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ABSTRACT Owing to various applications in the field of wireless communication systems, in this paper,
using vector-based interior-point algorithm, we propose a generic methodology which optimizes simple
exponential based approximations of the Gaussian Q function (GQF) yielding extremely accurate optimized
approximations. We optimize the relative error (RE) which is considered as one of the key metrics used to
evaluate the performance of these approximations. Precisely, we target the points of local maximas where
the RE is high, defining a new set of optimized coefficients yielding reduced RE at these points of concern.
We also optimize the points of local minimas; however at these points the percentage reduction in RE is
not that significant. We then compute the harmonic mean of all these optimal coefficients which makes
the originally proposed bounds much tighter, for the entire performance range of the GQF. We further
illustrate the tightness of the optimized approximation by facilitating the accurate computation of the
error performance metrics like symbol error probability of various coherent digital modulation schemes
like square quadrature amplitude modulation (SQAM), rectangular-QAM, cross-QAM and hexagonal-
QAM over the versatile k — p shadowed fading channel. The analysis is also validated with the help of
Monte-Carlo simulations.

INDEX TERMS Optimization, vector-based interior-point algorithm, Gaussian Q function, ¥ —u shadowed
fading channel, digital modulation techniques, wireless communication systems, approximate computing.

. INTRODUCTION
THE GAUSSIAN Q function (GQF) defined as

0(x) = L/m exp(—ﬁ)du, (1)
oL 2

plays a vital role in computation of the bit-error-rate (BER)
of several wireless communication systems in the presence
of additive white Gaussian noise (AWGN) and multi-path
fading [1]. However, the form given in (1) is not convenient
to work with and hence it becomes essential to look for
some alternatives which makes (1) tractable without losing
its accuracy.

To meet these challenges, several approximations of the
GQF have been proposed in the open literature [2], [3],
(41, [51, [6], [71, [8], [9], [10], [11], [12], [13], [14], [15];
which prove to be significant in a variety of applications. For

example, the authors in [2, eq. (8)] first proposed an expo-
nential based approximation for the GQF; and ever since
its inception, it became very popular as it facilitates the
BER for various systems like non-orthogonal multiple access
(NOMA)-based Internet of Things (IoT) networks [16],
visible light communication (VLC) systems [17], multiple-
input-multiple-output (MIMO) systems with widely linear
minimum mean square error (WLMMSE) receiver [18],
sparse layered MIMO systems [19], systems employing con-
volution neural network (CNN) as posterior classifier [20];
and large intelligent surface (LIS) based generalized spa-
tial modulation (GSM) systems [21], [22]. Similarly, the
Prony-approximation derived in [3] is used to evaluate the
BER of index-modulation (IM)-aided orthogonal frequency
division multiplexing (OFDM) systems [23]. Noteworthy, IM
is a technique which is widely used in fifth-generation (5G)
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networks to meet the demand of high throughput and low
energy consumption; satisfying the ever growing demands of
future IoT [24]. Moreover, the Prony-approximation finds its
utility in performance analysis of various other wireless com-
munication systems like decode-and-forward (DF) coopera-
tive systems [25], two-way satellite relaying with estimated
channel gains [26], free space optical (FSO) communica-
tion systems [27], systems with orthogonal space time block
codes (OSTBC) [28], [29], imperfect feedback-based linear
precoding schemes for MIMO systems [30]; and reconfig-
urable intelligent surface (RIS)-aided dual-hop mixed radio
frequency (RF)-FSO communication systems [31], [32]. In
the same way, the very popular Karagiannidis and Lioumpas
(KL) approximation [4] finds its utility in the performance
analysis of energy-efficient MIMO-OFDM systems [33] and
coherently distributed systems employing direction of arrival
(DOA) estimation [34].

Apart from all the aforementioned applications, the
approximations of the GQF facilitate the symbol error
probability (SEP) computation of various coherent digital
modulation schemes like square quadrature amplitude mod-
ulation (SQAM), rectangular-QAM (RQAM), cross-QAM
(XQAM) and hexagonal-QAM (HQAM) over AWGN and
various fading statistics. For example, the trapezoidal based
approximation [10] facilitates the SEP of the aforemen-
tioned digital modulation techniques over x — u shadowed
fading channel [35]. Similarly, leveraging the trapezoidal
numerical integration method, the authors in [36] proposed
tight approximations of the SEP of M-Ary phase-shift-
keying over ¥ — p shadowed fading channel. Noteworthy,
it is essential to accurately compute the error performance
of these digital modulation techniques as they are widely
used in several emerging areas of communications [37]
which require high transmission data rate like optical
wireless communications (OWC), fifth-generation (5G) com-
munications, energy-constrained communication systems. To
achieve this, the approximations of the GQF play a vital
role.

Hence, looking at the diverse applications of the approx-
imations of the GQF particularly in the field of wireless
communication systems, it is imperative to improve the accu-
racy of the same. As an instance, the first exponential based
approximation given by the authors in [2, Eq. (8)] is not
accurate enough particularly for the lower values of x. Since
then, improving the accuracy of the GQF has been quite a
challenging area for the potential researchers without com-
promising on its tractability but it has been seen that there is
always a trade-off between the accuracy and tractability of
an approximation. For example, the KL approximation [4]
is fairly accurate but due to the presence of the combination
of algebraic and exponential functions, it is cumbersome to
compute. To a certain extent, the intractability of [4] has been
tackled in [6] where the Taylor series expansion of one of the
exponential terms of [4] has been carried out which is then
truncated to a finite number of terms till a sufficient level
of the accuracy is achieved. However, since [6] is further an
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approximated version of [4], it is not accurate enough, and
a large number of terms are needed if we want to achieve
some amount of accuracy; which increases the complexity
of the approximation. Moreover, it should also be noted that
if an approximation performs well for one particular range
of x, it may happen that it does not give the desired results
for the other values of x. This limits the usefulness of an
approximation for a wider range of x.

Hence, to yield accurate results for a considerable range
of x, the optimization process proves to be significant. For
example, using several non-linear equations, the authors
in [11] tried to optimize an already existing exponential
based approximation [2, (8)] with a challenge of minimiz-
ing the absolute error (AE) and the relative error (RE); but
the optimization did not yield the desired results as one
can achieve better AE or RE at the cost of the other. This
dilutes the significance of [11] as the optimized coefficients
are not generic in nature, i.e., they do not perform well for
both the types of errors. Moreover, the authors in [11] have
clearly stated that the error function needs to be reshaped
if there is a need of the improvement of accuracy over a
specified range of x; but at the same time this results in
the loss of accuracy for the other ranges of x. This again
provides an insight that the performance of [11] is limited
to only one particular range of x. Moreover, the presence
of non-linear equations in [11] increases the computational
complexity of the optimization process. Similarly, the authors
in [38] optimized the AE of [2, (8)] via Remez exchange
algorithm and derived the optimized coefficients enhancing
the accuracy of [2]. However, the work of [38] is limited
to the optimization of AE only. Further, the authors in [10]
proposed tighter trapezoidal based approximations with three
and four number of simple exponential terms. However, if
we see the complete range of x, it does not yield desired
results particularly for very low (x < 0.5) and high values
of x (x > 3).

This motivates to look for a methodology which optimizes
an already existing simple exponential based approximation
which the challenges of improving its accuracy for the entire
range of x; without compromising on its tractability. To
meet these challenges, in this paper, we develop a generic
optimization methodology which can be used to improve the
accuracy of all the approximations as long as the GQF is
expressed in terms of the sum of simple exponentials only. To
show the utility of the proposed method, as an instance, we
explore the exponential bounds given by the authors in [3];
rest all other bounds/approximations can be similarly opti-
mized by the potential researchers. To do so, we implement
the vector-based interior-point algorithm (IPA) which is used
to optimize any linear cost function. In this paper, this cost
function is the RE expression. We highlight some charac-
teristics owing to which the RE performance of the bounds
of [3] is not accurate enough at various local maximas of
the corresponding RE plot. The objective of this paper is
to optimize the RE expression at these points of concern
eventually providing the new optimized coefficients. We
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derive the optimal coefficients corresponding to the points
of local minimas as well. We further compute the harmonic
mean (HM) of these optimal coefficients which enhances the
accuracy of the original approximation [3] for a consider-
able performance range of the GQF. To the best of authors’
knowledge, vector-based IPA used to optimize any linear
GQF approximation is not reported in the literature before.
We further show the significance of the optimized approxi-
mation to compute the SEP of coherent digital modulation
techniques over the versatile x — p shadowed fading chan-
nel. Noteworthy, apart from including all the popular fading
channels like Rayleigh, Nakagami-m, n — u, k — u etc. as
its special cases, the x — u shadowed fading channel is used
in a variety of applications [39], [40], [41], [42], [43], [44],
[45], [46], [47], [48], [49], [50], [51].

The remainder of the paper is organized as follows:
Section II provides the motivation needed for the research
formulation. Section III gives a detailed mathematical back-
ground on the vector-based IPA which is used to optimize
the points of local maximas and local minimas. Section III-A
gives an insight on the newly derived coefficients using IPA.
Section III-B shows the application of the new optimized
approximation in error performance analysis of various
coherent digital modulation schemes over x — u fading chan-
nel. Concluding remarks is given in Section IV which is
followed by the Appendices ‘A’ and ‘B’.

Il. MOTIVATION AND PROBLEM STATEMENT

In this paper, we explicitly demonstrate the working of TPA
to optimize the approximation of the complementary error
function, erfc(x), with two (p = 2) and three (p = 3) number
of terms [3]. These are respectively given as

F(x) ~ 0.416¢ 19427 1 (.294¢~1:05" (2a)

and
Fx) ~ 0.336¢ 1752 10.288¢105° 1 0.004¢~1206°  (2b)

Fig. 1 provides an insight on the performance of (2) by
showing the presence of several local maximas in the RE
curve of (2). The RE is defined as:
_ lerfe(x) — F(x)|
h erfc(x)

It can be inferred from the figure that the original coefficients
of (2) viz. [0.416, 0.294] for p = 2 and [0.336, 0.288, 0.004]
for p = 3 are not performing well at the local maximas; as
the RE is quite high at these points.

Table 1 further provides an insight on the performance
of (2) at the points of local maximas by comparing (2)
with the actual erfc(x) function in terms of the percent-
age RE. It is quite evident that the RE is comparatively high
at these points. Furthermore, as seen from Fig. 1, the regions
lying in the neighbourhood of these local maximas also have
sufficiently high RE. Noteworthy, the regions around local
minimas that occur in the RE curve signifies those regions
where the original set of coefficients are working fine as

RE x 100. 3)
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FIGURE 1. RE Plot for original prony p=2,3 approximation (2).

TABLE 1. Local maximas and corresponding RE for (2).

For Eq. (2a)
Local Maxima (z) erfc(x) F(x) RE (%)
0 1.0000 0.7100 29.0000
0.7908 0.2634 0.2760 4.7651
1.6870 0.0170 0.0165 3.3906
3.0074 2.1083e-05 | 2.2089e-05 4.7759

For Eq. (2b)
Local Maxima (x) erfe(x) F(x) RE (%)
0 1.0000 0.6280 37.2000
1.0609 0.1335 0.1361 1.9549
1.8119 0.0104 0.0103 0.7880
2.9440 3.1348e-05 | 3.2345e-05 3.1793

it can be seen that the RE is getting reduced in those
regions. However, the rate at which these local minimas
appear is quite low which implies that the coefficients of (2)
are not accurate enough for quite a considerable range
of x.

The problem is not just limited to (2), i.e., one can
find several other similar exponential based approximations
viz [2], [5], [10], [11], [12], [13] where one can find several
local maximas in the corresponding RE plots. Hence, it is
imperative to improve the accuracy of all such approxima-
tions for a considerable range of x. In this paper, we explicitly
optimize (2) whereas for the other aforementioned approx-
imations, a similar procedure can be adopted. Noteworthy,
just by making use of max and min functions in the MATLAB
software, one can easily compute the corresponding maxi-
mum and minimum values in an array along with their index
locations. This method can be summarized as:

« Plot the RE (3) curve corresponding to any linear expo-
nential based approximation as stated above over the
range of x € [0, 4].

« Identify the sub-ranges over which one can find a local
maxima or a local minima.

« Over a sub-range, run the max or min function accord-
ingly to obtain the RE values at local maximas and
minimas along with their corresponding location of x.

We would also like to highlight that the since the location of
local maximas and local minimas is independent of time, i.e.,
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the RE is only the function of x and not the function of time,
the location of these points of concern will not change and
therefore this problem statement and the solution proposed
below are very much useful for a realistic system.

lll. VECTOR-BASED IPA
In this section, we optimize a linear cost function f(x) for
n number of variables (xi, x2,...,Xx;) as:

minf(X) = CT X, x1. 4)

Noteworthy, Eq. (4) is subjected to constraints

Amannxl = Bmxls (5)
X1
x2
where X = such that x; > 0; Vj € [1, n],
Xn
CT = [e1 o - ¢u] and A, B matrices basically

compose of the coefficients present in the given constraint
conditions to the said problem.
Let X,(lox) | be an initial vector composing of the variables

which are of the form of x}o), VY j € [1,n], such that all
of them lie inside a Feasible Region (FR). This FR is
determined by the inequality constraints which can be eas-
ily converted into the corresponding equality constraints by
simply incorporating a slack variable.

In order to ensure the best performance of IPA, it is imper-
ative that the input data point must be centered, i.e., it must
be equidistant from all the n axis defining the FR. Hence,
we need to scale this XY(IOX)1 vector into a new vector say Y,E(i)l

such that this criterion is met. To facilitate this mechanism,
we now define a scaling matrix (S) as:

X0 = sy©, (6)

where

A0

is n x n Diagonal matrix. It is to be noted that the diagonal
elements of this matrix are basically just the contents of X©.
From (6), we can write Y@ = §~1X© where

_L —_

)
X

RO

—

€
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yielding the vector Y© =

1
Note that all the elements of Y© are equal which signifies
that the data point resembled by vector Y@ in the FR is
equidistant from all the n axis. Now according to the trans-
formation X = SY, we define the scaled linear optimization
problem in terms of the vector Y having n variables viz.

1,2, -- -, yn) by respectively modifying (4) and (5) as:
minf(¥) = P’ Yux1, ()
and
KinxnYnx1 = Bmx1, (®)

where P = CS and K,,,x, = AmxnSnuxn. For vector Y, here
as well we will have y; > 0; Vj € [1, n] in accordance with
the original problem statement.

In order to start the optimization process using IPA, our
next objectives are to find a suitable direction vector (descent
direction), D1, and step size A; computing a new data point
YD as

YD = y©® 4. 9)

To accomplish the aforementioned objectives, we first
define the projection matrix, Hy,x,, as

—1
H=1—KT(KKT) K, (10)

where [ is an n x n identity matrix. This H matrix satisfies
the following two properties:

H' =H (11a)

and

H?>=H. (11b)

It should be noted that these properties can be easily derived
from (10).

The following Lemmas will ensure that the objectives as
stated above are met:

Lemma 1: The direction vector D, is defined as

D = —HP. (12)

Proof: See Appendix A. |
Lemma 2: The step size is defined as A = 0.9 X Ay,

where
0
e
Amax = min { — ¢,
Vdj<0 —d]

y; and d; are the j® elements of the Y and D vectors
respectively.
Proof: See Appendix B. |
Hence, as these objectives corresponding to the choices
of A and D are met, we can find out the next data point
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Algorithm 1 Vector-Based IPA
1: Determine X©@, C7T, A, B.

2: repeat

3: Formulate S and scale the problem

4: Determine scaled problem matrices P, K
5: Determine H and set D = —HP

6: Determine A, and set A = 0.9 X Ayqx

7: Obtain the new scaled data point vector Y.
8: Use S to descale it into X.

9: Compute the cost function value f(X)
10: until f(X9) — F(XV*D) < 1076

TABLE 2. Mean optimal coefficients of (14).

Qntopt | 0-428584327960569
Bhrropt | 0.303629267990350
yropt | 0-347467003877914
Bhropt | 0-297744033685541

Nopt | 0-001436242987287

(YD) which lies in the interior of the FR, as defined in (9).
Afterwards, we make use of (6) to get the corresponding XV
vector for our original problem statement and using that we
can compute our cost function value f(X). Similarly to
get the next data point X we again need to define the
scaling matrix but this time with the contents of X’ and
repeat the entire procedure again to obtain X® data point.
This process is repeated till the time an optimal solution is
reached. Lastly, we define the criteria to terminate the TPA
implying that the optimal solution has been obtained. For
any j7 iteration and the next (j 4 1) iteration if:

f(X(i)) _f(x(i+1)) <107°

holds true then we conclude that an optimal solution has
been obtained and the IPA is terminated.

The aforementioned algorithm can be summarized by the
following flow-chart.

(13)

A. NEW OPTIMIZED COEFFICIENTS USING IPA
Proposition 1: Using IPA, via Table 2, we now propose
new mean optimal coefficients in replacement of the original
coefficients of (2a) and (2b) denoted by awopr, Bmopr for
p =2 and (x//mpt, ﬂ//l/lopt’ g‘,(,,opt for p = 3. This gives rise to
the novel optimized approximations given as

—1.05x2

~ —1.942x2
FMopt(x) ~ OMopt€ T+ ,BMoptg (14a)
and
~ —1.752x2 ’ —1.05x2 ’ —1.206x%
FMopt(x) ~ aMopte + IBMopte T+ é‘Mopte e
(14b)

Proof: We first define the optimized approximations cor-
responding to the local maximas and local minimas in the
RE curve of (2). These are given as

—1.942)(2 + ﬂe—l.OSXZ (15a)

Fopt(x) ~ae

1544

and
Fope () > o e 1752 _i_ﬂ/efl.on2 + ;/671,206)@’ (15b)

where «, B, o/, B, ¢’ are the optimized coefficients
corresponding to the local maximas and local minimas. W

Precisely, we first optimize the RE (as defined in Eq. (3))
to get the values of the aforementioned coefficients. For that,
we take (15a) and define our problem statement as

—1.94242 el .05x2

o - B .
erfc(x) erfc(x)

For a definite input value of x (which is a local maxima
or a local minima), the fractional terms associated with the
coefficients in (16) will result into some constant values. So
we can rewrite (16) as:

minf(X) = |1 — (16)

minf(X) = |1 — cja — 28]
or equivalently,
minf(X) = |cia + 28 — 1].

This can be expressed in a linear form as described in (4)
where,

cl = [01 2 —1]
and

o
X=|p
1

Furthermore, in (15a) when x = 0 we get,
F opt =a+p

Now since erfc(0) = 1, it is imperative that for x = 0 we
should have o + 8 = 1. Since for x > 0, erfc(x) is essen-
tially a monotonically decreasing function, the inequality
constraint for our problem can be formulated as ¢« + 8 < 1,
where o > 0 and B8 > 0. In order to facilitate the IPA, we
convert this inequality constraint into an equality constraint
by means of a slack variable i, which we will incorporate in
the initial vector X©). Thus, we can write the corresponding
equality constraint as

a+B8+y¢Y =1. a7

The input matrices corresponding to (17) areA = [1 1 1]
and B = [1]. The initial input vector X(© is formed by
taking the original values of @ and g in (2a), i.e.,, 0.416
and 0.294 respectively. Substituting these values in (17), the
initial value of ¥ comes out to be 1 —0.416—0.294 = 0.290,
yielding

0.416

0.294
0.290

xO —

Now by taking the definite value of x as an input, the con-
stants c¢j, ¢y are determined and CT vector is formulated.
Noteworthy, the factors that are in the exponents of (2) are
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FIGURE 2. lllustration of the feasible region, initial point, new point, direction vector

TABLE 4. Optimized coefficients for eq. (15a).

Local Maxima and corresponding optimized coefficients
Point « e

Max 1 | 0.560999997424228 0.438999997424228
Max 2 | 0.405564389756889 0.275770327329548
Max 3 | 0.416900341533637 0.305400111908863
Max 4 | 0.415995919283067 0.280592886317516
Local Minima and corresponding optimized coefficients
Point a B

Min 1 | 0.415995986230111 0.293995054350054
Min 2 | 0.416000167385373 0.293997925424583
Min 3 | 0.415999998722261 0.293999894640623
Min 4 | 0.416009941301644 0.293999053681008

and step size.

TABLE 3. Demonstration of RE reduction (convergence) at local maxima and

TABLE 5. Optimized coefficients for eq. (15b).

minima.
Maxima x = 0
No. of Iterations RE
0 2.900000e-01
1 1.995455e-01
2 3.848716e-02
3 3.553322e-02
4 1.002357e-02
5 6.749971e-03
6 4.598944e-04
7 1.125638e-04
8 7.667683e-05
9 1.518130e-06
10 2.783929¢-07
11 5.151543e-09
Minima x = 3.7473
No. of Iterations RE
0 3.197444e-06
1 1.705897e-07
2 2.119954e-08

used in determining C T Furthermore, here, in order to center
the data the Scaling matrix will be

0416 0 0
S = 0 0294 0
0 0 0.290

Using this, we write the scaled inequality constraint as
0.416y; + 0.294y, < 1. This inequality governs the FR of
the optimization process. Graphically, this FR is the interior
of the triangle which is formed by the two axis and the
constraint line, as shown in Fig. 2.

Now IPA carries out the optimization process and we
eventually obtain the optimized coefficients «, § for an input
x when the termination criteria (13) is satisfied. A similar
approach can be used for (15b) in order to obtain ', 8/, ¢’.

Table 3 demonstrates the convergence of IPA for
optimization of (2a) at maxima x = 0 and minima x =
3.7473. As expected, the successive values of the cost func-
tion (RE) decrease over iterations and we can see that IPA
eventually terminates once the termination criteria (13) is
met. In this way, we not only optimized the points of local
maximas where the RE is high but the points of local
minimas as well. In Tables 4 and 5 we have listed the
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Local Maxima and corresponding optimized coefficients
Point o B’ ¢’
Max 17 | 0.459999997973442 | 0.411999997973442 | 0.12799999797344200
Max 2" | 0.333977921218506 | 0.283544054141979 | 0.00026162744078957
Max 3" | 0.336187557836942 | 0.289879449062907 | 0.00512617452083789
Max 4" | 0.335980934782084 | 0.279630505557138 | 0.00183477030289134
Local Minima and corresponding optimized coefficients
Point o’ B {7
Min 17 | 0.336000551828221 | 0.288000853695572 | 0.00400077387649081
Min 27 | 0.336000037050779 | 0.288000183707279 | 0.00400013671914886
Min 37 | 0.336000016867208 | 0.288000255853544 | 0.00400015315612890
Min 47 | 0.336000002413347 | 0.287998989555026 | 0.00399986457777553
TABLE 6. lllustration of local maxima optimization for (15).
For Eq. (15a)
Point T erfc(x) Fopt(2) RE ¢ (%)
Max 1 0 1.0000 1.0000 5.1515e-07
Max 2 0.7908 0.2634 0.2634 4.9181e-08
Max 3 1.6870 0.0170 0.0170 1.2146e-06
Max 4 3.0074 | 2.1083e-05 | 2.1083e-05 1.0668¢-06
For Eq. (15b)
Point T erfec(x) Fopt(x) RE ¢ (%)
Max 17 0 1.0000 1.0000 6.0797e-07
Max 2/ 1.0609 0.1335 0.1335 4.0819e-07
Max 3’ 1.8119 0.0104 0.0104 8.6875e-07
Max 47 2.9440 | 3.1348e-05 3.1348e-05 1.0715e-07

TABLE 7. Accuracy comparison of original (2) and optimized (15) at local minimas.

Comparison of (2a) and (15a)

Point T RE(%) REopt (%)
Min 1 0.4830 0.0013 3.8586e-08
Min 2 1.2411 | 5.0887e-04 | 9.4096e-08
Min 3 2.2189 | 3.2865e-05 | 2.3595e-06
Min 4 3.7473 | 3.1974e-04 | 2.1199e-06

Comparison of (2b) and (15b)

Point T RE(%) REpt (%)
Min 17 | 0.7870 | 3.7670e-04 | 8.7681e-07
Min 2" | 1.5102 | 8.0097e-05 | 6.5872e-08
Min 37 | 2.1285 | 1.1108e-04 | 1.8159¢-06
Min 4" | 3.5792 | 3.5425e-04 | 2.2468e-06

local maximas and local minimas along with the correspond-
ing optimized coefficients. Using the optimized coefficients,
Tables 6 and 7 further illustrate the results obtained via
optimization of the local maximas and local minimas.
After obtaining the optimal coefficients of (15), we take
their harmonic mean (HM) which eventually computes
the mean optimal coefficients, as listed in Table 2. This
facilitates the optimization of the original approximation (2)

1545



POWARI et al.: OPTIMIZATION OF THE EXPONENTIAL BOUNDS ON THE GAUSSIAN Q FUNCTION

Chiani et.al. [2],N=2
—Shi et.al. [52]
—NMouchtak et.al. [53]
—W.M. Jang [54]

—G. Abreu [8]

Chang et.al. [7]

—Optimized Prony Eq.(14a)

(a)

35 T

30t 28.56

25r
H.:J 20+ 185 19.09

15.34
=157 12.09

2 5‘?«\ c_{b\ c_)bx N AN A
\_\%\‘\\\ .e\@\'\ \fb\‘\ y&‘g\ w‘e\)\ \a\'\ %Q‘(\
o ¢ o SN\ o G“Q’(\ ?‘0(\*
o W 09@@6
(b)

FIGURE 3. Relative error comparison of the optimized approximation (14a) with
existing well-known approximations viz [2], [8], [52], [53], [54] and [7].

over the entire range of x; thereby completing the proof
of (14).

Fig. 3 shows the significance of the proposed opti-
mized approximation (14a) over other existing well-known
approximations/bounds available in the open literature [2],
[7], [8], [52], [53], [54]. It can be clearly seen that the mean
relative error (MRE) of (14a) is least (5.28%) among all the
aforementioned approximations thereby providing an insight
on its accuracy. Fig. 4 further compares the proposed work
with the bounds of [55]. Here also, in terms of accuracy,
Eq. (14a) supersedes all these bounds.

B. APPLICATIONS OF THE OPTIMIZED
APPROXIMATION (14) IN ERROR PERFORMANCE OF
VARIOUS DIGITAL MODULATION SCHEMES OVER THE
VERSATILE x — n SHADOWED FADING CHANNEL
The proposed optimized approximation (14) finds its util-
ity in the SEP computation of various coherent digital
modulation schemes over fading statistics. In the follow-
ing proposition, we propose the SEP of widely used digital
modulation scheme viz. M—Ary SQAM [1] over the versatile
k — w shadowed fading channel [58].

Proposition 2:

2 3
Prading ~ A1 Y 6iMy (=0i0%) = A2 )" oM, (~6/)
i=1

i=1

(18)
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FIGURE 4. Relative error comparison of the optimized approximation (14a) with
popular bounds on the Gaussian Q function [55].

where A1, A3,8;,0;,0;,8,,6] are defined in Table 8; and
M, (-) is the moment generating function (MGF) of the x —u
shadowed fading channel.

Proof: The general expression to compute the SEP of
coherent digital modulation techniques over x — u shadowed
fading channel is given as

o0
Plading = /0 Pawenpy (v)dy, (19)

where Pawgy is the SEP expressions of various coherent
digital modulation schemes over AWGN channel, as listed
in Table 8; and p, (y) is the PDF of the « — u shadowed
fading channel given as [58].

) (1 + i) (Z)“_lxg—“(“”‘)”
Y (W) (ue +mym \ y y
21
><1F1<m,pL; prd+e +/c)g)’ (20)
pk+m

where y is the instantaneous signal to noise ratio (SNR), y is
the average SNR, x > 0, u > 0, 0.5 < m < oo are the fading
parameters, I'(-) is the gamma function [59, (8.310/1)], 1F
is the confluent hypergeometric function [59, (9.210/1)] and
s is a constant. ]
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TABLE 8. Modulation schemes and their SEP expressions in AWGN and « — u shadowed fading channel.

Modulation Scheme SEP in AWGN Channel

SEP in k£ — p Shadowed Fading Channel

M—SQAM [1] Pawan = A1Q(0/7) — A2Q%(0,/7) Prading =
A1 32 5, My (—0;0%) — A 33 8! M (—602)
M x N—RQAM [1] Pawan = B1Q(¥\/7) — B2Q*(4+/7) Pfaqu ~
Bi1 Zz 1 i M"/( 0; 1/’ ) — B Zl 1 1MW(_9;¢’2)
M x N—XQAM [56] Py = C1Q(1/7) — C2Q%(1/7) Pfadmg

Clzz 1 6 My (—0;72) CQZ,L 1 84 M (—0i72)

M—HQAM [57]

2KenNQ(VENQ ( 5;)

Ps =~ KnnQ(VEY) + ;KCNNQ2 (\/ 2?) -

Pfa.dm,g ~ KNN Ez 1 6 M"/( 0; é) +
ZKoNN S0y 0] My (—Xi€) —
2KcnnN Zz 1P1M'y( )\/5)

1 1 \? 2
LA = 4(1—\/—M>,A2 = 4(17\/—M> ,B1 = (47M7
4

7),1(1\71\7 =

/ 96 _ 24
31]VI><N73275 - 7]»174’6

1
2 (3—4M*§ +M—1>

,Kenn =

- [W M] 0; = [0971 0525] 5 =

2) B2:4<17i)(17i>701: <47£73>702=
N ]\/I2 N M N
1
-5 12 . _
6(17M 2) o = = ,/m,f =

[(lilopt Biropt ai\loptﬁ]\/]opt] 9 = [1 942.1.05 1496] A =
4 ’ 4 ’ 1Y . s LUy Lo ’

3 .
M—17‘/’

2
[0.6473, 1.2046,0.9973], p; — [a}\iopz, ak{oplﬁ]ﬂopt7 OéMopthopt 5Mopt] )\/ = [1.2946, 1.149, 0.8486, 0.7].

Now, referring to Table 8, we substitute Pawgy of SQAM
into (19), yielding

Plading =A1/0 O(o/v)py (v)dy _AZ/O 0*(ov7)

X py(y)dy, (21)

Further, on substituting the proposed optimized approxima-
tion (14a) in place of the GQF present in (21), the same is
reduced to several inner integrals which are of the form of

o0
I~L fo e (y)dy, 22)

where L; and L, are merely the constants corresponding to
each exponential term present in the inner integrals of (21).

It can be clearly seen that (22) is nothing but the definition
of MGF corresponding to a fading distribution [1] which for
the ¥ — u shadowed fading channel is given as [58]

« —H
Curm( e (9 = 1=)”
Y (uk +m)" <( 5) — Mlﬂ)ﬂﬁm)
(23)

M, (—s) =

Hence, in terms of simple MGFs, Eq. (21) can now be
written as (18) which completes the proof.

It should be noted that a similar analysis can be done for
rest of the digital modulation schemes, as listed in Table 8§;
and therefore the detailed derivations are not explicitly stated
over here. Via Table 8, we have just provided the final SEP
expressions of all the other digital modulation schemes. It
is also worth noticing that the versatility of the x — u shad-
owed fading channel is due to its ability to represent several
popular fading channels by a simple variation of the fading
parameters, as shown in Table 9. The parameters of the k —u
shadowed fading channel are underlined in order to differ-
entiate them from the corresponding parameters of the other
fading channels.
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TABLE 9. various classical fading channels as special cases of x — u shadowed
fading channel [58].

Cl 1 x — 1 shadowed parameters [58]

Kk — p fading P = E=K,m — 00

Rician (with fading parameter K)

Rician shadowed

Nakagami-m Apu=mr—>0b)u=m=m
One sided Gaussian a) u=20.5,k—=0b) u 0.5
Rayleigh a)g:l,nﬂ()b)g:m:l
n — p fading gz%«ﬁilﬁ’,f:#
Nakagami-q (Hoyt) fading p=1LK= 12;%2 m=0.5

Fig. 5 illustrates the application of (14a) in the SEP com-
putation of 16-SQAM over a special case of the x — u
shadowed fading channel: the Nakagami-m fading. Precisely,
via Fig. 5(a), we first illustrate the significance of HM of
the optimal coefficients over the case when we take their
arithmetic mean (AM) and geometric mean (GM) as the
percentage MRE reduction is best achieved (= 70%) when
we take their HM. This justifies the approach of taking HM
of all the optimal coefficients. We then plot the RE in the
SEP of 16-SQAM against the average SNR, y (dB). As
evident from Fig. 5(b), the RE in SEP computed using the
optimized approximation (14a) outperforms the original SEP
calculated via (2a) over the entire considered range of y,
i.e., by using (14a) we have managed to reduce the RE in
the SEP approximations quite significantly thereby yielding
tighter SEP curves which can be seen via Fig. 5(c). We have
also included the exact SEP curve which clearly indicates
that the optimized SEP is much tighter as compared to the
original SEP. The analytical results are also validated with
the help of Monte-Carlo simulations which are in excellent
agreement with the optimized SEP.
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FIGURE 5. Percentage MRE reduction in 16-SQAM calculated via various types of
mean (AM, GM, HM) of the optimized coefficients along with its RE and SEP plots over
Nakagami-m fading channel (1 = 3; « = 0; m = 3).

Referring to Fig. 6, we have obtained the similar results
for the SEP of another coherent digital modulation technique
viz. 32-RQAM. Clearly, here also, the significance of the
proposed optimized approximation is quite evident. Hence,
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mean (AM, GM, HM) of the optimized coefficients along with its RE and SEP plots over
Nakagami-m fading channel (x = 3; xk = 0; m = 3).

in order to avoid any redundancy, we have not explicitly
shown the SEP curves for XQAM and HQAM. However,
the same can be easily plotted using the derived analytical
SEP expressions, as shown in Table 8.
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TABLE 10. SEP of 16-SQAM and 32-RQAM computed using original Prony and
optimized Prony over Nakagami-m fading channel (x = 3; k = 0; m = 3).

16-SQAM
5(dB) 0 5 10 5 20
Exact | 0.7482 | 0.5583 | 0.2768 | 0.0645 | 0.0061
Eq. (2a) | 0.7923 | 0.6312 | 0.3194 | 0.0715 | 0.0066
Eq. (14a) | 0.7193 | 0.5704 | 0.2914 | 0.0670 | 0.0063
32-RQAM
5(dB) 0 5 10 5 20
Exact | 0.7740 | 0.6067 | 0.3362 | 0.0937 | 0.0106
Eq. (2a) | 0.8090 | 0.6777 | 0.3883 | 0.1049 | 0.0114
Eq. (14a) | 0.7354 | 0.6127 | 0.3534 | 0.0978 | 0.0109

In order to further solidify our analysis, via Table 10, we
have provided a numerical comparison of the SEP values
obtained from (2a) and (14a) with the exact SEP val-
ues. Clearly, for each value of the y, the values obtained
from (14a) are much more closer to the exact SEP val-
ues, in comparison to the ones obtained from (2a). Thus,
we have made the original Prony-approximation (2) much
tighter whilst keeping its simplicity intact.

Noteworthy, the applications of the optimized approxima-
tion (14a) are not just limited to performance analysis of
the aforementioned digital modulation schemes. Infact, the
newly derived optimized parameters can act as one-to-one
replacements in several cutting-edge research applications of
the original approximation (2a). It should also be noted that
since the proposed vector-based IPA is generic in nature,
other simple exponential based approximations can also be
optimized using the same methodology which further pro-
vides an insight on several other applications of all such
approximations, vital in communication theory. The applica-
tions of these approximations are extensively illustrated in
the introduction section and are therefore not stated in this
section.

IV. CONCLUSION

Using vector-based IPA, we optimized an already existing
simple exponential based approximation of the GQF and
computed new optimized coefficients which played a key
role in improving the accuracy of the original approxima-
tion; for the entire performance range of the GQF. With
the help of graphical as well as numerical comparisons, we
have illustrated the significance of the proposed optimized
approximation. Moreover, the utility of the proposed opti-
mized approximation is also shown by computing the SEP of
various coherent digital modulation schemes over a generic
and very useful k — u shadowed fading channel.

APPENDIX A
PROOF OF LEMMA 1
There are two objectives that D, must fulfill
1) New data point Y obtained by travelling along the
descent direction D must lie inside the FR, ie., YU
represents an interior-point.
2) Travelling along the descent direction must result
in the reduction of the cost function value, i.e.,

FaMy < f(v®).
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In order to fulfill the objective (i), it is necessary that the
new data point represented by vector Y1) satisfies the given
scaled equality constraints in (8), i.e.,

Ky =B
Using (9), we can rewrite this as
KY© 4 2kD =B

Now as Y© itself is an interior point of the FR, i.e., it
satisfies the scaled constraints and so we have KY© = B.
Using this we get AKD = 0. Since, A > 0 it implies that
KD = 0 must hold true in order to satisfy objective (i).

By substituting (12) we get K(—HP) = 0 and using (10)
we get

K(I _ KT(KKT)_1K>(—P) —=0

Upon further simplifications, it can be shown that this expres-
sion will reduce down to (K — K)(—P) = 0 which is always
true and hence objective (i) is met.

To ensure that objective (ii) is met we first define it in a
mathematical form as

1) <1()
and from (7) we can rewrite it as
PTy® < pTy©®
By substituting Y1 as given in (9) we get
PT(Y® +2D) < PTY®
Upon further simplification the above reduces down to yield
APTD <0

But we know A > O thus it implies that PTD < 0. This
is the condition which has to be met in order to satisfy
objective (ii). Now from (12) we can say that

P'D = PT(—HP)
or equivalently
P'D=—-P'HP
By using (11b) we can rewrite this as
P'D = —P"HHP
Further by using (11a) we will obtain
P'D = —(HP)THP

The above expression yields PTD = —HHP”2 and since

||HPH2 > 0 it implies that P’D < 0 which means our
objective (ii) is met. Hence, the definition of D given in (12)
is justified.
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APPENDIX B
PROOF OF LEMMA 2
We know that

YD =y©® 1D
Thus for any j” element of these vectors we can write
1 0
w =y + 24,

Now we know that since Y© vector composes of n feasi-
ble variables of the FR implying that y]@ > 0,Vj e [1,n].
Moreover, the value of A > 0 as well. Hence for the vector
YD to compose of all feasible variables its imperative that
y}l) > 0, Vj € [1, n]. However this actually depends on what
is the sign and magnitude of d;. Thus, there are two possible
scenarios here:

o If dj > O then surely we get y}l) > 0 always.
o If di < 0 then we cannot necessarily say that y;I) will
always be a positive quantity.

Hence we need to fix some finite value for A which will
ensure that yo) > 0 holds true, even if d; < 0. So we will
now analyse the d; < 0 scenario.

Our objective here is to ensure that

wW=0
or equivalently
3+ 4d; = 0
On multiplying both sides by —1 we get
O <0

which on rearranging yields

This implies that the step size A does have an upper bound to
it. Furthermore, the right hand side of the above inequality
is a positive quantity as d; < 0. On this basis we now define
a parameter A, as

0

. y i
Amax = min § —
Vdi<0 | —d;

If we take A = A4, directly then it is possible that the new
data point vector Y() has at least one of its corresponding
elements equal to zero which would mean that the IPA had
skipped the entire FR and had arrived at one of the boundary
points and thus it would nullify our analysis. So instead we
choose A = 0.9 X Ay in order to avoid this problem.
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