal to
N only when there for each m exists a k = km and k ∈
{0, 1, . . . ,N − 1} such that

2αkm ≡ −� + (m− τ)2α (mod N). (60)

The condition (60) is a linear congruence equation having
only a single km as solution for each m due to (4). We can
rewrite (60) as

2αkm = −� + (m− τ)2α + rmN (61)

where rm ∈ Z. Inserting km from (61) in (58) gives

χ(�, τ) = C1

N−1∑

m=0

x

[
m− τ + rmN − �

2α

]
x∗[m]

× e
−j 2π

N

(
r2mN

2

4α
−β

rmN
2α

)

ejπ
�rm

α ej
2π
N �m

(a)= C
N−1∑

m=0

x

[
m− τ + rmN − �

2α

]
x∗[m]ej

2π
N �m

(b)= C
N−1∑

m=0

x

[
m− τ + r0N − �

2α
(mod N)

]
x∗[m]

× ej
2π
N �m (62)

with C1 = C0
√
Nej

2π
N γ g∗[τ +�/2α] and C = C1N

√
Nej

2π
N γ

g∗[ − r0N/2α]ejπ
�r0
α , where replacing rm with rm = r0 and

moving the exponential terms outside the sum in (a) follows
from Lemma 2 and Lemma 3. Replacing rm with rm = r0 or
rm = r0 − 2α in the sequence argument in (b) follows from
Lemma 1, and since 2α is an integer [10] and −2αN ≡
0 (mod N), the modulo-N operator is introduced.

C. PROOF FOR PROPERTY 2
The condition � + 2ατ ≡ 0 (mod N) is equivalent to � +
2ατ = rN with r ∈ Z, which is obtained from (61) by using
km = m and rm = r. Therefore, (rmN − �)/2α = τ and
from (10), utilizing |C| = 1/N and (59) we have

|χ(�, τ)| = 1

N

∣∣∣∣∣

N−1∑

m=0

x[m]x∗[m]ej
2π
N �m

∣∣∣∣∣ =
{

0, � �= 0
1, � = 0.

(63)

It follows from (4) that if �+2ατ ≡ 0 (mod N) and � = 0,
then τ = 0, i.e., the AF is |χ(�, τ)| = δ[�].

D. PROOF OF PROPERTY 3
Let us define ε(τ ) = −τ + (r0N − �)/2α and insert x[m]
in (10) to obtain

N−1∑

τ=0

|χ(�, τ)|2 =
N−1∑

τ=0

χ(�, τ)χ∗(�, τ)

(a)= 1

N2

N−1∑

τ=0

N−1∑

n=0

x[n]x∗[n+ ε(τ )]ej
2π
N �n

×
N−1∑

m=0

x∗[m]x[m+ ε(τ )]e−j
2π
N �m

(b)= 1

N2

N−1∑

n=0

N−1∑

m=0

x[n]x∗[m]ej
2π
N �(n−m)

×
N−1∑

τ=0

x∗[n+ ε(τ )]x[m+ ε(τ )]

(c)= 1

N2

N−1∑

n=0

N−1∑

m=0

x[n]x∗[m]ej
2π
N �(n−m)

× Nδ[n− m]

(d)= 1

N

N−1∑

n=0

x[n]x∗[n]

(e)= 1

where (a)-(b) follow by definition, (c) is due to (17) and
(d)-(e) are due to (16), and all additions of sequence indices
in x[m] are performed (mod N).

APPENDIX B
PROOFS FOR PROPERTY 4 - 6
A. PROOF FOR PROPERTY 4
By insertion of xk[m] in (10) and (59)

|χ(�, τ)| = 1

N

∣∣∣∣∣

N−1∑

m=0

ej
2π
N

krmN
2α ej

2π
N �m

∣∣∣∣∣

= 1

N

∣∣∣∣∣

N−1∑

m=0

ej
2π
N �m

∣∣∣∣∣ =
{

0, � �= 0
1, � = 0.

(64)

where it follows from Lemma 1 in Appendix A, that

ej
2π
N

krmN
2α = ej

2π
N

kr0N
2α , because there are at most two different

values of rm, i.e., r0 or r0 −2α, and ej
2π
N

k(r0−2α)N
2α = ej

2π
N

kr0N
2α .

B. PROOF FOR PROPERTY 5
Let us define ε = −τ + (r0N − �)/2α and insert xu[m]
in (10) to obtain

|χ(�, τ)| = 1

N

∣∣∣∣∣

N−1∑

m=0

ej
2π
N m(�+uε)

∣∣∣∣∣ (65)

where we have used xu[m + ε (mod N)] = xu[m + ε]. The
modulus AF (65) is equal to 1 when

� + u

(
−τ + r0N − �

2α

)
≡ 0 (mod N)

which can be simplified as

2α� − u(2ατ + �) ≡ 0 (mod N). (66)

When u = 2α and τ = 0, (66) holds for all �, i.e., |χ(�, τ =
0)| = 1. When u = 2α, τ �= 0 and � �= 0, we have
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2α� − 2α(2ατ + �) = −4α2τ and due to (4) and that τ

is an integer, it follows that −4α2τ ≡/ 0 (mod N), and thus,
|χ(� �= 0, τ �= 0)| = 0.

A similar property can be found when N is even and
xu[m] = ej

π
N um

2
, which is omitted here for brevity. Since

a ZC sequence is a CAZAC sequence, Property 5 could
alternatively be proven using Property 3 and noting that when
u = 2α and τ = 0, (66) holds for all �, i.e., |χ(�, τ =
0)| = 1, and thus |χ(�, τ �= 0)| = 0.

C. PROOF FOR PROPERTY 6
Lemma 4: If x[m] is an m-sequence and 0 < τ ≤ N−1, then
x[m]x[m+ τ (mod N)] = −x[m+ τ ′ (mod N)] for some τ ′.
Proof: Let y[m] be a binary m-sequence and x[m] =

q[y[m]] with

q[b] =
{−1, b = 0

1, b = 1.
(67)

It is straightforward to verify that for b0 ∈ {0, 1} and b1 ∈
{0, 1}:

q(b0 + b1 (mod 2)) = −q(b0)q(b1) (68)

The shift-and-add property of m-sequences gives that y[m+
τ (mod N) + y[m] (mod 2) = y[m + τ ′ (mod N)] for 0 <

τ ≤ N − 1, m = 0, 1, . . . ,N − 1, where τ ′ depends on τ .
Therefore, applying (68) to this identity results in x[m]x[m+
τ (mod N)] = −x[m+ τ ′ (mod N)].
Lemma 5: If x[m] is an m-sequence and |χ(� �= 0, τ0)| �=

0 and if � + 2ατ1 ≡/ 0 (mod N), then |χ(� �= 0, τ1)| =
|χ(� �= 0, τ0)| for τ0 �= τ1.
Proof: Let us define ε(τ ) = −τ + (r0N − �)/2α.

From (61), by using km = m there exists an rm such that
� = −2ατ + rN, thus ε(τ ) ≡/ 0 (mod N). Consequently, if
�+2ατ ≡/ 0 (mod N), then ε(τ ) ≡/ 0 (mod N). Assume that
|χ(� �= 0, τ0)| �= 0 and an integer t such that

|χ(� �= 0, τ0)| = 1

N

∣∣∣∣∣

N−1∑

m=0

x[m+ ε(τ0) (mod N)]x[m]ej
2π
N �m

∣∣∣∣∣

(a)= 1

N

∣∣∣∣∣

N−1∑

m=0

x
[
m+ τ ′ (mod N)

]
ej

2π
N �m

∣∣∣∣∣

(b)= 1

N

∣∣∣∣
N−1+t∑

m=t
x
[
m+ τ ′ − t (mod N)

]

× ej
2π
N �(m−t)

∣∣∣∣

(c)= 1

N

∣∣∣∣∣

N−1∑

m=0

x
[
m+ τ ′ − t (mod N)

]
ej

2π
N �(m−t)

∣∣∣∣∣

(d)= 1

N

∣∣∣∣
N−1∑

m=0

x[m+ τ1 (mod N)]x∗[m]

× ej
2π
N �(m−t)

∣∣∣∣

(e)=
∣∣∣χ(� �= 0, τ1)e

−j 2π
N �t
∣∣∣

(f)= |χ(� �= 0, τ1)| (69)

where Lemma 4 was used in (a) and (d) and the change of
summation index from (b) to (c) follows from the periodicity
in N of the exponential function and the sequence x[m].
Lemma 6: If x[m] is an m-sequence, then

N−1∑

τ=0

|χ(�, τ)|2 =
{

1 + (N − 1) 1
N2 , � = 0

1 − 1
N2 , � �= 0.

Proof: Let us define ε(τ ) = −τ +(r0N−�)/2α and insert
x[m] in (10) to obtain

N−1∑

τ=0

|χ(�, τ)|2 =
N−1∑

τ=0

χ(�, τ)χ∗(�, τ)

= 1

N2

N−1∑

τ=0

N−1∑

n=0

x[n]x[n+ ε(τ )]ej
2π
N �n

×
N−1∑

m=0

x[m]x[m+ ε(τ )]e−j
2π
N �m

= 1

N2

N−1∑

n=0

N−1∑

m=0

x[n]x[m]ej
2π
N �(n−m)

×
N−1∑

τ=0

x[n+ ε(τ )]x[m+ ε(τ )]

= 1

N2

N−1∑

n=0

N−1∑

m=0

x[n]x[m]ej
2π
N �(n−m)

× Nρ(n− m)

= 1

N

N−1∑

t=0

N−1∑

m=0

x[m+ t]x[m]ej
2π
N �tρ(t)

=
N−1∑

t=0

ρ2(t)ej
2π
N �t

where all additions of sequence indices are performed
(mod N) and where the change to summation index t fol-
lows from the periodicity in N of the exponential function
and the periodicity of the sequence x[m (mod N)]. If � = 0,
then

∑N−1
t=0 ρ2(t)ej

2π
N �t = 1+(N−1) 1

N2 . If � �= 0 (mod N),
then

N−1∑

t=0

ρ2(t)ej
2π
N �t = ρ2(0) +

N−1∑

t=1

ρ2(t)ej
2π
N �t

= 1 + 1

N2

(
N−1∑

t=0

ej
2π
N �t − ρ2(0)

)

= 1 + 1

N2
(0 − 1)

= 1 − 1

N2
. (70)
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Thus,

N−1∑

τ=0

|χ(�, τ)|2 =
{

1 + (N − 1) 1
N2 , � = 0

1 − 1
N2 , � �= 0.

Property 6 can then be proven as follows. The first case
is trivial and case two and three follow straightforwardly
from (18) and Property 2, respectively. The fourth case is
proven as follows. For a given � �= 0, Property 2 gives that
there exists one τ (τ ∈ {0, 1, . . . ,N−1}) for which |χ(� �=
0, τ )| = 0, since the linear congruence equation � + 2ατ ≡
0(mod N) has one solution τ when (4) holds. Thus, are N−1
values of τ where |χ(� �= 0, τ )| �= 0. From Lemma 5 and
Lemma 6, we then have (N− 1)|χ(� �= 0, τ )|2 = 1 − 1/N2

and we can solve for |χ(� �= 0, τ )| = √
(N + 1)/N.

APPENDIX C
AMBIGUITY FUNCTION WITH UPSAMPLING
Consider (6) with upsampling such that (Q/N) ∈ Z and

s[n] = 1√
Q

N−1∑

m=0

G[m]X[m]ej
2π
Q mn (71)

for n = 0, 1, . . . ,Q− 1. Using (71), (7) and (8), we obtain

χ(�, τ) = 1

Q

Q−1∑

n=0

s[n]s∗[n+ τ (mod Q)]ej
2π
Q �n

= 1

Q2

N−1∑

m=0

N−1∑

p=0

G[m]X[m]G∗[p]X∗[p]e−j
2π
Q pτ

×
Q−1∑

n=0

ej
2π
Q n(m−p+�) (72)

which holds for arbitrary �. For non-integer �, the inner
sum in (72) can be replaced by:

Q−1∑

n=0

ej
2π
Q n(m−p+�) = sin(π(m− p+ �))

sin
(

π(m−p+�)
Q

)

× ej
π(Q−1)(m−p+�)

Q (73)

For integer �, the inner sum can be replaced by Qδ[m −
p+ � (mod Q)] and we can proceed from (72) by

χ(�, τ) = 1

Q

N−1∑

p=0

G
[
p− � + rpQ

]
X
[
p− � + rpQ

]

× G∗[p]X∗[p]e−j
2π
Q pτ (74)

where rp ∈ Z. Furthermore, using (7) and (8), it follows that

G
[
p− � + rpQ

]
G∗[p] =

N−1∑

k=0

g[k]e−j
2π
N (p−�+rpQ)k

×
N−1∑

t=0

g∗[t]ej
2π
N pt

=
N−1∑

v=0

N−1∑

k=0

g[k]g∗[k + v]

× ej
2π
N pvej

2π
N �k

= N
N−1∑

v=0

χg(�, v)ej
2π
N pv (75)

and similarly

X
[
p− � + rpQ

]
X∗[p] = 1

N

N−1∑

k=0

x[k]e−j
2π
N (p−�+rpQ)k

×
N−1∑

t=0

x∗[t]ej
2π
N pt

=
N−1∑

w=0

χx(�,w)ej
2π
N pw. (76)

Therefore, by using (25), (74) can be written as:

χ(�, τ) = N

Q

N−1∑

v=0

χg(�, v)
N−1∑

w=0

χx(�,w)

×
N−1∑

p=0

e
j 2π
N p
(
v+w− N

Q τ
)

(77)

= N

Q

N−1∑

v=0

N−1∑

w=0

χg(�, v)χx(�,w)

×
sin
(
π
(
v+ w− N

Qτ
))

sin

(
π
(
v+w− N

Q τ
)

N

) ej
π(N−1)

(
v+w−N

Q τ
)

N . (78)

For the special case of Q = N, i.e., no upsampling, (59) can
be used to give Nδ[v + w − τ (mod N)] for the inner sum
in (77) such that

χ(�, τ) = N
∑N−1

v=0 χg(�, v)χx(�, τ − v). (79)

APPENDIX D
ALTERNATIVE DERIVATION OF PROPERTY 1
By using (3), it follows that

χg(�, τ) = 1

N

N−1∑

n=0

g[n]g∗[n+ τ (mod N)]ej
2π
N �n

= 1

N2
ej

2π
N

(
ατ 2+βτ

) N−1∑

n=0

ej
2π
N (2ατ+�)n

= 1

N
ej

2π
N

(
ατ 2+βτ

)
δ[2ατ + � (mod N)]. (80)

Furthermore, by definition it follows that

χx(�, τ) = 1

N

N−1∑

n=0

x[n]x∗[n+ τ (mod N)]ej
2π
N �n

= 1

N

N−1∑

n=0

x[n− τ (mod N)]x∗[n]ej
2π
N �(n−τ). (81)
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BERGGREN AND POPOVIĆ: JOINT RADAR AND COMMUNICATIONS

Let r ∈ Z be a solution to 2αv+ � = rN. Due to (4), there
exists one unique r when v = 0, 1, . . . ,N − 1. Thus, (81) is
non-zero only when v = (rN − �)/2α. The modulus AF is
obtained from (24) with (80) and (81) as

|χ(�, τ)| =
∣∣∣∣
N−1∑

v=0

δ[2αv+ � (mod N)]

× 1

N

N−1∑

n=0

x[n− τ + v (mod N)]x∗[n]ej
2π
N �(n−τ+v)

∣∣∣∣

=
∣∣∣∣

1

N

N−1∑

n=0

x

[
n− τ +

(
rN − �

2α

)
(mod N)

]

× x∗[n]ej
2π
N �n

∣∣∣∣. (82)

APPENDIX E
PROOFS FOR PROPERTY 7 - 8
A. PROOF FOR PROPERTY 7
Case 1 (u = 2α): Inserting xu[m] in (2) gives:

PAPR = max
0≤n≤N−1

∣∣∣∣∣
1√
N
e−j

2π
N

(
αn2+βn+γ

) N−1∑

m=0

ej
2π
N (α+2αn+β)m

∣∣∣∣∣

2

= max
0≤n≤N−1

∣∣∣∣∣
1√
N

N−1∑

m=0

ej
2π
N (α+2αn+β)m

∣∣∣∣∣

2

(83)

If α ∈ Z, then it follows from (5) that β ∈ Z, therefore
α + 2αn + β ∈ Z, since 2α ∈ Z. If α = p/2 for any odd
integer p, then there exists an odd integer q such that β = q/2
and α + β = (p + q)/2 ∈ Z, therefore α + 2αn + β ∈ Z.
Thus

1√
N

N−1∑

m=0

ej
2π
N (α+2αn+β)m =

{√
N, α + 2αn+ β ≡ 0 (mod N)

0, α + 2αn+ β ≡/ 0 (mod N)

(84)

and we obtain max0≤n≤N−1 |s[n]|2 = N, i.e., PAPR =
10 log10 N.
Case 2 (u �= 2α): Inserting xu[m] in (2) gives:

PAPR = max
0≤n≤N−1

∣∣∣∣∣

N−1∑

m=0

e−j
2π
N

(
(α− u

2 )m
2−( u2 +2αn+β)m

)
∣∣∣∣∣

2

(85)

Let us define a = α − u
2 , b = −( u2 + 2αn+ β) and

S =
∣∣∣∣∣

1√
N

N−1∑

m=0

e−j
2π
N

(
am2+bm)

∣∣∣∣∣

2

(86)

then PAPR = max0≤n≤N−1 S and:

S = 1

N

N−1∑

m=0

e−j
2π
N

(
am2+bm)

N−1∑

n=0

ej
2π
N

(
an2+bn)

= 1

N

N−1∑

m=0

N−1∑

n=0

e−j
2π
N (m−n)(a(n+m)+b)

= 1

N

N−1∑

m=0

N−1∑

n=0

e−j
2π
N

(
(m−n)2an−(m−n)2a+(m−n)b)

= 1

N

N−1∑

t=0

N−1∑

n=0

e−j
2π
N

(
t2an−t2a+tb)

= 1

N

N−1∑

t=0

(
N−1∑

n=0

e−j
2π
N t2an

)
e−j

2π
N

(−t2a+tb)

= 1

N
N (87)

The last step follows since t2a = t2α − tu ∈ Z, N is
a prime, gcd(u,N) = 1 and thus gcd(t2a,N) = 1 and
t2α (mod N) �= 0. Hence, the inner sum is equal to N when
t = 0. Therefore, max0≤n≤N−1 |s[n]|2 = 1 and PAPR = 0
dB.
The variable substitution t = m − n apply in the range

0 ≤ t ≤ N − 1 since
i) e−j 2π

N t2an

ii) e−j 2π
N (−t2a+tb)

have period of N. For i), it directly follows from that t2a =
t(2α − u) is an integer. For ii), it can be shown as follows,

e−j
2π
N

(−(t+N)2a+b(t+N)
)
= e−j

2π
N

(−t2a+bt)e−j2π(−Na−2ta+b)

= e−j
2π
N

(−t2a+bt)ej2π(Nα+β)

× ej2π2α(t+n)e−j2π u
2 (N+2t−1)

= e−j
2π
N

(−t2a+bt) (88)

where (5) and 2α ∈ Z are used, and since u
2 (N+2t−1) ∈ Z

for odd N.

B. PROOF FOR PROPERTY 8
Inserting xk[m] in (2) gives:

PAPR = max
0≤n≤N−1

∣∣∣∣∣

N−1∑

m=0

e−j
2π
N

(
αm2−(k+2αn+β)m

)
∣∣∣∣∣

2

(89)

Let us define a = α, b = −(k + 2αn+ β) and perform the
same steps as in Case 2 of the proof of Property 7. Thus

S = 1
N

∑N−1
t=0

(∑N−1
n=0 e

−j 2π
N t2an

)
e−j 2π

N

(−t2a+tb) (90)

and it follows straightforwardly that e−j2π(−Na−2ta+b) =
e−j2π(−Nα−β−2tα−k−2αn) = 1 due to (5), 2α ∈ Z, and k
and t being integers. Therefore, e−j 2π

N (−(t+N)2a+(t+N)b) =
e−j 2π

N (−t2a+tb)e−j2π(−Na−2ta+b) has a period of N and the
same substitution t = m−n in S is applicable. Hence, S = 1
and PAPR = 0 dB.

APPENDIX F
PROOFS FOR PROPERTY 9 - 14
A. PROOF FOR PROPERTY 9
By insertion of x[m] in (30) and using (59)

|χOFDM(� = 0, τ )| = 1

N

∣∣∣∣∣

N−1∑

m=0

x[m]x∗[m]e−j
2π
N τm

∣∣∣∣∣

=
{

0, τ �= 0
1, τ = 0.

(91)
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B. PROOF FOR PROPERTY 10
By insertion of xk[m] in (30) and using (59)

|χDFT-s-OFDM(�, τ = 0)| = 1

N

∣∣∣∣∣

N−1∑

m=0

x[m]x∗[m]ej
2π
N �m

∣∣∣∣∣

=
{

0, � �= 0
1, � = 0.

(92)

C. PROOF FOR PROPERTY 11
By insertion of xk[m] in (30) and (59)

|χOFDM(�, τ)| = 1

N

∣∣∣∣∣

N−1∑

m=0

e−j
2π
N τm

∣∣∣∣∣ =
{

0, τ �= 0
1, τ = 0.

(93)

D. PROOF FOR PROPERTY 12
By insertion of xk[m] in (32) and using (59)

|χDFT-s-OFDM(� = 0, τ )| = 1

N

∣∣∣∣∣

N−1∑

m=0

ej
2π
N �m

∣∣∣∣∣ =
{

0, � �= 0
1, � = 0.

(94)

E. PROOF FOR PROPERTY 13
By insertion of xu[m] in (30) and (59)

|χOFDM(�, τ)| = 1

N

∣∣∣∣
N−1∑

k=0

N−1∑

m=0

ej
π
N uk(k+1)e−j

π
N um(m+1)

× e−j
2π
N τm

N−1∑

n=0

ej
2π
N n(k−m+�)

∣∣∣∣

(a)= 1

N

∣∣∣∣
N−1∑

m=0

e−j
2π
N m(−u(rN−�)+τ)

∣∣∣∣

(b)=
{

0, τ + u� ≡/ 0 (mod N)

1, τ + u� ≡ 0 (mod N)
(95)

where (a) follows from that the inner sum is δ[k − m +
� (mod N)] which gives k = m − � + rN for r ∈ Z.
Step (b) follows from that the sum is δ[ − u(rN − �) +
τ (mod N)] = δ[u� + τ (mod N)].

F. PROOF FOR PROPERTY 14
By insertion of xu[m] in (32) and (59)

|χDFT-s-OFDM(� = 0, τ )| = 1

N

∣∣∣∣∣

N−1∑

m=0

ej
2π
N m(�−τu)

∣∣∣∣∣ (96)

=
{

0, � − τu ≡/ 0 (mod N)

1, � − τu ≡ 0 (mod N).
(97)
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