
Received 10 June 2022; revised 13 July 2022; accepted 23 July 2022. Date of publication 28 July 2022; date of current version 10 August 2022.

Digital Object Identifier 10.1109/OJCOMS.2022.3194821

Multiple Parallel Federated Learning via
Over-the-Air Computation

GAOXIN SHI1,2 (Student Member, IEEE), SHUAISHUAI GUO 1,2 (Member, IEEE),
JIA YE 3 (Student Member, IEEE), NASIR SAEED 4 (Senior Member, IEEE),

AND SHUPING DANG 5 (Member, IEEE)
1School of Control Science and Engineering, Shandong University, Jinan 250061, China

2Shandong Provincial Key Laboratory of Wireless Communication Technologies, Shandong University, Jinan 250061, China

3Electrical Engineering, Computer Electrical and Mathematical Sciences and Engineering Division,
King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

4Department of Electrical Engineering, Northern Border University, Arar 9280, Saudi Arabia

5Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1UB, U.K.

CORRESPONDING AUTHOR: S. GUO (e-mail: shuaishuai_guo@sdu.edu.cn)

The work was supported in part by the National Natural Science Foundation of China under Grant 62171262; in part by the Shandong Provincial Natural Science
Foundation under Grant ZR2021YQ47; in part by the Major Scientific and Technological Innovation Project of Shandong Province under

Grant 2020CXGC010109; and in part by the Tashan Young Scholar under Grant tsqn201909043.

ABSTRACT This paper investigates multiple parallel federated learning in cellular networks, where a
base station schedules several FL tasks in parallel and each task has a group of devices involved. To
reduce the communication overhead, over-the-air computation is introduced by utilizing the superposition
property of multiple access channels (MAC) to accomplish the aggregation step. Since all devices use
the same radio resource to transfer their local updates to the BS, in order to separate the received
signals of different tasks, we use the zero-forcing receiver combiner to mitigate the mutual interference
across different groups. Besides, we analyze the impact of receiver combiner and device selection on the
convergence of our multiple parallel FL framework. Also, we formulate an optimization problem that
jointly considers receiver combiner vector design and device selection for improving FL performance.
We address the problem by decoupling it into two sub-problems and solve them alternatively, adopting
successive convex approximation (SCA) to derive the receiver combiner vector, and then solve the device
scheduling problem with a greedy algorithm. Simulation results demonstrate that the proposed framework
can effectively solve the straggler issue in FL and achieve a near-optimal performance on all tasks.

INDEX TERMS Device selection, federated learning, multiple access channel, over-the-air computation,
receiver combiner.

I. INTRODUCTION

THERAPID growth of technologies, such as the Internet
of Things (IoT) and social networking, lead to an

exponential explosion of data at edge devices [1]. These
trends promote the implementation of smart services based
on machine learning, e.g., computer vision [2], natural lan-
guage processing [3], and speech recognition [4]. In general,
conventional machine learning trains a model in a cen-
tralized server to collect data from edge devices, which

might be impractical soon due to rising privacy concerns
and communication burdens. Meanwhile, the improvement of
smart devices’ computing and storage capacity makes it pos-
sible for devices to process data locally [5]. To overcome the
challenges of centralized machine learning, federated learn-
ing (FL) has been proposed to train a shared learning model
collaboratively at edge devices under the schedule of the cen-
tral server, e.g., a base station (BS), which avoids uploading
private and sensitive user data from local clients [6].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

1252 VOLUME 3, 2022

HTTPS://ORCID.ORG/0000-0003-0885-7327
HTTPS://ORCID.ORG/0000-0002-7242-6065
HTTPS://ORCID.ORG/0000-0002-5123-5139
HTTPS://ORCID.ORG/0000-0002-0018-815X


Nevertheless, communication bandwidth is a key bottle-
neck affecting the performance of FL, while the straggler
issue caused by the system heterogeneity of computation
capability and wireless channel condition makes it even
worse [7], [8], [9], [10]. A common way to overcome this
difficulty is to reduce the number of participating devices
via some scheduling policies [11], [12], [13], [14]. Another
way is to reduce the amount of parameters required to
upload from clients to the central server via quantiza-
tion [15], [16], [17] or sparsification [18], [19]. Although
the above methods successfully reduce the communication
costs, FL performance is still constrained by the commu-
nication capability of the network, especially when a large
number of devices participate in the FL process with limited
communication bandwidth. This is because all these meth-
ods suppose that uplink communications between BS and
devices use conventional orthogonal-access schemes, e.g.,
orthogonal frequency division multiple access (OFDMA) or
time division multiple access (TDMA), such that the spectral
resource allocated to each device will drop sharply as the
number of devices increases.
In order to reduce the communication costs, over-the-air

computation was introduced to aggregate data in sensor
networks [20]. In this setting, all users transmit their
data simultaneously via the same radio resources over
multiple access channels (MAC); then, without decoding the
information of each device, the computation is done utilizing
the superposition property of the wireless channel. Compared
with conventional orthogonal-access schemes, over-the-air
computation can significantly improve communication effi-
ciency, especially when there are a large number of devices
in wireless networks because the required communication
resource will not increase with the number of devices.
Moreover, it is worth noting that over-the-air computation
is only applicable when the BS wants to obtain the uniform
summation or its variant results from all devices [21]. Due
to its energy efficiency, over-the-air computation is more
suitable for IoT network. In [22], the authors proposed a
framework that was robust against synchronization errors.
The work [23] considered a generalized IoT network where
multiple different clusters of sensors independently compute
different target function. A sensor selection algorithm to
improve the computation performance was proposed in [24].
In [25], the authors built a experiment platform to verify the
validity of over-the-air computation.
In a typical FL process, the BS receives distributed updates

(model parameters or gradients) uploaded from edge devices
via MAC and then averages them to update the global
model, which is a classic adaptation scenario of over-the-air
computation.

A. RELATED WORKS
The over-the-air computation-based FL aggregation was
firstly introduced in [26], where the authors derived two
trade-offs between communication and learning to quan-
tify the selected device population. At the same time, the

parallel work [27] considered the same trade-offs and max-
imized the number of devices with respect to the mean
squared error (MSE) of gradient error. Then the author
in [26] extended their work to one-bit over-the-air com-
putation FL in [28] and [29], where a new scheme featuring
one-bit quantization followed by modulation at edge devices
and majority-voting based decoding at the edge server was
proposed. The works [30], [31] supposed that the model
update vector is sparse and projected the resultant sparse
vector into a low-dimensional vector for reducing the band-
width in the over-the-air FL. Moreover, the power control of
the over-the-air computation FL was studied in [32] and [33].
The goal of [32] is to minimize the MSE of gradients by
optimizing the transmit power at each device subject to aver-
age power constraints. Further, the authors in [32] analyzed
the convergence of the over-the-air computation FL under
any given power control policy to optimize the transmit
power. The tractable FL convergence analysis of full gra-
dient descent optimization was done in [34], [35]. In [36],
reconfigurable intelligent surfaces (RIS) were leveraged to
improve the performance of the over-the-air FL. Specifically,
the authors developed a convergence analysis framework of
the RIS-aided over-the-air computation FL and tried to solve
the straggler issue by device scheduling.

B. MOTIVATIONS
The aforementioned works have well optimized the
performance of FL. However, they all consider a single
FL task over wireless networks. When FL become a ser-
vice or a popular application in the network [37], the
central server (e.g., the base station) may need to sched-
ule multiple FL processes simultaneously.In this situation,
the mutual interference across different FL processes need
to be considered, as it may bring a huge reduction to
learning performance. Different from the latest paper [38]
which focuses on multiple FL tasks over multi-cell wire-
less networks, in this paper we study multiple parallel FL
via over-the-air computation over wireless networks where
the central server schedule multiple FL processes simultane-
ously. We jointly consider receiver combiner vector design
and device selection policy and effectively solve the high
communication costs and straggler issue in FL under the
premise of sacrificing only slight FL performance.

C. CONTRIBUTIONS
The main contribution of this paper is to propose a novel
framework for the implementation of multiple over-the-air
FL in wireless networks by jointly taking the receiver com-
biner design and device selection into account. To our best
knowledge, this is the first work that considers multiple FL
process via over-the-air computation. The contributions of
this paper are summarized as follows:

• We propose a novel over-the-air computation FL frame-
work, in which one BS services multiple groups of
devices to train different FL models. In the upload-
ing stage, all devices from different groups use the

VOLUME 3, 2022 1253



SHI et al.: MULTIPLE PARALLEL FEDERATED LEARNING VIA OVER-THE-AIR COMPUTATION

same radio resources to transmit their local updates to
the BS, and then, by utilizing the superposition prop-
erty of MAC, the BS receives the sum of signals from
all groups of devices. To perform FL machine learn-
ing models accurately for every group, we propose a
zero-forcing receiver combiner design to separate the
received signals of different tasks.

• We analyze the convergence of FL within our frame-
work. Specifically, we derive an upper bound on the
gap between the realistic and ideal optima value of
global loss function with respect to the aggregation error
caused by transmission distortion and device selection,
and find how combiner design and device selection pol-
icy affect FL performance, e.g., convergence and FL
loss function. Based on this analysis, we formulate a
mixed-integer non-convex programming problem that
jointly optimizes the combiner vector and device set.

• To solve the formulated mixed-integer non-convex pro-
gramming problem, we first decouple it into two
sub-problems, namely, receiver combiner, and device
scheduling. Then, we solve them separately in an
alternate way. Specifically, given the device selection
policy, we use successive convex approximation (SCA)
proposed in [39] to derive the receiver combiner vector.
Further, based on the derived receiver combiner vector,
we solve the device scheduling problem with the greedy
algorithm.

• Simulation results show that our proposed framework
can efficiently transfer gradient information of all tasks.
Besides, we can see that the straggler issue severely
and adversely affects FL performance of conventional
FL systems. Our proposed framework effectively solves
the straggler issue and achieves near-optimal (noise-less
aggregation) performance on all processed FL tasks.

D. ORGANIZATION
The remainder of this paper is organized as follows.
Section II introduces the FL model, the MAC communica-
tion model, and the multiple FL aggregation framework via
over-the-air computation. In Section III, we analyze the FL
expected convergence rate and formulate the optimization
problem to minimize the FL training loss. The optimal
receiver combiner design and user selection policy are deter-
mined in Section IV. Simulation results are analyzed in
Section V. Conclusions are drawn in Section VI.

E. NOTATIONS
In this paper, scalars, vetors, and matrices are denoted
by regular letters, boldface lowercase letters, and boldface
uppercase letters, respectively. R and C are used to denote
the real and complex number set, respectively. (·)T and
(·)H denote the transpose operator and complex conjugate
transpose operator, respectively. CN (μ, σ 2) represents the
circularly symmetric complex Gaussian random distribution
with mean μ and variance σ . The l2-norm of a vector is
denoted by || · || and the size of set S is denoted by |S|.

diag(·) stands for a diagonal matrix of vector whose diago-
nal entities are specified by the vector enclosed, and E[ · ]
means expectation.

II. SYSTEM MODEL
In this paper, we consider a cellular network in which a set
M with M groups of devices perform M different FL tasks
with different training models via the same BS, as shown in
Fig. 1.

A. FEDERATED LEARNING MODEL
In the system, each group m (1 ≤ m ≤ M) trains a
machine learning model represented by the parameter vector
wm ∈ R

Dm×1 with Dm denoting the model size. The learning
objective of group m is done in a way to solve the following
optimization problem:

min
wm∈RDm×1

Fm(wm) = 1

Km

Km∑

k=1

fm
(
wm; xkm, ykm

)
, (1)

where Km is the total number of training samples of group
m; (xkm, y

k
m) is the kth training sample with xkm and ykm

denoting the input feature and output label respectively;
fm(wm; xkm, ykm) denotes the loss function with respect to
(xkm, y

k
m). Suppose that there is a set Im with Im devices

in group m, and the ith device has Km,i training sampels
with

∑Im
i=1 Km,i = Km. The training dataset at the ith device

in group m is represented by Dm,i = {(xkm,i, ykm,i) : 1 ≤ k ≤
Km,i} with |Dm,i| = Km,i, and then the objective in (1) turns
into:

Fm(wm) = 1

Km

∑

i∈Im
Km,iFm,i

(
wm;Dm,i

)
, (2)

with

Fm,i(wm;Dm,i) �
1

Km,i

∑
(
xkm,i,y

k
m,i

)
∈Dm,i

fm
(
wm; xkm,i, ykm,i

)
. (3)

To overcome the bottleneck of limited network bandwidth,
federated averaging (FedAvg) is developed to reduce commu-
nication rounds between devices and the BS [6]. Specifically,
at the t-th round in group m, the following processing will
be conducted in sequence by FedAvg:

• The BS selects a subset of devices I tm ⊆ Im to
participate in the current round;

• The BS sends the current global model wtm to the
selected devices via multicast;

• Each device adopts a standard gradient descent method
to compute their local gradients respect to the local
dataset as specified in [40]. Specifically, the gradient of
device i in group m is given by

gtm,i � ∇Fm,i
(
wtm;Dm,i

) ∈ R
Dm,i×1, (4)

where i ∈ I tm, ∇Fm,i(wtm;Dm,i) is the gradient of Fm,i(·)
at w = wtm.
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FIGURE 1. System model of multiple federated learning via over-the-air computation.

• The devices upload gtm,i to the BS, and then the BS
performs FedAvg to update the global model. In this
case, we can estimate rtm �

∑
i∈I tm Km,ig

t
m,i at the BS

from the received signals. We denote r̂tm as the estimate
of rtm (true value); accordingly the global model of
group m is updated by

wt+1
m = wtm − λ∑

i∈I tm Km,i
r̂tm, (5)

where λ denotes the learning rate.

B. COMMUNICATION MODEL
In this paper, we focus on uplink transmissions between
single-antenna devices and an N-antenna BS over a MAC
based on the fact that the uploading process dominates the
convergence of FL systems, and we consider over-the-air
computation for fast update aggregation by exploiting the
superposition property of MAC. We assume a block fading
channel where channel coefficients remain constant within a
communication round, but may change over different com-
munication rounds. Besides, we assume that the channel state
information (CSI) is available at all participating entities.
At the tth communication round, we denote the channel

coefficient vector between the BS and the ith device in the
mth group by hm,i ∈ C

N×1, i ∈ Im, m ∈ M. Letting stm,i[d]
denote the transmit signal from device i, the received signal
at the BS, denoted by yt[d], is given by

yt[d] =
∑

m∈M

∑

i∈Im
hm,istm,i[d] + nt[d], (6)

where nt[d] is an additive white Gaussian noise (AWGN)
vector with the entries following the distribution of
CN (0, σ 2

n ).

To simplify the notation, we omit the time index t. Denote
the dth elements of gm,i by gm,i[d]. In order to exploiting
the superposition property of MAC to accomplish FedAvg,
{gm,i[d] : 1 ≤ d ≤ Dm,i, i ∈ Im,m ∈ M} are first proc-
cessed to Dm,i slot transmit signal {sm,i[d]:1 ≤ d ≤ Dm,i, i ∈
Im,m ∈ M}. First, each device compute the local gradient
statistics by

ḡm,i = 1

Dm,i

Dm,i∑

d=1

gm,i[d],

ν2
m,i = 1

Dm,i

Dm,i∑

d=1

(
gm,i[d] − ḡm,i

)2
. (7)

Then, each device transfers gm,i[d] to sm,i[d] by

sm,i[d] = pm,ixm,i[d] with xm,i[d] �
gm,i[d] − ḡm,i

νm,i
, ∀d,

(8)

where pm,i ∈ C is the transmitter scalar used to combat
channel fading and accomplish the weighting process of
over-the-air FedAvg. The normalization step in (8) ensures
that E[|xm,i[d]|] = 0 and E[|xm,i[d]|2] = 1, such that the
transmit power constraint at device i is constrained by

E

[
|sm,i[d]|2

]
= |pm,i|2 ≤ P0, ∀i,m, (9)

with P0 > 0 as the maximum transmit power.
By substituting (8) into (6), the received signal at the BS

in time slot d is given by

y[d] =
∑

m∈M

∑

i∈Im
hm,ixm,i[d] + n[d]

=
∑

m∈M

∑

i∈Im
hm,i

pm,i
νm,i

(gm,i[d] − ḡm,i)+ n[d]. (10)
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TABLE 1. List of notations.

To perform over-the-air model aggregation, the BS com-
putes the estimate of rm[d] = ∑

i∈Im Km,igm,i[d] from y[d]
as1

r = 1√
ηm
�Hy[d] + ḡ

=
∑

m∈M

⎛

⎝ 1√
ηm

∑

i∈Im
�Hhm,ism,i[d]

⎞

⎠

=
∑

m∈M

⎛

⎝ 1√
ηm

∑

i∈Im
�Hhm,i

pm,i
νm,i

(gm,i[d] − ḡm,i)

⎞

⎠

+�Hn[d] + ḡ, (11)

where r = [r̂1[d], r̂2[d], . . . , r̂M[d]]T ; � ∈ C
N×M is

the receiver matrix; ḡ = (ḡ1, ḡ2, . . . , ḡM) with ḡm �∑
i∈Im Km,iḡm,i,∀m ∈ M used to restore the subtracted mean

value of transmit signal in the regularization according to
step (7); and ηm > 0 is a normalization scalar.

Taking the mth(m ∈ M) FL model as an example, the
first term after the second equal sign of the above formula
can be rewritten as

∑

m∈M

⎛

⎝ 1√
ηm

∑

i∈Im
�Hhm,ism,i[d]

⎞

⎠

=
⎛

⎝ 1√
ηm

∑

i∈Im
�Hhm,ism,i[d]

+
∑

n∈M\{m}

1√
ηn

∑

j∈In
�Hhn,jsn,j[d]

⎞

⎠. (12)

As we can observe from (12), the received signal at the
base station after receiving combining is the sum of gradient
information from all participating devices. However, when
the BS targets the mth FL process, only gradient information

1. Since pm,i and vm,i are scalar quantities and a typical machine learning
model consists of a large number of parameters, we suppose that these two
scalars can be uploaded with no error and communication costs for modeling
and analytical simplify.

from mth group is needed, while the gradient information
from other groups will be treated as interference. Therefore,
it is necessary to design a combining scheme to decode the
received signals of different groups in a separate manner.

C. ZERO-FORCING RECEIVER COMBINER DESIGN
The signal received by the base station is the weighted sum
of the model signals of all tasks. However, machine learning
based on gradient descent method is sensitive to interference.
For the purpose of training models of the group m accu-
rately, the receiver combiner matrix � needs to separate
the received signals of different tasks, which reminds us of
the zero-forcing receiver. Specifically, the BS should treat
the gradients of different tasks as mutual interference and
force the interference to zero, such that � = [f1, f2, . . . , fM]
should be designed to meet the following criterion:

fHmhn,i = 0,∀n ∈ M\m,∀i ∈ In, (13)

where fm ∈ C
N×1, and m = 1, 2, . . . ,M.

Note that the proposed scheme can not only reduce the
communication cost, but also minimize the training delay,
because it schedule multiple FL tasks in a parallel way. For
clear presentation, we list all notations used in this paper in
Table 1.

III. PERFORMANCE ANALYSIS AND PROBLEM
FORMULATION
In this section, we analyze how the device selection and
communication noise affects the performance of the fed-
erated learning under the over-the-air model aggregation
framework.

A. LEARNING PERFORMANCE ANALYSIS
To facilitate the analysis, we omit the task index m and first
make the following assumptions on the loss function F(·):
Assumption 1: F(·) is rigorously convex with positive

parameter μ, such that for any w and w′:

F(w) ≥ F
(
w′)+ (

w− w′)T∇F(w′)+ μ

2
‖w− w′‖2. (14)
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Assumption 2: The gradient ∇F(·) of F(·) is Lipschitz
continuous with parameter L. Hence, we have:

‖∇F(w)− ∇F(w′)‖ ≤ L‖w− w′‖. (15)

Assumption 3: F(·) is twice-continuously differentiable.
Assumption 4: The gradient computed by each sample is

bounded as a function of the true gradient as follow:
∥∥∥∇f

(
w; xki , yki

)∥∥∥
2 ≤ β1 + β2‖∇F(w)‖2, ∀i,∀k, (16)

where β1, β2 ≥ 0.
Remark 1: Assumptions 1-4 are satisfied for most machine

learning loss functions, such as squared support vector
machine (SVM) and linear regression [41], and are widely
used in the literature of performance analysis for FL
[10], [42]. Although some machine learning models, such
as neural network, might not satisfy Assumption 1, our
experimental results presented later will clearly show that
the proposed receiver combiner and device selection policy
based on these four assumptions work well.
Assumptions 1-4 leads to an upper bound on ‖∇F(wt)‖2

with a proper learning rate λ. According the analysis in [43],
we have

∥∥∇F(wt)∥∥2 ≤ 2L
[
F
(
wt
)− F

(
w�
)]

(17)

where the learning rate is given as λ = 1
L and F(w�) denotes

the global optima.
Based on (5), the global model at iteration t is updated

by the relation given infra:

wt+1 = wt − λ∑
i∈I Ki

r̂t = wt − λ
(∇F(wt)− et

)
, (18)

where et = ∇F(wt) − r̂t/
∑

i∈I t Ki, which denotes the gra-
dient error caused by device selection and communication
noise. According the analysis in [43], the upper bound on
E[F(wt+1)− F(w�)] can be given by:

E

[
F
(
wt+1

)
− F(w�)

]
≤
(

1 − μ

L

)
E
[
F
(
wt
)− F

(
w�
)]

+ 1

2L
E

[
‖et‖2

]
, (19)

where E(·) returns the expected value of the random
variable/quantity enclosed.
In order to lessen the gap between the realistic and ideal

optima value of global loss function, we need reduce the
value of et. Since the gradient error et is determined by
device selection and communication noise, given the device
selection policy, the transmitter scalar is determined in the
following proposition.
Proposition 1: Given the channel coefficient, receiver

combiner vector and device selection policy, the optimal
transmitter scalar that minimizes the gradient error is
designed by

p∗
i = Ki

√
ηνi
(
fHhi

)H
∣∣fHhi

∣∣2
, ∀i. (20)

Proof: See Appendix A.
Considering the transmit power constraint formulated

in (9) and Proposition 1, the optimal η that minimizes the
gradient error can be computed as

η∗ = min
i∈I t

P0
∣∣fHhi

∣∣2

K2
i ν

2
i

. (21)

From Proposition 1, we can get the tractable expression of
the gradient error et, based on which we can derive an upper
bound on E[F(wt+1)− F(w�)] in the following theorem with
respect to any given device selection policy I t and receiver
combiner vector f.
Theorem 1: Supposing that the assumptions 1-4 holds,

with pi and η given in (20) and (21), for arbitrary {I t, f},
we have

E

[
F
(
wt+1

)
− F

(
w�
)]

≤ [ψ]t+1
E
[
F
(
wt
)− F

(
w�
)]

+ β1

L
d
(I t, f)1 − [ψ]t

1 − ψ
, (22)

where ψ = 1 − μ
L + d(I t, f) and [ψ]t denotes

exponentiation with base ψ and power t; d(I t, f) =
σ 2
n

(
∑

i∈It Ki)2
maxi∈I t

K2
i

P0|fHhi|2 + 4(
∑

i∈I Ki−
∑

i∈It Ki∑
i∈I Ki

)2.
Proof: See Appendix B.
From Theorem 1, we can see a gap, β1

L d(I t, f) 1−[ψ]t

1−ψ ,
exists between E[F(wt+1)] and E[F(w�)]. This gap is
caused by communication noise and device selection policy.
Specifically, as the communication noise decreases, the gap
between E[F(wt+1)] and E[F(w�)] decreases. Meanwhile,
when the number of training samples used to perform FL
algorithm increases, the gap also decreases.

B. PROBLEM FORMULATION
From Theorem 1, we can observe that ψ controls the conver-
gence rate of the FL algorithm. A smaller ψ means faster
convergence rate and the FL algorithm will not converge
when ψ ≥ 1. Therefore, in this paper we only consider
the case where ψ < 1. As a result, as t → ∞, we have
[ψ]t = 0, the gap between E[F(wt+1)] and E[F(w�)] can be
rewritten as β1

L d(I t, f). Moreover, from the expression of ψ
and the gap, we can see that the convergence rate ψ and
the gap are both monotonic functions of d(·). As a result, a
smaller d(·) leads to faster convergence and a smaller gap.
Besides, we see that the selected device set I tm and receiver
combiner vector fm determine the value of d(·). Based on the
above observations, we formulate the following minimization
problem for task m:

min
I tm,fm

4

(
K −∑

i∈I tm Ki
K

)2

+ σ 2
n(∑

i∈I tm Ki
)2

max
i∈I tm

K2
i ‖fm‖2

P0|fHmhm,i|2
,
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s.t. C1 I tm ⊆ Im
C2 fHmhn,i = 0,∀n ∈ M\m, ∀i ∈ I tn (23)

where C2 is zero-forcing constraint. Obviously, the objec-
tive function in (23) is non-convex, and the optimization
variable I tm is a set. Hence, the objective problem (23) is a
mixed-integer non-convex optimization problem. Due to the
heterogeneity of the system, different users have different
amounts of data and channel state information. From the
optimization problem we can see that, The first item of the
objective function requires selecting a device with a large
amount of data, but this may cause the effect of noise in the
second item to be amplified. In addition, the second term
requires the selection of devices with good channel condi-
tions and the design of the receiver vector to minimize the
effects of channel fading.

IV. JOINT OPTIMIZATION OF RECEIVER COMBINER AND
DEVICE SELECTION
In this section, our goal is to solve the minimization problem
fomulated in (23). However, (23) is a mixed-integer non-
convex optimization problem with non-convex objective and
constraints. To facilitate solving this type of optimization
problems, certain tactics are necessary. First, we decouple
it into two sub-problems, namely, receiver combiner and
device scheduling, and solve them alternately. Specifically,
given the device selection policy, we use SCA to derive
the receiver combiner vector. Further, based on the derived
receiver combiner vector, we solve the device scheduling
problem with the greedy algorithm.

A. RECEIVER COMBINER DESIGN
Given the device scheduling policy of task m at the tth round
I tm, the minimization problem (23) can be written as follows:

min
fm

max
i∈I tm

‖fm‖2

|fHmhm,i|2
s.t. fHmhn,i = 0,∀n ∈ M\m,∀i ∈ I tn (24)

Problem (24) is a min-max optimization problem with
non-convex objective, we first transform it through the
following proposition.
Proposition 2: The problem formulated in (24) is equiv-

alent to the following problem:

min
fm

‖fm‖2

s.t. C1:
∣∣∣fHmhm,i

∣∣∣
2 ≥ 1,∀i ∈ I tm

C2: fHmhn,i = 0,∀n ∈ M\m,∀i ∈ I tn (25)

Proof: See Appendix C.
The problem written in (25) is a quadratically constrained

quadratic programming (QCQP) problem with non-convex
constraints. Thus, we are able to solve it iteratively through
SCA. Specifically, at the lth iteration, we derive the optimal
fm by solving the following problem:

min
fm

‖fm‖2

Algorithm 1: SCA Based Receiver Combiner Vector
Design
Input: l = 0, ε

Randomly initialize f�m
Set c(0)i = [

Re
(
f�Hm hm,i

)
, Im

(
f�Hm hm,i

) ]

repeat
Solve the convex optimization problem (26)

until
∑

i∈I tm‖c(l+1)
i − c(l)i ‖ ≤ ε

Output: fm

s.t. C1: ‖c(l)i ‖2 + 2
(
c(l)i
)T(

ci − c(l)i
)

≥ 1,∀i ∈ I tm
C2: ci =

[
Re
(
fHmhm,i

)
, Im

(
fHmhm,i

) ]

C3: fHmhn,i = 0,∀n ∈ M\m, ∀i ∈ I tn (26)

where the first constraint is obtained by performing the
second-order Taylor expansion.
The problem given in (26) is convex, and we solve it

through a standard convex optimization solver, e.g., CVX.
Besides, we initialize c(0)i in a random way, and the iteration
stops when the difference of ci between two consecutive
iterations is less than a preset threshold ε. The algorithm for
optimizing fm is summarized in Algorithm 1.

B. DEVICE SELECTION
In this subsection, we adopt a greedy device selection
algorithm based on (23). Specifically, at the kth iteration
with k = 1, 2, . . . , ξ Im, given the device scheduling policy
I(k−1)
m , we first remove each device of I(k−1)

m and perform
Algorithm 1 to derive the corresponding optimal receiver
combiner vector, based on which we compute the target
value of (23) corresponding to the each removed device.
Finally, we find the removed device with the minimum tar-
get value, and this device is the one needed to be deleted in
this step. We suppose that in step 1, all devices are selected
to participate in the FL algorithm. In this algorithm, ξ is the
rate of device selection and is treated as a tunable hyperpa-
rameter. The algorithm for optimizing Im is summarized in
Algorithm 2.
Remark 2: From the analysis in Section III-B, we obtain

that as the proportion of device selection increases, the
amount of data involved in training will increase, leading
to the data distribution being closer to the true distribu-
tion. This is conducive to the convergence of FL. However,
choosing more devices may cause the effects of noise to
be amplified, adversely affecting FL performance. On the
contrary, when too few devices are selected, the distribution
of data involved in training may deviate significantly from
the true distribution, which will also bring serious disadvan-
tages to the convergence of FL. Therefore, for scenarios with
poor network conditions, the proportion of selected devices
should be appropriately reduced, while for scenarios with
less data held by devices, it is better to get more devices
involved.
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Algorithm 2: Greedy Device Selection Algorithm

Input: I0
m = Im, Im, fHm , selection rate ξ , k = 1

While k < ξ Im do
While i < I(k)m do
Remove device i from I(k)m
Design receiver combiner vector via Algorithm 1
Compute obj = d(I(k)m , f)
Find device with the minimum obj and delete it

from I(k)m
k ⇐ k + 1

Output: I tm

C. COMPUTATION COMPLEXITY
The problem developed in (26) is a second-order cone
programming problem, and, therefore, the worst-case com-
plexity during each iteration of the algorithm is O(N3).
The computational complexity of device selection is thus
O((2 − ξ)ξ I2), where I is the total number of devices.

V. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
joint receiver combiner and device selection algorithm. The
simulation set up is introduced in section V-A, and in sec-
tion V-B, we numerically demonstrate the performance of
proposed algorithm for two image classification tasks with
different settings and benchmarks described in section V-A.

A. SIMULATION SETUP
For our simulations, we consider a square network area
with one BS placed at its center servicing M × I uniformly
distributed devices. We simulate the channel to experience
small-scale fading multiplied by large-scale fading, where
the small-scale fading follows the standard independent
and identically distributed (i.i.d.) Gaussian distribution and
the large-scale fading follows the free-space path loss as
GBSGD(

3∗108m/s
4π fcdBD

)PL, where GBS and GD are the antenna
gains of BS and each device; PL is the free-space path
loss coefficient; fc is the carrier frequency, and dBD is the
distance between BS and device. We consider the following
two settings on data and device location distribution:
(1) One cluster device with equal data: the M× I devices

are uniformly distributed in a square network area {(x, y):
−10 < x < 10,−10 < y < 10} and each device have 1000
training samples.
(2) Two cluster device with unequal data: theM×I devices

are uniformly distributed in two square network areas: half
devices are in {(x, y) : −10 < x < 10,−10 < y < 10}, and
the other half are in {(x, y) : 40 < x < 60,−10 < y < 10}.
Besides, the number of training samples for each device is
unequal. We randomly set half devices with [1500, 2000]
training samples and the other half with [300, 500] training
samples.
The muti-FL algorithm is simulated by using PyTorch

for two image classification tasks on MNIST [44] and

TABLE 2. Simulation parameters.

FMNIST [45] datasets. Since the sample size and the sam-
ple space of the two datasets are the same, we can use the
same neural network structure to conduct the classification
task. Specifically, each device trains a CNN consisting of
two convolution layers with 5×5 kernel size, and each con-
volution layer is followed by a 2×2 max pool layer, a batch
normalization layer, a fully connected layer, a ReLu acti-
vation layer, and a softmax output layer. The total number
of neurons is 21921. The loss function is the cross-entropy
loss.
For the purpose of comparison, we use the three bench-

marks as follows:
(a) Noiseless aggregation: Suppose that the gradient

information uploaded by the device to BS is undistorted,
which means the BS directly uses the gradient calculated by
the device to perform the FedAvg algorithm. Meanwhile, all
devices are selected to participate in the FL process.
(b) Optimizes receiver combiner with random device

selection: Suppose that devices are randomly selected, and
the receiver combiner vector f is optimized by the SCA
algorithm.
(c) OFDMA scheme: Orthogonal frequency division

multiple access communication scheme with the same user
selection sets as proposed algorithm.
(d) Proposed algorithm: A wireless optimization algorithm

that optimizes the receiver combiner vector f via SCA and
the device selection policy via greedy algorithm.
In our simulations, we stipulate that the BS has 64 anten-

nas and 40 devices in each task, and we select half of all
devices to participate in the FL process. We perform 1000 FL
rounds in each task, and the learning rate of each device is
set to be 0.01. The values of parameters used in simulations
are listed in Table 2.

B. SIMULATION RESULTS
In this section, we simulate the performance of the proposed
algorithm for two image classification tasks with different
settings and benchmarks described in Section V-A.
Fig. 2 and Fig. 3 show the test accuracy of MNIST and

FMNIST classification tasks with setting 1. From the two
figures, we see that the random device selection benchmark
can approximate the OFDMA scheme and proposed algo-
rithm, and all of them nearly achieve optimal performance
(noiseless aggregation). This is due to the fact that devices
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FIGURE 2. Test accuracy of FMNIST classification task under setting 1.

FIGURE 3. Test accuracy of MNIST classification task under setting 1.

are all close to the BS under setting 1, such that there are no
significant stragglers. Besides, Fig. 2 and Fig. 3 also show
that the proposed algorithm has a better performance than
the OFDMA scheme and nearly reach the same performance
as the optimal FL. The improvement stems from the fact that
the proposed algorithm optimizes receiver combiner vector
based on FL convergence speed and error. Above results
verifies that the proposed algorithm can not only improve
the performance of multiple parallel FL but also effectively
reduce the communication costs since the spectrum resources
for the OFDMA scheme increase proportionally with the
number of devices.
Fig. 4 and Fig. 5 show the test accuracy of MNIST and

FMNIST classification tasks under setting 2. From the two
figures, we observe that the FL performance is significantly
affected when randomly selecting devices because of strag-
glers. However, due to our greedy device selection algorithm,
the performance of the proposed algorithm is still near-
optimal. Besides, with the same device selection policy, the
OFDMA scheme can also achieve a relatively satisfactory
performance.
Fig. 6 and Fig. 7 show the test accuracy of FMNIST and

MNIST classification tasks versus different numbers of BS

FIGURE 4. Test accuracy of FMNIST classification task under setting 2.

FIGURE 5. Test accuracy of MNIST classification task under setting 2.

FIGURE 6. Test accuracy of FMNIST classification task versus different numbers of
BS receive antennas under setting 2.

receive antennas under setting 2. From the two figures, we
can see that, as the number of BS receive antennas increases,
the values of the FL test accuracy increase on both tasks.
This is because, as the number of antennas increases, the
dimension of the vector f increases, which helps the SCA
algorithm find a better solution. In addition, as the dimension
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FIGURE 7. Test accuracy of MNIST classification task versus different numbers of
BS receive antennas under setting 2.

of the vector f increases, the dimension of the solution space
of the zero-forcing constraint given in (13) increases, which
is beneficial for the SCA algorithm to find a better solution
as well.

VI. CONCLUSION
In this paper, we developed a multiple FL framework via
over-the-air computation in wireless networks. We proposed
the zero-forcing receiver combiner to separate the received
signals of different computing tasks. Also, we analyzed the
convergence of FL under our framework and derived an
upper bound on the difference between the loss function and
its optimal value, which reveals how the receiver combiner
vector and device selection policy affect FL performance.
Based on this discovery, we formulated an optimization
problem that jointly considers receiver combiner vector
design and device selection for improving FL performance.
We addressed the problem by alternately optimizing the
receiver combiner vector and device selection policy. In
particular, we adopted SCA to derive the receiver com-
biner vector and solve the device scheduling problem with a
greedy algorithm. Simulation results show that our proposed
framework effectively solves the straggler issue and achieves
near-optimal performance for all processed learning tasks.

APPENDIX A
PROOF OF PROPOSITION 1
Let N t denote the complement of I t, so that I t ∪ N t = I,
and then the gradient residual in (18) is bounded by the
expression derived in (28)2 at the top of the next page,
where N = (n[1],n[2], . . . ,n[D]) ∈ C

N×D, and the inequal-
ity is achieved by the inequality of arithmetic and geometric
means. To minimize the gradient residual, transmitter scalar
pi should satisfy (Ki − fHhipi√

ηvti
) = 0 for i ∈ I t, thus we get

the pi in (20).

2. In this expression, vector g subtracting scalar ḡ means each entitiy of
the vector g subtracting scalar ḡ. Besides, addition and subtraction operations
between vectors and scalars involved in other formulas in this paper also
obey the above principle.

APPENDIX B
PROOF OF THEOREM 1
Since gti � ∇Fi(wt;Di) and Fi(w;Di) �
1
Ki

∑
(xki ,y

k
i )∈Di

f (w; xki , yki ), the first term at the right
side of (28) is bounded as follows

2

∥∥∥∥

∑
i∈N t Kigti∑
i∈I Ki

−
∑

i∈N t Ki
∑

i∈I t Kigti∑
i∈I Ki

∑
i∈I t Ki

∥∥∥∥
2

≤ 2

[∥∥∥∥

∑
i∈N t Kigti∑
i∈I Ki

∥∥∥∥+
∥∥∥∥

∑
i∈N t Ki

∑
i∈I t Kigti∑

i∈I Ki
∑

i∈I t Ki

∥∥∥∥

]2

≤ 2

[∑
i∈N t

∥∥Kigti
∥∥

∑
i∈I Ki

+
∑

i∈N t Ki
∑

i∈I t
∥∥Kigti

∥∥
∑

i∈I Ki
∑

i∈I t Ki

]2

≤ 8

(∑
i∈I Ki −

∑
i∈I t Ki∑

i∈I Ki

)2

(β1 + β2‖∇F(wt)‖2), (27)

where the first two inequalities are achieved by the
triangle-inequality, and the last one is achieved based on
Assumption 4.
Substituting (20) into the last term at the right side of (28)

yields

2

∥∥∥∥∥∥∥

∑
i∈I t

(
(Ki − fHhipi√

ηvti
)(gti − ḡti)

)
+ fHN√

η∑
i∈I t Ki

∥∥∥∥∥∥∥

2

= 2

η
(∑

i∈I t Ki
)2
∥∥∥fHN

∥∥∥
2 = 2D‖f‖2σ 2

n

η
(∑

i∈I t Ki
)2 . (29)

From (21), we have

2Dσ 2
n

η
(∑

i∈I t Ki
)2 = 2Dσ 2

n(∑
i∈I t Ki

)2 max
i∈I t

K2
i v

2
i ‖f‖2

P0|fHhi|2 . (30)

Based on (7), we have

v2
i = 1

Di

Di∑

d=1

(
gi[d] − ḡi

)2

= 1

Di

⎛

⎝
Di∑

d=1

g2
i [d] − 1

Di

( Di∑

d=1

gi[d]

)2⎞

⎠

≤ 1

Di

Di∑

d=1

g2
i [d]

= 1

Di

∥∥gti
∥∥2

= 1

Di

∥∥∥∥∥∥∥

1

Ki

∑

(xki ,y
k
i )∈Di

∇f
(
wt; xki , yki

)
∥∥∥∥∥∥∥

2

≤ 1

Di

(
β1 + β2‖∇F

(
wt
)‖2
)
, (31)

where the last inequality is derived based on Assumption 4.
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‖et‖2 =
∥∥∥∥∇F

(
wt
)− λ∑

i∈I Ki
r̂t
∥∥∥∥

2

=
∥∥∥∥∥∥

∑
i∈I Kigti∑
i∈I Ki

−
1√
η
fHyt + ḡt
∑

i∈I t Ki

∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥

∑
i∈I t Kigti +

∑
i∈N t Kigti∑

i∈I Ki
−

1√
η
fH
∑

i∈I t hipi
(
gti−ḡti
vti

)
+ fHN√

η
+∑

i∈I t Kiḡti
∑

i∈I t Ki

∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥

∑
i∈N t Kigti∑
i∈I Ki

−
∑

i∈I t
(
(
∑

i∈I Ki)fHhipi√
ηvti

− (∑
i∈I t Ki

)
Ki

)
gti

∑
i∈I Ki

∑
i∈I t Ki

+
∑

i∈I t
(
fHhipi√
ηvti

− Ki
)
ḡti + fHN√

η∑
i∈I t Ki

∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥

∑
i∈N t Kigti∑
i∈I Ki

−
∑

i∈N t Ki
∑

i∈I t Kigti∑
i∈I Ki

∑
i∈I t Ki

+
∑

i∈I t
((
Ki − fHhipi√

ηvti

)(
gti − ḡti

))+ fHN√
η∑

i∈I t Ki

∥∥∥∥∥∥∥

2

≤
⎡

⎢⎣
∥∥∥∥

∑
i∈N t Kigti∑
i∈I Ki

−
∑

i∈N t Ki
∑

i∈I t Kigti∑
i∈I Ki

∑
i∈I t Ki

∥∥∥∥+

∥∥∥∥∥∥∥

∑
i∈I t

((
Ki − fHhipi√

ηvti

)(
gti − ḡti

))+ fHN√
η∑

i∈I t Ki
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⎤

⎥⎦

2

≤ 2

∥∥∥∥

∑
i∈N t Kigti∑
i∈I Ki

−
∑

i∈N t Ki
∑

i∈I t Kigti∑
i∈I Ki

∑
i∈I t Ki
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2

+ 2
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∑
i∈I t

((
Ki − fHhipi√

ηvti

)(
gti − ḡti

))+ fHN√
η∑

i∈I t Ki
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2

(28)

Combining (29), (30) and (31), we obtain

2

∥∥∥∥∥∥∥

∑
i∈I t

((
Ki − fHhipi√

ηvti

)(
gti − ḡti

))+ fHN√
η∑

i∈I t Ki

∥∥∥∥∥∥∥

2

≤ 2σ 2
n(∑

i∈I t Ki
)2
(
β1 + β2

∥∥∇F(wt)∥∥2
)

max
i∈I t

K2
i ‖f‖2

P0|fHhi|2 . (32)

Given (19), (27) and (32), we have

E

[
F
(
wt+1

)
− F

(
w�
)]

≤ ψE
[
F
(
wt
)− F

(
w�
)]+ β1ψ

L
, (33)

where ψ is defined in Theorem 1.
Applying (33) recursively, we complete the proof.

APPENDIX C
PROOF OF PROPOSITION 2
By introducing an auxiliary variable τ = mini∈I tm |fHmhm,i|2,
the problem developed in (24) can be rewritten as

min
fm

‖fm‖2/τ

s.t. |fHmhm,i|2 ≥ τ,∀i ∈ I tm (34)

Then introducing a new optimization variable f̃m = fm/
√
τ ,

the above problem is equivalently transferred to

min
f̃m

‖f̃m‖2

s.t. |f̃Hmhm,i|2 ≥ 1,∀i ∈ I tm (35)

which completes the proof.
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