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ABSTRACT The limited transmitter-to-receiver stop-band isolation of the duplexers in long term evolution
(LTE) and 5G/NR frequency division duplex transceivers induces leakage signals from the transmitter(s)
(Tx) into the receiver(s) (Rx). These leakage signals are the root cause of a multitude of self-interference
(SI) problems in the receiver path(s) diminishing a receiver’s sensitivity. Traditionally, these effects are
counteracted by the use of various different SI cancellation (SIC) architectures which typically solely
target one specific problem. In this paper, we propose two novel neural networks based architectures
that can handle a variety of different SI effects without the need for a different architecture for each
effect. We additionally show the suitability of the proposed architecture on SI effects occurring in in-band
full duplex transceivers. Further, we introduce two novel low-cost training algorithms to enable online
adaptation (as opposed to offline training currently proposed in literature). The combination of these two
concepts is shown to not only beat existing algorithms in their cancellation performance, but also to
provide sufficiently low computational complexity allowing on-chip implementations.

INDEX TERMS 4G, machine learning, online learning, self-interference cancellation.

I. INTRODUCTION

MACHINE LEARNING (ML) has experienced
immense growth over the last decade, thanks to

the tremendous boost in computational power available to
the everyday researcher and user. It is commonly thought
of the solution to hard-to-crack problems like automated
image annotation [1] and recognition [2] in computer vision
(CV), natural language processing (NLP) [3] or medical
applications [4]. Neural networks (NNs) have also been
shown to yield excellent performance in the field of system
identification [5]–[7]. Typically, these NNs are smaller (in
terms of layers and neurons) than their counterparts used in

CV or NLP, where complexity is not as much an issue as
training can be done offline in a datacenter. However, this
is not necessarily true for all NN applications, especially
if they shall learn to adapt to certain changes in a system
(online learning) and are meant to be implemented in small
(battery-powered) consumer hardware, e.g., cell phone chips
or Internet of Things (IoT) devices.
In order to still be able to implement NN-based methods

onto small devices, researchers came up with specialized
architectures with reduced complexity for on-chip imple-
mentations [8]–[13]. However, most of these architectures
are meant to be only used during inference (i.e., execution),
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FIGURE 1. Block diagram of an LTE-A CA transceiver.

for an already trained model. Hence, training an NN on the
device itself is still a problem to be solved. Obviously, this
severely limits the applications of such solutions to areas
were the underlying system does not change over time.
An application where NNs have been proven to yield

exceptional performance, but which also requires fast
adaptation as the underlying system changes frequently,
is self-interference cancellation (SIC) in communication
transceivers [5]–[7]. Specifically, modern direct-conversion
long term evolution (LTE) frequency division duplex (FDD)
transceivers experience a multitude of non-ideal effects
which can significantly diminish the receiver’s sensitiv-
ity [14]. This is partly due to the limited duplexer stop-band
attenuation of typically around 50 dB [15], allowing part of
the transmit (Tx) signal to leak into the receive (Rx) path.
If this leakage signal is occurring in combination with other
non-idealities (e.g., nonlinearities) in either the transmitter or
receiver, the resulting self-interference (SI) signal may fall
into the Rx band or baseband (BB) and therefore interfere
with the actual Rx signal.
One example of such an SI effect are so called second-

order intermodulation distortions (IMD2). Those are even
order nonlinearities and fall directly into the Rx BB. The
IMD2 may result from a coupling of the down-conversion
mixer’s radio frequency (RF)- and local oscillator (LO) ports
in combination with the leaked Tx signal. In the worst case,
this interference can be up to around 20 dB stronger than
the desired Rx signal [16].
Further, in the case of LTE-Advanced (LTE-A) FDD

transceivers operating in downlink carrier-aggregation (CA)
with at least two active receive paths (cf. Fig. 1), so-called
Tx harmonics may cause another type of SI under certain
conditions. The power amplifier (PA) of the transmit chain
typically exhibits nonlinear behavior and generates signals
at multiples of the Tx frequency fTx. If one of these com-
ponents overlaps with a receive band fRx, it will directly be
down-converted to the Rx BB, and will interfere with the
BB Rx signal [16].
In the same scenario (LTE-A with downlink CA), mod-

ulated spurs may be caused by a leaked Tx signal in

combination with multiple clock sources and dividers –
needed for all possible CA scenarios – which create var-
ious harmonics in the analog front-end of the transceiver.
This can lead to a downconversion of the distorted Tx leak-
age signal into the baseband of one or more of the receive
paths. This leaked and frequency shifted Tx signal in the
RX paths represents the SI signal.
Lastly, we investigate the case of in-band full duplex SI,

where a misaligned Tx mixer causes I/Q-imbalance and a
non-ideal PA introduces further nonlinearities. The resulting
Tx signal then travels via the leakage channel toward the
Rx path where it can significantly diminish the Rx signal’s
quality and therefore limit throughput.
Contribution: In this work we propose two novel archi-

tectures for deploying NNs in an online learning manner for
system identification in mobile transceivers for the purpose
of SIC. Further, we introduce two adaptations to well-known
training algorithms to make them either more robust/stable
or less computationally intensive in order to ease the imple-
mentation burden. We additionally show that one and the
same architecture (including hyperparameters) can be used
to combat a multitude of SI effects in both, FDD and in-band
full duplex transceivers, which – to the best of our knowl-
edge – has not been shown in prior works. This eliminates
the need to implement various SIC algorithms to mitigate
different SI effects.
This paper is organized as follows, in Section II the actual

self-interference problems are introduced before Section III
reviews the current state-of-the-art in terms of SIC archi-
tectures and NN hardware implementations. Afterwards,
Section IV discusses the proposed SIC architectures before
the actual online learning algorithms are derived in Section V.
Section VI takes a look at the complexity of all consid-
ered architectures, and simulation results are presented in
Section VII. Finally, Section VIII concludes the paper.

II. PROBLEM STATEMENT
In the following, the three considered SI problems occurring
in modern FDD transceivers as well as an SI type occurring
in in-band full duplex transceivers are explained in greater
detail.

A. MODULATED SPURS
The leaked Tx signal can be described by

yTx,LRF (t) = APA �
{(
xTxBB(t) ∗ hTx,LBB (t)

)
ej2π fTxt

}
, (1)

where APA represents the amplification factor of the PA,
neglecting nonlinear effects, xTxBB is the complex valued BB
Tx signal, hTx,LBB (t) denotes the impulse response of the Tx-Rx
leakage channel, and fTx is the Tx carrier frequency [17].
Therefore, the total received signal, after the low noise

amplifier (LNA) is given by

yTotRF (t) = ALNA
[
yTx,LRF (t) + yRxRF(t) + ηRF(t)

]
, (2)
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and consists of three components, the leaked Tx signal cen-
tered at fTx, the wanted Rx signal yRxRF(t) centered at fRx, and
the thermal noise ηRF(t). We assume an ideal LNA model
with amplification ALNA.
The mixer downconverts the wanted Rx signal to the base-

band. If a spur frequency fsp lies close to fTx, also the
leaked Tx signal will be downconverted to the Rx baseband.
After the mixing stage but in front of the analog-to-digital
converter (ADC), the baseband Rx signal can therefore be
formulated as [17]

yTotRF (t) = ALNAAsp y
Tx,L
RF (t) e−j2π fspt

+ ALNA
[(
yRxRF(t) + ηRF(t)

)
e−j2π fRxt

]
, (3)

where Asp denotes the gain of the spur. Combining (1) and (3)
and defining �f = fTx− fsp allows to represent the baseband
Rx signal after the ADC and channel select filter (CSF),
while neglecting the frequency content attenuated by the
anti-aliasing filter, as [17]

yTotBB[n] =
(
ATot

(
xTxBB[n] ∗ hTx,LBB [n]

)
e
j2π�fn
fs

)
∗ h̄s[n]

+ ALNA
(
yRxBB[n] + ηBB[n]

) ∗ h̄s[n]. (4)

Here fs is the sampling frequency of the system, ATot =
APAALNAAsp and h̄s[n] = hCSF[n] ∗ hDC[n] denotes the com-
bined channel-select and DC filter. The first term in (4)
represents the unwanted Tx modulated spur yMS

BB [n] in the
Rx BB [17].

B. TX HARMONICS
The up-converted Tx signal can be described by

xTxRF(t) = �
{
xTxBB(t) ej2π fTxt

}
, (5)

where xTxBB is the complex valued BB Tx signal, fTx is the
Tx carrier frequency and �{·} denotes the real operator.
This signal is amplified by the PA, which is assumed to
experience non-ideal behavior, e.g., due to the saturation of
the PA output at high input amplitudes. In the case of second
order Tx harmonics, this can be described as

xTx,H2RF (t) = APA �
{
xTxBB(t) ej2π fTxt

}

+ β2A
2
PA �

{
xTxBB(t) ej2π fTxt

}2
, (6)

where APA represents the amplification factor of the PA and
β2 is a PA specific amplification factor for the second har-
monic. If the transceiver is working in downlink CA, the
second part of (6) can directly fall into one of the receive
bands and therefore cause the leakage signal

yTx,LRF (t) = β2A
2
PA �

{(
xTxBB(t) ej2π fTxt

)2 ∗ hTx,LRF (t)

}
, (7)

to interfere with the actual Rx signal , with hTx,LRF = hBB,LRF ·
exp(j2π fTxt). Therefore, the total received signal, after the
LNA is given by

yTotRF,LNA(t) = ALNA
[
yTx,LRF (t) + yRxRF(t) + ηRF(t)

]
, (8)

and consists of three components, the leaked Tx signal com-
ponent centered at 2fTx, the wanted Rx signal yRxRF(t) centered
at fRx,1, and the thermal noise ηRF(t). We assume an ideal
LNA model with amplification ALNA.
The mixer down-converts the wanted Rx signal to the

BB. If, for example, fRx,1 = 2fTx, also the leaked Tx signal
component will be down-converted to the Rx BB. After the
mixing stage but in front of the ADC, the BB Rx signal can
therefore be formulated as

yTotRF,LNA(t) = ALNA y
Tx,L
RF (t) e−j2π fRx,1t

+ ALNA
[(
yRxRF(t) + ηRF(t)

)
e−j2π fRx,1t

]
. (9)

Combining (7) and (9) allows to represent the BB Rx sig-
nal after the ADC and CSF, while neglecting the frequency
content attenuated by the anti-aliasing filter, as

yTotBB[n] = ATot
(
xTxBB[n]

)2 ∗ hTx,LBB [n] ∗ h̄s[n]

+ ALNA
(
yRxBB[n] + ηBB[n]

) ∗ h̄s[n]. (10)

Here, ATot = APAALNA and h̄s[n] = hCSF[n]∗hDC[n] denotes
the combined channel-select and DC filter. The first term
in (10) represents the unwanted second order Tx harmonics
yH2BB[n] in the Rx BB.

C. IMD2
The derivation of the IMD2 interference follows the same
pattern as the previous model. However, an ideal PA model
is assumed. In addition to the regular down-conversion, the
mixer may generate IMD2 which can be represented by
squaring the input signal (assuming a polynomial nonlin-
earity of order 2). With the mixer’s RF-to-LO coupling
coefficient α2 = αI

2 + jαQ
2 , the down-converted signal

including IMD2 can be expressed as [16]

yTotRF,Mix(t) = α1y
Tot
RF,LNA(t) e−j2π fRxt

+ yTotRF,LNA(t)
(
α2 y

Tot
RF,LNA(t)

)
. (11)

Using �{νejκ } = 1
2 (νejκ + ν∗e−jκ ) and neglecting the

frequency content attenuated by the anti-aliasing filter of the
ADC, the total received BB signal after the ADC becomes

yTotBB,ADC[n] = α1
ALNA

2

(
yRxBB[n] + ηBB[n]

)

+ α2A2
LNA

2

(∣∣∣APAxTxBB[n] ∗ hTx,LBB [n]
∣∣∣
2 + ∣∣yRxBB[n]

∣∣2

+ 2�{
yRxBB[n]η∗

BB[n]
} + |ηBB[n]|2

)
. (12)

Assuming |α2| � 1 and a weak received signal, the fourth,
fifth and sixth terms can be neglected compared to the down-
converted noise signal [16], [18]. After channel-select- and
DC-filtering, the received BB signal including the IMD2
interference is given by

yTotBB[n] = α1
ALNA

2

(
yRxBB[n] + ηBB[n]

) ∗ h̄s[n]

+ α2

2

∣∣∣ALNAAPAxTxBB[n] ∗ hTx,LBB [n]
∣∣∣
2 ∗ h̄s[n]. (13)
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FIGURE 2. Simplified block diagram of an in-band full duplex transceiver [7].

The IMD2 interference, which is represented by the second
term in (13), is mainly characterized by the squared envelope
of the leaked Tx signal. It can also be expressed as [16]

yIMD2
BB [n] = yIMD2,I

BB [n] + j yIMD2,Q
BB [n]

= ξ
∣∣xTxBB[n] ∗ h[n]

∣∣2 ∗ h̄s[n] , (14)

with h[n] =
√

αI
2/2ALNAAPAh

Tx,L
BB [n] and ξ = 1 + jαQ

2 /αI
2.

D. IN-BAND FULL DUPLEX SI
As a relevant SI problem for an in-band full duplex
transceiver, we chose the case of I/Q imbalance coupled with
a non-ideal PA, as has been presented in [7], [19], [20], and
is repeated here for clarity. A simplified block diagram of a
full duplex transceiver with shared LO is shown in Fig. 2.
As with the previous cases, xTxBB represents the complex-

valued Tx samples in the BB, in front of the digital-to-
analog converter (DAC). After digital-to-analog conversion,
the Tx signal is up-converted by the IQ-mixer, the digital BB
equivalent signal, after I/Q imbalance has been introduced
by the mixer, can be represented as [19]

xTxIQ(t) = K1x
Tx
BB(t) + K2

(
xTxBB(t)

)∗
, (15)

with K1,K2 ∈ C and, usually, K1 � K2. This signal now
serves as an input to the non-ideal PA, which introduces non-
linearities that can be modelled using a parallel Hammerstein
model [7], [19]

xTxPA(t) =
P∑
p=1
p odd

hPA,p(t) ∗
(
xTxIQ(t)

∣∣∣xTxIQ(t)
∣∣∣
p−1

)
, (16)

where the memory length of the PA is given by M, and
hPA,p denotes the pth order nonlinearities impulse response.
Further, assuming an ideal LNA, down-conversion mixer and
ADC, the leaked Tx signal in the Rx digital BB can be
modelled as [7], [19]

yTx,LBB [n] =
L−1∑
l=0

hTx,LBB [l]xTxPA[n− l] , (17)

with hTx,LBB denoting the SI channel impulse response with
a memory length of L. Therefore, the overall signal model
can be expressed as [7], [19], [20]

yTx,LBB [n] =
P∑
p=1
p odd

p∑
q=0

M+L−1∑
m=0

hp,q[m]
(
xTxBB[n− m]

)q

((
xTxBB[n− m]

)p−q)∗
, (18)

where hp,q models the channel combining K1,K2, hPA,p

and hTx,LBB .

III. STATE-OF-THE-ART
In this section we firstly review current state-of-the-art
(SOTA) SIC architectures before discussing the advantages
and drawbacks of ML powered SIC.

A. SELF-INTERFERENCE CANCELLATION
With regard to the considered problem of SIC, current solu-
tions include traditional as well as machine learning based
architectures. The former usually rely on some sort of (most
often adaptive) filter and/or additional analog hardware in
order to provide a proper estimate of the SI signal. The
latter usually makes use of NNs, kernel based methods or,
highly specialized architectures acquired via deep-unfolding.
This section serves as a review of all these architectures and
highlights advantages as well as drawbacks of the respective
solutions.

1) TRADITIONAL SIC

As mentioned in the introduction, traditional SIC – in the
context of this paper – refers to methods that make use of
modeling the interference signal appropriately and then try
to build an (adaptive) filter that is able to estimate this model
with sufficient accuracy. Typically, these architectures consist
either of only digital processing in the BB (fully-digital) or
make use of an additional auxiliary (aux) analog receive path
(mixed-signal/hybrid).
Fully-digital solutions include adaptive filter based archi-

tectures [21]–[27] as well as least-squares based system
models [18], [28], [29]. Generally speaking, adaptive fil-
ter based solutions tend to be less computationally complex
(with the exception of recursive least squares (RLS) filters)
than least-squares based ones. Nevertheless, all architectures
provide sufficient cancellation performance and good to ade-
quate convergence behavior (in case of adaptive filters being
used).
Mixed-signal and hybrid architectures [17], [30]–[35]

yield excellent convergence performance and good to excel-
lent cancellation performance. The downside of this type of
solutions is, of course, the need for additional analog hard-
ware, adding to the chip space, power and tuning needed for
proper operation.
While all of these methods work very well for SIC, their

main drawback is that different solutions are needed for dif-
ferent SI effects (e.g., IMD2, Tx harmonics, modulated spurs,
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etc.). As the number of SI effects increases with the race
to more throughput and more complex transceiver architec-
tures, one can imagine that quite a bit of chip area is needed
to deploy solutions for all possible SI effects.

2) ML-BASED SIC

In order to ease the burden to have different SIC architectures
for different SI effects, researchers tried to find the one-
for-all solution in machine learning, especially NNs. These
have been shown to yield better performance or even to
surpass traditional estimators for various SI effects [5]–[9],
[36], [37]. More complex ML models like kernel powered
estimators have been proven to result in proper SIC for
multiple different SI signals [38]–[42], at the cost of adding
tremendous complexity to the solution.
With that in mind, it seems that NNs seem to be promis-

ing candidates for SIC (and system identification in general)
with minimal complexity compared to other ML methods.
The big, so far unsolved, problem for these kind of estimators
is, however, how to adapt the weights and biases in a way that
does not require a huge amount of computational power on
the device itself. Previous work [5]–[7], [36] usually makes
use of Adam [43] or AdaDelta [44] for training the NN
on a given system. The problem with these algorithms is,
though, that they require significantly more operations (addi-
tions, divisions, multiplications) per processed sample than
simpler algorithms like vanilla stochastic gradient descent
(SGD), hence they are unsuitable candidates for a real-life
implementation. Of course standard SGD could be used, but
– as will be seen in the simulation section of this work – the
performance heavily fluctuates with the underlying system
parameters and generally results in worse performance than
other algorithms. All of this combined makes current NN
based solutions rather poor choices for practical implemen-
tations as the estimator needs to be able to track changes in
the system.
One way to enable the NN-based estimator to track

changes in the system, is to decouple the (usually less time-
invariant) nonlinear and linear parts of the underlying model
and only use a least mean squares (LMS) filter for the lin-
ear part, while the nonlinear one is still modeled by an
NN [5], [45]. This generally minimizes the size of the NN
and therefore the update complexity, significantly undercut-
ting the update complexity of using one NN for the whole
system [5]. However, this approach – obviously – requires
more in-depth knowledge of the system and is therefore not
as flexible.

B. NN HARDWARE
Researchers came up with a variety of hardware (HW) imple-
mentations of neural networks, even though they are mostly
focused on inference and not on adapting the weights and
biases of the NN itself. In [8], [9], [37] the authors show
that their NN model can surpass traditional estimators in
both, cancellation performance and throughput, however, the
presented architecture might experience performance issues

if the NN is chosen bigger than just one hidden- and out-
put layer. Other proposals include quantizing the weights
of the NN to powers of two [10] (and therefore avoiding
multipliers in hardware), compression [11] or other meth-
ods and/or specialized hardware [11]–[13]. However, while
all of these works describe inference of the NN, none of
them solves the issue of having to train the NN on the field
programmable gate array (FPGA) or the application-specific
integrated circuit (ASIC) itself. This therefore remains an
open research topic. As already mentioned, this is largely due
to the increased computational complexity required for train-
ing with state-of-the-art algorithms compared to inference,
which is relatively cheap to compute in comparison.

IV. PROPOSED ARCHITECTURES
Similar to past publications [5]–[7], we propose the usage
of a real-valued NN as the main estimator of the SI sig-
nal. However, the architecture is extended by one (or two,
in the case of the second architecture) building block(s)
which are updating the parameters of the NN in order to be
able to adapt to the ever-changing system in terms of both,
parameters and SI effects.

A. ARCHITECTURE I
The first architecture proposal can be seen in Fig. 3, where
the Tx samples are collected in a tapped delay line (TDL)
to obtain the vector

xTDL[n] =

⎡
⎢⎢⎢⎣

x[n]
x[n− 1]

...

x[n− P]

⎤
⎥⎥⎥⎦ , (19)

with P being the length of the TDL. The output is then
converted from complex to real valued signals via stacking
the real and imaginary parts, i.e.,

xNN, in[n] =
[�{xTDL[n]}
�{xTDL[n]}

]
, (20)

where �{·} denotes the imaginary operator. This signal then
serves as input to the NN which estimates the interference
effect. Afterwards, the output of the NN is scaled and again
put together to a complex scalar. The whole process can be
summarized as

ŷACBB[n] = γnorm
[
1, j

]
fNN

(
xNN, in[n]

)
(21)

= γnorm
[
1, j

]
ŷ[n] , (22)

where γnorm is the de-normalization constant and
fNN(·) : RM → R

2 denotes the operations of the NN.
The resulting estimate ŷACBB[n] is then subtracted from the

total Rx signal which serves as input to the adaptive algo-
rithm. The NN parameters are tuned into the direction of
the negative gradient of the cost function, i.e.,

θθθ i[n+ 1] = θθθ i[n] − μ
∂J

(
y[n], ŷ[n]

)

∂θθθ i[n]
, (23)
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FIGURE 3. Block diagram of an LTE-A CA transceiver with NN based interference mitigation. The dashed lines indicate additional components for architecture II.

where θθθ i denotes the parameters of the NN,1 the vector
y contains the (complexified) Rx signal, ŷ represents the
estimated SI signal, μ is the learning rate (LR), and J(·) is the
cost function which is usually the mean squared error (MSE)
in the context of this paper (but can of course be replaced
with whatever function works best for a given problem). The
MSE is defined as

J
(
y[n], ŷ[n]

) = 1

N

N−1∑
k=0

(
yk[n] − ŷk[n]

)2
, (24)

with the subscript k denoting the kth element of the corre-
sponding vector and N being the number of outputs of the
NN (which equals to two in the context of this paper).

B. ARCHITECTURE II
As will be seen later, simply using an NN within archi-
tecture I works perfectly fine, but the performance directly
depends on the chosen LR. Further, different problems and
situations require different LR values to reach their full
potential. The second architecture (cf. Fig. 3 including the
dashed lines) operates similar to the first one, with the
exception of an additional adaptive filter that controls the
parameters (mainly the step-size) in (23). Therefore, this
addition ensures that the resulting LR of the algorithm adapt-
ing the NN is as close as possible to the ideal step-size. Of
course this additional block requires an LR of its own, how-
ever, it has been shown [46] that this type of architecture
is less sensitive to choosing the perfect LR compared to the
first architecture. Further, it is possible to stack multiples
of these adaptation blocks to end up with more and more
tuned LRs. This further eases the need to find the one LR
for which the architecture yields the best result possible.
Additionally, this method allows to easily adapt multiple

parameters of the first update algorithm on a per parameter

1. E.g., for a 2-layered fully connected NN with no activation functions
(calculating ŷ = W2(W1x + b1) + b2), the optimization (23) would be
called four times with i ∈ {1, . . . , 4}, θθθ1 = W1, θθθ2 = b1, θθθ3 = W2 and
θθθ4 = b2.

basis. That is, every parameter θθθ i of the NN has its own,
unique LR μi, i.e.,

θθθ i[n+ 1] = θθθ i[n] − μi[n]
∂J

(
y[n], ŷ[n]

)

∂θθθ i[n]
. (25)

This is achieved by adapting μi[n] according to [46]

μi[n+ 1] = μi[n] − κi
∂J

(
y[n], ŷ[n]

)

∂μi[n]
. (26)

As will be seen, this further improves performance as
the influence of individual parameters on the overall
performance is considered in the tuning of the LRs.

V. PROPOSED ALGORITHMS
To achieve low-cost and robust online adaptation of the
proposed architectures, current state-of-the-art algorithms
need to either be extended (in the case of SGD) or simplified
(in the case of RMSProp) to allow reasonable complexity
while still delivering the required performance. We there-
fore introduce two novel extensions/modifications to these
algorithms in this section.

A. NORMALIZED SGD
The first obvious choice for anyone attempting to imple-
ment a low-complexity online learning NN is SGD, as it
is the most simple of all available gradient-based training
algorithms. However, it is well known, that its performance
heavily depends on the chosen step-size and initialization of
the network (as will be shown in the simulation section). To
counteract such behavior, traditional methods like the LMS
adaptive filter make use of a normalization of the update
equation. However, applying the same to NNs can be tricky,
if possible at all. Therefore, we propose three ways to nor-
malize the SGD (NSGD) algorithm at minimal additional
cost.
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1) ALGORITHM OVERVIEW

A standard SGD update for the parameter θθθ i is given by

θθθ i[n+ 1] = θθθ i[n] − μ
∂J

(
y[n], ŷ[n]

)

∂θθθ i[n]
(27)

= θθθ i[n] − μ∇θθθ i J
(
y[n], ŷ[n]

)
. (28)

That is, the parameter θθθ i is updated towards the negative
direction of the gradient of the cost function w.r.t. the param-
eter. This formulation coincides with the standard update
equation of the LMS adaptive filter, where it is commonly
known that its normalized variant yields better results and
more stable behavior [47].
Therefore, we attempt to follow the same principle as for

the LMS in order to normalize the update equations of any
given NN. One way is to approximate the first order Taylor
series of the error [48]–[50]

e[n+ 1] ≈ e[n] + ∂e
∂θθθ i

∣∣∣∣
θθθ i=θθθ i[n−1]

(θθθ i[n] − θθθ i[n− 1]) , (29)

with the error e[n] = y[n] − ŷ[n]. Doing so commonly
results in

e[n+ 1] ≈ e[n] − 2μe[n]
∥∥∇θθθ ie[n]

∥∥2
2. (30)

Isolating the error, enforcing that e[n+1] < e[n] and solving
for the LR results in the update equation

θθθ i[n+ 1] = θθθ i[n] − μ̄∇θθθ i J
(
y[n], ŷ[n]

)

ε + ∥∥∇θθθ ie[n]
∥∥2

2

(31)

0 ≤ μ̄ < 1 , (32)

where the parameter ε is a small positive constant in case
the normalization of the error is close to (or is) zero. This
concept works nicely if the parameter θθθ i is a scalar or vector,
as all derivatives are defined. In this case, a similar result
to [48]–[50] is achieved for the normalized LR.2 If θθθ i is a
matrix, however, the derivative of the error vector w.r.t. the
matrix θθθ i is not defined, and this approach cannot be used
like described above. Similarly, the approaches presented
in [48], [49] also break down if the parameter θθθ i has more
than one dimension. In this case, other methods need to be
applied in order to get the desired result. One way to do
this (if the NN structure permits it) is to vectorize the matrix
θθθ i (and change the equations accordingly). E.g., for a fully
connected layer (without activation function), an estimate
can be defined by

ŷ = Wx + b (33)

= X̃w̃ + b , (34)

with the parameters W and b being the parameters of the NN
we would like to update. Obviously the formulation in (33)
would not allow to compute (29) asW is a matrix. Therefore,

2. See, e.g., [49, eq. (20)], [48, eq. (14)] or [50, eqs. (21) and (26)].

the alternative formulation (34) can be used where the vector
w̃ and matrix X̃ are defined as

w̃ =

⎡
⎢⎢⎢⎣

w1
w2
...

wN

⎤
⎥⎥⎥⎦ (35)

X̃ = [INx1, INx2, . . . , INxN] , (36)

with wk and xk being the kth column vector of the matrix
W and the kth element of the vector x, respectively, and IN
denotes the identity matrix of size N.
Of course the application of this trick is not always pos-

sible, e.g., for the kernel K of a convolutional layer or when
using some framework’s autograd3 function. In this case one
can apply another method called joint normalization [50],
[51]. This method derives separate bounds for each ele-
ment of the error vector (or separate bounds for its real and
imaginary part), i.e.,

ek[n+ 1] ≈ ek[n] + ∂ek
∂θθθ i

∣∣∣∣
θθθ i=θθθ i[n−1]

(θθθ i[n] − θθθ i[n− 1]), (37)

such that the error is always a scalar, and also the derivative
of it w.r.t. to a matrix is defined. In this case, the update
equation becomes

θθθ i[n+ 1] = θθθ i[n] − μ̄∇θθθ i J
(
y[n], ŷ[n]

)

ε + ∑
i
∑

k

∥∥∇θθθ i ek[n]
∥∥2

2

. (38)

2) ALTERNATIVE FORMULATIONS

Alternatively to the formulation in (38), one can also use the
maximal normalization term across all parameters θθθ i and all
errors ek, as this serves as a less pessimistic upper bound

θθθ i[n+ 1] = θθθ i[n] − μ̄∇θθθ i J
(
y[n], ŷ[n]

)

ε + max
i,k

{∥∥∇θθθ i ek[n]
∥∥2

2

} . (39)

Another way to formulate the normalization is to just take
the sum over all errors ek separately for each parameter θθθ i,
resulting in

θθθ i[n+ 1] = θθθ i[n] − μ̄∇θθθ i J
(
y[n], ŷ[n]

)

ε + ∑
k

∥∥∇θθθ i ek[n]
∥∥2

2

. (40)

This last formulation, however, has proven to be quite LR
sensitive (i.e., the NN can become unstable if the LR has
been chosen just a little bit too high).

B. RMSPROPMAX

As SGD and other variants of this algorithm (e.g.,
AdaGrad [52]) all have their drawbacks despite, or because,
being so simple in a computational sense, the authors of [53]
came up with RMSProp, which aims to normalize the update
equation on a per-entry basis, i.e., each and every entry of
the parameter θθθ i has an individual normalization term in its

3. i.e., automatic generation of the gradient by some framework.
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update equation. Standard RMSProp updates the parameters
according to

E
[
g2
i

]
n

= αE
[
g2
i

]
n−1

+ (1 − α)
(∇θθθ i J

)2 (41)

θθθ i = θθθ i − μ√
ε + E

[
g2
i

]
n

∇θθθ i J , (42)

where E[ · ] denotes the expectation, gi = ∇θθθ i J and α is
the forgetting factor. Note that all operations (especially the
squaring and the division of μ) are element-wise, meaning
that each and every element of the gradient (and θθθ i) requires
at least one such operation. Naturally, this can quickly sky-
rocket the required number of operations if the NN becomes
big enough (see Section VI for details). As it turns out,
this approach yields better results than its (less complex)
predecessors, at the cost of a complexity explosion.
Since RMSProp tends to be the least computationally

intensive one after SGD while still working quite well in
practice, it was the next obvious choice for the problem at
hand. In order to ease the computational burden, we propose
a slight change to the update equation in order to bring down
the number of operations needed to update the parameters
each time-step.

1) ALGORITHM OVERVIEW

We propose a simple change to (41) which reduces the num-
ber of divisions to an absolute minimum. Similar to the
idea of joint normalization, we only take the maximum ele-
ment of the squared gradient and only consider this for the
expectation calculation

E
[
g2
i

]
n

= αE
[
g2
i

]
n−1

+ (1 − α)max
{(∇θθθ i J

)2
}
. (43)

This approach implies that if the algorithm converges for ele-
ments of E[g2

i ]n in (41) being smaller than the value obtained
via (43), it will also has to converge if just the maximum
element of E[g2

i ]n is taken to normalize the LR. Obviously,
this could affect convergence speed compared to the vanilla
implementation as the estimate of the squared gradient used
to normalize the LR is always the highest possible value.
Therefore, the LR is decreased (or increased if E[g2

i ]n < 1) in
a pessimistic way. This guarantees that the algorithm always
converges if the original implementation would converge.
By doing so, E[g2

i ]n reduces from a vector or matrix to a
scalar. The update (42) remains unchanged. Note, however,
that the division now only needs to be carried out once per
parameter θθθ i instead of for each element. Another important
observation is, that this change to the algorithm introduces
absolutely no additional operations compared to the original
one, unlike the normalization presented in the previous sec-
tion. The gradient needs to be calculated anyway in order to
do some form of gradient descent, and tracking some part
of it is also done either way by the original RMSProp.

2) ALTERNATIVE FORMULATIONS

A less pessimistic formulation of the simplification intro-
duced in the previous section is to leave (41) unchanged

FIGURE 4. The neural network used for SI cancellation, with one input layer (green),
two hidden layers (red) and one output layer (blue).

and to update (42) to

θθθ i = θθθ i − μ√
ε + max

{
E
[
g2
i

]
n

}∇θθθ i J. (44)

Doing so allows to track the importance of individual ele-
ment’s contribution to the gradient rather than tracking the
overall maximum value of all elements of the gradient. This
can then result in a lower overall maximum value than
when tracking just the overall maximum, therefore possi-
bly increasing the step-size (denominator is smaller) and
increasing convergence speed.
If the NN, and therefore the parameters, are complex val-

ued, this proposed approach clearly does not work as the
max{·} operation is not defined in the complex domain. In
this case one can adapt either of the two proposed approaches
to read as

E
[
g2
i

]
n

= αE
[
g2
i

]
n−1

+ (1 − α)max

{∣∣∣(∇θθθ i J
)2

∣∣∣
2
}

(45)

θθθ i = θθθ i − μ√
ε + max

{∣∣E[
g2
i

]
n

∣∣2
}∇θθθ i J , (46)

where | · |2 = �{·}2 + �{·}2 is the element-wise squared
absolute operation. Note that taking only one of the two
equations is sufficient, the other one remains unchanged as
in (41) and (42). In this case, the complexity clearly increases
compared to the real-valued case, however, the number of
divisions is still kept at a minimum.

VI. COMPLEXITY
Before evaluating all approaches for their suitability for
SIC, this section derives the computational complexity of
the proposed architecture, NSGD and RMSPropMax. This
is firstly done in a general sense before the specific num-
bers used in the simulations are evaluated to get a more
precise picture on how complex the proposed architectures
are compared to current state-of-the-art approaches.

A. NEURAL NETWORK GENERAL
As this work only considers feed-forward (or dense) lay-
ers/NNs with the general architecture shown in Fig. 4, we
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are only interested in the complexity of such an architecture
as well. Of course the investigation can be expanded trivially
to more complex layers like convolutional or LSTM [54],
which are commonly found in CV and NLP tasks. As stated
in Section V-A, a simple dense layer calculates

ŷ = fact(Wx + b) , (47)

with W ∈ R
N×M , b ∈ R

N and fact : R
N → R

N being the
weight, bias and activation function of the layer. The output
can serve as the input for another layer, such that multiple
layers can be followed one after another forming an NN. The
activation function can take a wide variety of forms. For the
sake of simplicity (and because that is the activation function
used in the simulations in this work) we only consider the
ReLU4 in this derivation. Due to its simplicity it is widely
used in practice and can be considered to result in no extra
operations necessary to compute it (as it can be realized with
a simple multiplexer in hardware). Therefore, the required
number of operations for a single estimated signal are

nmult,fp = NM (48)

nadd,fp = NM , (49)

for the multiplications and additions, respectively, per layer
of the NN. Therefore, the total number of operations required
for both, additions and multiplications in the forward path, is

n =
∑
i

NiNi+1 , (50)

with N0 = M and i = 0 . . . L−1, where L is the total number
of layers.

B. NEURAL NETWORK PARAMETER UPDATE
In addition to this, the gradient of the cost function w.r.t.
the input needs to be calculated at every time-step. Unlike
the forward pass, this not only depends on the chosen NN
architecture, but also on the cost function and is usually
done using the chain rule (i.e., back propagation) to re-
use as many computations as possible for each parameter.
Note that this calculation needs to be done regardless of
which optimization algorithm is used and therefore is the
bare-minimum required if online learning is desired (i.e.,
for standard SGD). In case of a fully-connected NN with
only ReLU as activation function, many operations from
the forward path can be saved (as they appear the same
in the gradient). The additional number of operations for
calculating the gradients is

nmult,bp =
L−1∑
i=1

NLNi +
L−1∑
i=0

Ni + Ni+1 (51)

nadd,bp =
L−1∑
i=1

Ni. (52)

4. Calculating fact(x) = max{0, x}.

TABLE 1. Complexity in terms of multiplications, additions and divisions of the
considered algorithms for the specific implementations considered in this work.

Lastly, the cost of updating the parameters according to one
of the two presented algorithms is

nmult,nsgd =
∑
i

Ni +
∑
i

NiNi+1 (53)

nadd,nsgd = NL + 2L+
∑
i

(Ni − 1)(Ni+1 − 1)

+
∑
i

(Ni − 1) (54)

ndiv,nsgd = 1. (55)

for NSGD via (38), assuming that the derivative of the
errors w.r.t. the parameters has already been computed and
stored during the gradient calculations. Lastly, the update for
RMSPropMax requires

nmult,rmspm = 6NL +
∑
i

Ni − 1Ni+1 (56)

nadd,rmspm = 2NL +
∑
i

Ni − 1Ni+1 (57)

ndiv,rmspm = 2NL. (58)

operations with (44). The complexity for the specific archi-
tectures considered in the simulation section are given in
Table 1 (for IMD2 in case of the proposed architecture and
the respective cases for problem specific algorithms).
It can be seen that the proposed approach, especially via

RMSPropMax, can save a tremendous amount of complexity
and is comparable to current state-of-the-art architectures.
Regardless of the update algorithms chosen, the proposed
solution still requires less operations per sample than the
IM2RLS and KRLS approaches.

VII. SIMULATIONS
Having derived the proposed algorithms and correspond-
ing architectures, this section evaluates them on their
performance on IMD2 and Tx harmonics cancellation, and
further compares them to current state-of-the-art methods
for SIC. The main metric of performance is the normalized
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TABLE 2. Simulation settings used for all considered algorithms and test cases.

mean squared error (NMSE), which is defined as

NMSEdB = 10 log10

E
[ ∣∣yIntBB[n] − ŷACBB[n]

∣∣2
]

E
[ ∣∣yIntBB[n]

∣∣2
] , (59)

where yIntBB[n] and ŷACBB[n] represent the true SI signal dis-
turbing the receiver and the estimated replica, respectively.
Further, the signal to noise and interference ratio (SNIR) is
defined as

SNIRdB = 10 log10

E
[ ∣∣yRxBB[n]

∣∣2
]

E
[ ∣∣yTotBB[n] − yRxBB[n] − ŷACBB[n]

∣∣2
] (60)

which is evaluated for multiple interference-to-carrier-plus-
noise (ICN) ratios, the ICN is defined as

ICNdB = 10 log10

E
[∣∣yIntBB[n]

∣∣2
]

E
[∣∣yRxBB[n] + ηBB[n]

∣∣2
] . (61)

The simulation parameters for all considered architectures
are combined in Table 2 for all simulations and testcases.
These have been hand-tuned to reach the best possible
performance for the different algorithms for the considered
problems. The NNs and algorithms have been implemented
in PyTorch [55] and the weights and biases of the NNs have
been initialized using a uniform distribution [55]. Similar to
the NN depicted in Fig. 4, a NN with two hidden layers and
one output layer with 15, 10 and 2 neurons, respectively, has
been proven5 to achieve excellent performance while keep-
ing the complexity at a minimum. The hidden layers both
use ReLU as an activation function. Further, while the ICN
is variable for all scenarios, the Rx SNR is kept constant at
10 dB meaning that the Rx signal lies 10 dB above the noise
signal which resides at −100 dBm. This constitutes the worst
case for the receiver as it operates at the sensitivity limit.

5. The exact number of layers, neurons and other aspects of the NN
architecture generally have to be found via trial and error to find the best
performing NN on any given problem. For the considered cases in this
work, we use the same architecture for all problems.

Additionally, the Rx signal always is allocated the maximum
number of resource blocks, which is 50 for LTE10 signals,
and the Tx signal allocation varies.

A. IMD2
The first considered scenario is IMD2 interfering with the Rx
signal. Fig. 5(a) shows the performance of the proposed and
state-of-the-art algorithms for an ICN of 20 dB. Naturally,
KRLS [41] reaches the best performance in the least amount
of samples. However, the next best performers are the NN
with NSGD and a high LR (HLR), RMSPropMax with a
fixed LR (FLR) and the proposed architecture II using
RMSPropMax with a variable LR (HO). In terms of steady-
state performance, IM2RLS [24] reaches approximately the
same NMSE value as the proposed algorithms, even though
it takes at least twice as long to converge to an acceptable
value of −20 dB. Further, standard SGD clearly takes longer
to converge but still manages to reach better performance
than IM2LMS [26]. If the LR is chosen too low (LLR),
NSGD cannot reach its optimal potential and clearly per-
forms worst in this scenario. It is worth noting that, while
the underlying interference effect as well as other param-
eters of the specific problem might change, the proposed
architecture is the only one – besides the KRLS – that stays
exactly the same for all scenarios (the NN does not change
and neither do other parameters). Further, it can be seen that
architecture II clearly reaches one of the best performances
despite its LRs not being tuned at all.
The evaluation of these methods is then carried out for

multiple ICN values in order to examine the steady-state
SNIR performance (for the last LTE10 slot of the simulation)
in Fig. 5(b). It can be seen that while for lower ICN values
the proposed architectures perform slightly worse than SOTA
algorithms (within 1 dB), their advantage is clearly visible
for higher interference powers, where they outperform both
IM2RLS and IM2LMS in terms of SNIR improvement.

B. TX HARMONICS
The performance of the proposed architectures is shown in
Fig. 5(c) for an ICN of 20 dB. It can be seen that RMSPropMax

VOLUME 3, 2022 967



PLODER et al.: SICNet—LOW COMPLEXITY SAMPLE ADAPTIVE NEURAL NETWORK-BASED SIC

FIGURE 5. NMSE performance of all considered architectures with an ICN of 20 dB for IMD2 (a), Tx harmonics (c) and modulated spurs (e), SNIR performance over varying ICN
powers for IMD2 (b), Tx harmonics (d) and modulated spurs (f).

with a problem specific LR (LRS) performs best among the
NN based algorithms, followed by RMSPropMax utilized in
architecture II (HO) and with a fixed LR. NSGD with a high

LR reaches slightly worse NMSE values in the steady state
while the low LR version yields the worst performance only
slightly worse than vanilla SGD.
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In terms of SNIR performance (cf. Fig. 5(d)), the problem
specific LR yields the best improvement for the proposed
algorithms with the other algorithms and configurations
resulting in more or less the same performance as seen for
the NMSE case. Again, SW-KRLS [42] and the model based
variant [27] clearly perform best. Note however, that the SW-
KRLS requires tremendously more operations per sample
than the proposed architecture and the model based solution
requires perfect model knowledge and, again, is only usable
for this specific problem (second order Tx harmonics). If
the interference changes (e.g., to IMD2) the model based
approach would fail.

C. MODULATED SPURS
In terms of modulated spurs, the NMSE performance for
all considered algorithms is shown in Fig. 5(e) for an ICN
of 20 dB. For this case we compare ourselves to a mixed
signal approach [35], a fully digital model based LMS (MB-
LMS) [23] as well as a hybrid approach [17]. As can be
seen the MB-LMS is able to surpass all other methods sig-
nificantly,6 while the proposed NN architectures result in a
performance somewhere between the mixed signal approach
(worst performance) and the hybrid architecture. Note that in
this case, the proposed algorithms with a high LR (NSGD)
and the best LR for Tx harmonics (RMSPropMax) yield
on-par performance with SGD.
With regard to the SNIR performance (see Fig. 5(f)), the

same observation holds, the MB-LMS results in the best SNR
recovery while the proposed architectures can only somewhat
keep up with the hybrid approach. Note however, that the
reference architectures are tailored to the specific problem
and cannot be used to combat any other SI type, whereas our
proposed NN is exactly the same as for the previous cases
without any modification to the number of layers, neurons
or the activation functions. Further, the chosen LRs remain
the same as well. Overall, the SNR recovery is sufficient for
all algorithms except NSGD with a low LR at higher ICN
values.

D. IN-BAND FULL DUPLEX SI
To showcase the ability of our proposed architecture to not
only being able to cope with SI effects in FDD transceivers
but also being able to deal with in-band full duplex SI prob-
lems, we used the same overall setup as [7] and compare
ourselves to the NN presented in this work (LSNN-base), as
well as with a conventional polynomial cancellation architec-
ture (Poly-base). Further, unlike the previous cases we do not
use simulated data but measured data that has been provided
by the authors of [7]. As both architectures from [7] have
a training and evaluation phase, no convergence is shown
in Fig. 6, but rather their performance once trained on a
specific system. It can be seen that, with the exception of

6. Note however, that this approach needs a different step-size for each
ICN value.

FIGURE 6. NMSE performance of all considered architectures for the in-band full
duplex case.

NSGD with a low LR and RMSPropMax with the Tx har-
monics LR, the proposed approaches can yield excellent
performance and, in the case of RMSPropMax with adaptive
LR, even surpass both reference algorithms. It is worth noting
however, that it seems that most of the proposed algorithms
still have not reached their steady state performance after
one OFDM frame, as – unfortunately – the measurements
provided by [7] do not contain more than that. Further, it has
to be highlighted that the LSNN-base architecture requires a
least squares estimate of the interference channel to cancel
the linear part of the SI signal, while the NN afterwards
only works on the nonlinear part. Our proposed architecture
does not require this additional processing step and – once
again – is the exact same as for the previous SI cases with
the exception that the input dimension has been increased
to 26 to accommodate the measurement data.

E. STEADY-STATE VARIANCE
While standard SGD is commonly used in literature [56] and
even shows moderately good performance in the considered
test-cases in this work, it does not constitute the most sta-
ble solution. Fig. 7(a) shows the mean NMSE performance
(over the last LTE10 slot of the simulation) of all proposed
algorithms for different ICN values. The LR dependency for
NSGD and SGD can be seen clearly. Lower LR values work
very well for low ICN values, while higher LR values yield
better performance for high powered interferers. Therefore,
a variable LR would be the best solution (and hence the
motivation for architecture II).
Fig. 7(b) shows two box plots for different ICN values

for 20 different duplexer realizations and 10 runs each. The
impulse responses are based on real world duplexers for
LTE communication devices, where S-parameter measure-
ments of the stop-band have been acquired in order to fit
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FIGURE 7. Mean NMSE performance over a wider variety of ICN values for all considered online learning algorithms for IMD2 (a); variance of the achieved NMSE value for
different ICN values and online learning algorithms for IMD2 (b).

impulse responses. It can be clearly seen, that SGD, while
performing reasonably good in the mean, results in a quite
high variance in terms of performance, while NSGD with a
high LR and both RMSPropMax realizations yield the best,
stable solutions. Therefore, while SGD may result in less
complex updates, its performance can be all over the place,
being somewhat unpredictable.

VIII. CONCLUSION
We presented a novel NN based approach to cancel dif-
ferent self-interference effects, namely modulated spurs, Tx
Harmonics , IMD2 and in-band full duplex SI. We further
extended and modified existing training algorithms to yield
stable, low-cost solutions, therefore finally enabling sample
adaptive NNs in the field of SIC. The proposed solutions
reach a considerably higher cancellation performance than all
other considered competing architectures for the investigated
SI interference scenarios with the exception of modulated
spurs, where the proposed solution still manages to achieve
satisfying performance. Especially for IMD2, the proposed
methods are able to not only outperform state-of-the-art solu-
tions in terms of NMSE and SNIR performance, but also
surpass their convergence speed significantly. We further
showed, that the same architecture used for three differ-
ent SI effects, occurring in FDD transceivers, can be used
to mitigate transceiver induced SI in an in-band full duplex
scenario, surpassing current state-of-the-art solutions with-
out the requirement to be trained offline. Lastly, it has been
shown that simpler algorithms tend to result in a less pre-
dictable performance, i.e., their steady-state NMSE values

can vary significantly. This issue is reduced if more com-
plex, and stable algorithms like NSGD and RMSPropMax are
used.
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