
Received 24 June 2022; accepted 21 July 2022. Date of publication 1 August 2022; date of current version 10 August 2022.

Digital Object Identifier 10.1109/OJCOMS.2022.3195434

A Glimpse of Physical Layer Decision Mechanisms:
Facts, Challenges, and Remedies

SELEN GECGEL CETIN 1 (Student Member, IEEE), CANER GOZTEPE 1,
GUNES KARABULUT KURT 2 (Senior Member, IEEE), AND HALIM YANIKOMEROGLU 3 (Fellow, IEEE)

1Department of Electronic and Communications Engineering, Istanbul Technical University, 34469 Istanbul, Turkey

2Poly-Grames Research Center, Department of Electrical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada

3Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada

CORRESPONDING AUTHOR: S. G. CETIN (e-mail: gecgel16@itu.edu.tr)

ABSTRACT Communications are realized as a result of successive decisions at the physical layer,
from modulation selection to multi-antenna strategy, and each decision affects the performance of the
communication systems. Future communication systems must include extensive capabilities as they will
encompass a wide variety of devices and applications. Conventional physical layer decision mechanisms
may not meet these requirements, as they are often based on impractical and oversimplifying assumptions
that result in a trade-off between complexity and efficiency. By leveraging past experiences, learning-driven
designs are promising solutions to present a resilient decision mechanism and enable rapid response even
under exceptional circumstances. The corresponding design solutions should evolve following the lines
of learning-driven paradigms that offer more autonomy and robustness. This evolution must take place by
considering the facts of real-world systems and without restraining assumptions. In this paper, the common
assumptions in the physical layer are presented to highlight their discrepancies with practical systems.
As a solution, learning algorithms are examined by considering the implementation steps and challenges.
Furthermore, these issues are discussed through a real-time case study using software-defined radio
nodes to demonstrate the potential performance improvement. A cyber-physical framework is presented
to incorporate future remedies.

INDEX TERMS Cybertwin, decision mechanisms, learning-driven solutions, machine learning, physical
layer, real-world impairments.

I. INTRODUCTION

TOWARDS the sixth-generation (6G) networks, flex-
ible and ubiquitous connectivity is expected, even

under extraordinary conditions. Numerous technologies are
envisioned to achieve this goal. On the other hand, hetero-
geneity of application domains for these technologies con-
stitutes a significant need for more customized deployments.
Therefore, stringent physical layer (PHY) requirements are
emerging in terms of fast-responsiveness, reliability, latency,
spectral efficiency, and security [1]–[3].
A typical digital communication system contains several

signal processing blocks at the transmitter and receiver sides,
such as equalization, bandpass signaling, channel coding,
multiplexing and multiple access. Therefore, communication

systems at the PHY can be defined as consecutive deci-
sion mechanisms that separately handle a subproblem and
find appropriate decisions for signal processing blocks. Each
decision, from transmit power to coding rate, jointly ensures
efficient transmission of information bits. Although optimal
decisions are theoretically attainable for the most part of
problems, they may not be available under real-world impair-
ments such as correlations or delays, as demonstrated in
Fig. 1. Theoretical implications are generally based on
assumptions that benefit from the advantages of simplicity,
such as effortlessness to achieve an understandable formu-
lation, perceptibility, and interpretability. They allow us to
discover the theoretical bounds of the proposed system and
give rise to diversify sub-optimal methods by compromising
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FIGURE 1. A demonstration of major decision steps in PHY layer and the interaction
of learning-driven solutions.

on a number of necessity. On the contrary, modeling mis-
matches due to these assumptions distract the solutions from
actual systems, especially in real-world implementations.
Current decision mechanisms for wireless communications
are largely modeled under oversimplifying assumptions, as
listed in Table 1. However, future implementations will
require re-evaluation of the solutions for PHY decision
mechanisms to meet demanding targets.
Over the past decade, learning-driven approaches have

been considered the leading candidates to achieve the
ambitious goals of next-generation communication systems.
Several studies are motivated with the advantages of
learning-driven solutions, such as the elimination of human
intervention and the use of big data stacks in PHY. In [4],
three machine learning algorithms are separately applied
for channel assignment problem to evade the high com-
plexity of the convex optimization based algorithm. The
results show that the time complexity can be reduced with-
out making concessions from the prediction accuracy. The
study in [5] compares the performance of machine learning
assisted and the conventional threshold-based link adapta-
tion schemes. The learning-driven scheme outperforms its
counterpart by achieving higher throughput. In [6], a deep
neural network is integrated into Viterbi algorithm instead of
log-likelihood computations and it can be reliably employed
in complex channel models thanks to its dynamic channel

tracking capability. The results indicate the robustness, suc-
cess, and adaptability of the learning-driven solutions. In [7],
power control, interference coordination, and beamforming
are enabled by using deep reinforcement learning without
the knowledge of channel state information (CSI). This
study shows that learning algorithms can provide compe-
tent systems capable of making joint decisions with instantly
responsive designs.
The aforementioned studies seem highly incentive for

further researches, but offer no guarantee that the same
results will be obtained under real conditions. The fact that
learning-driven solutions do not outperform the optimal solu-
tion in the presence of ideal conditions should be kept in
mind. However, instead of solutions based on impractical
assumptions, they can provide solutions that go hand in
hand with environmental changes and are based on real
systems’ attributes [8]–[12]. In [8], neural network topolo-
gies are examined for non-coherent demodulation, which
is convenient but difficult to model optimally for practi-
cal wireless communication systems due to non-linearities,
non-stationarity, and non-Gaussian noise. The authors of [9]
sign the complex channel conditions without a mathemati-
cally tractable model and design the communication system
as an autoencoder. Adaptive transmission and generalized
data representation schemes are proposed to maximize the
data rate under different channel conditions. Block error
rate and minimum mean squared error performance of
the schemes are inspiring at lower signal-to-noise ratio
(SNR). The study in [10] compares learning-driven algo-
rithms with the classical Euclidean distance-based method
for the antenna selection problem considering channel imper-
fections and correlation. The results over a real-time test
bed show that learning-driven decision mechanisms are also
able to track correlation and deal with channel imperfec-
tions besides improving error performance. In [11], a PHY
security problem is addressed, and neural networks acting
as detector and identifier show high accuracy under actual
conditions. The authors of [12] address the self-interference
problem of flexible duplexing that take place in specifi-
cations. The study applies machine learning to the tuning
process of radio frequency (RF) canceller and achieves the
fastest convergence.
The accomplishments of above studies evince that learning

algorithms are not only an alternative to their classi-
cal counterparts, but also very well suited to deal with
PHY challenges. Most part of the studies analyze the
deep-learning algorithms by presenting challenges and appli-
cations [3], [13], [14]. In this paper, an emerging necessity
in PHY, a changeover to learning-driven decision mecha-
nisms is highlighted. To this end, our major contributions
are listed below:

• Design issues for PHY decision mechanisms are
addressed under five aspects: Synchronization, chan-
nel estimation errors, erroneous feedback information,
RF front-end impairments, and correlation. The main
incompatibilities between the real systems and the
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TABLE 1. An overview of the simplifying assumptions and challenging facts in PHY.

underlying assumptions (used in the derivations
and simulations) of the current theoretical impli-
cations are outlined for each aspect in Table 1
(Section II).

• We methodologically discuss the justifications to
changeover from current methodologies to future
methodologies and present the critical observations
that must be taken into account for new solu-
tions. The motivations why machine learning algo-
rithms should be part of future decision mechanisms
instead of some current approaches are addressed
(Section III).

• We present an insightful roadmap that provides a per-
spective on the development of machine learning-driven
PHY decision mechanisms for real communication
systems (Section IV).

• In the spirit of fair analysis, we also discuss the main
challenges for learning-driven solutions (Section V).

• The eligibility of learning-driven solutions for real
systems is discussed through the problem of antenna
selection over a test-bed of software defined radio
(SDR) nodes. The discussions are extended for different
analog-to-digital/digital-to-analog (ADC/DAC) resolu-
tions (Section VI).

• Four learning algorithms are selected by considering the
time and computational complexities. Performances of

decision tree (DTREE), multi-layer perceptron (MLP),
random forest (RForest), and convolutional neural
network (CNN) algorithms are investigated via the
real-time SDR-based case study (Section VI).

• We present an intelligent cyber-physical framework
towards tight operational requirements of 6G in the pres-
ence of stringent PHY constraints. We provide insight
into how learning-driven solutions interoperate with
the other remedies thanks to the proposed framework
(Section VII).

The remainder of this article is organized as follows.
Section II addresses the design issues under five aspects
related to PHY decision mechanisms for real systems.
Section III gives a methodological overview of current solu-
tions and presents the reasons and motivations why future
solutions should focus on machine learning algorithms.
Section IV clarifies the roadmap for researchers to present
more practical learning-driven solutions. Key challenges
for learning-driven solutions are discussed in Section V.
Section VI proposes four learning-driven solutions to the
antenna selection problem and compares their performances
with a classical approach by discussing the considerations
from the previous sections. Section VII presents a novel
framework that encompasses the 6G remedies and not only
the learning-driven solutions. The paper concludes with
Section VIII.
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II. FIVE DESIGN ASPECTS FOR PHY DECISION
MECHANISMS
In this section, we present a projection of five com-
pelling aspects to obtain superior PHY decisions considering
real-world systems. Based on these aspects, simplifying
assumptions and challenging facts of PHY are addressed
and listed in Table 1.

A. SYNCHRONIZATION
Synchronization is the major indispensability for the com-
patibility of the transmitter’s and receiver’s processes and for
accurate transmission [15]. Focusing on PHY, the receiver
must detect the suitable times to sample the transmitted sig-
nal and compensate the oscillators’ phase and frequency
errors depending on the received signal. A large num-
ber of studies assume that transmitter and receiver are
perfectly synchronized and prove the success with numeri-
cal results. However, a residual synchronization error may
remain in time and frequency due to the factual cir-
cumstances. Contrary to idealized systems, the real-world
systems must include more qualifications due to the RF front-
end impairments, mobility, variety of channel conditions,
and delays [16], [17]. They can include several processes to
reach a better synchronization, such as initial time synchro-
nization between the transmitter and receiver, a robust lock
mechanism, the estimation of carrier frequency offset (CFO)
and timing offset (TO), algorithms for adaptable redundancy
insert, and synchronization recovery.
Estimation plays a critical role in reaching tenable syn-

chronization. Theoretically optimal data-assisted methods are
presented, including the hypothesis test for the initial acqui-
sition, maximum-likelihood based estimation algorithms for
CFO, TO, and phase offset [16]–[29]. However, there may
not be sufficient statistics for these methods without idealiz-
ing the systems. For example, the synchronization parameters
may not be constant, or the variance of the synchronization
error may not be exactly calculated due to random fluctua-
tions caused by the phase noise of the oscillator. If we view
other solutions, the majority of sub-optimal methods com-
prise moderately or based on the availability of the ideal
CSI. In practice, propagation delay is generally unknown,
intersymbol interference (ISI) or interchannel interference
(ICI) may occur, and RF impairments may exist [30]–[32].
Therefore, the existing methods should be evolved or new
approaches should be improved considering the facts of the
actual systems.

B. CHANNEL ESTIMATION ERRORS
Accurate channel estimation is critical to realize signal pro-
cessing steps in PHY. The channel can be identified by
correlation, maximum-likelihood, maximum a posteriori, or
least-squares based estimators [33]–[36]. These methods
hinge on several assumptions, as listed in Table 1, that are
not always feasible from practical aspects. The acquisition
of ideal CSI is not always available contrary to the com-
mon conjecture. For example, conventional systems assume

that ADCs have infinite resolution, and there is no quanti-
zation error. The real systems have to overcome estimation
errors that cause round-off errors, unavailability of instanta-
neous feedback information, and interpolation errors. On the
other hand, the impact of estimation errors on performance
will be more critical due to massive antennas, 3D deploy-
ments, and high mobility scenarios because the channel
conditions in future networks will change rapidly, and chan-
nel estimation errors must be eliminated for a superior
performance [37]–[39]. Therefore, real-world impairments
must be considered, and the solutions should be evaluated
in terms of versatility.

C. ERRONEOUS FEEDBACK INFORMATION
Feedback information is the primary requirement to coor-
dinate the transmitter and receiver. It affects the overall
performance. However, it is mostly erroneous by virtue of
over-optimistic assumptions, as summarized in Table 1. The
feedback information obtained via the forward link may not
ideally represent the reverse link since they are not avail-
able simultaneously. Another issue is the outdated feedback
caused by feedback delays [40]–[43]. Conversely, it must
include all variations to ideally adjust the processes, such as
antenna selection or beamforming. Consequently, the erro-
neous and delayed feedback information leads to a decrease
in overall system performance [44], [45]. To feed the entire
system with more accurate information, we have to develop
a more intelligent and cautious solutions.

D. RF FRONT-END IMPAIRMENTS
RF front-end impairments are apparent differences between
real-world systems and simulated systems, and they are
inevitable. Cost constraints and the fact that RF incompat-
ibilities are hardware-based make them difficult to handle.
Here, we addressed three main issues with respect to the
assumptions in Table 1 that significantly affect overall system
performance.

1) IN-PHASE/QUADRATURE-PHASE (IQ) IMBALANCE

IQ imbalance is the mismatch of the amplitude and/or
phase between in-phase (I) and quadrature-phase (Q) com-
ponents. It stems from low-cost devices and causes a
performance degradation; therefore, it must be considered
in real systems [17], [46], [47]. IQ imbalance restrains
the systems by sensitizing towards other impairments such
as CFO. Estimation algorithms to compensate IQ imbal-
ance based on least mean squares, maximum-likelihood,
expectation-maximization, or iterations exist, but they intro-
duce extra computation.

2) PHASE NOISE

The phase noise in the oscillator results from the active
circuit elements and makes frequency adjustments difficult.
These fluctuations result in common phase error (CPE) and
ICI. The real systems have to include a suppression process
for ICI and an estimation algorithm for CPE mitigation [48].
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FIGURE 2. A Comparative Overview of Current and Future Methodologies for PHY Decision Mechanisms

3) NON-LINEARITIES

Non-linearities are realized by ADC/DAC, mixers, and
amplifiers (the power amplifier in the transmitter and the
low-noise amplifier in the receiver). The main part of the
non-linearities in PHY is caused by power amplifiers. They
are mostly ignored due to the difficulties of theoretically
modeling.

E. CORRELATION
Formulation of correlation is not straightforward due to
its uncertainty. Making assumptions may cause a falla-
cious representation of the correlation properties, leading
to an inaccurate model. Furthermore, describing correlation
can require continuous pattern tracing in time, frequency,
or spatial domains, which introduces additional processes
and increases complexity. For example, auto-correlation of
information sequence in time and frequency domains or
cross-correlations between different channels introduce the
requirement of new computational blocks in the transmitter
and receiver.

III. EVALUATIONS OF PHY DECISION MECHANISMS
The key point to obtain the optimal decision in PHY is
structuring the problem in a linear model by assuming the

system is minimum variated and unbiased [49]. Current
methodologies – as represented in Figure 2 – propose analyt-
ical methods by following this principle. The reason is that
simplifying assumptions provide a reasonable and effort-
less means to examine the systems that are challenging to
model. The majority of the solutions introduce oversimpli-
fying assumptions – as listed in Table 1 – and idealize the
system. Although some studies construct their solutions with
partially realistic assumptions, they must make concessions
in optimality or increase the complexity of the solution. After
assuming that the system is ideal or nearly ideal, they define
the problem with simplified possible conditions to constitute
analytical methods. Consequently, the solution modeled by
the current methodologies gradually deviates from the actual
system step-by-step.

A. CRITICAL OBSERVATIONS
Future methodologies must observe communication systems
as in actual systems to make PHY decision mechanisms
superior. The critical observations to consider when improv-
ing new PHY solutions are listed below:

• Actual systems do not operate ideally and struggle
with synchronization problems, errors in feedback link,
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channel estimation errors, correlation, and RF front-end
impairments.

• Wireless communication environments and numerous
parameters of a communication system change dynam-
ically and may show unexpected variations.

• Analytical methods, such as the maximum a poste-
riori and maximum-likelihood based approaches, are
employed by establishing hypotheses and assuming
prior probabilities. However, these hypotheses and
the corresponding probability distributions may not
accurately represent realistic systems. For example,
time variations or channel correlations can not be
tracked accurately, and the corresponding assumptions
become invalid. Furthermore, the inconsistencies in
practice make it difficult to determine appropriate
decision thresholds for the likelihood-based hypothesis
tests.

• Towards 6G, each communication system will become
unique by interlacing technologies, applications,
and users. Until today, these methodologies have
not affected the solutions’ performance apparently.
However, next-generation systems will face various
exceptional conditions and suffer significantly from
flawed system representations. Therefore, generalized
solutions with over-simplifications will not meet the
targeted performance requirements.

All these facts sidetrack or limit the presented solutions for
PHY decision mechanisms. These limitations, arising from
the assumptions, can be overcome with a changeover from
the current methodologies to learning-driven methodologies.

B. BENEFITS OF LEARNING-DRIVEN METHODOLOGIES
Learning-driven methodologies have a promising future for
PHY decision mechanisms as well as in various parts
of communication systems due to their attractive benefits.
The inclusion of learning-driven methodologies in future
solutions is motivated by the following benefits:

• The aforementioned problems due to confined system
representations can be eliminated by providing data
based on actual systems.

• A unique PHY decision mechanism can be built thanks
to heuristic learning ability. If an inclusive dataset is
available, learning algorithms can learn and decide
based on the inherent characteristics of the system.

• The decision mechanism based on learning-driven
methodologies can be capable of self-evolving and con-
tinuously improved. These capabilities make it more
flexible and compatible with actual conditions.

• Autonomy can be increased by individual PHY deci-
sions without human interference.

These motivations corroborate the idea that learning-driven
methodologies get beyond the limits of the current method-
ologies. The next sections point out the main milestones and
challenges to get the inference about learning-driven decision
mechanisms.

FIGURE 3. An illustration describing the introduction of the learning-driven
solutions into PHY decision mechanisms in wireless communication systems.

IV. A ROADMAP FOR LEARNING-DRIVEN SOLUTIONS
Learning algorithms from shallow to deep architectures have
been advancing to comprehend the system facts. However,
it is unclear how an algorithm should be sifted out from
several algorithms for a solution and which steps should be
considered primarily. The following roadmap, as visualized
in Fig. 3, can be used to develop solutions for next-generation
systems.

A. EXAMINE THE DATA SOURCE AND KNOW YOUR
DATA
Learning algorithms do not magically provide answers to
any system; they must be fed with suitable data to acquire
the desired output [50]. It can be accomplished by under-
standing the problem and its source. Firstly, the system and
environment that render the input data to output data must be
analyzed correctly. Secondly, the input/output data variations
should also be carefully observed, and their relations should
be considered. These steps show what is expected to learn
from machine learning. For example, in a communication
system, let expect machine learning to gain insights about
transmitted signals via received signals. Here, the input data
may typify the received signal, whereas the output data may
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refer to the transmitted signal. If only data based on trans-
mitted and received signals are provided, the performance
may not be sufficiently high. The reason for that the output
data is formed with many factors during the transmission
due to real-life impairments, and channel conditions. Then,
the input data should include more information to obtain
the correct output. If the knowledge about the data source
exists, the input data can be enriched with more information.
Additionally, it helps to find out reasons for some results
during the machine learning model development stage.

B. DETERMINE THE MAIN EXPECTATIONS OF THE
PROPOSED LEARNING-DRIVEN MODEL
This step has a direct impact on learning-driven solution
design. Performance targets such as accuracy, interpretability,
scalability, training and prediction duration are determined
depending on the proposed system [51]–[53]. Some learn-
ing models, mostly based on deep learning, are not obvious
in terms of model transparency and functionality. However,
interpretability and low-latency of the solution are indispens-
able, especially for mission-critical systems. Such learning
models may not be suitable in PHY, despite their accuracy.
Besides the interpretability, the scalability of the models is
highly crucial because wireless communication devices and
their capabilities diversify widely [54], [55].

C. BE AWARE OF THE SYSTEM BOTTLENECKS
Employment of machine learning contains data processing,
data storage, training and testing stages, and execution of
generated machine learning models. All steps bring compu-
tational complexities along and require appropriate hardware
capabilities. The systems may not meet high-level com-
putational needs and constraint the solutions [56]–[59].
Therefore, the detection of system bottlenecks is critical for
the selection of the proper machine learning algorithm. The
number of conceivable options for learning algorithms may
decrease together with main expectations from the learning
model. If the remaining algorithms do not satisfy the demand,
some alternative ways should be considered to work around
the system constraints. Complexity can be reduced, for exam-
ple, by converting non-numeric features into numeric features
or by increasing the flexibility of the system architecture.

D. DETECT THE MAJOR REQUIREMENTS OF THE
SOLUTION APPROACH
This milestone refers to the data quantity and quality, or
major requirements for qualified models. The data quantity
and quality requirements may vary depending on the results
of the previous milestones’ outcomes. The amount of data
for the remaining algorithms through the roadmap is the key
part. If a sufficient amount of data is available, model qual-
ity is dictated by data quality matters such as completeness,
consistency, veracity, validity, and timeliness of the data.
However, not all essential data may be readily available,
especially for wireless communications, which have various

destructive effects on data. Even if it is likely that the data
will be collected in a timely manner, real-life impairments
lead to inconsistencies, and the data will need to be pro-
cessed to make it valid. Therefore, these constraints must be
considered before choosing an algorithm [60]–[62].

E. CHOOSE AND OPTIMIZE THE SELECTED
ALGORITHM
Following these instructions, the most suitable learning
algorithm is chosen. It is beneficial to keep in mind the
considerations of the previous steps in order to prioritize
and enable the iterative process of improving the learning
model. For example, if the model is overfitted, the amount
of data can be increased or the complexity of the model can
be reduced. If these are not possible, regularization tech-
niques or early stopping can be considered. Afterwards, the
performance of the learning model must be optimized by
tuning the hyper-parameters. Here, depending on feasibil-
ity, both informed search methods and uninformed search
methods such as grid search or random search can be
preferred [63]–[65]. After training with the chosen hyper-
parameter settings, the acquired learning model can be
employed in the proposed system.

V. CHALLENGES FOR LEARNING-DRIVEN SOLUTIONS
A. DATA SCARCITY
Data scarcity is the lack of data to generate a machine
learning model. It poses a major obstacle to learning con-
cepts based on the opinion, acquiring knowledge and insights
through experiences. The main issue due to data scarcity is
the overfitting of the model that leads to failure in real-time.
Detecting outliers or noise in a sparse dataset is another issue.
Basic solutions to avoid these problems are to favor simpler
or linear techniques, and feature engineering. There are also
further techniques for different data scarcity problems that
can be divided into five categories: no data, rare data, small
data, unlabeled data, and imbalanced data [66]–[74]. Here,
no data, the absence of any data is the toughest but a pos-
sible condition due to privacy, security, and confidentiality
concerns. However, if the problem is clearly defined and
structured, several options can serve the purpose such as
open-source datasets, encrypting or anonymizing data, and
federated or online learning. As for the other scarcity prob-
lems, all techniques focus mainly on the following goals:
increasing the amount of data or reducing the need for big
data.

1) INCREASING THE AMOUNT OF DATA

Increasing the amount of data can be considered for small
data, imbalanced data, and unlabeled data. A well-known
solution to enlarge datasets is data augmentation, which is
the acquisition of new data by diversifying existing data such
as cropping, random insertion, modifying, and transform-
ing. Synthetic data generation can be considered as another
solution. Generative adversarial networks, simulation envi-
ronments, and the synthetic minority over-sampling method
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help to form realistic data. Additionally, self-supervised
learning can overcome entirely the unlabeled data chal-
lenge. When there are some labeled data but the amount is
not enough, semi-supervised learning and weak-supervision
should be considered.

2) REDUCING THE NEED FOR BIG DATA

Reducing the need for big data can be a shortcut for small
and rare data problems. Transfer learning, federated learn-
ing, and few-shot learning are prominent solutions. Transfer
learning enables carrying insights based on a large dataset.
On the other hand, federated learning aggregates multiple
knowledge from decentralized machine learning models. The
few-shot learning should be given much thought of rare
datasets because it enables a generalization of less data
information and prior knowledge.

B. DATA ACQUISITION
Data acquisition has a significant importance to train learn-
ing algorithms successfully. Each data sample includes the
information of a certain time interval and sometimes inaccu-
rately represents the system due to the instantaneous changes
in the environment. This issue can be handled by increasing
the quantity of data. However, this is not sufficient if the
collected data is not qualified. Generating a qualified dataset
requires overcoming the following issues:

• The justifiability of the data-generation environment’s
convenience should be considered. For example, the
preference of simulation-based datasets in a commu-
nication system can not be satisfactory to prove the
learning-driven solution’s performance due to the dif-
ferences between simulations and the real-world. Real
datasets can be provided at least as an explicit reference
to confirm the consistency between the datasets from
different sources.

• The generation of the accurate features included in the
dataset is a crucial issue. Features should consist of
the information individually or be jointly related to the
problem and its solution. For example, features can be
created depending on CSI to express estimation errors
and correlation problems in PHY due to the impacts of
channel conditions, as in [10].

• The correctness of the dataset can not be verified eas-
ily due to the lack of standardization for the labeling
procedure.

• The trade-off between the size of data and the model
performance should be addressed. Each additional fea-
ture expands the dataset dimensionally and leads to
an increase in the training and prediction complexity.
However, feature extraction or selection methods can be
employed to overcome the problem, as described below.

C. FEATURE EXTRACTION OR SELECTION
The extraction and selection of features are the main con-
cepts to leverage the performance of learning algorithms,

and both of them improve data representation. The differ-
ence between them is the fact that feature extraction is more
general and proposes to create useful features by utilizing
the existing data while the feature selection targets increas-
ing the relevancy by removing redundant features [50]. The
selection of features provides a clarified representation of the
data in lower-dimensional space by filtering. Therefore it is a
highly effective approach, especially for problems that have
a computationally intensive dataset. For instance, the anal-
ysis of the correlation and mutual information between the
features, the determination of rating benchmark, and building
a score function by weighting features are applied to detect
the optimal feature subsets. The derivation/extraction of new
features can be realized with linear and non-linear transfor-
mation methods such as principal component analysis, linear
discriminant analysis, and autoencoder.

D. COMPUTATIONAL COMPLEXITY
A learning process consists of two main stages: model train-
ing and prediction. Both bring a computational complexity
to the system. The complexities of these processes vary due
to several factors such as the selected learning algorithm
and the parameter values for the model architecture’s tun-
ing and design. In the recent years, deep learning techniques
have shown tremendous successes in broad application areas,
and the trade-off between choosing less complex algorithms
and attaining a higher accuracy is observed. The training
complexity is overcome by the transfer learning, and the
prediction complexity can be reduced with computational
offloading or collaborative techniques [75]–[77].

E. HARDWARE CAPABILITIES
Learning algorithms require hardware competence for data
pre-processing, model training and testing. The utilization of
advanced methods such as deep or ensemble learning tech-
niques requires large quantities of the following resources:
processing power, physical size, cost, and memory. The hard-
ware should include sufficient memory to store variables,
dataset, and the trained model besides computational power.
At this point, the implementation of learning algorithms on
computationally constrained devices becomes a complicated
problem, especially in PHY. For example, many edge Internet
of Things (IoT) devices in the industry are insufficient to
realize the training process or store the dataset. Cloud plat-
forms are a possible solution to store data, build models, or
control the devices remotely. However, cloud-based solutions
entail sturdy communication between the user and the cloud.
This introduces another load in communication systems.

F. SECURITY
The significant challenge is meeting the security necessities
of data and the learning model to centralize the learning
algorithm as a solution. Whilst robustness of the model is
provided against the model’s replicas, defense mechanisms
should be investigated for data preservation and user privacy.
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FIGURE 4. 4 × 1 test-bed which performs antenna selection at the transmitter.

Poisoning or evasion attacks threaten the data integrity and
damage the tenacity of the model besides continuous changes
in the channel and attack types. At this point, security mainte-
nance and management for learning-driven solutions become
more critical issues [78]–[80]. However, the capabilities of
learning algorithms offer advantages to enhance the security
against unpredictable dynamics and various attacks, includ-
ing modification, denial-of-service, malware, and message
replay.

VI. SOFTWARE-DEFINED RADIO BASED CASE STUDY
We aim to show the capabilities of learning-driven
approaches on real systems without theoretical approaches’
common assumptions through a benchmark. In this section,
the following considerations discussed in previous sections
are highlighted with the proposed case study;

• A real system must overcome the front-end impairments
of RF transceivers to sustain the efficacy such as IQ
imbalance distortions or phase noise [81], (issues about
synchronization, RF front-end impairments).

• The increase in the number of antennas brings new
difficulties [82]. For example, obtaining perfect CSI
is not possible at the transmitter, (issues about chan-
nel estimation errors, correlation, and RF front-end
impairments).

• The multiple antennas require an larger number of
RF chains, ADC/DAC and larger volatile memory.

However, the rise in the number of converters leads
to the emergence of enormous data stacks in IQ planes,
and the management of these data is another challenge.
They can be minimized by reducing the bit-resolution
of the conversion, but then quantization errors must
be taken into account. The trade-off between the con-
verter resolution and quantization errors is the another
challenge, (issues about hardware constraints, and RF
front-end impairments).

• Machine learning algorithms have different accuracy
performances and complexities. Even though, we expect
high performance which may require a complex archi-
tecture, some edge devices may not have suitable
hardware, (issues about hardware constraints, compu-
tational complexity, and accuracy performance).

• Transmission conditions in a wireless environment may
show variations due to interference, mobility, or noise,
(issues about data quantity, and feature extraction or
selection).

• The impact of the data amount on performance is
important, especially some learning algorithms are more
vulnerable. However, there may not be enough data
available for the training process, (issue about data
scarcity and accuracy performance).

• Even if data scarcity is not a problem, the time-
complexity of the training process and the required stor-
age space increase with larger data sets, (issues about
hardware constraints and computational complexity).

We proposed a learning-driven solution for antenna selec-
tion decision that is performed at the transmitter with the
goal of reducing the bit error rate (BER). Antenna selec-
tion decision performance is separately investigated through
200 different cases (2 ADC/DAC resolutions, 4 SNR values,
5 training data amount, and 5 algorithms) with a test-bed
design by considering aforementioned issues. Measurements
are taken from a 4×1 multiple-input-single-output test-bed,
which is constructed using SDR units. The measurement-
based performance results allow us to observe the composite
impact of these challenges in the BER results, as seen in
Figure 5.

A. TEST-BED DESIGN
The dataset is prepared via the test-bed demonstrated in
Fig. 4. It is designed with five SDR units, USRP-2943Rs
at the transmitter and receiver. Each one is used with two
RF chains. To provide hardware synchronization: reference
clock is generated and shared via all USRP-2943Rs by using
CDA-2990 8 channel clock distribution accessory. The trans-
mitter’s operating frequency and bandwidth are tuned as 2.45
GHz and 1 MHz. As a single-carrier modulation method,
BPSK is used, with a root-raised cosine filter of roll-off fac-
tor 0.5. The distance between the transmitter and the receiver
is set to 1.5 meters. 32 symbols are used for the acquisition,
and the data/pilot rate is selected as 5/1 at an IQ rate of
125 ksample/s. CSI feedback is obtained via time-division
duplex feedback.
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FIGURE 5. The comparative results of learning algorithms and maximum-likelihood (classical) based detector. a), and b) The results for 8-bit and 16-bit ADC/DAC, respectively.

B. MACHINE LEARNING
The proposed issue is defined as a classification problem.
Four machine learning and deep learning algorithms are
chosen: DTREE, MLP, RForest, CNN. The selection of
algorithms is realized by considering the system constraints
and expectations from learning models. The RForest’s depth,
DTREE’s depth, MLP’s hidden layer number, and neurons
at one layer are set as 25, 15, 2, 10, respectively. As a
deep learning algorithm, 1D-CNN is chosen to present a
fair comparison. The CNN architecture is designed with
a one-dimensional convolution layer (256 filters) and two
fully-connected layers (128 and 6 neurons, respectively). The
batch size of CNN and MLP is selected as 1024. Training
of the CNN is performed by utilizing the categorical-cross
entropy loss function and the adaptive moment estimation
function. The learning rate 0.001 and the exponential decay
rates for the first and second moment estimates 0.99 and
0.999 are set.

C. RESULTS
The performances of RForest, DTREE, CNN, and MLP
are compared with the conventional detector based on
maximum-likelihood in terms of the BER measurements.
Least-square-based channel estimation is performed in
maximum-likelihood along with Moose’s algorithm adopted
to a single carrier as described in [83]. A comparative
illustration of their capabilities against the aforementioned
practical challenges is shown in Fig. 5. The algorithms are
trained with an offline learning mechanism by performing
the same analysis for the different training data sizes. When
the data size becomes larger, the learning algorithms achieve
a higher performance than the conventional method because

of two reasons. The first reason is that numerous data sam-
ples carry the pervasive pattern of the system and represent
conceivably. The second reason is the ability of heuris-
tic learning. Moreover, these results prove the importance
of data quantity and the performance flexibility of learn-
ing algorithms. Even though the necessary increase in data
amount is not remarkable to reach a higher performance
in this study, note that the required data amount depend-
ing on the problem can change to provide a desired leap of
performance.
We can see that CNN and RForest outperform the

other, less complex methods, while the conventional method
generally shows a lower performance for each SNR and
converter resolution. Although CNN performs better than
RForest at lower SNR values for the 8-bit ADC/DAC
resolution test-bed, RForest improves performance for the
16-bit ADC/DAC resolution test-bed. MLP and DTREE offer
mediocre performance compared to their learning-driven and
conventional counterparts. However, if the computational
limitations are considered, their performances are substan-
tially preferable. Furthermore, DTREE, after rising steeply,
surpasses CNN and MLP and approaches RForest in the
case of the 16-bit converter at a high SNR. Even if it offers
a simpler structure, it does not provide the capability to
capture non-linear relationships between data. Therefore, its
performance is closer to maximum-likelihod detector than
neural network based algorithms.
The decrease in the converters’ resolution leads to an

explicit increment in BER, as shown in Figs. 5(a) and 5(b).
BER differences increase, especially in high SNR. Although
16-bit ADC/DAC utilization is reasonable to sustain the
reliability, this means two times IQ data, memory space,
and complexity according to the number of antennas. The
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FIGURE 6. An intelligent cyber-physical framework for future remedies of next-generation communication systems.

enormous data stacks in the IQ plane can be reduced by
including feature extraction. The results show that feature
extraction is a favorable process to defeat the hardware con-
straints in PHY and take advantage of the reliability besides
boosting the learning algorithms’ performance.

VII. FUTURE REMEDIES IN AN EMBRACING
FRAMEWORK
The presented SDR-based case study substantiates the influ-
ences of the oversimplifying assumptions in Section II
and the challenges in Section V. Machine learning can
boost the system by eliminating oversimplifying assump-
tions and including reasoning. However, it does not become
the sole remedy to meet the requirements of next-generation
systems that are the compound of various cyber and physical
processes. Considering these, several remedial solutions and
concepts expand into the literature besides machine learning
such as integrated sensing and communications [84]–[86],
IoT, distributed ledgers [87], [88], edge-fog-cloud comput-
ing [89]–[91], and signal processing techniques [92]–[98].
In this section, we aim to provide an embracing framework
for future remedies at cyber and physical levels.
The aforementioned and much more remedies have led

up to an innovative view: cyber-physical systems (CPS)
that are found on five fundamental aspects; sensing, com-
munication, computing, control (monitoring and reasoning),
and actuation. In the literature, CPS is mostly associated
with IoT-based solutions for smart cities, Industry 4.0, or
vehicular technologies [99]–[106]. Beyond these solutions,
communication systems at all scales and levels need to

be formed into a cyber-physical framework to take advan-
tage of upcoming remedies. They should also be equipped
with learning-driven decision mechanisms and semantically
upgraded. Therefore, we propose an intelligent and embrac-
ing cyber-physical framework for communication systems
as demonstrated in Fig. 6. The proposed framework con-
sists of three main operational parts: physical asset, machine
learning, and cybertwin.

A. PHYSICAL ASSET
The physical asset represents a tangible “thing” of the real-
world communication systems. From the PHY perspective, it
includes consecutive decision steps related to various trans-
mission parameters such as coding rate, modulation type,
constellation size, number of active antennas, transmit power,
CFO, TO, channel estimation errors, or correlations. All
these parameters feed signal processing blocks and must be
adaptable to the variable conditions of the actual systems.
Therefore, decision mechanisms are formed as machine
learning models to provide more rational decisions. Each sig-
nal processing block is configured depending on the decision
of the associated machine learning model, which is com-
puted and controlled using historical running data. Here,
secure data migration from the physical asset still needs
to be investigated for different scenarios of future systems
where the physical asset will not only be subject to different
constraints but also to diverse set of applications.

B. MACHINE LEARNING
The deep development part of the proposed framework com-
promises data processing and storage, as well as machine
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learning training and testing. Thanks to numerous advances,
this part of the framework can be flexibly designed for future
communication scenarios. The roadmap, as explained in
Section III, sets the focus of these operations, such as running
fast algorithms, making approximate or exact predictions,
and tolerance to dynamism or time lags in the data stream.
A lot of remedial solutions from training strategies to state-
of-the-art learning methods can be executed depending on
the focus [107]–[112]. For example, when the focus is on
accuracy, data processing may be more sophisticated and
deep learning algorithms may be preferred. If avoiding the
time lags in the data stream is the criterion, machine learning
computations may take place at the edge rather than in the
fog or in the cloud. Differently, federated learning can be
applied as a training strategy to strengthen the dynamism,
or transfer learning for latency vulnerability. However, data
compression and reconstruction techniques still need to be
explored to facilitate machine learning part for different sce-
narios and massive data sets. Although machine learning
techniques can be equipped with numerous advances in the
design phase, they do not guarantee that the last model gen-
erated will be better than the previous one. Future research
studies need to focus on the robustness of learning mod-
els against model instability [113]. In addition, there is a
mandatory examination before the model and the physical
asset interaction but accomplishing this with human control
seems unfeasible. Automated monitoring and developmental
control of the model and the physical asset are crucial.

C. CYBERTWIN
Cybertwin is a bridge between the physical asset and
machine learning, and a virtual representation of the physical
asset in cyberspace. It provides automated monitoring, con-
trol, and improvement by enabling simulations through the
data [114]–[116]. Cybertwin is continuously updated with a
new machine learning model and real data. If a new machine
learning model meets the acceptance criteria after the simula-
tions, it is implemented on the physical asset. It also checks
the association of multiple machine learning models that
are responsible for different signal processing blocks. These
capabilities improve the flexibility, fidelity, and reliability of
machine learning-driven decision mechanisms and leverage
the overall performance. However, a lightweight and secure
communication protocol for interaction between the cyber-
twin and other operational parts should be improved to take
advantage of cybertwin [117].

VIII. CONCLUSION
This article presents a comprehensive overview of the wire-
less communication systems’ prominent conjectures in PHY
and how they may introduce modeling errors in real-
world systems. From this aspect, learning algorithms are
addressed with an elucidating guideline to defeat their clas-
sical counterparts and eliminate the need for oversimplifying
and impractical assumptions. Additionally, the challenges
to employ learning-driven solutions in PHY are presented

for a holistic view. The listed considerations are supported
by a real-time SDR-based case study. The results prove
that learning algorithms will take a role as a key tech-
nology for future avenues of wireless communication. At
this stage, future studies should focus on how learning
algorithms can be implemented with other technologies.
In the last section, a holistic cyber-physical framework is
proposed for joint implementation with future remedies.
Another direction of future studies will be the challenges
of learning-driven solutions, especially trustworthiness and
interpretability [118].
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