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ABSTRACT This paper considers the problem of symbol detection in massive multiple-input multiple-
output (MIMO) wireless communication systems. We consider hard-thresholding preceded by two variants
of the regularized least squares (RLS) decoder; namely the unconstrained RLS and the RLS with a
box constraint, which is called Box-RLS. For all schemes, we focus on the evaluation of the mean
squared error (MSE) and the symbol error probability (SEP) for M-ary pulse amplitude modulation (M-
PAM) symbols transmitted over a massive MIMO system when the channel is estimated using linear
minimum mean squared error (LMMSE) estimator. Under such circumstances, the channel estimation
error is Gaussian which allows for the use of the convex Gaussian min-max theorem (CGMT) to derive
asymptotic approximations for the MSE and SEP when the system dimensions and the coherence duration
grow large with the same pace. The obtained expressions are then leveraged to derive the optimal power
distribution between pilot and data under a total transmit energy constraint. In addition, we derive an
asymptotic approximation of the goodput for all schemes which is then used to jointly optimize the
number of training symbols and their associated power. Numerical results are presented to support the
accuracy of the theoretical results.

INDEX TERMS Resource allocation, channel estimation, mean squared error, symbol error probability,
goodput, constrained least squares.

I. INTRODUCTION

THE USE of multiple-input multiple-output (MIMO)
systems has been recognized as an efficient technology

to meet the ever-increasing demand in spectral efficiency. It
is indeed known since the early works of Telatar [2] and
Foshini [3] that the mutual information scales with the min-
imum of the number of transmit and receive antennas. In
practice, however, the spectral efficiency of a wireless link
depends not only on how many antennas are deployed at the
transmit and receive sides but also on the channel estimation
accuracy, the detection procedure as well as the distribution

of the power resources, all of which have a direct bearing
on the end-to-end signal-to-noise-ratio. At the receiver side,
accurate channel estimation and symbol detection are cru-
cial to reap the gains promised by the additional degrees of
freedom offered by MIMO systems. Channel estimation is
performed by allocating a training period during which the
transmitter sends known pilot symbols to the receiver for
it to acquire an estimate of the channel state information
(CSI) [4], [5]. During the data transmission phase, this esti-
mate is leveraged by the receiver to equalize the channel and
recover the data symbols. It is worth mentioning that it is
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important for the success of the data recovery step to acquire
accurate channel estimates because otherwise the error in the
channel estimation would propagate to the symbol recovery,
crippling the overall performance even under state-of-the-art
detection strategies. Resource allocation in terms of power
and time is also an essential part of the design of wire-
less systems. Increasing the duration of the transmitted pilot
sequence would lead to enhanced channel estimation quality
but at the cost of spectral efficiency losses since less time is
spent to transmit useful data. Moreover, as the total power
allocated to data and training transmission is fixed, we can-
not increase the power allocated to data without affecting
the channel accuracy estimation and vice versa.
The problem of finding the optimal power allocation

between pilot and data has received a lot of attention over
the last decades. It has been applied to different contexts
with the aim of realizing various communication objectives.
In [4], [6] and [7], the authors proposed power designs
that optimizes bounds on the average channel capacity.
A different line of research works in [8], [9], [10], [11]
considered the post-equalization signal to interference and
noise ratio as a target metric to determine the optimal
power allocation. Depending on the application at hand,
different other metrics such as the bit error rate (BER)
[12], [13], the symbol error rate (SER) [14], mean squared
error (MSE)-related indexes [15], [16], max-min fairness
utilities [17], energy and spectral efficiency [18], [19], or
bounds on the received signal-to-noise ratio (SNR) [20]
have been used in several existing papers. In [21], the
optimal power allocation of a non-orthogonal multiple
access (NOMA)-enabled device-to-device communication
was proposed as a sum data rate maximization problem.
In addition, the works in [22] and [23] considered power
allocation problem for a cooperative THz MIMO-NOMA
system, and a wireless-powered full-duplex cooperative
NOMA system, respectively. Moreover, following the recent
advances in deep learning/reinforcement learning, various
power allocation schemes have been proposed, such as in
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33]. Of
interest in these works are a wide range of contexts
including classical MIMO systems [4], mutli-carrier systems
[34], [35], [36], [37], [38], [39], amplify-and-forward relay-
ing [12], cognitive radio systems [40] and very recently mas-
sive MIMO systems in both single-cell [41] and multi-user
multi-cell settings [15], [17], [42], [43], [44], [45].
Most of the aforementioned works, despite looking at

the power allocation problem from different angles, present
the common denominator of relying on linear receivers and
optimizing some related performance metrics. To achieve
optimal performance, it is well known that non-linear detec-
tors are required, but they are often not implemented as
they require a prohibitively high computation complexity.
In this work, we consider optimization of the power allo-
cation of a non-linear decoder coined Box-regularized least
squares (Box-RLS) decoder, the idea behind which has been
proposed in [46], [47] and earlier in [48]. As explained in [48],

this decoder is rooted in the formulation of the maximum-
likelihood (ML) problem. At the one hand, the ML decoder is
known to beNP-hard since its solution is constrained to belong
to a finite discrete set, at the other hand, the least squares
(LS) decoder or its regularized version referred to as regu-
larized least squares (RLS) decoder [49] are linear decoders,
obtained by solving the unconstrained ML problem. The Box-
RLS decoder falls between the ML and the RLS decoders in
that the solution is constrained to lie within a closed convex
set. As a consequence, unlike the RLS decoder, the solu-
tion of the Box-RLS cannot be expressed in closed-form but
is numerically computed using standard convex-optimization
tools. Both the RLS and Box-RLS decoders are more com-
putationally efficient than the ML decoder. Besides they are
also shown to outperform many heuristic algorithms such as
zero-forcing (ZF), successive interference cancellation and
decision-feedback [46], [47], [48]. Performance analysis of
the Box-RLS has been carried out in [46], [47], [50] but these
studies assume unrealistic scenarios in which the channel is
perfectly known. This lies behind the main motivation of this
work. More specifically, to the best of our knowledge, this
work is the first to account for the impact of channel estima-
tion error in the study of Box-RLS decoders. Underlying our
consideration of imperfect channel knowledge is the ques-
tion of how to share available power between training and
data transmissions under a fixed power budget. We show
how our analysis can lead to addressing this question. More
specifically, assuming a linear minimum mean square error
estimator for channel estimation, we derive sharp approxi-
mations of several performance metrics of interest ranging
from MSE, symbol error probability (SEP) to goodput for
the RLS and Box-RLS decoders used to recover M-ary pulse
amplitude modulation (M-PAM) signaling by applying hard-
thresholding on their outputs. Our analysis, based on the
assumption that the MIMO channel and the noise are inde-
pendent and follow standard Gaussian distributions, builds
upon the CGMT framework put forth in [51], [52], [53]. As
compared to previous works dealing with the use of CGMT in
high-dimensional regression problems, our consideration of
imperfect CSI poses technical challenges towards assessing
the performance of the Box-RLS. Particularly, contrary to
previous studies, the application of the CGMT in the asymp-
totic regime leads to a non-convex optimization problem; the
uniqueness of its solution which is an important step in the
analysis becomes thus extremely challenging. This required us
to develop new techniques to break these difficulties, which
while being accommodated to this specific scenario, may
be of independent interest. We refer the interested reader to
Appendix B devoted to the detailed proofs of our main results.
To summarize, the main contributions of this work can be

listed as follows:
1) We derive sharp characterizations of the MSE, SEP

and goodput expressions for the RLS, LS and Box-
RLS under imperfect CSI. Our expressions shed light
on interesting relationships between MSE and SEP for
M-PAM modulation and under imperfect CSI.

2052 VOLUME 3, 2022



2) We determine the optimal power allocation between
training and data symbols when SEP or MSE are used
as target criteria.

3) We optimize the power and the number of pilot
symbols to maximize the goodput for all studied
decoders.

To the best of our knowledge, none of the above was
previously derived for the M-PAM case in the presence of
imperfect CSI.

A. PAPER ORGANIZATION
This paper is organized as follows. The system model is
presented in Section II. In Section III, we discuss channel
estimation, the properties of the estimator and the channel
estimation error, as well as symbol estimation. The MSE/SEP
of symbol estimation is derived in Section IV by applying
the CGMT. These expressions are then validated through an
assortment of numerical results and leveraged to find optimal
power strategies in Section V. The key ingredient of the
analysis which is the CGMT is reviewed in Appendix A.
The proofs for the derived MSE and SEP are presented
in Appendix B and Appendix C for the Boxed RLS and
un-boxed RLS, respectively.

B. NOTATIONS
Scalars are denoted by lower-case letters (e.g., α), col-
umn vectors are represented by boldface lowercase letters
(e.g., x), whereas matrices are denoted by boldface upper-
case letters (e.g., X). The notations (·)T and (·)−1 denote
the transpose and inversion operators, respectively. The j-th
element of vector x will be denoted by xj. The symbol IN
is used to represent the identity matrix of dimension N×N.
We use the standard notation P[ · ] and E[ · ] to denote
probability and expectation. We write X ∼ pX to denote
that a random variable X has a probability density function
(pdf) pX . In particular, G ∼ N (μ, σ 2) implies that G has a
Gaussian (normal) distribution of mean μ and variance σ 2.

Furthermore, p(x) = 1√
2π
e

−x2
2 and Q(x) = 1√

2π

∫∞
x e−t2/2dt

denote the pdf of a standard normal distribution and its asso-
ciated Q-function, respectively. Finally, ‖ · ‖ indicates the
Euclidean norm (i.e., the �2-norm) of a vector and ‖ · ‖∞
represents its �∞-norm.1

II. SYSTEM MODEL
We consider a flat block-fading massive MIMO
system [54], [55] with K transmitter antennas and N
receiver antennas. The transmission consists of T symbols
that occur in a time interval within which the channel
is assumed to be static. A number Tp pilot symbols (for
channel estimation) occupy the first part of the transmission
interval with power, ρp. The remaining part is devoted
for transmitting Td = T − Tp data symbols with power,

1. For a vector x, ‖x‖∞ = maxj |xj|.

FIGURE 1. A massive MIMO system with a training-based transmission. Here, Tx is
the transmitter and Rx is the receiver.

ρd. Figure 1 illustrates the system model. It implies from
conservation of time and energy that:

ρpTp + ρdTd = ρT, (1)

where ρ is the expected average power. Alternatively, we
have

ρdTd = αρT, (2)

where α ∈ (0, 1) is the ratio of the energy allocated to the
data, so that ρpTp = (1 − α)ρT. The received signal model
for the data transmission phase is given by

y =
√
ρd

K
Hx0 + z, (3)

where y ∈ R
N is the received data symbol vector, x0 ∈

R
K is the transmitted data symbol vector, H ∈ R

N×K is a
channel matrix with i.i.d. Gaussian elements hij ∼ N (0, 1),
and z ∈ R

N stands for the additive Gaussian noise at the
receiver with i.i.d. elements of mean 0 and variance 1. It is
assumed that x0 has i.i.d. M-PAM symbols normalized to
have unit variance (E[x0xT0 ] = IK), such that each transmit
antenna sends a data symbol x0,j that takes values (with
equal probability 1/M) in the set:

x0,j ∈ C :=
{

± 1√E ,±
3√E , . . . ,±

(M − 1)√E

}

,

j = 1, 2, . . . ,K, (4)

where E = M2−1
3 is the average power of the non-normalized

M-PAM signal, M = 2b being the modulation order and b
the number of bits carried by each symbol.
As the channel matrix H is unknown to the receiver, a

training phase during which the transmitter sends Tp ≥ K
pilot symbols is dedicated. The received signals correspond-
ing to this phase can be modeled as

Yp =
√
ρp

K
HXp + Zp, (5)

where Yp ∈ R
N×Tp is the received signal matrix, Xp ∈

R
K×Tp is the matrix of transmitted pilot symbols, and
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TABLE 1. Summary of main variables.

Zp ∈ R
N×Tp stands for the additive Gaussian noise with

E[ZpZTp ] = TpIN .
For the reader convenience, we summarize in Table 1 the

notation symbols of the parameters used in this paper.
Beyond point-to-point communications: As an important

note, we would like to mention that our results can be applied
to studying the performance of uplink transmissions between
multiple users and a base station (BS). In this case, both the
BS and the users are perfectly synchronized: during pilot
transmission, users send orthogonal pilot sequences; then the
BS estimates the users’ channels to use them later to decode
the signals stemming from all users during data transmission.

III. MIMO SYMBOLS DETECTION UNDER LMMSE
CHANNEL ESTIMATION
A. LMMSE CHANNEL ESTIMATION
Based on the knowledge of Yp from (5), the LMMSE channel
estimate is given by [56]

Ĥ =
√
K

ρp
YpXT

p

(
K

ρp
IK + XpXT

p

)−1

,

= H − �, (6)

where � is the zero-mean channel estimation error matrix,
which is independent of Ĥ, as per the orthogonality principle
of the LMMSE estimation [4], [56]. For MIMO channels
with i.i.d. entries, it has been proved that the optimal Xp

that minimizes the estimation mean squared error under a
total power constraint satifies [4]

XpXT
p = TpIK . (7)

For the above condition to hold, the number of training
symbols should be greater than or equal to K. Moreover,
under (7), the channel estimate Ĥ has i.i.d. zero-mean
Gaussian entries with mean 0 and variance σ 2

Ĥ
= 1−σ 2

� [4],
with

σ 2
� = 1

1 + ρp
K Tp

, (8)

being the variance of each element in �. It appears from (8)
that channel estimation error decreases with the pilot energy
given by ρpTp.

B. SYMBOL DETECTION UNDER IMPERFECT CHANNEL
ESTIMATION
With the channel estimate Ĥ at hand, the receiver can pro-
ceed to the recovery of the transmitted symbols. The optimal
decoder which minimizes the probability of error is the
maximum likelihood (ML) decoder under perfect channel
knowledge which is given by:

x̂ML = arg min
x∈CK

∥
∥
∥
∥y −

√
ρd

K
Hx

∥
∥
∥
∥

2

. (9)

As can be seen, the ML decoder involves a combinato-
rial optimization problem. It presents thus a prohibitively
high computational complexity, especially when the system
dimensions become large as envisioned by current com-
munication systems. To overcome this issue, suboptimal
strategies that require less computational complexity are in
general used. Among these strategies are linear decoders that
relax the discrete set constraint used in ML detection. They
often proceed in two steps. First, a real-valued approxima-
tion of the transmitted symbol is obtained. This estimate is
then hard-thresholded in a second step to produce the final
estimate.
One of the simplest and commonly used linear decoders

in massive MIMO systems is the LS decoder, which relaxes
the discrete-alphabet constraint on x to R

K , i.e.,

x̂LS = argmin
x∈RK

∥
∥
∥
∥y −

√
ρd

K
Hx

∥
∥
∥
∥

2

. (10)

However, the LS solution is known for its sensitivity to
perturbations of the measurements vector y or the chan-
nel matrix H. This sensitivity is manifested by a significant
variation of the solution upon any small perturbation of the
measurement vector due to noise or imperfect knowledge
of the channel matrix H. To overcome these limitations,
one frequently used approach is to use regularization tech-
niques. The most common form of regularization is Tikhonov
regularization [49], which is also known as RLS or ridge
regression. In this work, we are interested in the study of two
regularization-based decoders, namely RLS and Box-RLS
decoders.
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The RLS decoder is based on regularizing the cost in (9)
and relaxing the finite-alphabet constraint, thus leading to:

x̂ = argmin
x∈RK

∥
∥
∥
∥y −

√
ρd

K
Ĥx

∥
∥
∥
∥

2

+ λρd‖x‖2, (11a)

=
(
ATA + λρdIK

)−1
ATy, (11b)

x∗j = argmin
s∈C

∣
∣
∣
∣
x̂j
B

− s

∣
∣
∣
∣, j = 1, 2, . . . ,K, (11c)

where λ ≥ 0 is the regularization coefficient, A =
√
ρd
K Ĥ

and B is a normalization constant, the value of which will be
suggested from our analysis so as to remove the bias of the
decoder [57]. 2 Note that the optimization in (11c) simply
selects the symbol value s that is closest to the solution
x̂j
B among a total of M possible choices. As can be seen
from (11b), the elements of the solution x̂ may take large
values in high-noise conditions or poor channel estimation
scenarios. This motivates the Box-RLS decoder [48], [58],
[59] given by

x̂ = argmin
‖x‖∞≤t

∥
∥
∥
∥y −

√
ρd

K
Ĥx

∥
∥
∥
∥

2

+ λρd‖x‖2, (12a)

x∗j = argmin
s∈C

∣
∣
∣
∣
x̂j
B

− s

∣
∣
∣
∣, j = 1, 2, . . . ,K, (12b)

which is based on relaxing the finite-alphabet constraint to
the convex constraint x ∈ [−t, t]K , where t > 0 is a fixed
threshold that can be optimally tailored according to the
propagation scenario.

COMPUTATIONAL COMPLEXITY

Although the Box-RLS decoder does not possess an explicit
formulation, it shares the same computational complexity
cost as the RLS decoder. Indeed, both decoders rely on
solving quadratic programs, which can be solved with a
cubic complexity of K, that is O(K3). For the Box-RLS
decoder, the underlying quadratic program can be solved
using iterative methods such as the alternating direction
method of multipliers (ADMM) algorithm. On the other
hand, computing the explicit formulation of the RLS decoder
requires inverting a matrix, an operation presenting similarly
a cubic complexity.

C. PERFORMANCE METRICS
This work considers the performance evaluation of the
RLS and the Box-RLS decoders in terms of three different
performance metrics, which are:
Mean Squared Error: A natural and heavily used measure

of performance is the reconstruction mean squared error
(MSE), which measures the deviation of x̂ from the true

2. It follows from our analysis that x̂j behaves as B x0,j plus some
independent Gaussian noise, where B is some constant depending on the
regularization factor, the data and channel estimation powers. It is thus
sensible to divide x̂j by B to remove the induced bias.

signal x0. This assesses the performance of the first step of
the decoding algorithms. Formally, the MSE is defined as

MSE := 1

K
‖̂x − x0‖2. (13)

Symbol Error Probability: The symbol error rate (SER)
characterizes the performance of the detection process and
is defined as:

SER := 1

K

K∑

j=1

1{
x∗j 	=x0,j

}, (14)

where 1{·} indicates the indicator function.
In relation to the SER is the symbol error probability (SEP)

which is defined as the expectation of the SER averaged over
the noise, the channel and the constellation. Formally, the
symbol error probability denoted by SEP is given by:

SEP := E[SER] = 1

K

K∑

j=1

P

[
x∗j 	= x0,j

]
. (15)

Goodput: The goodput is a performance measure that
accounts for the amount of useful data transmitted, divided
by the time it takes to successfully transmit it. The amount
of data considered excludes protocol overhead bits as well
as retransmitted data packets [60]. In our context, it can be
defined as

G :=
(
T − Tp
T

)

(1 − SEP). (16)

Goodput and throughput are connected performance parame-
ters in that the throughput can be obtained by simply dividing
the goodput by the data transmission rate.

IV. ANALYSIS OF THE MEAN SQUARED ERROR (MSE)
AND SYMBOL-ERROR PROBABILITY (SEP)
In this section, we derive asymptotic expressions of the MSE
and SEP for the RLS and Box-RLS decoders. Particularly,
we show that these metrics can be approximated by deter-
ministic quantities that involve the power and time devoted
for data and training transmissions. Our analysis builds upon
the CGMT framework. For the RLS decoder, the same results
could have been obtained using tools from random matrix
theory as the decoder possesses a closed-form expression.
However, since the use of the CGMT framework is more
adapted to the Box-RLS decoder that cannot be expressed in
closed-form, we rely in this work on the CGMT framework
for both decoders for the sake of a unified presentation.
Prior to stating our main results, we shall introduce the

following assumptions which describe the considered growth
rate regime:

A. TECHNICAL ASSUMPTIONS
Assumption 1: We consider the asymptotic regime in which
the system dimensions K and N grow simultaneously to
infinity at a fixed ratio

δ := N

K
∈ (0,∞).
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Assumption 2: We assume a fixed normalized coherence
interval

τ := T

K
∈ (1,∞).

and that the pilot and data symbols grow proportionally with
K, where:

τp := Tp
K

∈ [1,∞),

and

τd := Td
K
,

are fixed and denote the normalized number of pilot and
data symbols, respectively.
In the sequel, we leverage the statistical distribution of the

channel and the channel estimate as well as the asymptotic
regime specified in Assumption 1 and 2 to provide asymp-
totic approximations of the MSE and SEP for RLS and
Box-RLS. We use the standard notation plimn→∞ Xn = X
to denote that a sequence of random variables Xn converges
in probability towards a constant X.

B. MSE AND SEP ANALYSIS FOR RLS
We provide herein asymptotic approximations of the MSE
and SEP for RLS under imperfect channel state information.
The derived closed form expressions are given in Theorem 1,
and Theorem 2 while the proof is given in Appendix C.
Theorem 1 (MSE for RLS): Fix λ > 0, δ > 0, and let x̂

be a minimizer of the RLS problem in (11a). Define

ϒ(λ, δ) =
−
(

δ − λ

σ 2
Ĥ

− 1

)

+
√(

δ − λ

σ 2
Ĥ

− 1

)2

+ 4 λ

σ 2
Ĥ

δ

2δ
,

and

θ
 =

√√
√
√
√
ρdσ

2
Ĥ

(
ϒ(λ,δ)

1+ϒ(λ,δ)
)2 + ρdσ

2
� + 1

δ − 1
(1+ϒ(λ,δ))2

.

Then, under Assumption 1 and Assumption 2, it holds:

plim
K→∞

MSE = 1

ρdσ
2
Ĥ

(
δθ2

 − ρdσ

2
� − 1

)
. (17)

Proof: The proof of Theorem 1 is given in Appendix C.
It is worth mentioning that the above formula is not

restricted to x0 belonging to M-PAM constellation and
is valid for x0 from any distribution provided that x0 is
normalized to have unit-variance. However, assuming that
x0 is drawn from M-PAM constellations, the SEP can be
approximated as:
Theorem 2 (SEP of RLS): Under the same setting of

Theorem 1, the SEP under M-PAM modulation of the RLS
decoder employing the normalization constant

B =
σ 2
Ĥ
β

θ


σ 2
Ĥ
β

θ


+ 2λ
,

FIGURE 2. MSE performance of both RLS and Box-RLS decoders.

FIGURE 3. Symbol error probability of the RLS and Box-RLS decoders.

with β
 = 2λθ

σ 2
Ĥ
ϒ(λ,δ)

, converges to:

plim
K→∞

SEP = S̃EPRLS, (18)

where

S̃EPRLS = 2

(

1 − 1

M

)

Q

⎛

⎝

√
ρdσ

2
Ĥ√Eθ


⎞

⎠. (19)

where θ
 is as defined in Theorem 1.
Proof: A sketch of the proof is provided in Appendix C.
Before proceeding further, we validate the approximations

provided in Theorem 1 and Theorem 2. To this end, we
report in Figure 2 and 3 the MSE and SEP for the RLS
decoder when K = 400, δ = 1.2,Tp = 456,T = 1000,
α = 0.5 and M = 2 (corresponding to Binary Phase Shift
Keying (BPSK) modulation), as a function of the average
power ρ. As seen, the simulation results, averaged over 500
realizations of the channel, show a perfect agreement with
the theoretical results.
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Corollary 1 (Optimal Regularization Coefficient for RLS
in MSE and SEP Senses): Let λ
 denote the optimal regular-
ization coefficient that minimizes the limit in (17) or in (18).
Then,

λ
 = 1

ρd
+ σ 2

�. (20)

Proof: Note that in both (17) and (18), the regulariza-
tion coefficient λ appears through θ
 only. Then, λ
 =
argminλ≥0θ
. Taking the derivative of θ
 with respect to
λ, setting it to zero and solving completes the proof of the
corollary.
Remark 1: It is worth mentioning that the optimal regu-

larization coefficient in (20) minimizes both the MSE and
SEP. Moreover, it can be written in terms of the so called

effective SNR of the system [4] as λ
 = σ 2
Ĥ
ρeff

, where

ρeff :=
ρdσ

2
Ĥ

1 + ρdσ
2
�

. (21)

Remark 2: In Appendix H, we show that the RLS detector
with optimal regularization coefficient is equivalent to the
LMMSE detector. The later is known by definition to mini-
mize the MSE, but it turns out according to Corollary 1 that it
also minimizes the asymptotic SEP among all other choices
of λ. In the perfect CSI case, σ 2

� = 0, hence the optimal
regularization coefficient becomes λ
 = 1

ρd
which is clearly

equivalent to the LMMSE decoder. This shows that in both
perfect and imperfect settings, the RLS with optimal regular-
ization coefficient turns out to be the LMMSE detector. Such
a finding is appealing due to the fundamental importance of
the LMMSE decoder in many applications.

C. MSE AND SEP ANALYSIS FOR BOX-RLS
In this section, we study the asymptotic performance of the
Box-RLS decoder in terms of the MSE and SEP. We first
present the MSE result in the following theorem.
Theorem 3 (MSE of Box-RLS): Fix λ > 0, δ > 0, and let

x̂ be a minimizer of the Box-RLS problem in (12a). Let β

and θ
 be the unique solutions in β and θ to the following
max-min problem:

sup
β>0

min
θ≥0

D(θ, β) := βδθ

2
+ β

2θ
(1 + ρd)− β2

4

+ 1

M

∑

i=±1,±3,...,±(M−1)

�(θ, β; i), (22)

with

�(θ, β; i) := t(ciQ(−�i)+ diQ(μi))

− β

√
ρdσ

2
Ĥ
t(p(�i)+ p(μi))

− β2

2ρdσ 2
Ĥ
β
θ

+ 4λρd

∫ μi

�i

(
ρdσ

2
Ĥ
i

√Eθ +
√
ρdσ

2
Ĥ
h

)2

p(h)dh,

(23)

where �i = −t(
√
ρdσ

2
Ĥ

θ
+ 2λρd√

ρdσ
2
Ĥ
β
)−

√
ρdσ

2
Ĥ
i

θ
√E , μi = t(

√
ρdσ

2
Ĥ

θ
+

2λρd√
ρdσ

2
Ĥ
β
) −

√
ρdσ

2
Ĥ
i

θ
√E , ci = −β

√
ρdσ

2
Ĥ

2 �i + βρdσ
2
Ĥ
i

2θ
√E , di =

β
√
ρdσ

2
Ĥ

2 μi − βρdσ
2
Ĥ
i

2θ
√E , and p(x) = 1√

2π
e

−x2
2 . Then, under

Assumption 1 and Assumption 2, it holds:

plim
K→∞

MSE = 1

ρdσ
2
Ĥ

(
δθ2

 − ρdσ

2
� − 1

)
, (24)

Proof: The proof of this theorem is deferred to
Appendix B.
Remark 3: Theorem 3 is the key result of this paper, from

which all other findings concerning the Box-RLS decoder
have been derived. A crucial step in the proof of this theorem
is to find the deterministic max-min problem in (22) which
involves only the two scalar variables β and θ . As shown
by our analysis, it has a unique solution and its optimal
cost corresponds to the asymptotic limit of the optimal
cost of problem (12a) when scaled by 1/K. While for the
RLS decoder analyzed in Theorem 1, the asymptotically
equivalent problem can be simplified to yield a closed-form
expression for θ
, the solution in the variable θ and β does
not have an explicit form.
Remark 4: It is worth mentioning that contrary to

previous works based on the framework of the CGMT, the
optimization problem in (22) which resulted from the asymp-
totic analysis is not convex-concave in the variables θ and
β. Indeed, it is concave in β but not convex in θ . This poses
a major challenge to prove the uniqueness of the solutions
in θ of (22), which is a crucial step that is required to ensure
convergence results. The reader can refer to Appendix B for
more details of the technical arguments developed to show
the uniqueness of the solutions in (22).
Remark 5: If the optimal values θ
 and β
 are strictly pos-

itive, then they satisfy the following first-order stationarity

S̃EP Box-RLS = 4

M

∑

i=1,3,...,M−3

1{ t
B≥ i+1√E

}Q

⎛

⎝

√
ρdσ

2
Ĥ√Eθ


⎞

⎠+ 2

M

∑

i=1,3,...,M−3

⎧
⎨

⎩
1{ i−1√E ≤ t

B≤ i+1√E
}Q

⎛

⎝

√
ρdσ

2
Ĥ√Eθ


⎞

⎠+ 1{ t
B≤ i−1√E

}

⎫
⎬

⎭

+ 2

M
1{ t

B≥M−2√E
}Q

⎛

⎝

√
ρdσ

2
Ĥ√Eθ


⎞

⎠+ 2

M
1{ t

B≤M−2√E
} (25)
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conditions:
∂D(θ, β)

∂θ
= 0,

∂D(θ, β)

∂β
= 0,

which can be exploited in practice to facilitate their numer-
ical evaluation.
The following theorem provides the asymptotic expression

of the SEP for the Box-RLS decoder.
Theorem 4 (SEP for Box-RLS): Under the same set-

tings of Theorem 3, assuming that the Box-RLS decoder

uses a normalization constant given by B = σ 2
Ĥ
β

θ


σ 2
Ĥ
β

θ


+2λ

where β
 is the solution to (22) in β, and that
t /∈ { Bi√E , i = 1, 3, . . . ,M − 1}, it holds that:

plim
K→∞

SEP = S̃EP Box-RLS,

where S̃EP Box-RLS is given in (25).
If t ≥ M−1√E , then S̃EP Box-RLS is simplified to:

S̃EP Box-RLS = 2

(

1 − 1

M

)

Q

⎛

⎝

√
ρdσ

2
Ĥ√Eθ


⎞

⎠. (26)

Proof: The proof of Theorem 4 is also based on the CGMT
framework and is given in Appendix B.
Remark 6: Figure 2 and Figure 3 reveal a perfect match

between the analytical expressions of MSE and SEP given by
Theorem 3 and Theorem 4 and the numerical simulations. It
also shows that the Box-RLS outperforms the ordinary RLS.
Figure 2 also suggests that as M increases, the performance
of the Box-RLS approaches that of the un-boxed RLS. This
is because in this figure t = M−1√E and as such as M → ∞,
the box-constraint [−t, t] tends to (−∞,∞) which is the
whole real line R, thereby reducing the Box-RLS to the
RLS.
Remark 7: It should be noted that when t ≥ M−1√E , the

MSE and SEP expressions take the same form as in the
RLS case, with the single difference that θ
 and β
 do not
admit a closed-form expression. Moreover, as for the RLS,
the optimal regularization coefficient for Box-RLS is given
by λ
 = argminλ≥0θ
, since λ appears in the expressions
for the MSE and SEP only through θ
. However, in contrast
to the RLS, the optimal regularization coefficient cannot be
obtained in closed-form, but could be retrieved by invoking
any bisection algorithm. Moreover, as opposed to the RLS,
its value depends on M.
Remark 8: Figure 4 plots the optimal regularization coef-

ficient computed using a bisection algorithm as a function of
ρd for RLS and Box-RLS for different values of M. As a first
observation, we note that the optimal regularization coeffi-
cient for Box-RLS becomes zero starting from moderate
values of ρd. Moreover, the Box-RLS needs less regulariza-
tion, due to its achieved improvement over the RLS. On the
other hand, in low SNR regions corresponding to low ρd

FIGURE 4. Optimal regularization coefficient λ� as a function of the data power. We
used δ = 1.2, K = 400, α = 0.5, Tp = 400, and T = 1000.

FIGURE 5. The optimal normalized box-threshold
√Et� as a function the data

power. We used δ = 1.2, K = 400, Tp = 400, α = 0.5, and T = 1000.

values, the optimal regularization coefficient for both RLS
and Box-RLS are higher than 1

ρd
which coincides with the

optimal regularization coefficient in the perfect CSI case.
This can be explained by the fact, under imperfect CSI cases,
more regularization is needed in low SNR regions, because
of the degradation caused by channel estimation errors.
Remark 9: Similar to the regularization coefficient, we

can set the threshold t to the optimal value that minimizes
the MSE and SEP expressions, that is t
 = argmint>0θ
.
Figure 5 shows the optimal box-threshold as a function of
ρd when the regularization coefficient is already optimized
as well. As can be seen, for practical SNR regions, the
optimal threshold coincides with M−1√E , which is the max-
imum value of x0. For this reason, we will use in the
subsequent simulations this value for the threshold t.
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V. OPTIMAL DATA POWER ALLOCATION AND OPTIMAL
TRAINING DURATION ALLOCATION
In this section, we leverage the asymptotic expressions of
the MSE and SEP derived thus far for the RLS and Box-
RLS to determine the optimal power distribution between
the training and data symbols. Particularly, we show that for
all considered decoders, the optimal allocation schemes boils
down to maximizing the effective SNR of the system ρeff
defined in (21). Additionally, we derive for each decoder
the asymptotic expression of the goodput and derive the
optimal fraction of power allocated to the pilot transmission
as well as the training duration (i.e., (τp, α) that maximizes
the goodput). In this respect, we illustrate that, while the
optimal power allocation remains to be the one that max-
imizes the effective SNR, the optimal number of training
symbols coincides with the number of transmitting antennas
K, which is also the minimum number of training symbols
that needs to be employed to satisfy orthogonality between
pilot sequences.

A. SIMPLIFYING THE DECODERS’ EXPRESSIONS
1) LS DECODER

To begin with, we consider first the LS decoder for which
λ = 0 and δ > 1. Hence, from (17), ϒ(0, δ) = 0, and as
such:

θ
 =
√
ρdσ

2
� + 1

δ − 1
,

The MSE limit in (17) reduces thus to

M̃SELS := plim
K→∞

MSELS = δ
(
ρdσ

2
� + 1

)

(δ − 1)ρdσ 2
Ĥ

− ρdσ
2
� + 1

ρdσ
2
Ĥ

= δ

(δ − 1)ρeff
− 1

ρeff

= 1

(δ − 1)ρeff
, (27)

where ρeff is the effective SNR defined in (21). The result
in (27) recovers the well-known formula of the MSE of LS
with the difference being that ρd which stands for the SNR
in the perfect CSI case is replaced by ρeff. Similarly, for
δ > 1, and from (18), the SEP of the LS decoder can also
be expressed in terms of ρeff as follows

plim
K→∞

SEPLS = 2

(

1 − 1

M

)

Q

(√
(δ − 1)

E ρeff

)

= 2

(

1 − 1

M

)

Q

(√
1

E · M̃SELS

)

. (28)

Again, the first equation in (28) parallels the well-known
result for the LS and BPSK signaling but under perfect
CSI [61], (in which case the BER converges in probability
to BERLS = Q(

√
(δ − 1)ρd)) in that it takes the same form

with ρeff replacing ρd. Hence, our result generalizes [61] to
encompass M-PAM modulation and imperfect CSI scenarios.

2) RLS DECODER

We proceed now with the RLS decoder. The MSE expression
in (17) can also be written in terms of ρeff as

M̃SERLS := plim
K→∞

MSERLS = δθ2



ρdσ
2
Ĥ

− 1

ρeff
, (29)

from which it follows that
ρdσ

2
Ĥ

θ2



= δ

M̃SERLS+ 1
ρeff

. This yields

the following interesting relationship between the MSE and
SEP for the RLS decoder:

S̃EP RLS := plim
K→∞

SEPRLS

= 2

(

1 − 1

M

)

Q

⎛

⎜
⎝

√√
√
√

δ

E ·
(
M̃SERLS + 1

ρeff

)

⎞

⎟
⎠. (30)

Such an expression holds for any λ > 0, and not necessarily

λ
. But when λ = λ
, with λ
 = σ 2
Ĥ
ρeff

, we obtain after
some algebraic manipulations the following expression for
the MSE:

plim
K→∞

MSERLS = 1

2

⎛

⎝−
(

δ − 1 + 1

ρeff

)

+
√(

δ − 1 + 1

ρeff

)2

+ 4

ρeff

⎞

⎠. (31)

Note that in the perfect CSI case for which the optimal
regularization coefficient is 1

ρd
, the right-hand side of (31) is

exactly the minimum mean squared error (MMSE) estimator
(see [62, Th. 8]), where ρeff is replaced by ρd.

3) BOX-RLS DECODER

In a similar way, for the Box-RLS decoder, we have the
same asymptotic relationships between MSE and SEP:

M̃SEBox-RLS := plim
K→∞

MSEBox-RLS = δθ2



ρdσ
2
Ĥ

− 1

ρeff
, (32)

and, for t ≥ M−1√E :

S̃EPBox-RLS := plim
K→∞

SEPBox-RLS

= 2

(

1 − 1

M

)

Q

⎛

⎜
⎝

√√
√
√

δ

E ·
(
M̃SEBox-RLS + 1

ρeff

)

⎞

⎟
⎠, (33)

which again reveals that minimizing the MSE is equivalent
to minimizing the SEP.

B. OPTIMAL POWER ALLOCATION IN MSE AND SEP
SENSE
For the RLS decoder, we prove in Appendix E that both
M̃SERLS, and S̃EPRLS are monotonically increasing func-
tions in 1

ρeff
. Hence, minimizing the MSE or SEP is
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equivalent to maximizing ρeff. This can be easily seen to
be the case of the LS decoder. However, for the Box-RLS
decoder, such a statement could not be checked analytically
as θ
 does not possess a closed-form expressions. However,
based on extensive simulations, we conjecture that both
M̃SEBox-RLS and S̃EPBox-RLS increase with 1

ρeff
. All these

considerations suggest that the optimal power allocation is
the one that maximizes ρeff over α, i.e.,

α
 = argmax
0<α<1

ρeff. (34)

Recall that ρeff = ρdσ
2
Ĥ

1+ρdσ 2
�

. Substituting the expressions for

σ 2
Ĥ

and σ 2
� gives

ρeff = τpρpρd

(1 + ρd)+ τpρp
. (35)

Further, upon using ρp = (1−α)ρτ
τp

, and ρd = αρτ
τd

, the
effective SNR becomes

ρeff = ρτ

τd − 1
· α(1 − α)

−α + 1+ρτ
ρτ
(

1− 1
τd

)
.

With this expression at hand, we determine in the following
Theorem the optimal power allocation that maximizes the
effective SNR:
Theorem 5 (Optimal Power Allocation): The optimal

power allocation α
 that maximizes the effective SNR in
a training-based system is given by

α
 =
⎧
⎨

⎩

ϑ − √
ϑ(ϑ − 1), if τd > 1,

1
2 , if τd = 1,
ϑ + √

ϑ(ϑ − 1) if τd < 1,
(36)

where ϑ = 1+ρτ
ρτ(1− 1

τd
)
.

Proof: The proof of this theorem is given in
Appendix F.

It is worth mentioning that the use of this power allocation
has already been proposed in the early work of [4] as the one
that maximizes a lower bound on the capacity. Interestingly,
we retrieve the same power allocation scheme which we
prove to be optimum in the MSE/SEP sense for RLS and
LS decoders and conjecture that it is also optimum for the
Box-RLS decoder.
Remark 10:

• At high SNR (ρ � 1), ϑ ≈ τd
τd−1 , then α
 ≈

√
τd

1+√
τd
.

• At low SNR (ρ 
 1), ϑ ≈ τd
ρτ(τd−1) , and α
 ≈ 1

2 . This
means that, at low SNR, half of the transmit energy
should be devoted to training and the other half to data
transmission.

Remark 11 (Numerical Illustration): The asymptotic
predictions of the MSE and the SEP are plotted as func-
tions of the data power ratio α in Figure 6 and Figure 7
when δ = 2,K = 256,T = 1000,Tp = 256,M = 2 and
ρ = 15 dB. As can be seen, the optimal power allocation,
α
, is the same in the MSE and SEP sense for the different

FIGURE 6. MSE as a function of the data power ratio α.

FIGURE 7. SEP as a function of the data power ratio α.

decoders considered here, namely LS, RLS and Box-RLS.
The same conclusion has been found for other settings con-
firming the conjecture that for Box-RLS, the optimal power
allocation is obtained by maximizing the effective SNR.

C. JOINT OPTIMIZATION OF POWER ALLOCATION AND
TRAINING DURATION IN THE GOODPUT SENSE
We now consider the goodput metric for the joint
optimization of the power allocation and the training dura-
tion. From its definition in (16), its asymptotic value can be
written as:

plim
K→∞

G =
(

1 − τp

τ

)(

1 − plim
K→∞

SEP

)

, (37)

where the limit in the right hand side is given by (18) for
RLS, and by (25) for Box-RLS. The above expression can
be used to find the optimal pair (τ 
p , α
) that maximizes the
goodput limit in (37). The result is summarized below.
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Proposition 1 (Joint Optimization in Goodput Sense): The
optimal pair (τ 
p , α
) that maximizes the goodput limit in (37)
is given by: τ 
p = 1 (or T
p = K), and α
 is the same as
in (36) for all ρ and τ (or T).
Proof: The proof of this proposition is given in

Appendix G.
Remark 12: A major outcome of the above result is that

the optimal number of training symbols that maximizes the
goodput is given by the minimum number of the required
training symbols that is the number of transmit antennas,
K. This result differs from the finding of [4] in which it
has been proven that in case of equal distribution of power
between training and data, the optimal number of training
symbols may be larger than the number of transmit antennas.

VI. CONCLUSION
A large body of the literature has thus far focused on the
theoretical analysis of decoders with explicit formulation,
like LS and RLS decoders. The prospect of achieving nearly
optimal performance has led researchers in the field of wire-
less communication to consider non-linear decoders. Such
decoders are in general based on implicit formulations and
thus are more difficult to analyze. The recent progress made
on new tools like the CGMT has rekindled interest in the
performance analysis of techniques involving problems lack-
ing explicit formulations. Falling within this context, our
work aims to study the Box-RLS decoder when used to
recover M-ary constellation signaling under imperfect chan-
nel knowledge. This decoder, recently proposed in former
works, is based on solving the same optimization problem
as the RLS decoder but while constraining the solution to
lie in a zero-centered interval [−t, t]. Our work differs from
previous works that used the CGMT to analyze the Box-
RLS decoder in the following ways. Firstly, considering the
LMMSE channel estimation error, it is, to the best of our
knowledge, the first work to account for the impact of chan-
nel estimation errors in the study of the Box-RLS decoder.
Secondly, it derives tight approximations of several metrics
ranging from MSE, SEP to goodput for RLS, LS, and Box-
RLS decoders. Based on these metrics, it determines optimal
ways to share the power between training and data to mini-
mize MSE and SEP, as well as the number of pilot symbols
to maximize the goodput. Apart from its practical relevance,
consideration of imperfect CSI posed several technical chal-
lenges and brought us to develop novel tools to rigorously
prove convergence results. Such tools can be of independent
interest and may be used in the future to further facilitate
carrying out rigorous analysis based on the use of the CGMT
framework.

APPENDIX A
GAUSSIAN MIN-MAX THEOREM
The key ingredient of the analysis is the Convex Gaussian
Min-max Theorem (CGMT), a concrete formulation for it
can be found in [51]. The CGMT is a tool that allows

analyzing the behavior of solutions of stochastic optimization
problems that can be cast into the following form:

�(G) := min
w∈Sw

max
u∈Su

uTGw + ψ(w,u), (38)

where G ∈ R
N×K with i.i.d. standard normal entries, Sw and

Su are sets of RK and R
N and ψ : RK × R

N → R is con-
tinuous convex-concave function on Sw × Su. Problem (38)
is referred to as Primary Problem (PO) and its analysis is
in general not tractable. The CGMT associates with it an
Auxiliary Optimization (AO) problem given by

φ(g, s) := min
w∈Sw

max
u∈Su

‖w‖gTu − ‖u‖sTw + ψ(w,u), (39)

where g ∈ R
N , and s ∈ R

K have i.i.d. standard Gaussian
entries. The initial formulation of the CGMT establishes
that the (AO) has the same asymptotic behavior as the (PO)
in the regime in which N and K grow simultaneously with
the same pace under the condition that the sets Sw and Su
are convex and compacts. Particularly, if for some ν ∈ R,
the optimal cost of the (AO) concentrates around ν in the
sense that

P[|φ(g, s)− ν|] → 0,

then the optimal cost of the PO concentrates also around ν,
satisfying similarly:

P[|�(G)− ν|] → 0.

Recently in [63], the compactness of Su is shown to be
possibly relaxed provided that the order of the min-max
in (39) can be inverted, that is φ(g, s) is also given by:

φ(g, s) := max
u∈Su

min
w∈Sw

‖w‖gTu − ‖u‖sTw + ψ(w,u). (40)

More formally, we have the following result:
Theorem 6 (CGMT [51]): Let S be any arbitrary open sub-

set of Sw, and Sc = Sw\S . Denote φSc(g, s) the optimal cost
of the optimization in (39), when the minimization over w
is constrained over w ∈ Sc. Assume that Su is convex while
Sw is convex and compact. Assume also that (40) holds true.
Consider the regime K,N → ∞ such that N

K → δ, which
will be denoted by K → ∞. Suppose that there exist con-
stants φ̄ and η > 0 such that in the limit as K → +∞ it
holds with probability approaching one: (i) φ(g, s) ≤ φ̄+η,
and, (ii) φSc(g, s) ≥ φ̄+ 2η. Let w� and wφ denote respec-
tively the solutions in w to the (PO) and the (AO). Then,
limK→∞ P[wφ ∈ S] = 1, and limK→∞ P[w� ∈ S] = 1.
Remark 13: It is worth mentioning that the result in

Theorem 6 goes beyond the asymptotic equivalence between
the costs of the (AO) and the (PO) to the localization of the
(PO) and (AO) solutions. More specifically, one can easily
see that conditions (i) and (ii) in Theorem 6 imply that
the solution of the (AO) lies in the set S with probability
approaching 1. Theorem 6 allows us to carry over this prop-
erty to the solution of the (PO), that is w� is in S with
probability approaching 1.
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Remark 14: To satisfy (i) and (ii) in Theorem 6, one
can prove that φ(g, s) converges to φ while φSc(g, s) is
lower-bounded by a quantity that converges to φSc with

φSc > φ. (41)

In practice, it is usually the case that φ and φSc represent
optimal costs of the same optimization problem but with the
solution of the latter being constrained to be away from the
optimal solution of the former. Under this setting, showing
that the optimization problem whose optimal cost is φ admits
a unique solution directly implies (41).

APPENDIX B
PROOFS OF BOX-RLS
In this Appendix we prove Theorem 3 and Theorem 4. For
simplicity, we will divide the steps of the proof into sections.

A. IDENTIFYING THE (PO) AND THE (AO)
For convenience, we consider the error vector w := x − x0,
and also the box set:

B =
{
w ∈ R

K | − t − x0,j ≤ wj ≤ t − x0,j, j ∈ {1, 2, . . . ,K}
}
,

(42)

With this notation, the problem in (12a) can be reformu-
lated as

ŵ = arg min
w∈B

∥
∥
∥
∥

√
ρd

K
Ĥw −

√
ρd

K
�x0 − z

∥
∥
∥
∥

2

+ ρdλ‖x0 + w‖2. (43)

To bring the problem in (43) to the form of (38) required
by the CGMT, we express the loss function of (43) in its
dual form through the Fenchel’s conjugate as

∥
∥
∥
∥

√
ρd

K
Ĥw −

√
ρd

K
�x0 − z

∥
∥
∥
∥

2

= max
u

uT
(√

ρd

K
Ĥw −

√
ρd

K
�x0 − z

)

− ‖u‖2

4
.

Hence, the problem in (43) is equivalent to the following:

min
w∈B

max
u

uT
√
ρd

K
Ĥw − uT

√
ρd

K
�x0

− uTz − ‖u‖2

4
+ ρdλ‖x0 + w‖2, (44)

To reach the desired PO form, we introduce the variables

v =
[
σĤ

√
ρdw

−σ�√
ρdx0

]

∈ R
2K , G = [

H̃ �̃
] ∈ R

N×2K and

C =
[

1
σĤ

IK −1
σ�

IK
]

∈ R
K×2K , where H̃ and �̃ are N×K inde-

pendent matrices with i.i.d. standard normal entries. Now,
using these variables, and after normalization by 1/K, the
above problem can be written as:

� := 1√
K

min
v∈D

max
u

1

K
uTGv − 1√

K
uTz

− ‖u‖2

4
√
K

+ λ√
K

‖Cv‖2, (45)

where

D =
{

v ∈ R
2K
∣
∣
∣
∣ v =

[
σĤ

√
ρdw

−σ�√
ρdx0

]

, and w ∈ B
}

.

We note that (45) is in the form of the (PO) and associate
with it the following (AO)

φ := 1√
K

min
v∈D

max
u

‖v‖ 1

K
gTu − 1

K
‖u‖qTv − 1√

K
uTz

− 1

4
√
K

‖u‖2 + 1√
K
λ‖Cv‖2, (46)

where q ∈ R
2K and g ∈ R

N are independent standard normal
vectors. Note that for the moment, we relate the (PO) to
the unbounded (AO) as Su = R

N is not compact. In the
sequel, we check that (40) holds true, which gives support
to considering the unbounded (AO) according to Theorem 6.

B. SCALARIZING THE (AO)
The next step is to simplify the (AO) as it appears in (46)
into an optimization problem involving only scalar vari-
ables. Since the vectors g and z are independent and have
i.i.d. Gaussian entries, then, ‖v‖g − √

Kz has i.i.d. entries
N (0, ‖v‖2 + K). Hence, for our purposes and using some
abuse of notation so that g continues to denote a vector with
i.i.d. standard normal entries, the corresponding terms in (46)
can be combined as

√‖v‖2 + KgTu, instead. Therefore, (46)
is equivalent to

φ = 1√
K

min
v∈D

max
u

gTu

√
1

K
‖v‖2 + 1 − 1

K
‖u‖qTv

− 1

4
√
K

‖u‖2 + 1√
K
λ‖Cv‖2. (47)

Expressing the above problem in terms of the original w
variable:

φ = 1√
K

min
w∈B

max
u

gTu

√

σ 2
Ĥ
ρd

1

K
‖w‖2 + σ 2

�ρd
1

K
‖x0‖2 + 1

− 1

4
√
K

‖u‖2 − ‖u‖√
K

√
ρd

(
σĤw

Tq1 − σ�xT0q
2
)

+ 1√
K
λρd‖x0 + w‖2, (48)

where q1,q2 ∈ R
K are independent standard normal vectors.

Fixing the norm of u√
K

to β := ‖u‖√
K
, it is easy to see

that its optimal direction should be aligned with g. Working
with x instead of w results into the following optimization
problem:

φ = min−t≤xj≤t
j=1,...,K

max
β>0

β‖g‖√
K

√
ρd

K

(
σ 2
Ĥ
‖x‖2 − 2σ 2

Ĥ
xT0 x + ‖x0‖2

)
+ 1

− β2

4
− β

√
ρdσĤ

1

K
xTq1 + 1

K
β
√
ρdxT0 h̃ + λρd

1

K
‖x‖2,

(49)

where h̃ = σĤq
1+σ�q2. At this point, it is worth mentioning

that (49) is convex in x and concave in β. Based on this,
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we can prove that (40) holds true. Indeed using [64, Cor.
37.3.2], we can flip the order of minx maxβ . Now, consider
the following problem:

max
β

max
ũ‖ũ‖=1

min−t≤xj≤t
j=1,...,K

βgT ũ

√
ρd

K

(
σ 2
Ĥ
‖x‖2 − 2σ 2

Ĥ
xT0 x + ‖x0‖2

)
+ 1

− β2

4
− β

√
ρdσĤ

1

K
xTq1 + 1

K
β
√
ρdxT0 h̃ + λρd

1

K
‖x‖2. (50)

Then, based on [65, Lemma 8] and setting u = √
Kβũ we

can prove that (50) is the same as (49) in which the order of
the min-max is inverted. This completes the proof of (40),
which as aforementioned, allows us to extend the scope of
the CGMT for optimization problems in which the variable
u is constrained to lie in a non-compact set.
Now, getting back to the optimization problem in (49) and

flipping the order of minx maxβ results into the following
optimization problem:

φ = max
β>0

min−t≤xj≤t
j=1,...,K

Ĥ(β, x) := β‖g‖√
K

√
ρd

K

(
σ 2
Ĥ
‖x‖2 − 2σ 2

Ĥ
xT0 x + ‖x0‖2

)
+ 1

− β2

4
− β

√
ρdσĤ

1

K
xTq1 + β

1

K

√
ρdxT0 h̃ + λρd

1

K
‖x‖2.

(51)

Prior to proceeding further, we shall first check that the
optimization over β of the above problem is not achieved
in the limit β → 0 and more specifically, there exists δ̃ > 0
such that taking the supremum over β > δ̃ instead of β > 0
would almost surely not change the optimal cost of (51).
Towards this goal, first note that
∣
∣
∣
∣
∣
∣
∣

min−t≤xj≤t
j=1,...,K

Ĥ(β, x)

∣
∣
∣
∣
∣
∣
∣
≤
∣
∣
∣
∣β

‖g‖√
K

− β2

4
+ β

∣
∣
∣
∣

1

K

√
ρdxT0 h̃

∣
∣
∣
∣

∣
∣
∣
∣,

and the function β �→ β(
‖g‖√
K

+ 1
K

√
ρd|xT0 h̃|)− β2

4 is increas-

ing and positive for all β ∈ [0, 2( ‖g‖√
K

+ 1
K

√
ρd|xT0 h̃|)]. As

2( ‖g‖√
K

+ 1
K

√
ρd|xT0 h̃|) converges in probability to 2

√
δ, with

probability approaching one, for all δ̃ ∈ (0,
√
δ), and all

β ∈ (0, δ̃),
∣
∣
∣
∣
∣
∣
∣

min−t≤xj≤t
j=1,...,K

Ĥ(β, x)

∣
∣
∣
∣
∣
∣
∣
≤ 4δ̃

√
δ. (52)

To conclude it suffices to prove that there exists a β0 such
that with probability approaching one,

min−t≤xj≤t
j=1,...,K

Ĥ(β0, x) > �, (53)

where � is a some positive constant. Indeed, if (53) is
satisfied then almost surely,

sup
β>0

min−t≤xj≤t
j=1,...,K

Ĥ(β0, x) > �.

Setting δ̃ = min( �

4
√
δ
,
√
δ) in (52), we conclude thus that the

supremum over β could not be attained in the interval [0, δ̃].
To keep the flow of the proof, (53) is proved in Appendix D.
With this result at hand, we are now ready to proceed to the
optimization of the (AO). Let

χ = ρd

K

(
σ 2
Ĥ
‖x‖2 − 2σ 2

Ĥ
xT0 x + ‖x‖2

0

)
+ 1. (54)

To make the above optimization problem separable, we
express the term in the square root in a variational form
using the identity:

√
χ = min

r>0

1

2r
+ rχ

2
. (55)

Note that at optimum, r
 = 1√
χ
. Using the fact that χ ≥ 1

and as such bigger than any small positive constant, we also
have

√
χ = min

0<r≤C′
1

2r
+ rχ

2
,

where C′ is any constant greater than 1. Similarly, as χ is
almost surely bounded by some constant, we can also argue
that:

√
χ = min

ε′<r≤C′
1

2r
+ rχ

2
, (56)

where ε′ is a sufficiently small positive constant. Using this
relation, the optimization problem (50) becomes

φ = max
β≥0

min
ε′<r≤C′ β

( ‖g‖
2r

√
K

+ r‖g‖
2
√
K

+ ρdr‖g‖‖x0‖2

2
√
KK

+ √
ρd

1

K
h̃Tx0

)

+ 1

K

K∑

j=1

[

min−t≤xj≤t

(
βσ 2

Ĥ
ρdr‖g‖

2
√
K

+ λρd

)

x2
j

− β

(
ρdσ

2
Ĥ
r‖g‖

√
K

x0,j + √
ρdσĤq

1
j

)

xj

]

− β2

4
. (57)

For ease of notation, define θ̃ := r‖g‖√
K
. As 1√

K
‖g‖ is almost

surely bounded above and below, the variable θ̃ is almost
surely bounded above by a constant C which we shall assume
as large as needed and also bounded below by some positive
constant ε. Introducing this notation leads to:

φ = max
β>0

min
ε≤θ̃≤C

β‖g‖2

2θ̃K
+ βθ̃

2
− β2

4
+ βθ̃ρd‖x0‖2

2K

+ √
ρdβ

1

K
xT0 h̃ + 1

K

K∑

j=1

[

min−t≤xj≤t

(
βθ̃ρdσ

2
Ĥ

2
+ λρd

)

x2
j

− β
(
ρdσ

2
Ĥ
x0,jθ̃ + √

ρdσĤq
1
j

)
xj

]

. (58)

For β > 0, the optimal solution in the variables xj, j =
1, . . . ,K of (57) is given by:

x̃j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−t, if q1
j < x−0

(
θ̃ , β, x0,j

)
,

t, if q1
j > x+0

(
θ̃ , β, x0,j

)
,

β
(
ρdσ

2
Ĥ
x0,jθ̃+√

ρdσĤq
1
j

)

ρdσ
2
Ĥ
βθ̃+2λρd

, otherwise,

(59)
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where

x−0
(
θ̃ , β, x0,j

)
= −t

(

θ̃
√
ρdσĤ + 2λρd

β
√
ρdσĤ

)

− √
ρdσĤx0,jθ̃ ,

(60)

x+0
(
θ̃ , β, x0,j

)
= t

(

θ̃
√
ρdσĤ + 2λρd√

ρdσĤβ

)

− √
ρdσĤx0,jθ̃ .

(61)

To simplify notation, define ξ = √
ρdσĤ , then

x−0 (θ̃ , β, x0,j) = −t(ξ θ̃ + 2λρd
ξβ
)− ξx0,jθ̃ , and x

+
0 (θ̃ , β, x0,j) =

t(ξ θ̃+ 2λρd
ξβ
)−ξx0,jθ̃ . With these notations at hand, the above

optimization problem reduces to the following SO

max
β>0

min
ε<θ̃<C

D̃
(
θ̃ , β, g,q1

)
:= β‖g‖2

2θ̃K
+ βθ̃

2
− β2

4

+ βθ̃ρd‖x0‖2

2K
+ √

ρdβ
1

K
h̃Tx0 + 1

K

K∑

j=1

v
(
θ̃ , β; q1

j

)
,

(62)

where

v
(
θ̃ , β; q1

j

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t
(
c̃j + βξq1

j

)
, if q1

j < x−0
(
θ̃ , β, x0,j

)
,

t
(
d̃j − βξq1

j

)
, if q1

j > x+0
(
θ̃ , β, x0,j

)
,

−β2
(
ξ2x0,jθ̃+ξq1

j

)2

2ξ2βθ̃+4λρd
, otherwise,

(63)

where c̃j = −βξ
2 x−0 (θ̃ , β, x0,j) + βθ̃ξ2

2 x0,j, and d̃j =
βξ
2 x

+
0 (θ̃ , β, x0,j)− βθ̃ξ2

2 x0,j.

C. ASYMPTOTIC ANALYSIS OF THE SO PROBLEM
After simplifying the (AO) as in (62), we are now in a
position to analyze its limiting behavior. Using the Weak

Law of Large Numbers (WLLN),3 1
K ‖g‖2 P−→ N

K := δ,
1
K x

T
0 h̃

P−→ 0, and 1
K ‖x0‖2 P−→ 1.

To analyze the behavior of the summand, recall that each
x0,j takes values ±1/

√E,±3/
√E, . . . ,±(M − 1)/

√E with
equal probability 1/M. Let i = ±1,±3, . . . ,±(M − 1) and
denote by �i = −t(ξ θ̃+ 2λρd

ξβ
)− ξ iθ̃√E , μi = t(ξ θ̃+ 2λρd

ξβ
)− ξ iθ̃√E ,

ci = −βξ
2 �i + βξ2iθ̃

2
√E , and di = βξ

2 μi − βξ2 θ̃ i
2
√E .

Hence, it can be shown that for all θ̃ > 0 and β > 0,

1

K

K∑

j=1

v
(
θ̃ , β; q1

j

)
P−→ Y

(
θ̃ , β

)
, (64)

where

Y
(
θ̃ , β

)
:= 1

M

∑

i=±1,±3,...,±(M−1)

Ỹ
(
θ̃ , β, i

)
, (65)

with

Ỹ(θ, β, i) := Eh∼N (0,1)

[
v
(
θ̃ , β; h, �i, μi

)]

3. We write
P−→ to denote convergence in probability as K → ∞.

= − β2

2ξ2βθ̃ + 4λρd

∫ μi

�i

(
ξ2iθ̃√E + ξh

)2

p(h)dh

+
∫ �i

−∞
t(ci + βξh)p(h)dh+

∫ ∞

μi

t(di − βξh)p(h)dh

= t(ciQ(−�i)+ diQ(μi))− βξ t(p(�i)+ p(μi))

− β2

2ξ2βθ̃ + 4λρd

∫ μi

�i

(
ξ2iθ̃√E + ξh

)2

p(h)dh

= t(ciQ(−�i)+ diQ(μi))− βξ t(p(�i)+ p(μi))

− β2

2ξ2βθ̃ + 4λρd

((

ξ2 + ξ4i2θ̃2

E

)

(Q(�i)− Q(μi))

+ ξ

(

ξ�i + 2ξ2iθ̃√E

)

p(�i)− ξ

(

ξμi + 2ξ2iθ̃√E

)

p(μi)

)

.

(66)

For a given β, consider the sequence of functions

ϕK : θ̃ �→ 1

K

K∑

j=1

v
(
θ̃ , β; q1

j

)
.

We can easily see that this sequence of functions is concave
in θ̃ since it has been derived by taking the infimum of linear
functions in θ̃ (cf. (58)). Hence, θ̃ �→ Y(θ, β) is concave in
θ̃ . Since the convergence of concave functions is uniform
over compact sets [66, Th. II.1], θ̃ �→ ϕK(θ̃) converges
uniformly to θ̃ �→ Y(θ̃ , β). Moreover, it is easy to prove that
θ̃ �→ β‖g‖2

2θ̃K
+ βθ̃

2 + βθ̃ρd‖x0‖2

2K converges uniformly to θ̃ �→
βδ

2θ̃
+ βθ̃

2 + βθ̃ρd
2 on the compact set [ε,C]. Combining both

results yields that θ̃ �→ D̃(θ̃ , β, g,q1) converges uniformly
to θ̃ �→ D(θ, β), where

D
(
θ̃ , β

)
:= βδ

2θ̃
− β2

4
+ βθ̃

2
+ βθ̃ρd

2
+ Y

(
θ̃ , β

)
. (67)

As a consequence,

min
ε<θ̃<C

D̃
(
θ̃ , β, g,q1

)
→ min

ε<θ̃<C
D
(
θ̃ , β

)
. (68)

We need now to prove that the supremum over β converges
to the supremum of the right-hand side of the above equation.
To this end, note that the function β �→ min

ε<θ̃<C
D̃(θ̃ , β, g,q1)

is concave and converges pointwise to β �→ min
ε<θ̃<C

D(θ̃ , β).

Moreover, it is easy to check that limβ→∞ min
ε<θ̃<C

D(θ̃ , β) =
−∞. Using Lemma 10 in [51], we conclude that:

φ = sup
β≥0

min
ε<θ̃<C

D̃
(
θ̃ , β, g,q1

)
P−→ φ := sup

β≥0
min
ε<θ̃<C

D
(
θ̃ , β

)
.

(69)

D. PROOF OF THE UNIQUENESS OF (θ̃�, β�): SOLVING
SUPβ≥0MIN

ε<θ̃<CD(θ̃ , β)
Based on the above convergence, it follows from the CGMT
that the optimal cost of the (PO) converges to the asymptotic
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limit of the (AO), which is given by

sup
β>0

min
ε≤θ̃<C

D
(
θ̃ , β

)
.

However, our interest does not directly concern the char-
acterization of the asymptotic limit of the (PO) but that of
functionals of the vector w = x − x0 that can be linked
to some important metrics like MSE or SEP. As explained
in Remark 14, proving that the max-min problem in (69)
admits a unique solution (β
, θ̃
) would allow us to transfer
any property of the solution of the (AO) to that of the (PO).
Unfortunately, the objective in the max-min problem (69)
is not convex in θ̃ , and hence the same approach pursued
in [51] could not be used here. A new approach to handle
this problem is thus proposed. To begin with, we notice that
since β �→ −β2

4 is strictly concave, β �→ min
ε<θ̃<C

D(θ̃ , β) is

strictly concave in β. It thus has a unique maximum as it
satisfies limβ→∞ min

ε<θ̃<C
D(θ̃ , β) = −∞. Denote by β
 such

a maximum. Let us prove that there exists a unique θ
 that
minimizes function h defined as h : θ̃ �→ D(θ̃ , β
). The
proof of this result will be carried out into the following
steps:

1) First, we prove that the minimum should be in the
interior domain of (ε,C) for C sufficiently large and
ε sufficiently small.

2) Next, we establish that Y(θ̃ , β
) satisfies:
∣
∣
∣
∣
∣
∣
θ̃
∂3Y

(
θ̃ , β


)

∂θ̃3

∣
∣
∣
∣
∣
∣
< 3

∣
∣
∣
∣
∣
∣

∂2Y
(
θ̃ , β


)

∂θ̃2

∣
∣
∣
∣
∣
∣
. (70)

3) Starting from the observation that θ̃
 is in the inte-
rior domain of the optimization set and based on the
previously established results, we prove that h admits
a unique minimum.

We start by establishing the first statement. It is obvious
that the optimum could not be reached when θ̃ is in the
vicinity of zero since limθ̃→0+ D(θ̃ , β
) = ∞. Similarly, to
prove that the minimum is not reached when θ̃ grows to
infinity, it suffices to check that limθ̃→∞ D(θ̃ , β
) = ∞.
Simple calculations lead to:

Y
(
θ̃ , β


)
∼

θ̃→∞
−βξ

2(M − 1)2

ME θ̃ = −3β
ξ2(M − 1)2

M
(
M2 − 1

) θ̃

= −3β
ρdσĤ2(M − 1)

M(M + 1)
θ̃ .

Using this approximation, we thus have:

D
(
θ̃ , β


)
∼

θ̃→∞
θ̃β


(

−
3ρdσ 2

Ĥ
(M − 1)

M(M + 1)
+ 1

2
+ ρd

2

)

. (71)

It is easy to check that for M ≥ 2, 3(M−1)
M(M+1) ≤ 1

2 . As σ
2
Ĥ
< 1,

we thus have limθ→∞ D(θ̃ , β
) = ∞.
To prove (70), we need to compute the first three deriva-

tives of the function θ̃ �→ Y(θ̃ , β
). After simple calculations,

we can establish that:

∂Y
(
θ̃ , β


)

∂θ̃
= 1

M

∑

i=±1,
,...,±(M−1)

⎡

⎢
⎣

∫ μi

�i

2β3

 ξ

2

⎛

⎝
ξ2iθ̃√E + ξh

2ξ2β
θ̃ + 4λρd

⎞

⎠

2

p(h)dh

− 2β2

 ξ

2i√E

∫ μi

�i

⎛

⎝
ξ2iθ̃√E + ξh

2ξ2β
θ̃ + 4λρd

⎞

⎠p(h)dh

+
∫ �i

−∞
t2β


ξ2

2
p(h)dh+

∫ ∞

μi

t2β

ξ2

2
p(h)dh

⎤

⎦. (72)

Based on this expression, we compute the second and
third derivatives of Y(θ̃ , β
) as:

∂2Y
(
θ̃ , β


)

∂θ̃2
= −2β2




1

M

×
∑

i=±1,...,
,±(M−1)

∫ μi

�i

(
4λρd

ξ2i√E − 2ξ3β
h
)2

(
2ξ2β
θ̃ + 4λρd

)3
p(h)dh, (73)

∂3Y
(
θ̃ , β


)

∂θ̃3
= 6β2




1

M

×
∑

i=±1,...,
±(M−1)

∫ μi

�i

2ξ2β


(
4λρd

ξ2i√E − 2ξ3β
h
)2

(
2ξ2β
θ̃ + 4λρd

)4
p(h)dh. (74)

Leveraging (73) and (74), it is easy to check that:

θ̃
∂3Y

(
θ̃ , β


)

∂θ̃3
= −3

∂2Y
(
θ̃ , β


)

∂θ̃2
− 24β2




1

M

×
∑

i=±1,
,...,±(M−1)

∫ μi

�i

4λρd
(

4λρd
ξ2i√E − 2ξ3β
h

)2

(
2ξ2β
θ̃ + 4λρd

)4
p(h)dh,

from which we deduce that
∣
∣
∣
∣
∣
∣
θ̃
∂3Y

(
θ̃ , β


)

∂θ̃3

∣
∣
∣
∣
∣
∣
< 3

∣
∣
∣
∣
∣
∣

∂2Y
(
θ̃ , β


)

∂θ̃2

∣
∣
∣
∣
∣
∣
. (75)

With this result at hand, we are now ready to prove that
function h admits a unique minimum. We already proved
that any minimum should lie in the interior domain of (ε,C).
Assume that there exists two minimizers of h which we
denote by θ̃
,1 and θ̃
,2 such that θ̃
,1 < θ̃
,2. The first order
and second order conditions imply that:

dh

dθ̃

∣
∣
∣
θ̃=θ̃
,i

= 0 and
d2h

dθ̃2

∣
∣
∣
θ̃=θ̃
,i

≥ 0, i = 1, 2. (76)

Hence, there exists θ̃3 ∈ (θ̃
,1, θ̃
,2) such that

d2h

dθ̃2

∣
∣
∣
θ̃=θ̃3

= 0. (77)
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We will prove that this will lead to contradiction unless
θ̃
,1 = θ̃
,2. To this end, first we notice that:

d2h

dθ̃2
= −β
δθ̃−3 +

∂2Y
(
θ̃ , β


)

∂θ̃2
. (78)

Hence, from (76) and (77) we obtain the following relations

β
δ̃ + θ̃3

,1

∂2Y
(
θ̃ , β


)

∂θ̃2

∣
∣
∣
θ̃=θ̃
,1

≥ 0, (79)

β
δ̃ + θ̃3

,2

∂2Y
(
θ̃ , β


)

∂θ̃2

∣
∣
∣
θ̃=θ̃
,2

≥ 0, (80)

β
δ̃ + θ̃3

,3

∂2Y
(
θ̃ , β


)

∂θ̃2

∣
∣
∣
θ̃=θ̃
,3

= 0. (81)

Consider function k:θ̃ �→ βδ̃+ θ̃3 ∂2Y(θ̃ ,β
)
∂θ̃2 , the derivative of

k with respect to θ̃ is given by:

k′
(
θ̃
)

= θ̃2

⎛

⎝3
∂2Y

(
θ̃ , β


)

∂θ̃2
+ θ̃

∂3Y
(
θ̃ , β


)

∂θ̃3

⎞

⎠. (82)

From (70), k′(θ̃) < 0 and as such k is decreasing. Hence,
the relations (79), (80) and (81) could not simultaneously
hold. Hence, θ̃
,1 = θ̃
,2, and as a consequence h admits a
unique minimizer which we denote by θ̃
. Now, since for
any β > 0, θ̃ �→ D(θ̃ , β) goes to infinity when θ̃ approaches
zero or grows to infinity, we thus have:

min
ε≤θ̃≤C

D
(
θ̃ , β

)
= inf
θ̃≥0

D
(
θ̃ , β

)
, ∀ β > 0. (83)

The above relation holds for all β > 0. We already proved
in Section B that the optimal solution in β is almost surely
away from zero. Thus,

sup
β>0

min
ε≤θ̃≤C

D
(
θ̃ , β

)
= sup
β>0

inf
θ̃>0

D
(
θ̃ , β

)
. (84)

E. ASYMPTOTIC BEHAVIOR OF METRICS DEPENDING
ON THE SOLUTION OF THE (PO)
So far, we proved that the PO cost converges to the asymp-
totic cost of the (AO). We prove now that the uniqueness of
the minimizer θ̃
 allows us to carry over this convergence to
metrics depending on the solution of the (PO). The recipe
is as follows. Let η > 0 and define

Sη =
{

v | v ∈ D, 1

K
‖v‖2 ∈

(
δ

θ̃2



− 1 − η,
δ

θ̃

2

− 1 + η

)}

.

(85)

Consider the “perturbed” version of the (AO) in (46) as
follows:

φη := 1√
K

min
v/∈Sη

max
u

1

K
‖v‖gTu − 1

K
‖u‖qTv − 1√

K
uTz

− 1

4
√
K

‖u‖2 + 1√
K
λ‖Cv‖2. (86)

Following the same analysis carried out previously, we lower
bound φη by

φη ≥ max
β≥0

min
ε≤θ̃≤C∣

∣
∣
∣

‖g‖2

θ̃2K
− δ

θ̃2



∣
∣
∣
∣>η

D̃
(
θ̃ , β, g,q1

)
.

It is easy to note that if θ̃ in (ε,C) is such that | ‖g‖2

Kθ̃2 − δ

θ̃2



| > η,

then
∣
∣
∣
∣θ̃ − θ̃


‖g‖√
K

√
δ

∣
∣
∣
∣ ≥ ηθ̃2θ̃2


√
δ
(
θ̃


‖g‖√
K

+ θ̃
√
δ
)

≥ ηε2θ̃2

√

δ
(
C

√
δ + θ̃


‖g‖√
K

) ,

or also
∣
∣
∣θ̃
 − θ̃

∣
∣
∣ >

ηεθ̃


1
ε

+
√
δ

θ̃


− θ̃

∣
∣
∣
∣1 − ‖g‖√

K
√
δ

∣
∣
∣
∣.

Since |1 − ‖g‖√
K

√
δ
| converges to zero almost surely, there

exists η̃ > 0 such that with probability approaching 1,

ε ≤ θ̃ ≤ C and

∣
∣
∣
∣
∣
‖g‖2

Kθ̃2
− δ

θ̃2



∣
∣
∣
∣
∣
≥ η =⇒

∣
∣
∣θ̃ − θ̃


∣
∣
∣ ≥ η̃.

Hence, with probability approaching 1,

φη ≥ sup
β≥0

min
ε≤θ̃≤C∣
∣
∣θ̃−θ̃


∣
∣
∣≥η̃

D̃
(
θ̃ , β, g,q1

)
. (87)

Following the same asymptotic analysis as in Section VI-C,
we can prove similarly that

sup
β≥0

min
ε≤θ̃≤C∣
∣
∣θ̃−θ̃


∣
∣
∣≥η̃

D̃
(
θ̃ , β, g,q1

)
P−→ φη := sup

β≥0
inf
θ̃≥0∣

∣
∣θ̃−θ̃


∣
∣
∣≥η̃

D
(
θ̃ , β

)
.

Clearly,

φη ≥ inf
θ̃≥0∣

∣
∣θ̃−θ̃


∣
∣
∣≥η̃

D
(
θ̃ , β


)
.

As θ̃
 is the unique minimizer of infθ̃≥0 D(θ̃ , β
),

φη > φ.

Based on the CGMT in Theorem 6 and recalling Remark 14,
we thus have:

lim
K→∞P

[
vPO ∈ Sη

] = 1, (88)

where vPO is the solution in v of the (PO) in (45), or
equivalently:

1

K
‖vPO‖2 P−→ δ

θ̃2



− 1 = δθ2

 − 1, (89)

where θ
 = 1
θ̃

.
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F. CONVERGENCE OF LIPSCHITZ FUNCTIONS OF THE
ESTIMATED VECTOR ̂X
The objective here is to study the asymptotic behavior of
Lipschitz functions of the solution to the PO which we denote
by x̂. As will be seen in the next section, such a result is
fundamental for the asymptotic analysis of the symbol error
rate and can be of independent interest to analyze any other
performance metric. Let β
 and θ̃
 be the unique solutions
of the optimization problem supβ>0 infθ̃>0 D(θ̃ , β). Recall
that x0 represents the transmitted vector, whose elements are
drawn with equal probability from the M-PAM constellation.
Lemma 1: For j = 1, . . . ,K, and for fixed θ̃ and β, define

κj(.; θ̃ , β, x0,j) : R → R as:

κj

(
x; θ̃ , β, x0,j

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−t, if x < x−0
(
θ̃ , β, x0,j

)

t, if x > x+0
(
θ̃ , β, x0,j

)

β
(
ρdσ

2
Ĥ
x0,jθ̃+√

ρdσĤx
)

ρdσ
2
Ĥ
βθ̃+2λρd

, otherwise,

where x−0 (θ̃ , β, x0,j) and x+0 (θ̃ , β, x0,j) are given by (60)
and (61). Let x̂ be the solution of the (PO). Then for all for
all Lipschitz functions ψ : R → R with Lipschitz constant
L, it holds:

1

K

K∑

i=1

ψ(̂xi)− 1

K

K∑

j=1

E

[
ψ
(
κj

(
qj; θ̃
, β
, x0,j

))]
P−→ 0,

(90)

where q1, . . . , qK are independent and identically dis-
tributed standard Gaussian random variables and (β
, θ̃
)

is the unique solution to the optimization problem
supβ≥0 infθ̃≥0 D(θ̃ , β).
Proof: To avoid heavy notations, we will remove x0,j from

the notations of κj(θ̃ , β, x0,j) and that of x−0 (θ̃ , β, x0,j) and
x+0 (θ̃ , β, x0,j) as it will not play any role in the proof. To
prove (90), we consider the set:

Sε =
⎧
⎨

⎩
x
∣
∣

∣
∣
∣
∣
∣
∣

1

K

K∑

i=1

ψ(xi)− 1

K

K∑

j=1

E

[
ψ
(
κj

(
qj; θ̃
, β


))]
∣
∣
∣
∣
∣
∣
< ε

⎫
⎬

⎭
.

(91)

Then, in view of the CGMT, for (90) to hold true, it suffices
to show that with probability approaching 1,

max
β>0

min−t<xj<t
j=1,...,K
x/∈Sε

Ĥ(β, x) ≥ φ, (92)

where we recall that Ĥ(β, x) is the objective of the
optimization problem in (50). Noting that

max
β>0

min−t<xj<t
j=1,...,K
x/∈Sε

Ĥ(β, x) ≥ min−t<xj<t
j=1,...,K
x/∈Sε

Ĥ(β
, x), (93)

the proof of (92) boils down to proving that

min−t<xj<t
j=1,...,K
x/∈Sε

Ĥ(β
, x) > φ. (94)

A key step towards showing (94) is to analyze the asymptotic
behavior of the following optimization problem:

min−t<xj<t
j=1,...,K

Ĥ(β
, x). (95)

Particularly, the following statements will be shown in the
sequel:
(i) The following convergence holds true:

min−t<xj<t
j=1,...,K

Ĥ(β
, x) P−→ φ = sup
β≥0

min
θ̃≥0

D
(
θ̃ , β

)
(96)

(ii) Let ˆ̃x = [ ˆ̃x1, . . . , ˆ̃xK]T be the solution to the
optimization problem in (95). Then, it holds with
probability approaching 1,

∀ x ∈ [−t, t]K\Sε, 1√
K

‖x − ˆ̃x‖ ≥ ε

2L
. (97)

(iii) For any x = [x1, . . . , xK]T ∈ [−t, t]K , there exists a
constant C such that:

Ĥ(β
, x) ≥ Ĥ
(
β
, ˆ̃x

)
+ C

2K
‖x − ˆ̃x‖2. (98)

Prior to proving the above statements, let us see how they
lead to the desired inequality (94). Putting together (96)
and (98) shows that for any � > 0, with probability
approaching 1,

Ĥ(β
, x) ≥ φ − �+ C

2K
‖x − ˆ̃x‖2. (99)

From (97), we have for any x ∈ [−t, t]K\Sε ,
1

K
‖x − ˆ̃x‖2 ≥ ε2

4L
. (100)

Now, setting � = Cε2

16L in (99), and using (100) we get:

Ĥ(β
, x) ≥ φ + Cε2

16L
. (101)

The above inequality holds for any x ∈ [−t, t]K\Sε hence,

min−t<xj<t
j=1,...,K
x/∈Sε

Ĥ(β
, x) ≥ φ + Cε2

16L
> φ, (102)

thus proving (94).
Proof of (96): Following the same calculations used in the

analysis of the (AO), we can prove that for sufficiently small
ε and large constant C, with probability approaching 1,

min−t≤xj≤t
j=1,...,K

Ĥ(β
, x) = minε≤θ̃≤C D̃
(
θ̃ , β
, g,q1

)
. (103)

Based on similar asymptotic analysis to that carried out in
Section B, we can prove that θ̃ �→ D̃(θ̃ , β
, g,q1) converges
uniformly to θ̃ �→ D(θ̃ , β
) and hence,

min−t≤xj≤t
j=1,...,K

Ĥ(β
, x) P−→ φ = min
ε≤θ̃≤C

D
(
θ̃ , β


)
. (104)
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Proof of (97): Let ˆ̃
θ ∈ {argminε≤θ̃≤CD̃(θ̃ , β
, g,q1)}. In

view of (59), for j = 1, . . . ,K, {ˆ̃xj = κj(q1
j ,

ˆ̃
θ, β
)} is a

solution to (95). On the other hand, as the minimum of
θ̃ �→ D(θ̃ , β
) is unique, we conclude that ˆ̃

θ converges in
probability to θ̃
. From this convergence, we argue that

max
1≤j≤K

∣
∣
∣κj
(
q1
j ,

ˆ̃
θ, β


)
− κj

(
q1
j , θ̃
, β


)∣∣
∣

P−→ 0. (105)

Prior to showing (105), let us explain how it leads to (97).
Indeed from the Lipschitz assumption it holds that:

max
1≤j≤K

∣
∣
∣ψ
(
κj

(
q1
j ,

ˆ̃
θ, β


))
− ψ

(
κj

(
q1
j , θ̃
, β


))∣∣
∣

P−→ 0. (106)

Moreover, from the law of large numbers,

1

K

K∑

j=1

ψ
(
κj

(
q1
j , θ̃
, β


))

− E
1

K

K∑

j=1

ψ
(
κj

(
q1
j , θ̃
, β


))
P−→ 0,

which combined with (106) yields:

1

K

K∑

j=1

ψ
(
κj

(
q1
j ,

ˆ̃
θ, β


))
− E

1

K

K∑

j=1

ψ
(
κj

(
q1
j , θ̃
, β


))
P−→ 0.

Hence, for ε > 0, with probability approaching one,
∣
∣
∣
∣
∣
∣

1

K

K∑

j=1

ψ
(
κj

(
q1
j ,

ˆ̃
θ, β


))
− E

1

K

K∑

j=1

ψ
(
κj

(
q1
j , θ̃
, β


))
∣
∣
∣
∣
∣
∣
≤ ε.

By definition of the set Sε and the triangle inequality, it holds
with probability approaching 1 that for all x ∈ [−t, t]K\Sε

∣
∣
∣
∣
∣
∣

1

K

K∑

j=1

ψ(xi)− 1

K

K∑

j=1

ψ
( ˆ̃xj
)
)

∣
∣
∣
∣
∣
∣
≥ ε

2
. (107)

Then, based on the Lipshitz property of ψ , it holds that:
∥
∥
∥x − ˆ̃x

∥
∥
∥ ≥ ε

2L
,

which shows (97).

Now, to prove (105), note that since ˆ̃
θ

P−→ θ̃
, for any
η > 0, with probability approaching one,

− η ≤ ˆ̃
θ − θ̃
 ≤ η, (108)

from which we deduce that:

max
1≤j≤K

∣
∣
∣x+0
( ˆ̃
θ, β


)
− x+0

(
θ̃
, β


)∣∣
∣ ≤ Cη,

where C = √
ρdσĤ(max1≤j≤K |x0,j| + t) and similarly,
∣
∣
∣x−0
( ˆ̃
θ, β


)
− x−0

(
θ̃
, β


)∣
∣
∣ ≤ Cη.

Using the fact that x−0 (θ̃
, β
) < x+0 (θ̃
, β
), and choosing η
sufficiently small, we conclude that if for some j = 1, . . . ,K,

q1
j ≤ x−0 (θ̃
, β
), then q1

j ≤ x+0 (
˜̂
θ, β
), and similarly, if q1

j ≥
x+0 (θ̃
, β
), then q1

j ≥ x−0 (
˜̂
θ, β
). As a consequence,

max
1≤j≤K

∣
∣
∣κj
(
q1
j ,

ˆ̃
θ, β
,

)
− κj

(
q1
j , θ̃
, β


)∣∣
∣

≤

∣
∣
∣
∣
∣
∣
∣
t +

β


(
ρdσ

2
Ĥ
x0,j

ˆ̃
θ + √

ρdσĤq
1
j

)

ρdσ
2
Ĥ
β


ˆ̃
θ + 2λρd

∣
∣
∣
∣
∣
∣
∣
1{
x−0
( ˆ̃
θ,β


)
≤q1

j ≤x−0 (θ
,β
)
}

+
∣
∣
∣
∣
∣
∣
t +

β


(
ρdσ

2
Ĥ
x0,jθ̃
 + √

ρdσĤq
1
j

)

ρdσ
2
Ĥ
β
θ̃
 + 2λρd

∣
∣
∣
∣
∣
∣
1{
x−0
(
θ̃
,β


)
≤q1

j ≤x−0
( ˆ̃
θ,β


)}

+

∣
∣
∣
∣
∣
∣
∣
t −

β


(
ρdσ

2
Ĥ
x0,j

ˆ̃
θ + √

ρdσĤq
1
j

)

ρdσ
2
Ĥ
β


ˆ̃
θ + 2λρd

∣
∣
∣
∣
∣
∣
∣
1{
x+0
(
θ̃
,β


)
≤q1

j ≤x+0
( ˆ̃
θ,β


)}

+
∣
∣
∣
∣
∣
∣
t −

β


(
ρdσ

2
Ĥ
x0,jθ̃
 + √

ρdσĤq
1
j

)

ρdσ
2
Ĥ
β
θ̃
 + 2λρd

∣
∣
∣
∣
∣
∣
1{
x+0
( ˆ̃
θ,β


)
≤q1

j ≤x+0
(
θ̃
,β


)}

+

∣
∣
∣
∣
∣
∣
∣

β


(
ρdσ

2
Ĥ
x0,jθ̃
 + √

ρdσĤq
1
j

)

ρdσ
2
Ĥ
β
θ̃
 + 2λρd

−
β


(
ρdσ

2
Ĥ
x0,j

ˆ̃
θ + √

ρdσĤq
1
j

)

ρdσ
2
Ĥ
β


ˆ̃
θ + 2λρd

∣
∣
∣
∣
∣
∣
∣

× 1{
max

(
x−0
(
θ̃
,β


)
,x−0
( ˆ̃
θ,β


))
≤q1

j ≤min
(
x+0
( ˆ̃
θ,β


)
,x+0
(
θ̃
,β


))}. (109)

Each term of the right-hand side of (109) can be bounded
by a linear function of η using (108), thereby proving (105).
Proof of (98): It can be checked that x �→ Ĥ(β
, x) is

strongly convex, and its Hessian satisfies ∇2Ĥ(β
, x) �
2λ
K ρdIK . Hence, for any x ∈ [−t, t]K ,

Ĥ(β
, x) ≥ Ĥ
(
β
, ˆ̃x

)
+ 2λ

K
ρd

∥
∥
∥x − ˆ̃x

∥
∥
∥

2
. (110)

G. FROM LIPSCHITZ TO THE INDICATOR FUNCTION OF
SOLUTIONS TO THE (PO)
Lemma 2: Let x̂ be the solution to the (PO). Let c ∈ R such
that c /∈ {−t, t}. Then,

1

K

K∑

j=1

1{x̂j≤c} − 1

K

K∑

j=1

P

[
κj

(
q, θ̃
, β
, x0,j

)
≤ c
]

P−→ 0,

(111)

where q is assumed to be drawn from a standard normal
distribution.
Proof: Similar to the proof of Lemma 1, for j = 1, . . . ,K,

to easy notations, we shall remove x0,j from the notation
κj(q, θ̃
, β
, x0,j). Let η > 0, and consider the following
functions parametrized by η,

ψη(α) :=
⎧
⎨

⎩

1, α ≤ c
1 − 1

η
(α − c), c ≤ α ≤ c+ η

0, α ≥ c+ η,

and

ψ
η
(α) :=

⎧
⎨

⎩

1, α ≤ c− η

− 1
η
(α − c), c− η ≤ α ≤ c

0, α ≥ c.
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Both functions are Lipschitz, with a Lipschitz constant 1
η
.

Moreover, for any α,

ψ
η
(α) ≤ 1{α≤c} ≤ ψη(α).

Also, define the function: ψ̃η(α) = ψη(α) − ψ
η
(α). Then,

it is easy to see that:

ψ̃η(α) ≤ 1{c−η≤α≤c+η}. (112)

Hence,

1

K

K∑

j=1

ψ
η

(
x̂j
) ≤ 1

K

K∑

j=1

1{x̂j≤c} ≤ 1

K

K∑

j=1

ψη
(
x̂j
)
, (113)

and

1

K

K∑

j=1

E

[
ψ
η

(
κj

(
q, θ̃
, β


))]
≤ 1

K

K∑

j=1

P

[
κj

(
q, θ̃
, β


)
≤ c
]

≤ 1

K

K∑

j=1

E

[
ψη

(
κj

(
q, θ̃
, β


))]
. (114)

Using (113) and (114), it follows that:

1

K

K∑

j=1

ψ
η

(
x̂j
)− 1

K

K∑

j=1

E

[
ψη

(
κj

(
q, θ̃
, β


))]

≤ 1

K

K∑

j=1

1{x̂j≤c} − 1

K

K∑

j=1

P

[
κj

(
q, θ̃
, β


)
≤ c
]

≤ 1

K

K∑

j=1

ψη
(
x̂j
)− 1

K

K∑

j=1

E

[
ψη

(
κj

(
q, θ̃
, β


))]
. (115)

From Lemma 1, for ε > 0, with probability approaching
one:

∣
∣
∣
∣
∣
∣

1

K
ψ
η

(
x̂j
)− 1

K

K∑

j=1

E

[
ψ
η

(
κj

(
q, θ̃
, β


))]
∣
∣
∣
∣
∣
∣
≤ ε, (116)

and
∣
∣
∣
∣
∣
∣

1

K
ψη
(
x̂j
)− 1

K

K∑

j=1

E

[
ψη

(
κj

(
q, θ̃
, β


))]
∣
∣
∣
∣
∣
∣
≤ ε. (117)

Hence,

−ε − 1

K

K∑

j=1

E

[
ψ̃η

(
κj

(
q, θ̃
, β


))]

≤ 1

K

K∑

j=1

1{x̂j≤c} − 1

K

K∑

j=1

P

[
κj

(
q, θ̃
, β


)
≤ c
]

≤ ε + 1

K

K∑

j=1

E

[
ψ̃η

(
κj

(
q, θ̃
, β


))]
. (118)

From (112),

lim
η→0

1

K

K∑

j=1

E

[
ψ̃η

(
κj

(
q, θ̃
, β


))]

≤ lim
η→0

max
1≤j≤K P

[
c− η ≤ κj

(
q, θ̃
, β


)
≤ c+ η

]
.

As c /∈ {−t, t}, the right-hand side of the above inequality
converges to zero. Hence, there exists η0 such that for all
η ≤ η0,

1

K

K∑

j=1

E

[
ψ̃η

(
κj

(
q, θ̃
, β


))]
≤ ε. (119)

Combining (118) and (119), we get the desired result, that
is that for ε > 0, with probability approaching 1,
∣
∣
∣
∣
∣
∣

1

K

K∑

j=1

1{x̂j≤c} − 1

K

K∑

j=1

P

[
κj

(
q, θ̃
, β


)
≤ c
]
∣
∣
∣
∣
∣
∣
≤ 2ε. (120)

Corollary 2: Consider the setting of Lemma 2. We thus
have:

1

K

K∑

j=1

P
[
x̂j ≤ c

]− 1

K

K∑

j=1

P

[
κj

(
q, θ̃
, β
, x0,j

)
≤ c
]

→ 0.

Proof: The proof follows straightforwardly by applying
the dominated convergence theorem.

H. APPLYING THE CGMT: MSE OF BOX-RLS
Let x̂ be the solution of (12a). Recall that the MSE is given
by:

MSE = 1

K
‖̂x − x0‖2,

which can be also written as:

MSE = 1

ρdσ
2
Ĥ

(
1

K
‖v‖2 − ρd

K
σ 2
�‖x0‖2

)

. (121)

As 1
K ‖v‖2 P−→ δθ2


 − 1, and 1
K ‖x0‖2 P−→ 1, we thus have:

MSE
P−→ 1

ρdσ
2
Ĥ

(
δθ2

 − 1 − ρdσ

2
�

)
. (122)

S̃EP = 4

M

∑

i=1,3,...,M−3

1{ t
B≥ i+1√E

}Q

(
ξ θ̃
√E

)

+ 2

M

∑

i=1,3,...,M−3

{

1{ i−1√E ≤ t
B≤ i+1√E

}Q

(
ξ θ̃
√E

)

+ 1{ t
B≤ i−1√E

}

}

+ 2

M
1{ t

B≥M−2√E
}Q

(
ξ θ̃
√E

)

+ 2

M
1{ t

B≤M−2√E
} (123)
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I. APPLYING THE CGMT: SEP FOR BOX-RLS
In this section, we study the limiting behavior of the SEP
defined in (15). For j = 1, . . . ,K, consider the output of the
(PO) problem which denoted by x̂. Recall the expression of
the SEP

SEP = 1

K

K∑

j=1

P

[

ŝ 	= x0,j,with ŝ = argmin
s∈C

∣
∣
∣
∣
x̂j
B

− s

∣
∣
∣
∣

]

.

In PAM-constellations, we distinguish inner symbols when
x0,j belongs to 1√E {±1,±3, . . . ,±(M− 3)} from edge sym-

bols when x0,j = ±M−1√E . Let us consider first the case where
x0,j is a certain inner symbol. In this case, there is an error

if and only if | x̂jB − x0,j| > 1√E , where B = ξ2β
θ̃


ξ2β
θ̃
+2λρd
.

Similarly, considering the edge points x0,j = ±M−1√E , we

deduce that there is an error if
x̂j
B − x0,j >

1√E when

x0,j = M−1√E and if
x̂j
B − x0,j < − 1√E when x0,j = −M−1√E .

The SEP thus becomes:

SEP = 1

K

K∑

j=1

1

M

∑

i=±1,±3,
,...,±(M−2)

P

[∣∣
∣
∣
x̂j
B

− x0,j

∣
∣
∣
∣ >

1√E |x0,j = i√E

]

+ 1

K

K∑

j=1

1

M
P

[
x̂j
B

− x0,j < − 1√E | x0,j = M − 1√E

]

+ 1

K

K∑

j=1

1

M
P

[
x̂j
B

− x0,j >
1√E | x0,j = −M − 1√E

]

.

Based on Corollary 2, we have

SEP − S̃EP → 0,

where S̃EP follows after some tedious but straightforward
calculations and is given in (123).

APPENDIX C
UN-BOXED RLS PROOFS
The analysis of the Un-Boxed RLS scheme is similar to the
analysis of the Box-RLS. Below we provide a brief sketch
of the proof. Following the same analysis as before, we
identify the same (PO) and (AO) with the single difference
that the constraints on {xj}Kj=1 are now removed. Particularly,
the (AO) associated with the RLS writes as:

φ = max
β>0

min
0≤θ̃≤C

β‖g‖2

2θ̃K
+ βθ̃

2
− β2

4
+ βθ̃ρd‖x0‖2

2K

+ √
ρdβ

1

K
xT0 h̃ + 1

K

K∑

j=1

[

min
xj∈R

(
βθ̃ρdσ

2
Ĥ

2
+ λρd

)

x2
j

− β
(
ρdσ

2
Ĥ
x0,jθ̃ + √

ρdσĤq
1
j

)
xj

]

, (124)

which is similar to (57) with the difference that the
optimization over xj is on the whole real line. Optimizing

over the variables xj, j = 1, . . . ,K, we thus obtain:

φ = max
β>0

min
0≤θ̃≤C

β‖g‖2

2θ̃K
+ βθ̃

2
− β2

4
+ βθ̃ρd‖x0‖2

2K

+ √
ρdβ

1

K
xT0 h̃ − 1

K

K∑

j=1

β2
(
ξ2x0,jθ̃ + ξq1

j

)2

2ξ2βθ̃ + 4λρd
. (125)

Using the same approach as that in the Box-RLS, we can
prove that φ converges to:

φ
P→ φ := sup

β>0
inf
θ̃>0

βδ

2θ̃
+ βθ̃

2
− β2

4

+ βθ̃ρd

2
− β2ξ2θ̃2 + ξ2

2ξ2βθ̃ + 4λρd
. (126)

Using the change of variable θ = 1
θ̃
, this brings us to solve

the following max-min problem:

φ = sup
β>0

inf
θ>0

βθ
δ

2
+ β

2θ
(1 + ρd)− β2

4

−
β2σ 2

Ĥ
2βσ 2

H
θ

+ 4λ

(

1 +
ρdσ

2
Ĥ

θ2

)

,

for which we prove that there exists a unique solution
(θ
, β
). As a matter of fact, writing the first order optimality
conditions, we obtain:

δβ − β

θ2
− ρdσ

2
�β

θ2
−
βσ 2

Ĥ

(
β2σ 2

Ĥ
+ 4ρdλ2

)

(
βσ 2

Ĥ
+ 2λθ

)2
= 0,

(127a)

δθ + 1

θ
− β + ρdσ

2
�

θ
−
σ 2
Ĥ
θ
(
β2σ 2

Ĥ
+ 4λθβ − 4ρdλ2

)

(
βσ 2

Ĥ
+ 2λθ

)2
= 0.

(127b)

Combining the two equations together ( 1
β

(127a)

+ 1
θ
(127b)), gives

δ − β

2θ
−

βσ 2
Ĥ

βσ 2
Ĥ

+ 2λθ
= 0, (128)

which is equivalent to a second order polynomial in θ , the
solution of which is given by:

θ = 1

2λ′ϒ
(
λ′, δ

)
β, (129)

where, ϒ(λ′, δ) = −(δ−λ′−1)+
√
(δ−λ′−1)2+4λ′δ

2δ , and λ′ = λ

σ 2
Ĥ

.

Substituting (129) into (127) and after some algebraic manip-
ulations, the unique solution (θ
, β
) of the system is

θ
 =
√
ρdσ

2
Ĥ
κ2 + ρdσ

2
� + 1

δ − (1 − κ)2
, (130a)

β
 = 2
((
δ − λ′ − 1

)+ δϒ
(
λ′, δ

))
θ
, (130b)
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where κ = ϒ(λ′,δ)
1+ϒ(λ′,δ) . Substituting κ back gives the same

expression as θ
 in Theorem 1. Similar to the Box-RLS
case, we can obtain the same MSE and SEP expressions
as before. The only difference is that θ
 and β
 are now
given by the closed form expressions in (130a) and (130b),
respectively.

APPENDIX D
PROOF OF (53)
To begin with, we perform the change of variable s = σĤx−
x0. Function Ĥ(β, x) can be lower-bounded as:

Ĥ(β, x) ≥ β
‖g‖√
K

√
ρd − β̃2

4
− β̃

√
ρd

sTq1

K
− β

√
ρd

xT0q
1

K

+ β
√
ρd

1

K
xT0 h̃ + λρd

σ 2
Ĥ

1

K

(
‖s‖2 + ‖x0‖2 + 2sTx0

)
.

Denote by κ the norm of 1√
K

‖s‖. Minimizing the lower-
bound over s, we obtain:

Ĥ(β, x) ≥ min
κ≥0

β̃
‖g‖√
K

√
ρd − β2

4
− β

√
ρd

xT0q
1

K
+ β̃

√
ρd

1

K
xT0 h̃

+ λρd

σ 2
Ĥ

κ2 + λρd

σ 2
Ĥ

‖x0‖2 − κ‖β̃√
ρd

1√
K
q1 − 2

λρd√
Kσ 2

Ĥ

x0‖

= β
‖g‖√
K

√
ρd − β2

4
− β

√
ρd

xT0q
1

K
+ β

√
ρd

1

K
xT0 h̃ + λρd

σ 2
Ĥ

‖x0‖2

−
σ 2
Ĥ

4λρdK
‖2
λρd

σ 2
Ĥ

x0 − β
√
ρdq1‖2.

In the asymptotic regime with K and N tending to infinity,
and taking β as fixed, the right-hand side of the above
equation converges to:

β
√
ρd

√
δ − β2

4
− β2

σ 2
Ĥ

4λ
, (131)

which simplifies to ρdδ

1+
σ2
Ĥ

4λ

when β is replaced by β0 :=
2
√
ρd

√
δ

1+
σ2
Ĥ

4λ

. We thus obtain almost surely

Ĥ(β0, x) ≥ 1

2

ρdδ

1 + σ 2
Ĥ

4λ

,

and as such, almost surely,

min−t≤xj≤t
j=1,...,K

Ĥ(β0, x) ≥ 1

2

ρdδ

1 + σ 2
Ĥ

4λ

. (132)

Setting � = 1
2

ρdδ

1+
σ2
Ĥ

4λ

ends up the proof of (53).

APPENDIX E
MONOTONICITY OF THE MSE AND SEP OF
THE RLS DECODER
We showed that for the LS case, optimizing the power allo-
cation in MSE sense is equivalent to optimizing the SEP
and it boils down to maximizing ρeff.

In this Appendix, we will show that this holds also true
for the RLS decoder that employs optimal regularization
coefficient. Towards this goal, we proceed with the following
change of variables J = 1

ρeff
, c1 = 2(1+δ), and c2 = (1−δ)2.

Then, the MSE and SEP write as:

M̃SERLS = 1

2

(
−J + (1 − δ)+

√
J2 + c1J + c2

)
, (133)

S̃EPRLS = 2

(

1 − 1

M

)

× Q

⎛

⎜
⎝

√√
√
√

δ

E
(

1
2

(
J + (1 − δ)+

√
J2 + c1J + c2

))

⎞

⎟
⎠.

(134)

It appears from (133) and (134) that to minimize the MSE
or the SEP, it suffices to minimize for all i ∈ {0, 1}, function
Fi(J) = (−1)iJ+

√
J2 + c1J + c2. We can check easily that

the first derivative of Fi is given by: F ′
i (J) = (−1)i +

2J+c1

2
√
J2+c1J+c2

which is strictly positive for all i ∈ {0, 1}. It
follows thus that both M̃SERLS and S̃ERRLS are increasing
functions of 1

ρeff
and hence minimizing them amounts to

maximizing ρeff. Then,

M̃SERLS = 1

2

(
−J + (1 − δ)+

√
J2 + c1J + c2

)
.

On the other hand, from (30), it is clear that to minimize the
SEP we need to maximize the argument of the Q-function,
which means to minimize M̃SERLS + J.

APPENDIX F
OPTIMAL POWER ALLOCATION DERIVATION:
PROOF OF THEOREM 5
Here, we derive the optimal power allocation given in
Theorem 5. First, rewrite ρeff as follows

ρeff = αρ τ
τd
.(1 − α)ρτ

(
1 + αρ τ

τd

)
+ (1 − α)ρτ

= (ρτ)2

τd
· α(1 − α)

1 + ρτ − αρτ
(

1 − 1
τd

)

= ρτ

τd − 1
· α(1 − α)

−α + 1+ρτ
ρτ
(

1− 1
τd

)
.

We need to maximize ρeff over 0 < α < 1. To do so, we
consider the following cases:
1) τd = 1:

ρeff = (ρτ)2

1 + ρτ
α(1 − α).

In this case, α
 = 1
2 .

2) τd > 1:

ρeff = ρτ

τd − 1
· α(1 − α)

−α + ϑ
, ϑ = 1 + ρτ

ρτ
(

1 − 1
τd

) > 1.
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Hence, the optimal α
 that maximizes ρeff is given by:

α
 = argmax
0<α<1
ϑ>1

α(1 − α)

−α + ϑ

= ϑ −√ϑ(ϑ − 1).

3) τd < 1:

ρeff = ρτ

1 − τd
· α(1 − α)

α − ϑ
, ϑ = 1 + ρτ

ρτ
(

1 − 1
τd

) < 0.

In this case, we have

α
 = argmax
0<α<1
ϑ<0

α(1 − α)

α − ϑ

= ϑ +√ϑ(ϑ − 1).

APPENDIX G
OPTIMAL POWER AND TRAINING TIME ALLOCATION
DERIVATION BASED ON GOODPUT
In this section, we determine the optimal power and training
time allocation that optimizes the asymptotic value of the
goodput for LS decoder which we denote here by G̃LS.

To this end, we proceed with the change of variable γ =
Tp
T . Then, τp = Tp

K = Tp
T , T

K = γ τ, δ′ = δ−1
E , ρp = (1−α)ρ

γ
,

and ρd = αρ
1−γ . The SEP for LS case is

S̃EPLS = 2

(

1 − 1

M

)

Q

(√
δ − 1

E ρeff

)

= 2

(

1 − 1

M

)

Q

(√
δ − 1

E · ρdρpτp

1 + ρd + ρpτp

)

= 2

(

1 − 1

M

)

Q

⎛

⎝

√√
√
√ δ − 1

E ·
αρ

1−γ
(1−α)ρ
γ

γ τ

1 + αρ
1−γ + (1−α)ρ

γ
γ τ

⎞

⎠

= 2

(

1 − 1

M

)

Q

⎛

⎝

√
δ′α(1 − α)ρ2τ

1 + αρ + (1 − α)ρτ − γ (1 + (1 − α)ρτ)

⎞

⎠

= 2

(

1 − 1

M

)

Q

⎛

⎜
⎝

√√
√
√
√

δ′α(1−α)ρ2τ
1+(1−α)ρτ

1+αρ+(1−α)ρτ
1+(1−α)ρτ − γ

⎞

⎟
⎠

= M̃Q

(√
b(α)

a(α)− γ

)

,

where M̃ = 2(1− 1
M ), a(α) = 1+αρ+(1−α)ρτ

1+(1−α)ρτ > 1, and b(α) =
δ′α(1−α)ρ2τ
1+(1−α)ρτ > 0. The asymptotic goodput becomes

G̃LS(α, γ ) = (1 − γ )
(
1 − S̃EPLS

)

= (1 − γ )

(

1 − M̃Q

(√
b(α)

a(α)− γ

))

.

The power allocation problem amounts thus to solving:

(α
, γ
) = argmax
0<α<1
1
τ
≤γ<1

G̃LS(α, γ ), (135)

Recall that we need Tp ≥ K or τp ≥ 1, but τp = γ τ , hence
γ ≥ 1

τ
. We also require Tp < T , hence γ < 1. This justifies

the constraint imposed on γ above.
To begin with, it is easy to see that the optimal α is the

one that maximizes ρeff and this is for any γ . It remains
thus to optimize the goodput in terms of γ . We will solve
this by proving that the good-put is a decreasing function
with respect to γ . To proceed, let us make the change of

variables: x =
√

b
a−γ , then γ = a − b

x2 . Hence, for any
0 < α < 1, the goodput is

G̃LS(α, γ ) = G LS(x) :=
(

1 − a+ b

x2

)
(
1 − M̃Q(x)

)
.

Taking the derivative of GLS(x) with respect to x yields

G
′
LS(x) = −2b

x3

(
1 − M̃Q(x)

)+
(

1 − a+ b

x2

)(
M̃√
2π

e
−x2

2

)

= M̃e
−x2

2

[−2b

x3
e
x2
2

(
1

M̃
− Q(x)

)

+ 1√
2π

(

1 − a+ b

x2

)]

.

We need to study the sign of G
′
LS(x). To do so, first write

the Taylor series expansion of e
x2
2 ( 1

M̃
− Q(x)) as:

e
x2
2 ( 1

M̃
− Q(x)) = 1

2(M−1) + x√
2π

+ x2

4(M−1) + · · · , then

G
′
LS(x) = M̃e

−x2
2

[ −b
(M − 1)x3

− b√
2πx2

− b

4(M − 1)x
+ · · · + 1√

2π
(1 − a)

]

.

Recall that a > 1 and note that all the terms in G
′
LS(x)

expression above are negative. Hence, G
′
LS(x) < 0 for all α.

Now, by the chain rule: dGLS
dx = dGLS

dγ · dγdx , but dγ
dx = 2b

x3 > 0,

then dGLS
dγ < 0.

Hence, ∂GLS(α,γ )
∂α

< 0 for any α. This suggests that we
choose γ as small as possible to maximize G̃LS(α, γ ).
So, γ
 = 1

τ
. Or, τ 
p = γ
τ , then τ 
p = 1.

The proof above is done for LS but the same conclusions
hold for both RLS and also for the Box-RLS under the
conjecture that for Box-RLS, the optimal α is the one that
maximizes ρeff. We omit details for briefness.

APPENDIX H
COMPARISON WITH THE LMMSE DECODER
In this Appendix we will show that the LMMSE estimator
of x0 is equivalent to an RLS estimator with the optimal
regularizer λ
 = 1

ρd
+ σ 2

�. The LMMSE estimate of x0 is
given by [56]

x̂LMMSE = CxyC−1
yy y, (136)

where Cxy = E[(x0 −E[x0])(y−E[y])T ], and Cyy = E[(y−
E[y])(y − E[y])T ]. It can be shown that E[y] = E[x0] = 0,
and

Cxy =
√
ρd

K
ĤT . (137)
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To find Cyy, let us write y as

y =
√
ρd

K

(
Ĥ +�

)
x0 + z,

=
√
ρd

K
Ĥx0 + z̃, (138)

where z̃ �
√
ρd
K �x0 + z which is a zero-mean vector, with

Cz̃z̃ = ρd
K Ex0,�[�x0xT0�T] + Czz = ρd

K E�[�Ex0[x0x
T
0 ]�

T]
+Czz = ρd

K E�[�Cxx�
T] + Czz = ρd

K E�[��T] + IN =
(ρdσ

2
�

+ 1)IN. Then,

Cyy = ρd

K
ĤĤT +

(
ρdσ

2
� + 1

)
IN . (139)

Note that we used Cxx = IK , Czz = IN , and E[��T ] =
Kσ 2

�IN . Hence,

x̂LMMSE =
√
ρd

K
ĤT
(ρd
K
ĤĤT +

(
ρdσ

2
� + 1

)
IN
)−1

y,

=
√
ρd

K

(ρd
K
ĤTĤ +

(
ρdσ

2
� + 1

)
IK
)−1

ĤTy,

=
(
ATA +

(
1 + ρdσ

2
�

)
IK
)−1

ATy, (140)

where A =
√
ρd
K Ĥ, and the second equality follows from

the matrix inversion Lemma. The LMMSE estimate in (140)
is equivalent to the RLS solution as given in (11b) with
λρd = λ
ρd = 1 + ρdσ

2
�. This shows that the RLS with

optimal regularizer is nothing but the popular LMMSE
decoder. Finally, the LMMSE estimate can be written in
terms of Ĥ as

x̂LMMSE =
√
K

ρd

(

ĤTĤ +
σ 2
Ĥ

ρeff
KIK

)−1

ĤTy

= x̂RLS(λ
). (141)
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