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ABSTRACT Distributed Artificial Intelligence (DAI) is one of the most promising techniques to provide
intelligent services under strict privacy protection regulations for multiple clients. By applying DAI,
training on raw data is carried out locally. At the same time, the trained outputs, e.g., model parameters
from multiple local clients, are sent back to a central server for aggregation. DAI is recently studied in
conjunction with wireless communication networks to achieve better practicality, incorporating various
random effects brought by wireless channels. However, because of wireless channels’ complex and case-
dependent nature, a generic simulator for applying DAI in wireless communication networks is still lacking.
To accelerate the development of DAI in wireless communication networks, we propose a generic system
design in this paper and an associated simulator that can be set according to wireless channels and system-
level configurations. Details of the system design and analysis of the impacts of wireless environments
are provided to facilitate further implementations and updates. We employ a series of experiments to
verify the effectiveness and efficiency of the proposed system design and reveal its superior scalability.

INDEX TERMS Distributed deep learning (DDL), federated learning (FL), system design, simulator design,
wireless environment, convergence analysis.

I. INTRODUCTION

AS SPECULATED in the perspective paper, ‘What
should 6G be?’ [1], sixth-generation (6G) communi-

cation networks are expected to be human-centric, posing
much higher requirements for privacy protection. On the
other hand, based on existing artificial intelligence (AI)
architectures, protecting digital privacy is, to some extent,
contradictory to the demand for user data by intelligent
communication services [2]. This is because user data
are required to be collected, processed, and utilized to
precisely identify user demands so that truly intelligent
and high-quality communication services can be provided
to end-users [3]. These user data inevitably contain per-
sonal and sensitive information that users are unwilling to
share and should be restricted by legislation [4]. Collecting
and processing user data by such a centralized architecture
could also lead to a high divulging risk, which has become
much more common nowadays [5]. Moreover, relying on
such a centralized architecture for intelligent communication

services, one can never rule out the possibility that a
malicious Big Brother takes advantage of user data and
manipulates users and even the entire society with ulterior
motives [6].
To solve the dilemma between high-intelligence communi-

cation services and user privacy protection, distributed deep
learning (DDL) is proposed. It soon attracted researchers’
attention in the communication and computing research
communities [7]. The large-scale DDL was first investi-
gated in [8] to solve the insufficient computation ability
in a single node, in which a central server aggregates the
one-step model gradients updated from all agents with the
randomly assigned dataset. However, aggregating the gra-
dients at each stochastic gradient descent (SGD) updating
round increases communication overhead [9], constraining
it to be only suitable at high-bandwidth data centers. To
reduce communication overhead and extend the deployment
on edge devices, local SGD [10] has been proposed. Instead
of gradients, the multiple clients update model parameters
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to the central server for aggregation after a preset local SGD
updating steps. However, all clients synchronously updating
model parameters makes it unsuitable for the application sce-
narios under unreliable communications and heterogeneous
computing resources. Federated learning (FL) is a further
advancement of local SGD [10], by which only a subset
of clients will update their model parameters to the cen-
tral server instead of all clients. Due to the variability of
the local steps and the proportion of activated clients, FL
is sometimes believed to supersede the concepts of DDL
and local SGD. However, the theoretical convergence guar-
antees of these learning strategies are distinct, leading to
varied applicability in practice depending on the reliability
of communications and homogeneity of computing devices.
Despite subtle differences among these learning strategies,
they all belong to the distributed artificial intelligence (DAI)
family [11] due to the decoupling of client training and
server aggregation. Hence, we apply the term DAI instead
of carefully distinguishing them.
Different from classical machine learning (ML) or deep

learning (DL) techniques adopting centralized processing
architectures [12]–[14], DAI utilizes a distributed processing
architecture that consists of one DAI server (viz. the model
owner) and multiple clients (viz. the data owners) [15]. The
clients directly collect users’ raw data and process them by
local training algorithms to obtain local model parameters.
These local model parameters are then aggregated in a cer-
tain way at the DAI server. The aggregated model produced
at the DAI server is called the global model, which will
subsequently be updated to the clients for intelligent com-
munication services. In this way, the global model training
and first-hand raw data accessing can be decoupled, and
thereby the data minimization principle for the privacy of
consumer data is followed [16].
Due to the distributed processing architecture and exemp-

tion from users’ raw data, DAI is believed to be one of the
most promising techniques to provide intelligent services
under strict privacy protection regulations [15], [17]–[19].
In addition, DAI can also facilitate the implementations of
other promising 6G communication techniques by releasing
privacy concerns and reducing the volume of data required
to transmit [10]. Consequently, spectral efficiency, energy
efficiency, and latency of communication systems would all
be improved by DAI [20].
As described above, DAI computation is performed at

both the DAI server and clients, and the exchange of model
parameters is frequent and necessary. As a result, the com-
munication and computing procedures of DAI are coupled,
which should be jointly considered and analyzed as a whole.
Recently, many research works have analyzed both commu-
nication and computing issues related to DAI in wireless
communication networks [21]–[23] (details of them will be
given and reviewed in the next section). However, existing
works on wireless communications treat DAI as isolated
optimization algorithms in ideal and guaranteed wireless
environments. Their objective functions aim at optimizing

specific model characteristics, such as transmission time
and energy consumption [21]–[23]. To solve the formulated
optimization problems, they assume simple wireless com-
munications constraints and specific communication models
without considering the effects of unreliable and diversi-
form communication and computational resources in realistic
situations, resulting in a difficulty to be deployed in prac-
tice. Meanwhile, a generic system for designing and testing
DAI algorithms in wireless communication networks is still
lacking, which impedes DAI development in wireless envi-
ronments and DAI-aided wireless networks. First, without a
benchmark system, researchers interested in DAI algorithms
implemented in wireless environments need to program indi-
vidual communication scenarios for investigation. Also, the
simulation results provided by DAI can hardly be verified
by reproduction and compared with results generated by
other benchmark algorithms. At last, even with the increasing
awareness of the generic design of DAI systems [24], [25],
the researchers neglect the simulations on wireless envi-
ronments, which proves to be an essential factor in our
work.
In this regard, we propose distributed artificial intelligence

over-the-air (AirDAI), a generic system design for DAI over
the air, aiming at accelerating the relevant research progress
on DAI in wireless environments.1 Compared to existing
solutions, the proposed system can be easily adapted to dif-
ferent settings for designing, testing, and investigating DAI
applied in different wireless scenarios with more realistic
parameter settings. Designers can alter the wireless com-
munication environment and introduce self-defined quality
of service (QoS) metrics with our provided simulator to
examine newly-designed DAI algorithms and generate repro-
ducible results. The contributions of this paper are listed as
follows:

• To ensure generality and practicability, we generalize
the system design by considering a series of realistic
wireless features, including path loss, shadowing, multi-
path fading, and mobility.

• We further analyze the convergence rate of DAI applied
in wireless environments and affected by a set of
stochastic factors.

• We also provide a Python-based simulator according to
the proposed system, which can be easily integrated into
popular ML and DL frameworks, e.g., PyTorch [26] and
TensorFlow [27].

• Moreover, the proposed system design and simulator
modules can be customized because of their generic
nature.

The rest of the paper is organized as follows. In Section II,
we carry out comprehensive literature research on the
works related to DAI in wireless communication networks.
Summarizing the existing literature and research directions,

1. The codes associated with the proposed system as well as
its simulator can be found from the open GitHub repository link:
https://github.com/KAUST-Netlab/AirDAI
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TABLE 1. Notations and the corresponding descriptions applied in this paper.

we propose the system design in Section III and present
the details of wireless environmental setups and convergence
analysis in Section IV. The effectiveness and efficiency of the
proposed system design and its associated simulator are ver-
ified through several applications in Section V. Finally, the
paper is concluded in Section VI. For readers’ convenience,
we list key notations and the corresponding descriptions used
in this paper in Table 1.

II. RELATED WORKS
Before planning the generic simulator design of AirDAI, we
need to have a profound insight into the research trends and
demands of DAI in wireless communications in recent years.
To capture the research trends and demands well, we carry
out a comprehensive literature review of most key research
works and milestones in this section.
It has been recognized in [15], [28] that communications

are the critical bottleneck for DAI because of the heterogene-
ity of wireless networks. Therefore, communication-efficient
protocols are imperative for sending messages of model
updates as part of the training process, which should stip-
ulate the number of communication rounds and the size of
transmitted messages at each round [29]–[31]. Another core
challenge mentioned in [15] is that massive clients’ unre-
liable connections must be considered when modeling and
analyzing DAI in wireless communication networks. Most
importantly, the statistical heterogeneity of clients must be
considered, which indicates that the signal propagation envi-
ronments and system configurations of clients are diverse.
As a result, personalized and client-specific modeling for
DAI in wireless communication networks is required.
An essential application of DAI in wireless communica-

tion networks is related to mobile edge computing [7]. In [4],
DAI in mobile edge networks is comprehensively reviewed,
and a DAI-aided edge computing system is constructed.
This work also summarizes three unique characteristics of
DAI-aided edge computing networks: Slow and unstable
communications, heterogeneous clients, and privacy/security
concerns. The resource allocation problems for DAI-aided
edge computing networks are briefly discussed, including

client selection, adaptive aggregation, and incentive mecha-
nisms. It has also been pointed out in [4] that DAI-aided edge
computing can help with several wireless applications, e.g.,
base station (BS) association and vehicular communications.
In a broader context, the motivation, opportunities, and

challenges of leveraging DAI for wireless communications
are discussed in [20]. The optimization of learning time
versus energy consumption by using the Pareto efficiency
model and the equilibrium between computation and com-
munication for DAI in wireless communication networks
are presented in [22], in which qualitative insights into
DAI in wireless communication networks and a simplified
multi-access communication model are provided. The model
quantifies the transmission time and energy consumption
for a given amount of data in DAI-aided wireless com-
munication networks. The following study on the resource
allocation problems, including transmission time, energy
consumption, and DAI convergence, is presented in [21].
However, they optimize the total energy or transmission time
consumption of all users while constrained by a simplified
communication and computation model. A more realistic
communication model of DAI for wireless communication
networks is constructed in [23], in which learning, wireless
resource allocation, and client selection are jointly optimized
to minimize the DAI loss function under the constraints of
latency and energy consumption. The same model is also
utilized in [32] to reduce the convergence time for DAI over
wireless communication networks.
DAI has also been utilized in more complicated wire-

less application scenarios, e.g., the Internet of Things (IoT),
wireless sensor networks, and vehicular communication
networks. In [33], DAI is applied to power-constrained
IoT devices with slow and sporadic connections, and a
fully decentralized DAI system without the DAI server is
proposed. The decentralized DAI system relies on device-
to-device (D2D) communication protocols and is particularly
suited for dense networks consisting of massive cooperative
devices. In [34], an incentive mechanism is proposed and
studied to encourage clients to contribute to DAI in the IoT.
The participation of massive clients in the DAI system is
formulated as a Stackelberg game, and the Nash equilibrium
of the game is derived. DAI is also employed to estimate the
tail distribution of vehicle’s queue lengths in vehicular com-
munication networks, which has been verified to produce
comparable accuracy to centralized learning methods [35].

III. SYSTEM PROPOSAL
We propose the AirDAI system in this section. We analyze
and decompose the essential elements of DAI in general,
introduce the programming procedures for its associated sim-
ulator, and expound on its scalability. The AirDAI process
can be expressed directly as follows: Iteratively, a server
aggregates messages from clients and broadcasts updates
back, while clients train the local models with the received
message on local datasets. To make a global view of the
holistic process and visualize it, we abstractly decompose
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FIGURE 1. Virtualization of two successive operational rounds of AirDAI.

the process into two observation aspects: temporal and spa-
tial. From the temporal perspective, the process comprises
the computing module (local training) and the communica-
tion module (broadcast and aggregation) due to the mutually
exclusive time slots, in which the two modules are exe-
cuted iteratively. From the spatial perspective, an AirDAI
task mainly comprises the computing clients and the central
server, whose topology varies according to the instant char-
acteristics at each communication round due to dynamical
wireless environments. For the convenience of illustration,
we refer to both clients and servers as agents in the following
without ambiguity.
Specifically, at the beginning of each time slot, clients pro-

cess the pre-defined training tasks based on the local datasets
and send the computed results to the server for aggregation.
Once received messages from the clients, the server further
processes messages by a pre-defined aggregation function.
Then, based on specific broadcasting strategies, the server
sends the processed data back in a limited time window or
after completing the reception phase from all clients. The
interaction, which begins with the server broadcasting and
ends when the server aggregates the result, is defined as a
round, as illustrated in Fig. 1.

With the above explanations and settings, we represent
the τ th round abstractly as follows:{
Server : Kn

τ ←− broadcast
{
aggregate

{J n
τ

}}
Clients : J n

τ+1 ←− �Dn

(J n
τ ,Kn

τ

) ,

(1)

where we utilize J n
τ to denote messages sent out from

the client n at round τ and Kn
τ to indicate messages sent

back from the server to the client n at round τ . After
one complete iteration, the system begins the (τ + 1)th

round and the client k processes its pre-defined task �

based on its own dataset Dn with received messages Kn
τ

at round τ . After finishing the computation phase, it sends
the computed result J n

τ+1 to the server for aggregation. It
is worth noting that the ‘aggregation’ and ‘broadcast’ may
only affect a subset of clients according to specific policies.
The above (1) is a generic virtualized process that covers
the most well-known DAI paradigms of FL, local SGD, and
DDL [22], [24].
1) Synchronous and Asynchronous Settings: Considering

whether clients receive the same messages from the server
during each round, DAI schemes can be classified into
synchronous and asynchronous categories [10], [36]. With
the asynchronous settings, the server receives the data
from a single client, then aggregates it with the his-
torical data from other clients, and sends it back to
the corresponding client before aggregating the data from
newly coming clients. The server has to suspend broad-
casting before aggregating data from all clients or the
activated clients within a pre-defined time window with
the synchronous settings. The broadcast results after aggre-
gation are identical to the activated clients during each
round. These schemes can be achieved by adjusting the
virtual functions of broadcast{·} and aggregate{·}
at the server end, making both the synchronous and
asynchronous schemes compatible within the format of
virtualization (1).
2) Network Topology and Virtual Channels: To enable

topological formulations, we can treat the agents, includ-
ing clients and servers, as vertices and the communication
channels as edges. The network topology can be built as a
bi-directional graph. Intuitively, we can represent the system
as a graph G = (N ,�), where N denotes the set of the
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clients and server, and � denotes the set of effective vir-
tual channels. The system can be flexibly configured with
varied wireless environmental settings by assigning specific
parameters to corresponding vertices and edges, such as com-
munication and computation power to different agents or
WiFi/LTE settings.
3) QoS and Termination Conditions: While not only pay-

ing attention to the validation accuracy or loss similar to
conventional DL tasks, the proposed AirDAI system focuses
on the output of system QoS, e.g., total energy/time con-
sumed, the number of activated clients per round, the number
of packets lost, etc. Meanwhile, the server monitors the sim-
ulator states for each round and stops the simulation if one or
more user-defined termination conditions are satisfied, e.g.,
validation accuracy reaches 98%; simulation time is more
than 30 minutes; total energy consumed is more significant
than 300 J, etc.

A. AIRDAI PROGRAMMING PROCEDURES
According to the proposed system, a typical AirDAI task
can be generalized into three steps:

• Building the network topology with virtual channels;
• Defining the aggregating and broadcasting functions;
• Partitioning the training dataset and building the DL
model.

We give introductions to all these steps as follows.

1) BUILDING NETWORK TOPOLOGY

We provide a Python-written interface to automatically build
the network topology with a specified data structure as input.
The input is organized by agents with varied attributes. Each
agent is represented by a tree-like data structure with its iden-
tity denoting the tree root. We arrange different layers for
each agent data structure to place the attributes according to
the corresponding characteristics. For instance, we manually
set the attribute “role” in the first layer of each tree with
different string values to distinguish between the clients and
the server. Generally, we arrange the attributes related to the
agent itself in the first layer, such as the battery capacity,
the initial location and mobility speed, the computation and
communication power, etc. We cannot omit the attributes
between a pair of adjacent nodes considering asymmetric
channels between nodes. For those attributes shared among
multiple nodes, such as the virtual channels between pairs
of adjacent nodes, we set the attribute “adj” in the first
layer and the adjacent node identities in the second layer
with the related attributes in the third layer. Therefore, this
definition of data structure is also memory efficient. The
embedded interface will parse the data structure and com-
plete the topology automatically. The underlying codes for
simulating wireless networks are achieved within the system
of ns-3 [37] to take advantage of the existing functions
of network simulators. We present an example of the bi-
directional network topology in Fig. 2 where one server, four
APs, and several mobile clients are communicated through

FIGURE 2. Example of bi-directional network topology with one server, four APs and
several clients communicated through optical fiber, wireless broadcasting and WiFi.

FIGURE 3. Data structures of server 0, AP1 and Client 1-1 for demonstration
purposes.

optical fiber, wireless broadcasting, and WiFi. The corre-
sponding data structures of server 0, AP 1, and Client 1-1
are demonstrated in Fig. 3.

2) DEFINING AGGREGATION AND BROADCASTING
FUNCTIONS

The system provides a programming paradigm to define per-
sonalized aggregating and broadcasting functions. It keeps a
buffer placeholder for each agent to receive or send new data
from/to other agents and a memory placeholder to memo-
rize the buffer during each round. As a result, aggregating
and broadcasting functions may only work within the acti-
vated agents in predefined network topology during each
round to emulate the failure of transmissions in realistic
wireless environments due to certain QoS constraints or
powered off.
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Once an agent receives new data sequentially from the
others, the buffer will record the data and update its value
according to the personalized update function. In addi-
tion, the memory keeps tracking the latest buffer value.
Mathematically, the process can be formulated as follows:{

buffer←− Update(buffer,memory)

memory←− buffer
, (2)

where the function Update(·, ·) represents the user-defined
buffer updating scheme. Taking FedAvg[10] as an example,
Update(·, ·) is the weighted average function of the latest
received data and its memory. The buffer for clients is the
returned data at the end of each round. Then, the buffer
updates itself with the latest received data and the memorized
data from previous rounds.
Meanwhile, the synchronous and asynchronous settings

can also be achieved by determining when the server sends
the updated buffer to its adjacent client nodes. Specifically,
when adopting asynchronous settings, the server immediately
returns the updated buffer to its recently communicating
client. In contrast, with synchronous settings, the server
broadcasts the recently updated buffer only after receiving
data from a required number of clients.

3) PARTITIONING DATASET AND BUILDING DL MODELS

The DAI tasks presume that the training dataset must be par-
titioned into multiple computing clients before training. We
provide a paradigm to define the strategy of dataset partition.
Each simulation process loads the identical raw dataset from
shared memory and splits it according to the predefined par-
tition ratio of each client. Subsequently, each client with a
unique rank will be assigned the corresponding sub-dataset.
If the partition ratio is not specified, the dataset will be, by
default, partitioned into all clients in a uniform and random
manner. After dataset partitioning, the definition of the DAI
model is just the same as the centralized counterparts. The
proposed system provides a Python wrapper function for the
model to automatically aggregate and broadcast required val-
ues during the training process at each round while keeping
users unaware of it unless users would like to customize the
aggregate and broadcast functions. Users can perform the
same for the other training settings as if there were only
one client in centralized tasks.

B. SCALABILITY
The DAI tasks in natural environments usually involve many
computing devices with limited computing power and storage
space, such as intelligent IoT devices and wireless sensors.
We implement two ingenious methods to emulate this char-
acteristic of limited available computing resources, e.g., a
powerful workstation with several computing cores or a small
computing cluster.
First, the proposed system can run on multiple computing

cores through distributed multi-processing interface (MPI)
communication backends [26]. Before initiating simulations,
the system automatically partitions the clients and the server

into different computing cores and gives each core a unique
rank identity. Each core maintains the identical wireless
topology, in which the clients and server partition details are
recorded. To distinguish multiple clients simulated in par-
allel but on different computing cores, we assign a unique
address to each client as (rank_id, node_id), where node_id
is the index of the agent in its corresponding core. During
aggregating and broadcasting in each round, the clients send
and receive data to/from the corresponding computing core
where the server is located through communication back-
ends. Also, the whole communication process is unaware to
users.
Second, within each computing core, we propose and

utilize the scheme called “series-tube”, which provides a
wrapper function and serially executes a list of objects
defined in Python to enhance the capability of the simu-
lator. The wrapper function replicates the original “objects”
into a list according to the number of clients in a single
computing core while maintaining its functions and values
as a series-tube object. By calling the wrapped object, the
simulator serially processes the functions of the replicated
objects and returns the results into a list format. Therefore, it
keeps the whole process user-unaware and makes the codes
scalable with just a few modifications.

IV. WIRELESS ENVIRONMENTAL SETUPS AND
CONVERGENCE ANALYSIS
As we introduced the system in the last section, the suc-
cessful implementation of DAI in realistic transmission
environments depends on the reliability of the wireless chan-
nels over which model parameters are transmitted. It is
undoubtedly that training a model in an unreliable wire-
less environment will degrade the efficiency compared to
that in a fully reliable environment. Therefore, it is worth
investigating and quantifying the impacts of the randomness
of wireless channels on the training procedure of DAI. As
the simulator’s core, we try to keep our design as generic as
possible and expound on the wireless system setups. Then,
based on the given wireless environmental configurations, we
further analyze the convergence of a generic DAI algorithm.

A. EFFECTS OF WIRELESS ENVIRONMENTAL SETUPS
There are two kinds of wireless channels pertaining to the
uplink and downlink. The former refers to the transmission
links from the clients to the DAI server, while the latter refers
to the links from the DAI server to the clients. Because the
global model parameters transmitted from the DAI server
are the same for all clients, we can easily adopt a broad-
cast protocol for the downlink transmission with sufficiently
large transmit power and bandwidth. Therefore, its reliabil-
ity can be guaranteed. On the contrary, a unicast protocol
is adopted for uplink transmissions because all clients are
required to send unique local model parameters. However,
because clients generally have less transmission capability,
uplink transmission reliability is problematic, and uplink
communication efficiency is of paramount importance [10].
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Furthermore, the unstable uplink transmission will result in
a reduced number of clients’ responses within a time win-
dow2 ε, which could lead to inefficient aggregation at the
DAI server and thereby a low training efficiency overall.
Consequently, the wireless communication models of the
uplink require special attention and are worth investigating.
In the following, we analyze how the randomness of wire-
less uplink channels affects the number of clients’ responses
within a predetermined time window.
Temporarily neglecting packet transmission errors,

whether or not a packet from a certain client can be received
is directly related to the random event that whether the
transmission latency of the packet from the nth client,
denoted as Ln, is less than or equal to time window ε,
∀ n ∈ {1, 2, . . . ,N}, where N is the total number of clients.
Referring to the Shannon-Hartley theorem, the transmis-
sion latency Ln is dominated by four factors: 1) bandwidth
Bn; 2) transmit power PTn; 3) packet size Sn; 4) chan-
nel power gain Gn. To be explicit, we can also express
the transmission latency as a function of these four factors:
Ln(Bn,PTn, Sn,Gn).
The first three factors mentioned above are specified by

communication and DAI computing protocols. They are
determinate, while the last factor, i.e., the channel power
gain Gn, is stochastic and randomly varies over time,
frequency, and space. Statistically, channel power gain Gn
is mainly affected by four wireless propagation phenomena:
1) path loss; 2) shadowing; 3) multi-path fading; 4) molec-
ular absorption (applicable to millimeter-wave and terahertz
radios). The joint impacts of these wireless propagation phe-
nomena can be described and simulated by different channel
models, e.q., Rayleigh, Rician, and Nakagami channel mod-
els, as well as a variety of compound channel models
[23], [38]–[41], depending on the use of spectrum, node
mobility, geographical and atmospheric conditions. To main-
tain generality, we do not specify the use of the channel
model in this paper.
Meanwhile, considering that errors in the received packet

might exist, error check and re-transmission are imperative in
most modern communication protocols. Incorporating both
mechanisms, the total transmission time of a client, denoted
as TLn = Ln�n, depends on the transmission latency of
a single transmission attempt Ln and the number of re-
transmissions �n. Note that the number of re-transmissions
�n is also a random variable related to the coding and
modulation setups and characterized by packet error rate
PERn. For simplicity, we can adopt the geometric distribu-
tion with parameter PERn to model the random number of

2. The time window is dynamically managed by pace steering techniques,
depending on the number of clients and service requirements [4], [24]. For
example, when the number of clients is small, the time window ε should
be set to a relatively large value so that a sufficient number of responses
from clients can be collected and aggregated at the DAI server. On the
other hand, when the number of clients goes large, the time window ε

should be reduced to reduce the computing burden at the DAI server. The
time window ε is, in essence, a trade-off factor between computing and
communication efficiencies.

re-transmissions �n. Based on the formulation and expla-
nation presented above, we can simply define the packet
loss rate of the nth client in the physical layer to be
ρn = F̂TLn(ε) = P{TLn > ε} = 1 − FTLn(ε), where FTLn(ε)
and F̂TLn(ε) are the cumulative distribution function (CDF)
and the complementary CDF (CCDF) of the total trans-
mission time TLn(TLn, �n) considering packet errors and
re-transmissions.
We can now characterize the number of clients’ correct

responses Ñ within the preset time window ε. Assuming only
the correct responses received within ε will be recorded at
the DAI server, the number of recorded correct responses
from clients Ñ is a dependent random number on the total
transmission time {TLn}Nn=1. Because the transmissions of
all N clients are mutually independent, the randomness of Ñ
can be characterized by the probability mass function (PMF)
infra:

�Ñ(η) = P

{
Ñ = η

}

=
∑

Ñ (η)⊆N

⎛
⎝ ∏
n∈Ñ (η)

FTLn(ε)

⎞
⎠

⎛
⎝ ∏
n∈N \Ñ (η)

F̂TLn(ε)

⎞
⎠,

(3)

where N is the full set of N clients and Ñ (η) is an arbitrary
subset of η clients that transmit correct responses within the
given time window ε; the summation operation is carried
out over all

(N
η

)
subsets of η clients.

Assuming all clients are homogeneous, which implies
all their channel distribution parameters and other wireless
setups to be identical, we have ρ = ρ1 = ρ2 = · · · = ρN . As
a result, the number of clients’ correct responses Ñ within
the preset time window ε abides the binomial distribution
with N dependent trials and success probability r = 1− ρ.
Therefore, we can reduce (3) to be �Ñ(η) = (N

η

)
rη(1−r)N−η.

When the total number of clients N is large, we can rely on
the law of large numbers and have the following relation:

Ñ ≈ E{Ñ} = Nr. (4)

Based on this simplification, although r is defined as the
probability that a packet can be correctly received within the
time window, it quantitatively equals the ratio of activated
clients for large N. We denote both measures by r herein
for notational simplicity unless otherwise specified.

B. ANALYSIS OF ALGORITHMIC CONVERGENCE OF DAI
In the previous subsection, we qualitatively analyzed that
the time window can influence the ratio of activated agents
and thus yields an effect on the algorithmic convergence of
DAI. In this subsection, we present the quantitative analy-
sis of the convergence rate concerning the ratio of activated
agents. Although the internal processes can be understood
from the abstraction given in (1), it can hardly help for
analytical formulations and derivations. Hence, for facilitat-
ing the following analysis of convergence, we begin with
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re-defining the mathematical problem as follows:

min
w

{
F(w) �

N∑
n=1

pnFn(w)

}
, (5)

where pn is the weight of the client n such that pn ≥ 0 and∑N
n=1 pn = 1. Suppose that the client n holds the sn training

data samples: xn,1, xn,2, . . . , xn,sn ; local objective function
Fn(·) is defined as

Fn(w) � 1

sn

sn∑
j=1

	
(
w; xn,j

)
, (6)

where 	(·; ·) is a user-specified loss function. The problem
aims at minimizing the averaged loss value through min-
imizing the local objective function at each distributed
device. Without losing of generality, we make some common
assumptions for simplifying the analysis:

• Fn is L-smooth function, ∀ n ∈ N ;
• Fn is μ-strong convex function, ∀ n ∈ N ;
• The variance of stochastic gradients in each client is
bounded σ 2;

• The expected squared norm of stochastic gradients is
uniformly bounded by G2.

Interested readers can refer to the Appendix for mathe-
matical implications and the inherent rationality of these
assumptions.
Taking the well-known FedAvg algorithm proposed in [16]

as an example, we describe the process of its τ th round
by utilizing the abstraction given in (1). Firstly, the server
broadcasts the latest model parameters wτ , to all clients, and
hence, the message Kn

τ received at client n is wτ assuming
a perfect downlink channel. Secondly, every client takes the
received wτ as the update at beginning of the local round,
i.e., wn

t = wτ , and performs E(≥ 1) local SGD updates
based on its own dataset:

wn
t+i+1 ←− wn

t+i − ηt+i∇Fn
(
wn
t+i, ξnt+i

)
, (7)

for i = 0, 1, . . . ,E − 1, where ηt+i is the learning rate, and
ξnt+i denotes the samples uniformly chosen from the local
dataset at each SGD updating step. Thirdly, after locally
updating through E steps, every client sends the latest model
parameters to the central server. The message J τ+1

n sent
out from the client n is represented by wn

t+E. Last, the cen-
tral server aggregates the local models received from clients
{J τ+1

1 , . . . ,J τ+1
N } to produce a new global model wτ+1 for

the next round.
Because of the non-iid data distribution and partial-client

participation issue when applying DAI in realistic wireless
environments, the aggregation steps can be various. Ideally, if
the server receives messages from all clients (a.k.a. full-client
participation) before broadcasting, the aggregation could be

wτ+1 ←−
N∑
n=1

pnwn
t+E. (8)

Otherwise, the partial-client participation issue rises, which
can lead to low training efficiency without taking proper
countermeasures. Specifically, the server receives the first K
(1 ≤ K ≤ N) messages and stops to wait for the rest. Let
Sτ (|Sτ | = K) be the set of the indices of the responded
clients in the τ th round. Then, the aggregation with partial
clients’ responses is performed according to

wτ+1 ←− N

K

∑
n∈Sτ

pnwn
t+E. (9)

Comparing (9) with (7), it is evident that the partial-client
participation issue slows down the algorithmic conver-
gence of DAI by reducing the number of aggregated
samples. The convergence rate of the FedAvg algorithm
has been well studied when the required number of
clients is constant in [42]–[44]. Therefore, we focus on
the convergence when the number of required clients is
changeable among communication rounds, which reflects
the realistic scenario in wireless environments, especially
when we set a small time window. Our analysis is based
on the recent research of federated learning on Non-IID
data [44].
Assume that the server receives Ñt (say the t-th com-

munication round) activated clients within the preset time
window, and assume that the total number of communi-
cation rounds is T . Let �t � E‖wt − w
‖2, defined as the
expected distance to the optimum, where wt =∑N

k=1 pkw
k
t is

the weighted average of model parameters among all clients,
and w
 denotes the optimized model parameters.
Lemma 1: Assume that the central server received Ñt

activated clients in the preset time window. Define � =
F∗ −∑N

k=1 pkF
∗
k to quantify the degree of heterogeneity of

non-iid distributions. Letting �t = E‖wt+1−w
‖2, we have

�t+1 ≤ (1− ηtμ)�t + η2
t (B+ Ct), (10)

where B = ∑N
k=1 p

2
kσ

2
k + 6L� + 8(E − 1)2G2, and Ct =

N−Ñt
N−1

4
Ñ
E2G2.

Proof: Please refer the Appendix for details.
Apparently, Ct = 0 if and only if Ñt = N. Because of

this inequality, we are unable to obtain the optimal solution
directly. Alternatively, we can find the bound on the solution
by analyzing its supremum. We use sup(�t) to denote the
supremum of �t for t = 1, 2, . . . ,T , given ηt−1 being the
learning rate at the (t−1)th step. Besides, we let sup sup(�t)

denote the supremum of �t for t = 2, 3, . . . ,T , given �t−1
reaching its supremum sup(�t−1) at the (t− 1)th step with
ηt−2 being the learning rate at (t − 2)th step. With these
denotations, it follows that

⎧⎨
⎩

sup(�t+1) = min
ηt

[
(1− ηtμ)�t + η2

t (B+ Ct)
]

sup sup(�t+1) = min
ηt

[
(1− ηtμ) sup(�t)+ η2

t (B+ Ct)
]
,

(11)
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∀ t = 1, 2, . . . ,T − 1, by which we can determine the
minimum by⎧⎨

⎩
sup(�t+1) = �t − μ2�2

t
4(B+Ct)

sup sup(�t+1) = sup(�t)− μ2 sup(�t)
2

4(B+Ct) .
(12)

For the quadratic function f (x) = x− μ2x2

4(B+C)
, we can obtain

its maximum to be B+C
μ2 when x = 2(B+C)

μ2 and derive f (x1) ≤
f (x2) when x1 ≤ x2 ≤ 2(B+C)

μ2 . As a result, letting x = �t−1,

we know that sup(�t) ≤ B+Ct−1
μ2 . Because of B > Ct, ∀ t =

1, 2, . . . ,T , we can derive the inequality B+Ct−1
μ2 ≤ 2(B+Ct)

μ2 .
Finally, we obtain sup(�t+1) ≤ sup sup(�t+1).

Recursively let

�̃t+1 = min
ηt

[
(1− ηtμ)�̃t + η2

t (B+ Ct)
]
, (13)

for t = 0, 1, . . . ,T − 1, and let �̃0 = �0. Given t′ < t, it
can be found that �̃t is the supremum of �t by setting all
its previous �t′ being the corresponding supremum. With
the analysis above, we know that the supremum converges
fastest when ηt = μ�̃t

2(B+Ct) . With the above analysis, we want
to find the relations between the learning rates of partial
device participation and full device participation conditions.
The result is presented as follows.
Lemma 2: Denote η̄t to be the learning rate at communi-

cation round t to guarantee the algorithm convergence when
full devices are participated. Let rt = Ñt

N be the device par-
ticipation ratio at communication round t. The convergence
of the algorithm when partial devices are participated can
be guaranteed by setting ηt = rtη̄t.
Proof: Hint: By analyzing the relation of learning rates

between Ct = 0 and Ct > 0, we can find an equation to
combine the two conditions. Please refer the Appendix for
details.
Withe the analysis of Lemma 1 and 2, we can begin to

analyze the convergence rate in the wireless environments
as follows.
Theorem 1: Let the assumptions hold and L, μ, σk,G

be defined therein. Choose κ = L
μ
, γ = max{8κ,E} and

the learning rate ηt = 2rt
μ(γ+t) . Then FedAvg algorithm in

wireless environments satisfies

E[F(wT)]− F∗ ≤ 2κ

γ + T
(
B+ D

μ
+ 2L

∥∥w0 − w∗
∥∥2

)
,

where B =∑N
k=1 p

2
kσ

2
k +6L�+8(E−1)2G2, and D = 4E2G2.

Proof: Hint: Assume Ct = 0 and from Lemma 1, find
the bound of �t by induction. Apply the assumptions on F,
find the relations between F(wt) and �t. Combining with
Lemma 2 to find the learning rate in wireless environments.
Please refer the Appendix for details.

V. EXPERIMENTS
In this section, we take the well-known FedAvg algo-
rithm as an example to validate the effectiveness of the

proposed system. In particular, we systematically evalu-
ate the performance of FedAvg with different parameter
settings, which can be roughly split into model-related hyper-
parameters and system-related parameters. The target of a
series of experiments is to study the accuracy, efficiency,
robustness, and fairness of a given algorithm based on our
proposed system. Besides, we also validate the scalability of
the system.

A. EXPERIMENT SETUPS
To demonstrate the generality of our proposed system, we
consider two completely different tasks on the PyTorch plat-
form. The first is a multi-class image classification problem
for digital recognition, and the second is a regression problem
for wireless traffic prediction [45]–[47]. We perform the first
task on the MNIST dataset [48]. This dataset is one of the
most classical ones in the ML/DL realm and has been widely
applied in the literature. We attempt to predict which class
the input image belongs to for the multi-class classifica-
tion problem, and the prediction accuracy is adopted as the
evaluation metric. In the experiment, the model architecture
adopted for this task is described as follows: A CNN with
two 5 × 5 convolution layers (the first layer with 10 chan-
nels and the second layer with 20 channels; each followed
by a 2× 2 max pooling and the rectified linear unit (ReLU)
activation function), a fully connected layer with 50 units
utilizing the ReLU activation function for neural computing,
and a final softmax output layer [16]. The total number of
the applied model parameters equals 1199882. The initial
learning rate is set to unity, with an exponential decay rate
at 0.9 every 5 local training steps.
We perform the second task on the Call Detail Record

(CDR) dataset from ‘Telecom Italy Open Big Data
Challenge’ [49]. The CDR dataset contains three kinds of
wireless traffics from different cells: The number of text
messages, the number of calls, and the number of Internet
data packages. For this problem, we attempt to predict the
future traffic volume of a cell, given the historical traffic
volumes, and the mean square error (MSE) is adopted as
the evaluation metric. In the experiment, the model archi-
tecture adopted includes a stacked long short-term memory
(LSTM) structure with two LSTM layers (each layer with
64 hidden units) and a fully connected layer with a single
output. The total number of the applied model parameters
equals 12961. The initial learning rate is set to be3 0.05,
with an exponential decay rate at 0.9 every 5 local epochs.
We assume that all clients connect to the APs through

wireless links. In the following experiments, if without fur-
ther annotations, we assume all computing clients are located
randomly in several wireless cells. Each cell is simulated
within one CPU core process, while the server is simu-
lated in another independent core process. Within each cell,

3. Note that the models and (hyper-)parameters we adopted here are
relatively straightforward since the design and optimization of network
architecture and (hyper-)parameters are out of the scope of this paper.
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FIGURE 4. Accuracy and time of two real-world ML tasks versus epochs, given different number of WiFi cells and different number of activated clients in each cell.

TABLE 2. Suggested values and explanations of independent channel distribution
and system configuration parameters.

we assume that a limited number of computing clients ran-
domly walk in a squared area and communicate with the
server through an AP node. We further consider the wire-
less channel model for each client to be the constant speed
propagation delay model and logarithmic distance propaga-
tion loss model. We assume that each AP node connects to
the server without losing generality through a virtual point-
to-point link with a limited data rate and delay. For the
sake of simplicity, we assume that all clients in every cell
have the same system configurations and adopt the suggested
channel and system parameters in [50], which are listed in
Table 2.
The computing time is closely related to the CPU

frequency, IO throughputs, memory cache, and the existing
tasks running on the agent’s device and thereby hard to for-
mulate mathematically. To precisely simulate the computing
time of agents, we assume it to be ten times the computing
time on our computational platform, which is a worksta-
tion with two physical CPUs, 20 core processes per CPU,
and 256 GB memory cache. To avoid interference from the
existing tasks running on the workstation, we simultaneously
build the simulations for each experiment to keep the same
operational conditions. These system configurations are fixed
unless otherwise specified.

B. ACCURACY
In this subsection, we present the overall prediction
performance of our simulator. The experiments are conducted
as follows. We set the number of cells (C) to 1, 2, and 8,
respectively. Each cell is simulated in a single CPU core.
The number of activated agents (M) in each cell sets to be
four by default. Besides, we consider the number of active
agents per cell to be 1 and 2 when the number is 8. Thus, we
have five scenarios in total. We assume that each agent has
a sub-dataset with the same size and distribution for each
scenario. Furthermore, we assume that the image classifica-
tion task in different experiments has the same size as the
whole dataset. However, we assume that the sub-dataset size
for the traffic prediction task is constant, implying that the
full dataset size increases with the number of clients. We
also stipulate different learning rates according to Lemma 2
for different activated ratio scenarios. Specifically, we set
the learning rate ratio as the sub-dataset size dividing the
whole dataset size for each client.
We utilize the accuracy and MSE loss on an indepen-

dent test dataset to represent the performance of both image
classification and wireless traffic prediction tasks. We uti-
lize different colors of red, black, and green in the figures
to denote the cases corresponding to the number of cells of
1, 2, and 8, respectively. Besides, we utilize dot-line, dash-
line, and solid-line to represent the cases with the number
of active agents per cell of 1, 2, and 4, respectively. As the
results presented in both sub-figures of Fig. 4, we draw two
sets of lines to represent the performance and time versus
the number of training rounds.
From Fig. 4, it is clear that the scenario with one cell

and four active agents achieves the best performance among
all settings in the image classification task. In contrast, the
experiment with eight cells and four active agents per cell
outperforms the others in the wireless traffic prediction task.
However, for the scenarios with the same number of cells in
both tasks, the more active agents per cell will lead to better
performance. These phenomenons can be applied to explain
both the weakness and strength of the FedAvg algorithm.
When the number of active clients per cell equals four, no
matter how many cells are utilized for training, the whole
training dataset keeps unchanged for the image classification
task. The mathematical theory has proved the convergence of
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FIGURE 5. Test dataset performance of two real-world ML tasks versus energy with four variables: Error rate, active ratio, local epochs, and batch size.

FedAvg. However, it does not perform as well as a central-
ized algorithm in practice. At least, it converges slower than
a centralized algorithm. Nevertheless, the conclusion is the
opposite in the wireless traffic prediction task. The dataset is
not static, and the more cells utilized in the training phase,
the larger the training dataset. A more extensive training
dataset generally yields better prediction performance. The
FedAvg algorithm, as a result of this, works better with
a large number of cells, reflecting the negative influence
caused by increasing the number of cells.
As for the consumed time, the two tasks perform differ-

ently as usual. For the image classification task, the scenarios
with a small number of cells spend a significant amount of
time to finish the same number of rounds. In contrast, the
conclusion is the opposite for the traffic prediction task. The
reason is that the computing phase is dominant compared
to the communication phase in the image classification task.
Therefore, the scenarios with a small number of cells spend
more time on computation than those with more cells. The
computational time consumed in the traffic prediction task
is almost the same for all cells, as they have the same sub-
dataset size for training. Therefore, the scenarios with plenty
of cells need more time for communication than those with
a small number of cells, which causes the opposite results
to the image classification task.

C. EFFICIENCY
In this subsection, we study the factors that affect the effi-
ciency of the FedAvg algorithm in a single cell with four
activated agents and other systematic settings in Table 2 by
default. We define the efficiency of our system as the energy
and time consumed for a task to reach the termination con-
dition. We set the termination condition for our experiments
when the FedAvg algorithm reaches an accuracy or a loss
threshold. The studied variables include the received bytes
error rate (RBER), the agent activated ratio (r), the number
of local training epochs (E), and the training batch size (bs).
Other variables may also affect the efficiency, but we only

study the abovementioned variables due to their dominant
and direct impacts.
In particular, we set the accuracy thresholds for the image

classification task starting from 0.9 and ending at 0.98 with
0.002 as steps and the loss thresholds for the traffic prediction
task starting from 0.3 and ending at 0.245 with −0.001 as
steps. We accumulate each threshold’s consumed energy and
time to draw simulation curves. From previous experience,
the simulation curves would present a ladder shape if the
energy has not changed between two consecutive thresh-
olds. Therefore, we only keep the first result if the energy
value is constant among several successive thresholds. The
performance of energy and time with different settings are
presented in Fig. 5 and Fig. 6. We discuss the simulation
results for two tasks affected by variable settings separately.
The RBERs are chosen from [10−4, 10−5, 10−6, 10−7].

Notice that the server averages and aggregates the received
bytes, whether correct or corrupted. The figures show that
varying RBERs have no significant effects on the test dataset
convergence, as they reach the same maximum accuracy or
minimum MSE loss. While not the same as the conventional
applications, which require the correct received packets or
redundant error correction codes (ECC), AirDAI is inherently
robust against noise and other channel imperfections, leading
to new research on the protocol design of data transmissions.
However, it makes sense and can also be observed that a
significant RBER will considerably increase the energy and
time to reach convergence.
The figures show that a sizeable active ratio performs

better than a small one. The reason is that compared to a
small active ratio, a larger one has more datasets involved
in the training phase, making the test performance reach the
same value while consuming less energy. As for the time
consumed, the conclusion is not so clear. A more extensive
training dataset generally converges faster than a smaller
one. However, a large active ratio may increase the time
for communications, increasing the total time consumed.
Although the figures in our experiments present that a larger
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FIGURE 6. Test dataset performance of two real-world ML tasks versus time with four variables: Error rate, active ratio, local epochs, and batch size.

active ratio consumes less energy and time to reach the same
test performance, we cannot conclude that a sizeable active
ratio will always be helpful.
The number of local epochs refers to the number of

training epochs for each client during the training phase.
A generally accepted common knowledge is that increasing
the number of training epochs will significantly decrease the
communication over computation ratio and require fewer
communication rounds to complete the same number of
epochs. A large number of epochs will lead to faster con-
vergence than a small one. However, the results present
a counter-intuitive conclusion. There might be two rea-
sons for this phenomenon. First, the computation time
takes a significant ratio of a complete round compared to
the communication time. Second, it depends on the algo-
rithm. The local training overfits when the number of local
epochs reaches a threshold. A further step in increasing the
number of epochs will not accelerate the convergence of
corresponding tasks.
The simulation results also show that the batch size only

affects the training phase. The optimal batch size to reduce
energy and time cost for one round depends on the agents’
specific tasks and computation power. As shown in the fig-
ures, in our experiments, 32 is the best choice for the image
classification task among all other options, while 64 is the
best for the traffic prediction task.

D. ROBUSTNESS
Any practically implementable algorithm must be robust to
malicious users in reality [51], [52]. We carry out exper-
iments on the FedAvg algorithm to validate its robustness
to malicious agents based on our system. We assume that
the agents are malicious and spam erroneous data to the
central server. The erroneous data in the following simula-
tions are produced by adding Gaussian noise to the original
data. It is worth noting that the added noise strength must
be less than a threshold. Otherwise, the central server can
easily distinguish the malicious agent by comparing it with

the average value and will reject the malicious data. We
set up the experiments by considering two kinds of noise:
additive and multiplicative. The additive noise is generated
as wnoise:a = w + N (0,NISa), and the multiplicative noise
is generated as wnoise:m = w × (1 +N (0,NISm)), where w
is a model parameter capturing the baseline of the correct
data, and N (0,NIS) is a zero-mean and NISa/m-deviation
Gaussian distributed random variable.
The simulation results regarding the robustness test are

shown in Fig. 7, from which one straightforward obser-
vation is that the same noise will affect different tasks
differently. For instance, the performance has been signifi-
cantly degraded for the classification task when NISa of the
additive noise equals 0.1. In contrast, the traffic prediction
still has a competitive performance with the same additive
noise. We can observe a similar phenomenon when apply-
ing the multiplicative noise. The classification task is more
robust to the multiplicative noise than the prediction task.
Moreover, the slight value noise has an in-distinctive impact
on the accuracy or MSE loss performance. However, it will
consume more energy and time than the benchmark with-
out noise to reach the same performance. In conclusion,
even applying the same FedAvg algorithm under identical
experimental conditions, different tasks with different model
parameters will vary from noise levels.

E. FAIRNESS
Fairness is also an important metric and should be evaluated
when applying an algorithm in multi-agent environments.
Some agents have more raw data than other agents and thus
consume more energy during the local training phase. Such a
situation could cause service imbalance and reduced training
efficiency. We simulate this scenario with different dataset
partitions and focus on the system consumed energy, time,
training performance, and the consumed energy ratio between
two agents when the system reaches the termination condition.
The following experiments consider the configurations with
one WiFi AP and four agents served by the WiFi AP. The
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FIGURE 7. Training performance comparisons among different types of noise on the real-world two ML tasks.

TABLE 3. Energy and time consumed with different dataset partitions.

dataset is partitioned according to the partition ratio at the
beginning of each experiment. We examine the system outputs
when the number of rounds equals 10 for the classification
task and 25 for the traffic prediction task.
The partition values given in the header of Table 3 denote

the sub-dataset size ratio among four agents. The energy and
time denote the total energy and time consumed when reach-
ing the preset termination condition. Also, to significantly
compare the energy and time consumed among different par-
titions, the values are normalized to that of a uniform dataset
partition. The values in the ratio column mean the consumed
energy proportion of the agents with the largest dataset
size and the smallest. From Table 3, we can observe that
the energy consumed and evaluation results with different
partition scenarios stay unchanged within acceptable errors.
Although the impact of unbalanced datasets is insignificant,
we can still tell that the unbalanced dataset partitions will
affect the training performance for the traffic prediction task.
On the other hand, we can observe from Table 3 that the
unbalanced dataset partitions significantly affect the total

time consumed and energy ratio among different agents for
both tasks. Besides comparing the time columns of two
sub-tables, the normalized consumed time for the same par-
tition keeps the same within acceptable errors. However, this
observation is unsuitable for the values in the ratio columns
because the consumed energy ratios between the computation
module and communication module are different for these
two tasks, affecting each agent’s consumed energy while not
involving the total consumed time.

F. SCALABILITY
Although the scalability of our proposed system is unrelated
to the performance of an algorithm, we still would like to
emphasize its importance for users when implemented in
practice. We evaluate the scalability against the wall-clock
(simulation running) time. The results for both image classi-
fication and traffic tasks are presented in Table 4. The cores
and cells in each table header denote the numbers of com-
puting cores and simulated cells utilized in each simulation.
The simulated cells are uniformly distributed in all comput-
ing cores. We present each scenario’s average running time
per round in the first row. We offer the percent of the wall-
clock time of different cores with one core in the second
row. Due to the enormous wall-clock consumption of the
image classification task, we only conduct the experiments
with cells number no greater than 64.
Comparing the results of different cells within the same

number of cores makes it straightforward to observe that
the wall-clock increases almost linearly with the number
of cells. By comparing the results of different cores within
the same number of cells, the wall-clock time decreases as
expected with the increase in cores number. However, it takes
almost the same wall-clock time to simulate one round when
the number of cores equals 16 and 32. It is caused by the
limitations of the multi-processing scheme and our hardware
platform. Compared to the consumed wall-clock time by the
simulator for computing purposes, sharing messages among

VOLUME 3, 2022 1115



MA et al.: PAVING THE WAY FOR DAI OVER THE AIR

TABLE 4. Wall-clock time in seconds consumed per round with different numbers of
cells and cores.

multiple cores takes more time. As a result, increasing the
number of computing cores in this situation will not help
decrease the wall-clock time.

VI. CONCLUSION
In this paper, we virtualized the basics of DAI in wire-
less environments and proposed the AirDAI system, which
can evaluate the training performance metrics and a set of
system-related QoS metrics. In addition, we introduced a
general wireless channel model and analyzed the impacts
of operating DAI under different wireless setups on the
convergence rate. The experimental results revealed how
wireless transmission parameters and system configurations
affect the training efficiency of the DAI algorithms. Based
on the proposed AirDAI system, we designed a Python-
built simulator that works on single and multiple computing
cores and is compatible with existing ML systems. We took
the well-known FedAvg algorithm as an example and con-
ducted extensive experiments with the designed simulator.
The experimental results pertaining to prediction accuracy
and QoS metrics verified the effectiveness and efficiency
of the proposed system and its associated simulator. With
this generic system design and the simulator codes, the
research progress on DAI in wireless communication systems
is expected to be accelerated.

APPENDIX
The Appendix first introduces four general assumptions com-
monly applied in the SGD convergence analysis. Secondly,
we define a new term to distinguish the scenarios of iid and
non-iid dataset distributions. Then, we present the lemmas
that give the limitation of one-step SGD update and the linear
ratio relationship between learning rates. At last, we provide
the proof of convergence based on the above two lemmas.
Assumption 1: F1,F2, . . . ,FN are all L -smooth: for all

v and w, leading to Fk(v) ≤ Fk(w) + (v− w)T∇Fk(w) +
L
2‖v− w‖22.

Assumption 2: F1,F2, . . . ,FN are all μ -strongly con-
vex: for all v and w, leading to Fk(v) ≥ Fk(w) + (v−
w)T∇Fk(w)+ μ

2 ‖v− w‖22.
Assumption 3: Letting ξ kt be randomly sampled from

the kth device’s local data in a uniform manner, the vari-
ance of stochastic gradients in each device is bounded by
E‖∇Fk(wk

t , ξ
k
t )−∇Fk(wk

t )‖2 ≤ σ 2
k , ∀ k = 1, 2, . . . ,N.

Assumption 4: The expected squared norm of stochastic
gradients is uniformly bounded, i.e., E‖∇Fk(wk+, ξ k+)‖2 ≤
G2, ∀ k = 1, 2, . . . ,N and ∀ t = 0, 1, . . . ,T − 1 for k =
1, . . . ,N.

The assumptions mentioned above on functions
F1,F2, . . . ,FN are general and necessary for the con-
vergence analysis; typical examples include the 	2 -norm
regularized linear regression, logistic regression, and
softmax classifier.
To extend the analysis on both the iid and non-iid dataset

partition scenarios, we propose a new term to quantify the
degree of non-iid. The definition is as follows.
Definition 1: Let F∗ and F∗k be the minimum values of F

and Fk, respectively. We use the term � = F∗−∑N
k=1 pkF

∗
k to

quantify the degree of heterogeneity of non-iid distributions.
That is, if the data are iid, then � goes to zero as the
number of samples grows. If the data are non-iid, then �

is nonzero, and its magnitude signifies the heterogeneity of
data distributions.
With the above assumptions and definition, we for-

mally present Lemma 1, which limits the expected distance
between the current value and the optimum with one-step
SGD.
Lemma 3: Assume that the central server received Ñt

activated clients in the preset time window. Letting �t =
E‖wt+1 − w
‖2, we have

�t+1 ≤ (1− ηtμ)�t + η2
t (B+ Ct), (14)

where B = ∑N
k=1 p

2
kσ

2
k + 6L� + 8(E − 1)2G2 and Ct =

N−Ñt
N−1

4
Ñ
E2G2.

Proof: The proof of the presented lemma can be found
in [44].
We present Lemma 2 as follows, in which we aim at

finding the learning rate relations between the full device par-
ticipation setting and the partial device participation setting
caused due to limited time window.
Lemma 4: Denote η̄t to be the learning rate at communi-

cation round t to guarantee the algorithm convergence when
full devices are participated. Let rt = Ñt

N be the device par-
ticipation ratio at communication round t. The convergence
of the algorithm when partial devices are participated can
be guaranteed by setting ηt = rtη̄t.
Proof: Let η̄t = μ�̃t

2B , which implies that Ct = 0 and
the number of clients are all activated, we can obtain the
following relations:

ηt = η̄t
B

B+Ct = η̄t

[
1+ ε

(
N−Kt
Kt

)]−1
, (15)
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where ε = Ct
B × Ñt

N−Ñt is a Ñt-irrelevant constant. For simplic-
ity, ε could be stipulated to be unity, and hence, we obtain
the following relation

ηt = Ñt
N

η̄t = rtη̄t, (16)

which indicates that we can adapt the learning rate linearly
with respect to the number of activated clients.
With the lemmas and assumptions mentioned above, we

are able to give the bound on the convergence of FedAvg
algorithm in wireless environment settings as follows,
Theorem 2: Let the assumptions hold and L, μ, σk,G

be defined therein. Choose κ = L
μ
, γ = max{8κ,E} and

the learning rate ηt = 2rt
μ(γ+t) . Then FedAvg algorithm in

wireless environments satisfies

E[F(wT)]− F∗ ≤ 2κ

γ + T
(
B+ D

μ
+ 2L

∥∥w0 − w∗
∥∥2

)
,

where B =∑N
k=1 p

2
kσ

2
k +6L�+8(E−1)2G2, and D = 4E2G2.

Proof: Our proof starts with the full device participation
condition. Let Ct = 0, from Lemma 3 we obtain as follows,

�t+1 ≤ (1− ηtμ)�t + η2
t B, (17)

For a diminishing step size, ηt = β
t+γ

for some β > 1
μ

and γ > 0 such that η1 ≤ min{ 1
μ
, 1

4L } = 1
4L and ηt ≤ 2ηt+E.

We will prove �t ≤ v
γ+t where v = max{ β2B

βμ−1 , (γ + 1)�1}.
We prove it by induction. Firstly, the definition of v ensures
that it holds for t = 1. Assume the conclusion holds for
some t, it follows that

�t+1 ≤ (1− ηtμ)�t + η2
t B

=
(

1− βμ

t + γ

)
v

t + γ
+ β2B

(t + γ )2

= t + γ − 1

(t + γ )2
v+

[
β2B

(t + γ )2
− βμ− 1

(t + γ )2
v

]

≤ v

t + γ + 1
. (18)

Then by the strong convexity of F(·)

E[F(wt)]− F∗ ≤ L

2
�t ≤ L

2

v

γ + t . (19)

Specifically, if we choose β = 2
μ
, γ = max{8 L

μ
− 1,E}

and denote κ = L
μ
, then ηt = 2

μ
1

γ+t and

E[F(wt)]− F∗ ≤ 2κ

γ + t
(
B

μ
+ 2L�1

)
. (20)

For Ct > 0 (partial participation), from Lemma 2, we
know that the convergence is guaranteed by setting ηt = rtη̄t,
where η̄t is the learning rate in full participation condition.
Therefore, let ηt = 2rt

μ(γ+t) and replace B with B + Ct, we
have

E[F(wt)]− F∗ ≤ 2κ

γ + t
(
B+ Ct

μ
+ 2L�1

)

≤ 2κ

γ + t
(
B+ D

μ
+ 2L�1

)
, (21)

where D = 4E2G2 is the upper bound of Ct.
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