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ABSTRACT In this paper, we develop a unified theoretical framework for analyzing the outage
performance of reconfigurable intelligent surfaces (RISs)-assisted communication systems over gener-
alized fading channels and in the presence of phase noise. Fox’s H function theory is then utilized to
derive the outage probability for various channel fading and phase noise distributions in closed-form.
We further conduct an asymptotic outage analysis to obtain insightful findings. In particular, we present
the maximum diversity order achievable over such channels and demonstrate the performance variation
in comparison to conventional Rayleigh channels. Then, based on upper bounds and lower bounds, we
propose a design criteria for RISs to achieve the maximum diversity order in the presence of phase noise.
More specifically, we show that if the absolute difference between pairs of phase errors is less than π/2,
RIS-assisted communications achieve the full diversity order over independent fading channels, even in
the presence of phase noise. The theoretical frameworks and findings are validated with the aid of Monte
Carlo simulations.

INDEX TERMS Reconfigurable intelligent surface, Fox’s H-distribution, rice fading, phase noise, outage
probability, diversity order.

I. INTRODUCTION

CONTEMPORARY wireless networks modeling and
analysis are vibrant topics that keep taking new dimen-

sions in complexity, as researchers explore the potential of
innovative breakthrough technologies to support the upcom-
ing Internet of Things (IoT) and 6G era [1]. Among these
emerging technologies, reconfigurable intelligent surfaces
(RISs) [2]–[6] have been introduced with an overarching
vision of artificially controlling the wireless environment
for increasing the quality of service and spectrum effi-
ciency. RIS technology is based on the massive integration of
low-cost tunable passive elements on large surfaces, which
can be deployed on, e.g., the facades of buildings, and are

able to, e.g., reflect and modulate the incident RF signals,
which leads to a more controllable wireless environment [5]
and a more efficient implementation of multi-antenna trans-
mitters [7]. Leveraging these key properties, RIS-enabled
networks challenge device–side approaches, such as massive
multiple-input-multiple-output (MIMO) systems, encoding,
modulation, and relaying, which are currently deployed in
wireless networks in order to fully adapt to the time-variant
and unpredictable channel states [4], [5]. Due to the potential
opportunities offered by RIS-empowered wireless networks,
a large body of research contributions have recently appeared
in the literature. The interested readers are referred to the sur-
vey papers in [2]–[6], where a comprehensive description of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 3, 2022 593

HTTPS://ORCID.ORG/0000-0001-7929-1493
HTTPS://ORCID.ORG/0000-0003-4409-9447
HTTPS://ORCID.ORG/0000-0001-7955-7044
HTTPS://ORCID.ORG/0000-0003-0772-8793


TRIGUI et al.: PERFORMANCE EVALUATION AND DIVERSITY ANALYSIS OF RIS-ASSISTED COMMUNICATIONS

TABLE 1. Performance analysis frameworks and diversity analysis available in the literature (N = number of reconfigurable elements of the RIS).

the state-of-the-art, the scientific challenges, the distinctive
differences with other technologies, and the open research
issues are discussed.

A. RELATED WORKS
Several research papers have appeared recently, mostly con-
sidering application scenarios where the line-of-sight link
is either too weak or is not available, and, therefore, an
RIS is employed to enable the reliable transmission of data
through the optimization of the phase shifts of its individ-
ual reconfigurable elements [7], and of the precoding and
decoding vectors at the transmitter and receiver, respectively,
e.g., [8], [9]. Specifically, both [7] and [8] demonstrate
the necessity of jointly optimizing the transmit beam-
forming and phase shifts for a well designed RIS. In
this regard, several RIS-aided designs have been recently
proposed for various advanced communication techniques,
including millimeter-wave communications [10], unmanned
aerial vehicle networks [11], physical layer security [12],
and simultaneous wireless information and power trans-
fer [13]. However, there exist limited research efforts that
have explored the communication-theoretic performance lim-
its of RIS-assisted communications [14]–[26], and, therefore,
a limited number of results are available to date. A major
research issue for analyzing the fundamental performance
limits of RIS-aided systems is the analysis of the exact
distribution of the RIS end-to-end equivalent channel. To cir-
cumvent this open issue, some recent attempts for studying
RIS-aided systems include the use of approximate distribu-
tions and asymptotic analysis [14]–[26]. Under the assump-
tion of Rayleigh fading, it was shown in [14], [16], [17]
that the distribution of a single RIS equivalent channel
follows a modified Bessel function. In [18] and [19], an RIS-
aided transmission system in the presence of phase errors
was considered, and the composite channel was shown to
be equivalent to a point-to-point Nakagami-m fading chan-
nel by using the central limit theorem (CLT). However,
is known that the CLT is inaccurate when the number of
reconfigurable elements of the RIS is small. Recent results,
in addition, showed that the approximation error attributed

to the CLT can be significant in the high signal-to-noise-
ratio (SNR) regime [14]. Approximations for the received
SNR in the presence of multiple randomly deployed RISs
were introduced in [27], and an asymptotic analysis of the
data rate and channel hardening effect in an RIS-aided
large antenna-array system was presented in [28]. As far
as the fading channel is concerned, the Rayleigh fading
model has been commonly assumed, with only some excep-
tions that incorporated the line-of-sight (LoS) channel, yet
only under the scope of phase optimization, e.g., [29], [30].
However, Rayleigh fading may have limited legitimacy in
RIS-aided communications in which the RIS is appropri-
ately deployed to leverage the LoS paths for enhancing
the received power [31]. Recently, the authors of [32]–[34]
considered the Nakagami-m fading channels by leveraging
CLT-based or moment-based Gamma approximations.
In Table 1, we summarize the communication-theoretic

frameworks that, to the best of our knowledge, are available
in the literature. We evince that analytical studies have been
conducted predominantly over Rayleigh fading channels and
that no exact analytical framework exists. In addition, the
analysis of the diversity order of RIS-assisted communication
systems is still an open issue. There is, however, general
consensus that the CLT is not a suitable tool for analyzing
the diversity order, since it yields accurate approximations
in the low-SNR regime [14]. In this paper, we propose new
analytical methods for overcoming these limitations.

B. CONTRIBUTIONS
As a step forward to fill the mentioned research gaps, this
work leverages fundamental results from Fox’s H-transform
theory for analyzing the performance of RIS-aided wireless
communications. More precisely, we introduce a new ana-
lytical framework that provides exact analytical expressions
of the outage probability for several widely used generalized
fading models in the absence of phase noise. The proposed
method for performance evaluation is endowed with high
flexibility to capture a broad range of fading distributions,
thereby unveiling the diversity order of RIS-aided networks
and generalizing the results available for transmission over
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Rayleigh fading. In addition, we introduce a new approach
for analyzing the diversity order of RIS-aided systems over
generalized fading channels in the presence of phase noise.
The proposed approach confirms the unsuitability of the CLT
for analyzing the diversity order of RIS-aided systems, and
unveils the achievable diversity order under general fading
channels and phase noise distributions. With the aid of lower
bounds and upper bounds, more precisely, we identify suf-
ficient conditions for achieving the full diversity order in
RIS-assisted systems. The main contributions of this paper
can be summarized as follows.

• We propose a new analytical framework for analyzing
the performance of RIS-aided systems, which leverages
Fox’s H transform theory for modeling, in a unified
fashion, general RIS-induced fading environments in
terms of outage probability and achievable diversity.
This paper, to the best of our knowledge, is the first
to unify the outage analysis over many fading without
resorting to any restrictive assumption or approximation.

• We draw multiple link-level design insights from the
proposed analysis. For instance, we show that the diver-
sity order in the absence of phase noise scales with the
number of reconfigurable elements of the RIS multiplied
by a factor that depends of the worst fading distribution
of the transmitter-RIS and RIS-receiver links.

• We study the transmission through an RIS whose phase
shifts deviate from the ideal values according to general
phase noise distributions, and discuss how the presence
of errors in the phase shifts influences the achievable
diversity. We demonstrate, in particular, that the a suf-
ficient condition for achieving the full diversity order
is that the absolute difference between pairs of phase
errors is less than π/2.

The rest of this paper is organized as follows. Section II
describes the system model and the considered fading dis-
tributions. Sections III and IV are devoted to the unified
performance analysis framework, where the outage proba-
bility and the diversity order of RIS-assisted communications
are analyzed in the presence of perfect and imperfect phase
shifts, respectively. Simulation and numerical results are
discussed in Section V. Finally, Section VI concludes the
paper.

II. SYSTEM MODEL
We consider an RIS with N reconfigurable elements, which
are arranged in a uniform array of tiny antennas spaced half
of the wavelength apart and whose phase response is locally
optimized, assuming full channel state information (CSI)
knowledge at the RIS.1 We assume that the RIS transmits
data to a single antenna receiver by reflecting an incident RF
wave emitted by a single antenna transmitter. More specif-
ically, we assume that the direct transmission link between
the transmitter and the receiver is blocked, and, thus, the

1. The generalization of this work to consider imperfect and statistical
CSI at the RIS is a promising direction for future research.

RIS is deployed to relay the scattered signal and to leverage
virtual LoS paths for enhancing the strength of the received
signal. The received SNR of the considered system is [3]

γ = ρ

∣
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, (1)

where ρ is the average SNR of the RIS-assisted link, hi and
gi, i = 1, 2, . . . ,N are independent2 complex coefficients
that characterize the channels between the transmitter and
the RIS, and the RIS and the receiver, respectively, and
φ1, . . . , φN are the phase shifts that are optimized to
maximize the SNR at the receiver.3 In particular, ρ in (1)
includes the path-loss of the end-to-end RIS channel, as
described in, e.g., [37]–[39], which is assumed to be fixed
and given in this paper. The impact of channel estimation
errors and overhead is not explicitly discussed in the present
paper, but it can be taken into account as recently described
in [41].
Assumption 1: The amplitudes |hi| and |gi| are independent

and non-identically distributed (i.ni.d) Fox’s H-distributed
random variables (RVs) whose probability density function
(pdf) is
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where y ∈ {h, g}, and H[ · ] stands for the Fox’s H func-
tion [43, eq. (1.2)]. The Fox H distribution subsumes a large
number of conventional and generalized fading distributions
widely used in wireless communications, such as Rayleigh,
Nakagami-m, and Weibull fading.
Usually, the RISs are positioned to exploit the LoS path

with respect to the location of the transmitter to increase the
received power. In this case, Rician fading is a better small-
scale fading model in the presence of a LoS path. However,
the Rician distribution does not belong to the family of dis-
tributions in (2). Therefore, we consider a further generalized
fading model.
Assumption 2: Using the hyper-Fox’s H-distribution [42],

the pdf of a Rician fading channel is

f|yi|(x) =
∞
∑
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where cyk = √
Ky + 1, κ

y
k = e−Ky

√
Ky+1

k!�(k+1)
, and Ky for y ∈

{h, g} denotes the Rice factors of the transmitter-RIS and
RIS-receiver links, respectively.
In the following sections, by leveraging the H-transform,

we establish a unified framework for analyzing the

2. The assumption of independent channel coefficients is made for ana-
lytical tractability and is justified, as a first-order approximation, if the
reconfigurable elements of the RIS are spaced half of the wavelength apart.
The generalization of the proposed analytical framework in the presence of
channel correlation is postponed to future research works.

3. The amplitude of each reflection coefficient is set to unity, which repre-
sents an ideal scenario. The generalization of this work to phase-dependent
amplitude variation [40] is a promising direction for future research.
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performance of RIS-assisted communications where the
fading envelope is described by the Fox’s H-distribution
for non-specular small-scale fading and the hyper Fox’s H-
distribution under LoS propagation. Perfect and imperfect
phase shifts are analyzed.

III. OUTAGE PROBABILITY - NO PHASE NOISE
The optimal design for the phase shifts of an RIS-assisted
link consists of setting the phase shift of each element φi so
that all phase contributions due to the phase of hi, i.e., ∠hi
and the phase of gi, ∠gi, i = 1, . . . ,N, are compensated [3].
Accordingly, substituting φn = −∠(hn + gn), n = 1, . . . ,N,
in (1), the outage probability in the absence of phase noise
is P(ρ(

∑N
i=1 |hi||gi|)2 < γth) = P(

∑N
i=1 |hi||gi| <

√
ρt),

where ρt = γth/ρ. An analytical expression of the outage
probability is given in the following proposition.
Proposition 1: The outage probability with optimal phase

shifts is
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)

, (6)

and m̃i = mhi + mgi , ñi = nhi + ngi + 1, q̃i = qhi + qgi ,
p̃i = phi + pgi + 1. and H[·, . . . , ·] is the multivariable Fox’s
H-function whose definition in terms of Mellin-Barnes con-
tour integrals is given according to [43, Definition A.1] as

in (7), shown at the bottom of this page, where �(·) is the
gamma function [52].
Proof: See Appendix A.
Proposition 2: The outage probability of RIS-assisted

communications in Rice fading is
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where � = √

(1 + Kh)(1 + Kg) and τ =
∏N

i=1
e−KhKhki
ki!�(ki+1)

e−KgKgti
ti!�(ti+1)

.
Proof: We use the distribution in (3) and apply the same

procedure as for the proof of (4).
Moreover, if M terms are used in (8), we can define the

truncation error as
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The asymptotic expansions of �(y) when y → ∞ can be
obtained by computing the residue of the multivariable Fox’s
H function by using [49, eq. (1.5.9)] as �(y) ≈∏N

i=1 �(ki+
1)�(ti + 1). Moreover, by recognizing that
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TABLE 2. Minimum required terms and truncation error for different parameters Kh ,
Kg , N .

the truncation error E(M) can be simplified as

E(M) = 1 −
M
∑

k1,...,kN=0

M
∑

t1,...,tN=0

N
∏

i=1

e−KhKhki

�(ki + 1)

e−KgKgti
�(ti + 1)

.

(11)

Hence, it can be shown that E(M) → 0 when M → ∞.
To demonstrate the convergence of the series in (11),

Table 2 depicts the required truncation terms for different
system and channel parameters. With a satisfactory accuracy
(e.g., smaller than 10−5), only less than 30 terms are needed,
regardless of the average SNR, the number of RIS elements
and the Rician factor, for all considered cases.
Remark 1: The derived analytical expressions for the out-

age probability in (4) and (8) are general and new, and
can be easily mapped into most existing fading models. The
obtained analytical frameworks are, to the best of our knowl-
edge, the first ones in the literature that yield the exact
end-to-end SNR distribution of an RIS-assisted systems in
terms of the multivariate Fox’s H-function. This is in con-
trast with the recently reported expressions in [3, eqs. (4),
(7)] and [16, eq. (17)], which are based on approximations
(the CLT in [3] and the moment-based Gamma approxi-
mation in [16]), in order to overcome the intricacy of the
exact statistical modeling of the end-to-end SNR in RIS-
aided systems. The novelty of the proposed approach is also
apparent from the summary given in Table 1. For the conve-
nience of the readers, Table 3 provides the explicit expression
of the outage probability for several widely used fading dis-
tributions. Notably, the outage expressions in Table 3 are
evaluated by using the efficient Python implementation code
for the multivariable Fox’s H function presented in [46].
We also used an efficient GPU-oriented MATLAB routine
for the multivariate Fox’s H-function evaluation introduced
in [47].

A. DIVERSITY ORDER AND CODING GAIN
In this section, we analyze the diversity order and coding
gain of RIS-assisted communications over generalized fading
channels. In the current literature, the diversity order has been
assessed by relying on approximations and bounds [15]–[26]
(see Table 1), and under Rayleigh fading. A common
approach for analyzing the diversity order of RIS-aided
systems is to leverage the CLT. However, this approach
is accurate only for a large number of reconfigurable ele-
ments [3], and, in general, it is not sufficiently accurate
for high-SNR analysis, which is the regime of interest for
analyzing the diversity order [19]. In [15], for example, the

diversity order was shown to be N
2

π2

16−π2 in Rayleigh fading,
which implies that the full diversity order cannot be obtained
even in the absence of phase errors. By resorting to some
bounds, however, the authors of [19] recently showed that
the full diversity order equal to N is achievable in Rayleigh
fading (even in the presence of phase errors). A detailed
summary of the current methods and results on the diversity
order of RIS-aided systems is available in Table 1.
In what follows, building upon the high-SNR analy-

sis of the exact outage probability in Proposition 1 and
Proposition 2, we compute the exact diversity order and
coding gain of RIS-assisted systems over generalized fading.
We prove, in particular, that the diversity order in Rayleigh
fading is N and that it may exceed this value in less severe
fading channels.
Proposition 3: Consider the multivariate Fox’s H-function

in (4) and define the set of poles S = (ζ1, . . . , ζN), where
ζl = min

j=1,...,m̃l
{ ξl1

l1

, . . . ,
ξlm̃l

lm̃l

}. For each pole ξj, define the set

of indexes K(l)
j = {k : k ∈ {1, . . . , m̃l}, rk,j = −ξlk+
lk

ξlj

lj

∈
{0, 1, 2, . . .}} and let Ñ(l)

jl
= |K(l)

jl
| be the multiplicity of the

pole ζl with jl = arg min
j=1,...,m̃l

{ξlj/
lj}. The asymptotic expansion

of (4) near ρt = γth
ρ

= 0 is [49, Th. 1.2]

�(ρ,N) ≈ τ

�
(

1 +∑N
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[

ln

(√
ρ
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)]Ñ(l)
jl
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(
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ρ

) ζl
2

, (12)

where the constants �̃l, l = 1, . . . ,N, are given by

�̃l(ζl) = 1

�
(

Ñ(l)
jl

)

Ñ(l)
jl∏

k=1

(−1)jk

jk!
k

∏

i �∈K(l)
jl

�(ξi + 
iζl)
∏ñl

i=1 �(1 − δi − �iζl))

∏p̃l
i=̃nl+1 �(δi + �iζl)

∏q̃l
i=m̃l+1 �(1 − ξi − 
iζl)

. (13)

Proof: Equation (12) is obtained by evaluating the residues
of the Mellin-Barnes integrals in (34) at the poles of the terms
�(ξlj + ul
lj), j = 1, . . . , m̃l, according to [49, Th. 1.2] and
by keeping only the dominant terms using [49, eq. (1.8.3)].
As mentioned, the Fox’s H-function fading distribution

generalizes many well-known fading distributions, such as
the Rayleigh, Nakagami-m, and α-μ distributions. It is
interesting to analyze how the general expressions derived
for the asymptotic outage probability simplify when select-
ing the parameters corresponding to known distributions. We
have three possible scenarios.

• Scenario 1: The poles
ξlj

lj

, j = 1, . . . , m̃l are simple.
This occurs when rkjl is neither a positive integer nor
zero. In this case Ñ(l)

jl
= 1. This case study applies,

for instance, to i.ni.d. hi and gi over Nakagami-m and
i.ni.d. α-μ, with αhi μ

h
i �= α

g
i μ

g
i , fading channels.
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TABLE 3. Outage probability of RIS-assisted systems over widely used fading channel models.

• Scenario 2: The poles
ξlj

lj

, j = 1, . . . , m̃l, all coincide.

This occurs when
ξlj

lj

= ξlk

lk

, k, j = 1, . . . , m̃l, and in

this case Ñ(l)
jl

= m̃l. This case study includes, as spe-
cial cases, Rayleigh, i.i.d. Nakagami-m, and α-μ, with
αhi μ

h
i = α

g
i μ

g
i , fading channels, for which Ñ(l)

jl
= 2.

• Scenario 3: Some poles are simple and the others coin-
cide, such that rkjl is a positive integer. This case study,
however, does not apply to (12), since only the smallest
pole (the dominant pole), i.e., jl = arg min

j=1,...,m̃l
{ξlj/
lj}, is

considered in (12).
Taking into consideration the just mentioned scenarios, the

diversity order and the coding gain of RIS-assisted systems

over generalized fading channels is stated in the following
proposition.
Proposition 4: Consider the general Fox’s-H fading model

in (2). The asymptotic (for high-SNR) outage probability of
an RIS-aided system can be formulated as

�(ρ,N) ≈
ρ→∞ (Gcρ)−Gd , (14)

where Gd denotes the diversity order given by

Gd =
∑N

i=1 min
j=1,...,m̃l

{
ξij

ij

}

2
, (15)
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TABLE 4. Diversity and coding gain of RIS-assisted systems over widely used fading channels.

and Gc denotes that coding gain given by

Gc =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
γth

(

τ
(
∏N
i=1 �̃i(−ζi )̃c

ζi
i

)

�
(

1+∑N
i=1 ζi

)

)− 2
∑N
i=1 ζi

Scenario 1,

1
γth

(

τ
(
∏N
i=1 �̃i(−ζi) ln

(
ρ̃ci
γth

)

c̃
ζi
i

)

�
(

1+∑N
i=1 ζi

)

)− 2
∑N
i=1 ζi

Scenario 2,

(16)

where ζl = min
j=1,...,m̃l

{ξlj/
lj}, and the constants �̃l(ζl) are

given in Proposition 3 with Ñ(l)
jl

= 1 and Ñ(l)
jl

= 2 for
Scenario 1 and 2, respectively.
Proof: It follows from Proposition 3, under the assump-

tions stated in Scenarios 1 and 2.
Remark 2: The usually considered Rayleigh fading chan-

nel model (see Table 4) can be retrieved from Proposition 4
by considering Scenario 2 with ζl = 2 for l = 1, . . . ,N.
Proposition 5: Consider an RIS-assisted communication

system over Rician fading. From (8), the asymptotic outage
probability is

�(ρ,N) ≈ 2N
(

1 + Kh
)N

(1 + Kg)N

�(1 + 2N)
e−N

(

Kh+Kg)

ln

(
ρ

�2γth

)N(
ρ

γth

)−N
. (17)

Proof: It follows by computing the residues at ζl =
min{2kl + 2, 2tl + 2}, l = 1, . . . ,N, and by keeping only the
dominant term of the infinite series expansion in (8), which
corresponds to kl = tl = 0. Then, steps similar to Proposition
3 yield (17) with the aid of some manipulations.
By substituting the specific parameters of the fading mod-

els summarized in Table 2 into the generalized expressions
of the outage probability in Propositions 4 and 5 (under the
assumptions of Scenarios 1 and 2), it is possible to obtain
explicit expressions for the corresponding diversity order Gd
and coding gain Gc. These are reported in Table 4, from
which the following important conclusions and performance
trends are unveiled.

• Over Rayleigh fading channels, the obtained results
coincide with those derived in earlier research works
as reported in Table 1, but by using different methods
of analysis, e.g., approximations and bounds.

• RIS-aided systems achieve a diversity order equal to N
for an arbitrary number N of reconfigurable elements in
both Rayleigh and Rice fading. The impact of the LoS
component, i.e., K, is mainly reflected in the achiev-
able coding gain. In particular, a strong LoS component
(large K) is beneficial.

• Under severe fading mhi ,m
g
i < 1 or αhi μ

h
i , α

g
i μ

g
i < 1,

RIS-aided systems achieve a diversity order less than
N. However, such a scenario may not occur in opti-
mized deployments in which the RISs are positioned
in order to leverage the LoS paths with the transmitter
and possibly with the receiver. In these cases, mhi and
mgi are, in fact, relatively large.

• Under fading channels less severe than Rayleigh, e.g.,
mhi and mgi are larger than one, a diversity order greater
than N can be obtained.

• Under the assumption of Scenario 2, which encom-
passes i.i.d. Rayleigh fading, the scaling law of the
outage probability as a function of ρ → ∞ is
(ln(ρ)/ρ)N . This trend is in agreement with [16], where
it was proved by using exact analysis for N = 1 and
upper and lower bounds for N > 1. Similar trends were
reported in [19]. It is worth noting that this scaling law
holds true for Rice fading as well, as unveiled, for the
first time in the literature, by (17). As remarked in [16],
this is a new scaling law, which generalizes the defini-
tions of diversity order and coding gain typically used
in wireless communications [36].

• Under the assumptions of Scenario 1 (e.g., i.ni.d.
Nakagami-m and α-μ fading in Table 4), the scaling law
(ln(ρ)/ρ)N does not emerge, and the outage probability
scales as ρ−N for ρ → ∞. To be best of the authors
knowledge, this difference in the scaling law between
Scenario 1 and Scenarios 2 was never reported in the
literature.
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IV. OUTAGE PROBABILITY - WITH PHASE NOISE
In practice, the phase shifts of the reconfigurable elements
of an RIS cannot be optimized with an arbitrary precision,
e.g., because of the finite number of quantization bits used or
because of errors when estimating the phases of the fading
channels [18], [20]. In these cases, the phase of the ith
element of the RIS can be written as φi = −∠hi −∠gi + θi,
where θi denotes a random phase noise, which is assumed to
be i.i.d. in this paper. Thus, the equivalent channel observed
by the receiver is a complex random variable and the SNR is

γ = ρ

∣
∣
∣
∣
∣

N
∑

i=1

|hi||gi|ejθi
∣
∣
∣
∣
∣

2

= ρ|H|2. (18)

We assume that the distribution of θi is arbitrary but
its mean is zero. Examples of phase noise distributions
include Gaussian, generalized uniform, and uniform RVs
whose characteristic functions, E{ejtθ } = Kt, are as follows:
1) Gaussian θi ∼ N (0, σ 2) [50]

Kt
(a)≈ e−σ 2 t2

2 , (19)

2) Generalized uniform θi ∼ U(−qπ, qπ), q �= 1, [20]

Kt = sin(qπ t)

qπ t
, (20)

3) Uniform θi ∼ U(−π, π) [20]

Kt = sin(π t)

π t
, (21)

where (a) follows from E{ejtθi}θi∈[π,π ] ≈
σ 2	1

E{ejtθi}θi∈[−∞,∞], which stems from the fact that, in
practice, we are interested in standard deviations of only a
few degrees.
It is worth noting that the Gaussian distribution is ver-

satile to represent continuous phase errors. In [50], e.g.,
it was shown that the phase errors are Gaussian distributed
under widely applicable assumptions. Likewise, due to hard-
ware limitations, only a finite number of phase shifts can be
realized, which leads to quantization errors. In this case, the
generalized uniform distribution constitutes a versatile model
to account for the quantization noise by setting q = 2−L,
where L ≥ 1 is a positive integer that denotes the number
of quantization bits used [18], [20].
The SNR in (18) is formulated in terms of the square mag-

nitude of a linear combination of complex random variables
with random magnitudes and random phases. In general, the
calculation of the exact distribution of the SNR in (18) is

an open research issue, and is very intricate for arbitrary
values of N. To tackle this issue, we proceed as follows:
(i) first, we study the distribution of the SNR in (18) under
the assumption of a large number of reconfigurable elements
N of the RIS, i.e., N � 1. The obtained analytical framework
is based on the CLT and is typically appropriate for analyzing
RIS-aided systems with practical numbers of reconfigurable
elements and for typical values of ρ. As noted in, e.g., [19],
the resulting analysis is usually not accurate in the high-SNR
regime (i.e., for ρ → ∞), and, therefore, for analyzing the
attainable diversity order; and (ii) then, we introduce upper
and lower bounds for the SNR in (18) in the presence of
phase noise. The objective is to identify sufficient conditions
for achieving the full diversity order. The main peculiarity
of the latter approach lies in its applicability to RIS-aided
systems with an arbitrary number of reconfigurable elements
N and for any SNR regime.

A. PERFORMANCE ANALYSIS FOR LARGE N AND
FINITE VALUES OF ρρρ

In this sub-section, we introduce an analytical framework
for computing the outage probability of RIS-aided systems
in the presence of phase noise and under the assumption
N � 1.
Proposition 6: Define �1 = E{|hi|} and �2 = E{|gi|}. For

large values of N, the outage probability in the presence of
phase noise can be formulated as follows.

• Case 1: In the presence of Gaussian and gen-
eralized uniform phase noise, we have (22),
shown at the bottom of this page, where B =
{(1;−1,−1,−1), ( 1

2 ;−1, 0,−1), (1; 0,−1,−1)}, ν =
K1�1�2, σ 2

Y = 1
2N (1 − K2), and σ 2

X = 1
2N (1 + K2 −

2K2
1�

2
1�

2
2).

• Case 2: In the presence of uniform phase noise, the
outage probability is obtained as shown in (23) at the
bottom of this page.

Proof: The proof is based on the application of the CLT.
See Appendix A.

To the best of our knowledge, Proposition 6 is a new
result that is not available in the literature and is applicable
to generalized fading distributions in the presence of phase
noise.

B. DIVERSITY ANALYSIS FOR LARGE N
Based on Proposition 6, this sub-section studies the outage
probability in the high-SNR regime, i.e., for ρ → ∞. It is

�(ρ,N) = 1

2π
H0,2:1,1;1,1;2,1

3,1:1,1;2,1;2,2

⎡

⎢
⎢
⎣

−γth
N24ν2ρ

γth
N2ν2ρ

γth
N2ν2ρ

∣
∣
∣
∣
∣
∣
∣
∣

B; (0, 2); (1, 1),

(

ν2

2σ 2
X
, 2

)

; (1, 1),

(

ν2

2σ 2
Y
, 2

)

(1; 0,−1,−1):(0, 1);
(

ν2

2σ 2
X
, 1

)

;
(

ν2

2σ 2
Y
, 1

)

,
(

1
2 , 1
)

⎤

⎥
⎥
⎦

(22)

�(ρ,N) = π−1H0,0:2,1;2,1
0,1:2,2;2,2

[
γth
N2ρ
γth
N2ρ

∣
∣
∣
∣
∣

− : (N, 2), (1, 1); (N, 2), (1, 1)

(0; 1, 1) : (N, 1),
(

1
2 , 1
)

; (N, 1),
(

1
2 , 1
)

]

(23)
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known, however, that the CLT may not be suitable for ana-
lyzing the outage probability for ρ → ∞ if N is fixed. The
analysis of this sub-section serves, therefore, as a bench-
mark for better understanding the limitations of the CLT
when applied to RIS-aided systems when analyzing their
performance in the high-SNR regime. This is elaborated
next.
Proposition 7: Assume ρ → ∞. Based on Proposition 6,

the asymptotic outage probability in the presence of phase
noise can be formulated as

�(ρ,N) ≈
ρ→∞

⎧

⎪⎪⎨

⎪⎪⎩

AG

(
ρ
γth

)−
(

ν2

2σ2
X

+ 1
2

)

Case 1,

�
(

N− 1
2

)2

�(N)2

(
ρ
γth

)−1
Case 2,

(24)

where

AG =
(

N2ν2
)−
(

ν2

2σ2
X

+ 1
2

)

√
π

√

ν2

2σ 2
Y

�

(

1
2 − ν2

2σ 2
X

)

�

(

3
2 + ν2

2σ 2
X

) . (25)

Proof: Equation (24) is obtained by computing the
residues of the integrand in (43) and (45) by using
[49, eqs. (1.84), (1.85)]. As for Case 1, the residue is com-
puted at the points u1 = ν2

2σ 2
X
, u2 = min{ ν2

2σ 2
Y
, 1

2 } = 1
2 ,

and u3 = 0. As for Case 2, the residue is computed at
(u1, u2) = ( 1

2 , 1
2 ).

From (24), we evince that the diversity order based on
the CLT approximation for N � 1 is

GCLT
d =

{

NE + 1
2 Case 1,

1 Case 2,
(26)

where E = (K1�1�2)
2/(1 + K2 − 2K2

1�
2
1�

2
2).

Remark 3: Based on (26), we conclude that, in general,
the diversity order in the presence of phase noise is less than
the full diversity order that is achievable in the absence of
phase noise, which is given in (15). As a case study, let us
consider that the phase noise originates from the quantiza-
tion bits L used for the phase shifts. From (26), we obtain
E = 1

2 for L = 1 and E < 1 for L > 1. Over Rayleigh
fading, in particular, we obtain GCLT

d ≈ 0.78N+0.5 if L = 2
and GCLT

d ≈ 0.8N + 0.5 if L → ∞ (i.e., no phase noise).
Therefore, we evince that GCLT

d < Gd for finite and infi-
nite values of L, which is in disagreement with (15) in the
absence of phase noise (i.e., L → ∞).
The example in Remark 3 confirms the unsuitability

of the CLT for high-SNR analysis, and, in particular, for
estimating the diversity order of RIS-assisted systems. To
further corroborate the statements in Remark 4, let us
assume N = 1 in (18). In this case, we would have
γ (N = 1) = ρ(|h1||g1| cos(θ1))

2 + ρ(|h1||g1| sin(θ1))
2 =

ρ|h1|2|g1|2, which implies that the SNR is independent of
the phase error. This is different from (26).
In the next sub-section, we introduce sufficient conditions

for ensuring that the full diversity order is achieved in RIS-
assisted communications impaired by phase noise.

C. DIVERSITY ANALYSIS FOR ARBITRARY N
The analytical framework introduced in the previous sec-
tion based on the CLT is usually accurate for analyzing the
performance of RIS-assisted communications for practical
values of N and for typical values of the SNR. However,
it is not sufficiently accurate for estimating the diversity
order, i.e., for ρ → ∞. In the present paper, for these
reasons, we do not attempt to introduce approximated ana-
lytical frameworks but focus our attention on identifying
sufficient conditions for guaranteeing that RIS-aided systems
achieve the full diversity order even in the presence of phase
noise. This is a fundamental open issue for designing and
optimizing RIS-aided systems. For example, the approach
introduced in this section allows us to identify the minimum
number of quantization bits that are needed for ensuring no
diversity loss. This specific problem has been recently ana-
lyzed in [19], where it is shown that, under i.i.d. Rayleigh
fading, two quantization bits (i.e., L = 2) are necessary.
The approach proposed in [19] is specifically tailored for
analyzing the impact of quantization bits in the presence
of i.i.d. Rayleigh fading. The analytical approach proposed
in this section, on the other hand, is applicable to arbitrary
distributions for the channel fading and for the phase noise.
To this end, we re-write the end-to-end SNR in (18) as

γ = ρ|H|2 = ρ(X2 + Y2), where X = ∑N
i=1 |hi||gi| cos(θi)

and Y = ∑N
i=1 |hi||gi| sin(θi). Also, we define εmin =

minn �=m∈[1,N]{cos(θn − θm)}. The main results are stated in
the following two propositions.
Proposition 8: Assume εmin =

minn �=m∈[1,N]{cos(θn − θm)} ≥ 0. The SNR in (18) is
upper and lower bounded as follows

ρ

N
∑

i=1

|hi|2|gi|2 ≤ ρ
(

X2 + Y2
)

≤ ρ

(
N
∑

i=1

|hi||gi|
)2

. (27)

Proof: Be definition, we have

X2 =
N
∑

n=1

|hn|2|gn|2cos2(θn)

+
N
∑

n=1

N
∑

m�=n=1

(|hn||gn| cos(θn))(|hm||gm| cos(θm)),

(28)

and

Y2 =
N
∑

n=1

|hn|2|gn|2sin2(θn)

+
N
∑

n=1

N
∑

m�=n=1

(|hn||gn| sin(θn))(|hm||gm| sin(θm)).

(29)

VOLUME 3, 2022 601



TRIGUI et al.: PERFORMANCE EVALUATION AND DIVERSITY ANALYSIS OF RIS-ASSISTED COMMUNICATIONS

By using the identity cos(α + β) = cos(α) cos(β) −
sin(α) sin(β), we obtain

X2 + Y2 =
N
∑

n=1

|hn|2|gn|2

+
N
∑

n=1

N
∑

m�=n=1

|hn||gn||hm||gm| cos(θn − θm)

≥(a)
N
∑

n=1

|hn|2|gn|2 + εmin

N
∑

n=1

N
∑

m�=n=1

|hn||gn||hm||gm|

≥(b)
N
∑

n=1

|hn|2|gn|2, (30)

and

X2 + Y2 =
N
∑

n=1

|hn|2|gn|2

+
N
∑

n=1

N
∑

m�=n=1

|hn||gn||hm||gm| cos(θn − θm)

≤(c)
N
∑

n=1

|hn|2|gn|2 +
N
∑

n=1

N
∑

m�=n=1

|hn||gn||hm||gm|

=
(

N
∑

n=1

|hn||gn|
)2

, (31)

where (a) and (b) follow under the assumption εmin ≥ 0, and
(c) follows because cos(θn − θm) ≤ 1 for any phase errors.
This concludes the proof.
Proposition 9: If εmin = minn �=m∈[1,N]{cos(θn − θm)} ≥ 0,

RIS-assisted transmission achieves the full diversity order in
the presence of phase noise.
Proof: It follows from Proposition 8, by noting the follow-

ing: (i) the upper bound in (31) coincides with the SNR in the
absence of phase errors, which is shown to achieve the full
diversity order in Section III, and (ii) the lower bound in (30)
is the SNR of an equivalent maximal-ratio combining system
whose links have an SNR equal to |hn|2|gn|2. From [36], the
diversity order of the lower bounds in (30) is the same as
the diversity order of the upper bound in (31), since the
latter bound corresponds to the SNR (scaled by a fixed con-
stant) of an equivalent equal-gain combining system. This
concludes the proof.
Remark 4: The upper bound in (31) can be applied

only if εmin = minn �=m∈[1,N]{cos(θn − θm)} ≥ 0. This
implies that Proposition 9 yields a sufficient condition for
achieving the full diversity order. If εmin = minn �=m∈[1,N]
{cos(θn − θm)} < 0, in other words, a diversity loss may
occur.
Based on Proposition 8 and Proposition 9, the following

remarks can be made:

• The condition εmin = minn �=m∈[1,N]{cos(θn − θm)} ≥ 0
implies that the absolute difference between pairs of

phase errors is always less than π/2. This yields impor-
tant guidelines to make the design of RISs robust to the
phase noise.

• Assume that the phase noise is determined by the num-
ber L of quantization bits used. Then, by definition,
we have cos(2π/2L) ≤ cos(θn − θm) ≤ 1. This yields
εmin = cos(π) = −1 for L = 1, εmin = cos(π/2) = 0
for L = 2, and εmin > 0 for L > 2. Therefore, the full
diversity order can be ensured if at least two quantiza-
tion bits are used. This result is in agreement with [19],
but generalizes it to arbitrary fading distributions and
phase noise distributions.

• The potential loss of diversity for εmin =
minn �=m∈[1,N]{cos(θn − θm)} < 0 can be understood
by considering the case study for N = 2 and
L = 1 in Proposition 8. In this case, we obtain
X2 + Y2|worst case = (|h1||g1| − |h2||g2|)2. The negative
sign in the latter equation is responsible for the potential
loss of diversity order for εmin < 0.

In conclusion, with the aid of the sufficient condition iden-
tified in Proposition 9, an RIS can be appropriately optimized
in order to guarantee that the full diversity order is achieved.
To the best of our knowledge, this result for arbitrary fading
and phase noise distributions was never reported in the lit-
erature. A similar approach could be applied to the analysis
of hardware impairments different from the phase noise.

V. NUMERICAL RESULTS
In this section, we report some numerical results in order
to substantiate the obtained analytical expressions of the
outage probability and the analysis of the diversity order and
coding gain with the aid of Monte Carlo simulations. Unless
otherwise stated, the SNR threshold is set to γth = 0 dB.
It is worth mentioning that the numerical results consider
relatively small values of N in order to better highlight the
impact of the diversity order, which is the main focus of the
present paper, similar to [19].
Figure 1 shows the outage probability of an RIS-assisted

system in the absence of phase noise as a function of the
average SNR (i.e., ρ), for several values of N and under
Nakagami-m fading for mgi > mhi , i = 1, . . . ,N, with

min
i=1,...,N

{mhi } = 0.5. We observe that the exact expression of

the outage probability in (4) and its corresponding high-SNR
approximation in (14) are in close agreement with Monte
Carlo simulations. In particular, Fig. 1 confirms that correct-
ness of the diversity analysis in Section III-A. As expected,
the outage probability decreases significantly as the number
N of reconfigurable elements of the RIS increases.
Figure 2 shows the outage probability vs. the average

SNR ρ over α-μ fading in both i.i.d and i.ni.d. scenarios.
The conclusions are similar to those in Fig. 1. We observe,
in particular, that the outage probability over i.ni.d. α-μ

fading decreases at a rate of ρ−∑N
i=1

min{αhi μhi ,α
g
i μ

g
i }

2 , in agree-
ment with (12) and more precisely with (14) and (16), under
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FIGURE 1. Outage probability vs. the average SNR in Nakagami-m fading.

FIGURE 2. Outage probability vs. the average SNR in α-μ fading.

the assumptions of Scenario 1. Over i.i.d. fading, in addi-
tion, the figure confirms that the outage probability scales
with ln(ρ)/ρ, as predicted by (16), under the assumptions of
Scenario 2, and unveiled in [16] and [19] over i.i.d. Rayleigh
fading channels.
Figure 3 illustrates the outage probability of an RIS-aided

system in the presence of phase noise over Nakagami-m
fading. The phase noise is modeled by assuming that the
phases are quantized by using L = 1 and L = 2 quantiza-
tion bits. The numerical results obtained with Monte Carlo
simulations are in agreement with the analytical findings
in Section IV. The figure confirms, in particular, that the
CLT does not yield, in general, an accurate estimate of
the diversity order. In addition, we observe, that a two-bit
quantization (L = 2) for the phase shifts yields, in the con-
sidered case study, sufficiently good performance in terms

FIGURE 3. Outage probability vs. the average SNR, for different values of L and N
(Nakagami-m fading with m = 1.5).

FIGURE 4. Outage probability vs. L over Nakagami-m fading (m = 1.5) for different
values of the average SNR and N = 4.

of outage probability. In particular, the full diversity order
can be achieved, as stated in Proposition 9.
Figure 4 shows the outage probability as a function of

the number of quantization bits for the phase shifts of the
RIS. Figure 4 further corroborates the performance trends
illustrated in Fig. 3. In particular, we observe that L = 3
provides an outage probability that is close to the setup in
the absence of phase noise. Furthermore, Fig. 4 confirms that
the CLT does not provide reliable estimates of the outage
probability in the considered setup.

VI. CONCLUSION
In this paper, we have introduced a comprehensive analytical
framework for analyzing the outage probability and diversity
order of RIS-assisted communication systems over general-
ized fading channels and in the presence of phase noise.
The proposed approach leverages the analytical formalism
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of the Fox’s H functions. We have substantiated, over gener-
alized fading channels, that the central limit theorem is not,
in general, a suitable approach for analyzing the diversity
order of RIS-aided systems. Therefore, we have introduced
a new analytical approach for computing the diversity order
in the absence of phase noise, and we have identified suf-
ficient conditions for ensuring that the full diversity order
is achieved in the presence of phase noise. In particular,
we have proved that RIS-assisted communications achieve
the full diversity order provided that the absolute difference
between pairs of phase errors is less than π/2. The obtained
findings are shown to be in agreement and to generalize
previous results available in the literature.

APPENDIX A
By defining S =∑N

i=1 |hi||gi|, we have [44]

�(ρ,N) = 1

2π j

∫

C
s−1�S(s)es

√
ρds, (32)

where �S(s) = ∏N
i=1 L(f|hi||gi|)(s), and L(·) stands for the

Laplace transform. Next, applying [45, Th. (4.1)] for the
pdf of the product of two Fox’s H distributions f|hi||gi|, then
evaluating the Laplace transform of f|hi||gi|, with the help
of [43, eq. (2.20)], yield �S as shown in (33) at the bot-
tom of this page. By plugging (33) into (32), the outage
probability can be written as in (34) shown at the bottom
of this page. The desired result follows by recalling that

1
2π j

∫

L s
−aeszds = za−1

�(a) and by capitalizing on the multiple
Mellin–Barnes type contour integral of the multivariate Fox’s
H function [43, Def. A.1] with the aid of some algebraic
manipulations.

APPENDIX B
For sufficiently large N, the distribution of Hb = 1

NH
tends to a non-circularly symmetric complex Gaussian
RV where X = Re{H} = 1

N

∑N
i=1 |hi||gi| cos(θi) and

Y = Im{H} = 1
N

∑N
i=1 |hi||gi| sin(θi) are approximately

Gaussian due to the CLT. In particular, X ∼ N (ν, σ 2
X) and

Y ∼ N (0, σ 2
Y ), where, by using the second-order statis-

tic computation method in [54], we obtain ν = K1�1�2,
σ 2
X = 1

2N (1+K2 −2K2
1�

2
1�

2
2), and σ 2

Y = 1
2N (1−K2), where

�1 = E{|hi|} and �2 = E{|gi|}, (35)

which, using (2), is computed using the Mellin transform of
the Fox’s H function [43, eq. (2.8)].4

Moreover, since the considered phase errors distributions
are symmetric around their mean value that is equal to zero,
we obtain E{XY} = 0. Hence, X and Y are uncorrelated RVs,
and, hence, as normal RVs, independent. Accordingly, |Hb|2
is the sum of a scaled non-central chi-squared RV X2 and a
gamma variable Y2, which are mutually independent. Thus,
we have

Lf|Hb|2(s) = LfX2(s)LfY2(s) = e
− ν2s

1+2σ2
Xs

√

1 + 2σ 2
Xs
√

1 + 2σ 2
Y s

.

(36)

By applying the same steps as in (34), i.e., by computing
the inverse Laplace transform of (36), the distribution of
|Hb|2 can be formulated as

P(|Hb|2 < t) = L−1
{

s−1Lf|Hb|2(s), t
}

(a)=
∞
∑

k=0

(−1)k
(

ν2
)k

k!

L−1

⎧

⎨

⎩

sk−1

(

1 + 2σ 2
Xs
)k+ 1

2
(

1 + 2σ 2
Y s
) 1

2

, t

⎫

⎬

⎭
, (37)

where (a) follows by using e−x =∑∞
k=0

(−1)kxk

k! .

4. For instance, we obtain �i =
√

π
2 , i = 1, 2, for Rayleigh fading, �i =

�(mi+ 1
2 )√

mi�(mi)
for Nakagami-m fading, and �i =

√
4

π(Ki+1) 1F1(− 1
2 , 1, −Ki)

in Rician fading, respectively.

�S(s) = τ

(2πw)N

∫

C1

. . .

∫

CN

N
∏

i=1

(
�(−ui)�i(ui)

c̃uii

)

s
∑N

i=1 uidu1du2 . . . duN

where w = √−1, �j(uj) =
∏m̃j

j=1 �
(

ξj + 
juj
)

)
∏ñj

j=1 �
(

1 − δj − �juj
)

)

∏p̃j
j=̃nj+1 �

(

δj + �jui
)∏q̃j

j=m̃j+1 �
(

1 − ξj − 
juj
)

and Ci, i = 1, . . . ,N represents the contours [τi − w∞, τi + w∞], τ ∈ R (33)

1

2πw

∫

L
s−1�S(s)eszds = τ

(2πw)N

∫

C1

. . .

∫

CN

N
∏

i=1

(
�(−ui)�i(ui)

c̃uii

)

× 1

2πw

∫ γ−w∞

γ+w∞
eszs

∑N
i=1 ui−1dsdu1du2 . . . duN

= τ

(2πw)N

∫

C1

. . .

∫

CN

N
∏

i=1

(
�(−ui)�i(ui)

c̃uii

)
z−
∑N

i=1 ui

�
(

1 −∑N
i=1 ui

)du1du2 . . . duN (34)
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Substituting (1+x)−a = 1
�(a)

∫

L �(s)�(a−s)x−sds in (37),

and applying 1
2π j

∫

L s
−aeszds = za−1

�(a) , the distribution of
|Hb|2 can be formulated as

P
(

|Hb|2 < t
)

= 1

π(2πw)2

∫

C1

∫

C2

�(u1)�(u2)
(

2σ 2
X

)u1
(

2σ 2
Y

)u2
tu1+u2

�
(

1
2 − u1

)

�
(

1
2 − u2

)

�(1 + u1 + u2)
2F1

(
1

2
− u1,−u1 − u2,

1

2
,
ν2

t

)

du1du2,

(38)

where 2F1(·) denotes the Gauss hypergeometric func-
tion [52]. Using the representation of the 2F1(·) hyperge-
ometric function in terms of Mellin-Barnes integrals [43],
we obtain (39) shown at the bottom of this page.
From (18), the outage probability for large N is obtained as

�(ρ,N) = P

(

|Hb|2 <
γth

N2ρ

)

. (40)

However, in the obtained current form, the distribution of
|Hb|2 in (39) involves an undermined form in the high-SNR
regime. When t → 0, more precisely, we have

lim
N→∞ lim

t→0

ν2t

σ 2
X

= lim
N→∞ lim

t→0

ν2t

σ 2
Y

= 0 × ∞. (41)

To circumvent this, we use the Euler-Gauss limit [52] for
Z ∈ { ν2

2σ 2
X
, ν2

2σ 2
Y
} as

Zs 

N�1

�(Z − s)

�(Z − 2s)
, (42)

Based on (42), we obtain (43), shown at the bottom of
this page. By applying [43, eq. (A.1)] to (43) and using the

identity �( 1
2 − u3) = �(−2u3)22u3+1√π

�(−u3)
, we obtain (22) after

some manipulations.
If the phase noise has a uniform distribution over [−π, π ],

we have 2F1(
1
2 − u2,−u1 − u2, 0) = 1 in (38), since ν = 0.

Substituting σ 2
X = σ 2

Y = 1
2N , and using the Euler-Gauss

limit [52]

Ns 

N�1

�(N − s)

�(N − 2s)
, (44)

we obtain

P
(

|Hb|2 < t
)

= 1

π(2πw)2

×
∫

C1

∫

C2

�(u1)�(u2)
�
(

1
2 − u1

)

�
(

1
2 − u2

)

�(1 + u1 + u2)

�(N − u1)

�(N − 2u1)

�(N − u2)

�(N − 2u2)
tu1+u2du1du2, (45)

which leads to (23) with the aid of [43, eq. (A.1)]. This
completes the proof.

APPENDIX C
It is worth noting that other performance metrics, includ-
ing the ergodic capacity, error probability and secrecy rate
can be addressed by leveraging the analytical methodol-
ogy developed in the paper. In particular, recalling (4), the
average bit error probability (ABEP) can be expressed as [50]

B = qp

2�(p)

∫ ∞

0
xp−1e−qx�

(
x

ρ
,N

)

dx, (46)

where p and q are modulation specific parameters. For
instance, (p, q) = (0.5, 1) denotes the binary shift keying
(BPSK), (p, q) = (0.5, 0.5) for coherent binary frequency
shift keying, and (p, q) = (1, 1) for differential BPSK. The
ABEP is evaluated by plugging (4) into (46) while resort-
ing to [52, eq. (3.351.3)] and [52, eq. (8.331.1)] to express
∫∞

0 z−
∑N
i=1 ui

2 +p−1e−qzdz = q

∑N
i=1 ui

2 −p�(p−
∑N

i=1 ui
2 ), thereby

yielding (47) shown at the top of the next page. Following
similar procedures as for (12) and (13), we can obtain the
ABEP asymptotic expansions by resorting to the residue
theorem [49].

P(|Hb|2 < t) = 1√
π(2πw)3

×
∫

C1

∫

C2

∫

C3

�(u1)�(u2)�(u3)
(

2σ 2
X

ν2t

)u1
(

2σ 2
Y

ν2t

)u2(−ν2
)u1+u2+u3

�
(

1
2 − u1 − u3

)

�(−u1 − u2 − u3)�
(

1
2 − u2

)

�(1 + u1 + u2)�
(

1
2 − u3

)

�(−u1 − u2)
tu3du1du2du3 (39)

P
(

|Hb|2 < t
)

= 1√
π(2πw)3

×
∫

C1

∫

C2

∫

C3

�(u1)�(u2)�(u3)
�
(

1
2 − u1 − u3

)

�(−u1 − u2 − u3)�
(

1
2 − u2

)

�(1 + u1 + u2)�
(

1
2 − u3

)

�(−u1 − u2)

�

(

ν2

2σ 2
X

− u1

)

�

(

ν2

2σ 2
X

− 2u1

)

�

(

ν2

2σ 2
Y

− u2

)

�

(

ν2

2σ 2
Y

− 2u2

)

( t

ν2

)u1+u2
(−t

ν2

)u3

du1du2du3 (43)
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B = τ

2�(p)
H0,1:m̃1 ,̃n1,...,m̃N ,̃nN

1,1:̃p1 ,̃q1,...,̃pN ,̃qN

⎡

⎢
⎣

c̃1
√
qρ

...

c̃N
√
qρ

∣
∣
∣
∣

(1 − p; 1, . . . , 1) : (1, 1), (δ1,�1)̃p1; . . . ; (1, 1), (δN,�N )̃pN
(0; 1, . . . , 1) : (ξ1, 
1)̃q1; . . . ; (ξN, 
N )̃qN

⎤

⎥
⎦ (47)
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Green Commun. Netw., vol. 5, no. 4, pp. 2027–2041, Dec. 2021.

[14] Z. Ding, R. Schober, and H. V. Poor, “On the impact of phase shifting
designs on IRS-NOMA,” IEEE Wireless Commun. Lett., vol. 9, no. 10,
pp. 1596–1600, Oct. 2020.

[15] A.-A. A. Boulogeorgos and A. Alexiou, “Performance analysis
of reconfigurable intelligent surface-assisted wireless systems and
comparison with relaying,” IEEE Access, vol. 8, pp. 94463–94483,
2020.

[16] S. Atapattu, R. Fan, P. Dharmawansa, G. Wang, J. Evans, and
T. A. Tsiftsis, “Reconfigurable intelligent surface assisted two–way
communications: Performance analysis and optimization,” IEEE Trans.
Commun., vol. 68, no. 10, pp. 6552–6567, Oct. 2020.

[17] D. Kudathanthirige, D. Gunasinghe, and G. Amarasuriya,
“Performance analysis of intelligent reflective surfaces for wireless
communication,” in Proc. IEEE Int. Commun. Conf., 2020, pp. 1–6.

[18] M.-A. Badiu and J. P. Coon, “Communication through a large reflect-
ing surface with phase errors,” IEEE Wireless Commun. Lett., vol. 9,
no. 2, pp. 184–188, Feb. 2020.

[19] P. Xu, G. Chen, Z. Yang, and M. Di Renzo, “Reconfigurable intelli-
gent surfaces-assisted communications with discrete phase shifts: How
many quantization levels are required to achieve full diversity?” IEEE
Wireless Commun. Lett., vol. 10, no. 2, pp. 358–362, Feb. 2021.

[20] X. Qian, M. Di Renzo, J. Liu, A. Kammoun, and M.-S. Alouini,
“Beamforming through reconfigurable intelligent surfaces in single-
user MIMO systems: SNR distribution and scaling laws in the presence
of channel fading and phase noise,” IEEE Wireless Commun. Lett.,
vol. 10, no. 1, pp. 77–81, Jan. 2021.

[21] L. Yang, Y. Yang, D. B. da Costa, and I. Trigui, “Outage probabil-
ity and capacity scaling law of multiple RIS-aided networks,” IEEE
Wireless Commun. Lett., vol. 10, no. 2, pp. 256–260, Feb. 2021.

[22] S. Li, L. Yang, D. B. da Costa, M. Di Renzo, and M.-S. Alouini, “On
the performance of RIS-assisted dual-hop mixed RF-UWOC systems,”
IEEE Trans. Cogn. Commun. Netw., vol. 7, no. 2, pp. 340–353,
Jun. 2021.

[23] T. Wang, G. Chen, J. P. Coon, and M.-A. Badiu, “Chernoff bound
and saddlepoint approximation for outage probability in IRS-assisted
wireless systems,” in Proc. IEEE Globecom Workshops, Dec. 2021,
pp. 1–5.

[24] T. Wang, G. Chen, J. P. Coon, and M.-A. Badiu, “Study of intel-
ligent reflective surface assisted communications with one-bit phase
adjustments,” in Proc. IEEE Globecom Workshops, Dec. 2020, pp. 1–6.

[25] Q. Tao, J. Wang, and C. Zhong, “Performance analysis of intelli-
gent reflecting surface aided communication systems,” IEEE Commun.
Lett., vol. 24, no. 11, pp. 2464–2468, Nov. 2020.

[26] L. Yang, F. Meng, Q. Wu, D. B. da Costa, and M.-S. Alouini,
“Accurate closed-form approximations to channel distributions of RIS-
aided wireless systems,” IEEE Wireless Commun. Lett., vol. 9, no. 11,
pp. 1985–1989, Nov. 2020.

[27] J. Lyu and R. Zhang, “Spatial throughput characterization for intel-
ligent reflecting surface aided multiuser system,” IEEE Wireless
Commun. Lett., vol. 6, no. 9, pp. 834–838, Jun. 2020.

[28] M. Jung, W. Saad, Y. R. Jang, G. Kong, and S. Choi, “Performance
analysis of large intelligent surfaces (LISs): Asymptotic data rate and
channel hardening effects,” IEEE Trans. Wireless Commun., vol. 19,
no. 3, pp. 2052–2065, Mar. 2020.

[29] Q.-U.-A. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, and
M.-S. Alouini, “Asymptotic max–min SINR analysis of reconfigurable
intelligent surface assisted MISO systems,” IEEE Trans. Wireless
Commun., vol. 19, no. 12, pp. 7748–7764, Dec. 2020.

[30] Z. Zhang, Y. Cui, F. Yang, and L. Ding, “Analysis and optimization
of outage probability in multi-intelligent reflecting surface-assisted
systems,” 2019, arXiv:1909.02193.

[31] I. Trigui, E. K. Agbogla, M. Benjillali, W. Ajib, and W.-P. Zhu,
“Bit error rate analysis for reconfigurable intelligent surfaces with
phase errors,” IEEE Commun. Lett., vol. 25, no. 7, pp. 2176–2180,
Jul. 2021.

[32] R. C. Ferreira, M. S. P. Facina, F. A. P. De Figueiredo, G. Fraidenraich,
and E. R. De Lima, “Bit error probability for large intelligent surfaces
under double-Nakagami fading channels,” IEEE Open J. Commun.
Soc., vol. 1, pp. 750–759, 2020.

[33] D. Selimis, K. P. Peppas, G. C. Alexandropoulos, and F. I. Lazarakis,
“On the performance analysis of RIS-empowered communications
over Nakagami-m fading,” IEEE Commun. Lett., vol. 25, no. 7,
pp. 2191–2195, Jul. 2021.

[34] H. Ibrahim, H. Tabassum, and U. T. Nguyen, “Exact coverage analysis
of intelligent reflecting surfaces with Nakagami-m channels,” IEEE
Trans. Veh. Technol., vol. 70, no. 1, pp. 1072–1076, Jan. 2021.

[35] J. Gil-Pelaez, “Note on the inversion theorem,”İ Biometrika, vol. 38,
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