
Received 15 January 2022; revised 19 February 2022; accepted 2 March 2022. Date of publication 14 March 2022; date of current version 25 March 2022.

Digital Object Identifier 10.1109/OJCOMS.2022.3158417

Workflow Makespan Minimization for Partially
Connected Edge Network: A Deep Reinforcement

Learning-Based Approach
KAIGE ZHU1,2, ZHENJIANG ZHANG 1,2, FENG SUN1,2, AND BO SHEN 1,2

1School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China

2Key Laboratory of Communication and Information Systems, Beijing Municipal Commission of Education, Beijing 100032, China

CORRESPONDING AUTHOR: Z. ZHANG (e-mail: zhangzhenjiang@bjtu.edu.cn)

This work was supported in part by the Fundamental Research Funds for the Central Universities under Grant 2020YJS020,

and in part by the National Natural Science Foundation of China under Grant 62173026.

ABSTRACT The ever advances in wireless communication and mobile networks have brought novel
workflow-formed applications, such as virtual reality and live-streaming, to our daily life. Arousing a
growing need for workflow execution efficiency. An edge network is widely considered a promising
way of bridging the gap between intensive resource demand and the limited computation capabilities of
mobile terminals. However, when an edge network is partially connected, ordinary workflow scheduling
algorithms suffer degradations as the data transmission time is prolonged. In this paper, we address the
challenge of workflow makespan minimization in a partially connected edge network. Contrary to the
general assumptions of a fully connected edge network, the edge servers under discussion are partly
interconnected but can be reached within limited hops by using different paths. Here, the placement of
interdependent tasks and selection of routing paths are two major factors that influence the makespan. We
first propose a critical path analysis based dynamic task sorting algorithm to determine the scheduling
order of tasks. Then the path quality is introduced as a reflection of path availability and is employed as
the major indicator in selecting disjoint subpaths. We further model the workflow scheduling process into
a Markov decision process and propose a reinforcement learning–based workflow embedding (RLWE)
scheme to minimize the makespan of the workflow. With the fine-trained agent, the proposed scheme can
coordinate the demand of computing resources and routing paths of interdependent tasks and provide a
near-optimal makespan of the workflow. Numerical results validate the feasibility of our proposed scheme
as its performance exceeds existing baselines with an improved quality of service in terms of makespan.

INDEX TERMS Workflow scheduling, edge computing, multipath routing, deep reinforcement learning.

I. INTRODUCTION

INTELLIGENT mobile edge devices have emerged in
recent years. With the further development of the hard-

ware, the computing capability of mobile devices increases
exponentially according to Moore’s law. These advances pro-
motes new paradigms of mobile applications such as virtual
reality (VR) [1] and live-streaming [2]. However, the com-
puting capability of the mobile devices is still insufficient for
these resource-intensive services [3], [4], thus further exacer-
bating the scheduling problems of interdependent functions
known as workflows.

Offloading resource-intensive tasks to edge servers for
further execution is now considered a promising solution
as the computational capability of edge servers is much
higher than that of mobile devices. As a supplement to
cloud computing, edge computing is proposed to reduce the
transmission delay by using task offloading. By sinking the
service to the edge of the network, edge computing can
provide computation service at the proximity to reduce the
transmission delay, this reduction is critical to some delay-
sensitive applications. In addition, the traffic of transmitted
data in the core network decreases significantly as tasks are

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

518 VOLUME 3, 2022

HTTPS://ORCID.ORG/0000-0003-0217-3012
HTTPS://ORCID.ORG/0000-0002-1040-1575

executed near the end-user. Currently, there are many task
offloading and resource allocation algorithms designed for
edge computing under different scenarios [1], [2], [5], but
research on workflow scheduling in edge networks is still
in its infancy [6]–[9].
Workflow scheduling earns its popularity alongside the

widespread use of cloud computing. Chang et al. [10] con-
clude that cloud–based workflow scheduling scenarios have
4 major issues as follows: (1) dispatching order of tasks
with dependency, (2) cloud resource allocation, (3) prediction
of task execution time, and (4) dispatching order under
deadline constraints. The authors propose a topological sort
based algorithm to determine the dispatching order while
employing rough set theory for execution time prediction.
Calheiros et al. [11] consider scientific workflow schedul-
ing with a time limit under a public cloud and propose
an algorithm that minimizes the cost of renting virtual
machines (VMs). Qin et al. [12], however, focus on the trade-
off between the makespan and the budget of the workflow
in a cloud network. The authors propose a multiobjective
reinforcement learning based scheme as the solution and
employ the Chebyshev scalarization function to coordinate
the weight selection problem. Owing to the resource hetero-
geneity, varied QoS constraints, and dynamic nature of the
cloud, traditional list-based workflow scheduling algorithms
can hardly be applied to the cloud environment without mod-
ification [13], [14]. Ambika et al. [13] resort to scheduling
the multiworkflow in a cloud environment with multiple QoS
parameters. The authors propose an enhanced metaheuristic
optimization technique to maintain a tradeoff among these
QoS parameters.
In regard to edge computing, the data transmission delay

is further nonnegligible and is becoming the major bot-
tleneck in optimizing the makespan of a workflow. The
cost and makespan minimization problem of workflows in
edge networks have been extensively studied in the recent
years [7], [9], [15]–[17]. Stavrinides et al. [16] study the
error propagation mechanism in the workflow in a fog
computing environment: the authors emphasize that when
imprecise evaluation of a task in the workflow exists, the
error is likely to be propagated to the task’s predecessor tasks
and its descendants, thus resulting in error in predicting the
actual makespan. The authors propose a partial computa-
tion and error propagation model and a dynamic scheduling
heuristic to lower the deadline miss ratio. Liu et al. [38]
developed a DAG scheduling algorithm in a homogeneous
edge network. The scheduling decisions are made accord-
ing to a dynamic-programming-based algorithm to minimize
the makespan of a DAG. In the authors’ work, tasks are
placed on multiple edge servers repeatedly to find the optimal
solution. Kanemitsu et al. [7] jointly optimize the energy
consumption and the makespan of multiple workflows. In
the authors’ work, a pseudo task is added as the entry point
of all workflows and the makespan is optimized in a cen-
tralized manner. Huang et al. [9] consider the security of the
mobile edge network and schedule the tasks under the threat

of malicious attacks. Here, the makespan and the encryption
level are jointly optimized to achieve a tradeoff between effi-
ciency and security. Xu et al. [15], focusing on workflow
scheduling in the cloud-fog scenario, propose an extended
PSO [18] algorithm by encoding each particle as a schedul-
ing plan that consider the number of interdependent tasks in
a workflow. An inertia weight updating mechanism is further
designed to balance the global and local abilities of parti-
cles. In these works, the data transmission of a workflow is
treated with the basic assumption that the network is fully
connected. Thus, the communication cost is turned into an
integer programming problem and is affected only by the
placement of tasks.
However, things become more complicated when the

network is partially connected. Edge servers that are not
directly connected can be reached within several hops from
multiple paths. Owing to the flexibility of the network topol-
ogy, it is very likely that multiple routing paths exist as
candidate transmission channels. Sun et al. [19] developed
a workflow makespan minimization algorithm designed
for partially connected networks with social groups where
general edge servers belonging to different subnetworks
can communicate only through joint servers. However, the
authors’ work ignores the data transmission on the edge
network but focuses solely on the placement of tasks. With
recent advancements in network management techniques
such as network function virtualization (NFV) and software-
defined networks (SDNs), multipath routing techniques have
received growing attention both academically and industri-
ally, not only because these techniques provide backup plans
when link outages occur [20] but also because these tech-
niques provide an emerging solution to improve network
efficiency [21], [22]. In [23], an optimization algorithm
was proposed to solve the task scheduling and multipath
data stream routing of a workflow by using dynamic pro-
gramming. However, the study failed to determine the
dispatching order of the tasks, and ignoring the congestion
of the same task during the multipath transmission further
degraded the performance of the algorithm. In contrast to
the aforementioned works, this paper emphasizes on solv-
ing the scheduling problem of tasks in the workflow and
the multipath routing problem of the tasks’ respective data
streams by using deep reinforcement learning. In our work,
the agent is trained to make decisions on task placement,
routing path selection and data segmentation.
We hereby define the workflow embedding problem as

follows. The workflow embedding on the edge is intended
to dispatch the interdependent tasks over computing-enabled
edge network infrastructure [24] and schedule their dataflow
accordingly. An efficient embedding of workflow is consid-
ered to have a short makespan and to involve a reasonable
usage of edge servers and network traffic [25].

In dealing with workflow embedding by multipath rout-
ing, the task scheduling order and the subpath selection are
supposed to be determined beforehand. We propose a crit-
ical path analysis based dynamic task sorting algorithm to

VOLUME 3, 2022 519

ZHU et al.: WORKFLOW MAKESPAN MINIMIZATION FOR PARTIALLY CONNECTED EDGE NETWORK

FIGURE 1. System model of workflow embedding.

determine the processing order of tasks. Here, the order of
tasks is updated dynamically according to the actual finish
time of the predecessor tasks. In regard to subpath selec-
tion, to avoid congestion of the data belonging to the same
task, we introduce a path quality indicator to save the most
valuable path when joint paths occur. The set of disjoint
paths is then employed as the sub-paths to transmit the data
in parallel. With this information clarified, the makespan
optimization problem is then transformed into a Markov
decision process (MDP). We propose a deep reinforcement
learning-based scheme to handle the dispatch of tasks and
the selection of subpaths.
In this paper, we propose a deep reinforcement learn-

ing based workflow embedding scheme named RLWE. Our
primary objective is to train an agent that can sched-
ule interdependent tasks of a workflow and coordinate the
multipath data transmission in a partially connected edge
network. Our contribution can be concluded as follows:
1) In this paper, we explore the workflow embed-

ding problem in a partially connected edge network. We
employ the multipath routing technique to improve the data
stream transmission efficiency between interdependent tasks.
A critical path analysis-based dynamic weighting scheme is
introduced to keep track of the change in the critical path
and to further instruct the multipath routing process. We
further propose a path selection algorithm to determine the
candidate routing paths.
2) We propose a deep reinforcement learning-based work-

flow embedding scheme that can coordinate the need for
computing resources, routing paths, and data segmentation.
By leveraging the multipath routing-based workflow embed-
ding strategy, the proposed algorithm utilizes suboptimal
paths for tasks with spare free floats and make way for
tasks with a tighter budget.
3) We conduct extensive experiments to evaluate

the performance of the proposed workflow embedding

algorithm. Numerical results validate that the proposed
RLWE can effectively reduce the makespan of a workflow
by leveraging the multipath routing strategy.
The remainder of this paper is concluded as follows.

Section II introduces the system model along with the for-
mulation of the workflow embedding problem. The proposed
workflow scheduling and data stream coordination is detailed
in Section III. The numerical results are shown and discussed
in Section IV. Finally, Section V concludes this paper.

II. SYSTEM MODEL OF WORKFLOW EMBEDDING
In this section, we present the system model shown in Fig. 1,
where the workflow model and the edge network model are
detailed and the workflow embedding problem is formulated.

A. WORKFLOW MODEL
The workflow is widely modeled as a directed acyclic
graph (DAG); i.e., GWF � (V,E), where V = {v1, . . . , vV}
is a set of interdependent tasks and E = {el,m|∀vl, vm ∈ V} is
a set of edges that reflects data dependencies. For each task
vl ∈ V, zl denotes the required number of floating-point oper-
ations measured in FLOPs. An edge el,m not only reflects
the data dependency between two corresponding tasks vl, vm
but also points in the direction of the data stream. Datal,m
denotes the weight of an edge that reflects the data stream
size from vl to vm and is measured in bits. Generally, for
edge el,m, vl is considered the predecessor task, as this task
is the source of the data stream, while vm denote the suc-
cessor task. A successor task can be executed only after it
receives the necessary data from all of its direct predecessor
tasks. Here, two functions are defined for better illustra-
tion: succ(v) denotes the set of the direct successor of task
v, and pred(v) denotes the set of task’s direct predecessor
tasks [12], [19].
Specifically, within a given workflow, the task with no

predecessor is considered the entry task ventry, while the

520 VOLUME 3, 2022

task with no successor is called the exit task vexit. For work-
flows with multiple-entry or multiple-exit tasks, a pseudo
entry task vp−ent and a pseudo exit task vp−exit are added
to the predecessor of ventry and successor of vexit respec-
tively [19], [23], [26]. Since vp−ent and vp−exit are tasks
with zero execution and transmission costs, this modifica-
tion does not affect the scheduling process. In this paper, we
also extend the interdependent task set V with the pseudo
entry task and pseudo exit task, and the extended task set is
denoted as V′ = V ∪ {vp−ent, vp−exit}. Such a method is also
applied to extend the single-workflow algorithms to multi-
workflow scenarios [7]; such an application is beyond our
discussion.

B. NETWORK MODEL
Since the edge network under discussion is not fully con-
nected, we model the partially connected network as an
undirected graph GNet � (N,�) where N = {n1, . . . , nN}
denotes the set of edge servers and � = {ϕi,j|∀ni, nj ∈ N}
denotes a set of communication links that reflects the con-
nectivity of servers. For each edge server ni ∈ N, fi denotes
the edge server’s processing power measured in FLOP/s. For
each link ϕi,j where ni, nj ∈ N, Bi,j denotes the throughput
in bits/s.

C. WORKFLOW EMBEDDING
In this paper, we refer to workflow scheduling and the
multipath routing of the respective data stream as workflow
embedding. The basic settings of the problem are detailed
as follows.
F denotes the workflow scheduling function, and F l

n indi-
cates that task vl is offloaded to edge server n. According
to the workflow model GWF and network model GNet, the
execution time Texe(F l

n) can be defined as Eq. (1).

Texe
(
F l
n

)
= zl
fn

(1)

In special cases where vl = vp−ent or vl = vp−exit, since the
required computation resource of the task is 0, the execution
time is also set as 0.
Even though the network is partially connected, multiple

paths are likely to be found to reach the destination edge
server through limited hops. However, in this paper, we
roughly ignore the routing details and treat the subpaths as a
whole. Denoting Pi,j as the set of paths from ni to nj. A sub-
path p = {ϕi,x, . . . , ϕy,j} is defined as a set of links arranged
in the routing order. Obviously, when the data stream under
transmission is divisible, we can split the data into segments
and transmit them in parallel through multiple paths. There
are already studies on router level multi-path routing tech-
niques [27]–[29], and the advancement in segment routing
further proves its practical feasibility [29]. Inconsistent with
the basic assumptions in [23], we consider a scenario where
task vl is executed on ni and one of the task’s successor
tasks vm is scheduled to nj, denoting p ∈ Pi,j as one of the
subpaths, and αp denotes the ratio of the respective segment.

The segment of the data stream from task vl to vm in subpath
p is hereby defined as Eq. (2).

segpl,m = Datal,m ∗ αp (2)

We define the equivalent bandwidth of a subpath Bpeq as
Eq. (3).

Bpeq = 1/
∑

ϕx,y∈pi,j

(
1

Bx,y

)
(3)

where x and y are the adjacent edge servers nx and ny,
respectively, on the subpath; and where ϕx,y represents the
respective link.
Assuming a scheduled task vl is executed on nj with the

task’s predecessor task vp executed on ni, the transmission
cost of the respective data stream Ttrans(F l

j) can be calculated
as the maximum transmission time of the segments as shown
in Eq. (4). Apparently, if the two tasks are scheduled on the
same server, we have p = ∅. Specifically, when the scheduled
task vl is the pseudo entry task vp−ent, the data in need
of transmission are Datap−ent,entry= 0, and the transmission
time is 0. Similarly, when the predecessor task pred(vl) =
vp−exit, its transmission time is also set as 0 for the same
reason.

Ttrans
(
F l
j

)

=

⎧
⎪⎨
⎪⎩
max ∀p ∈ Pi,j

vp ∈ pred(vl)

[
segpp,l
Bpeq

]
, if i �= j

0, if i = j, vl = vp−ent or vp = vp−exit
(4)

The earliest finish time (FT) of task vl is influenced by the
earliest finish time of the task’s predecessor tasks together
with their respective transmission cost and the task’s own
execution time on the edge server.

FT(vl)

=
⎧
⎨
⎩
Texe

(
F l
j

)
, if pred(vl) = ventry

max∀vp∈pred(vl)
[
FT

(
vp

) + Ttrans(F l
j)

]
+ Texe

(
F l
j

)
, else

(5)

Hence, the makespan of the workflow is defined as the
maximum earliest finish time of the extended task set V′.

makespan = max
vl∈V′ FT(vl). (6)

D. PROBLEM DEFINITION
After all of the tasks in V′ are scheduled, we can obtain
the makespan of the workflow accordingly. The goal of this
paper is to minimize the makespan of the workflow and the
optimization problem can be formulated as follows:

P : min
F v
n , p, αp

makespan

s.t. C1 : 1 > αp > 0,∀p ∈ Pi,j
C2 :

∑
p∈Pi,j

αp = 1,∀ni, nj ∈ N (7)

VOLUME 3, 2022 521

ZHU et al.: WORKFLOW MAKESPAN MINIMIZATION FOR PARTIALLY CONNECTED EDGE NETWORK

where constraint C1 states that the ratio of a segment is
between [0, 1] and C2 ensures that all segments of a data
stream are allocated to the respective subpath.

III. DEEP REINFORCEMENT LEARNING BASED
WORKFLOW EMBEDDING
Apparently, the decision of task scheduling and data stream
routing are closely coupled. To tackle the complicated NP-
hard workflow embedding problem, we propose a deep
reinforcement learning based scheme. Before tackling the
intended workflow embedding problem, several preparation
works of task scheduling order and subpath filtering should
be made to improve the training efficiency.

A. CRITICAL PATH ANALYSIS BASED DYNAMIC TASK
SORTING
Several algorithms are designed for the static scheduling of
a workflow. List scheduling is considered the most classical
approach. However, dynamic scheduling results may deviate
from the original prediction, letting alone the transmission
varies significantly with different routing subpath. However,
the related concept can be absorbed to determine the task
scheduling order.
The tasks of the workflow are first grouped based on the

topology order. However, unlike the typical topological sort-
ing algorithm, when multiple tasks with zero in-degree exist,
these tasks will be stored as a set. Thus the result of such
sorting is an ordered combination of task sets. Apparently,
scheduling the tasks of the same set will not violate the
dependency of tasks if all of the tasks in the former set are
scheduled. However, the makespan can be further improved
with the actual scheduling results.
To estimate the scheduling order of the tasks, the impor-

tance of each task will be evaluated statically. Let favg denote
the average processing power of all edge servers and Bavg
denote the average bandwidth between each link; then, the
execution time and the single-path transmission time can be
estimated as Eqs. (8) and (9) respectively.

T̂exeavg(vl) = zl
favg

(8)

T̂ transavg (vl, vm) = Datal,m
Bavg

(9)

Then the estimated earliest start time and earliest finish
time of vl are defined as:

ÊSl =
{

0, if pred(vl) = ∅
max

[
ÊFp + T̂ transavg

(
vp, vl

)]
, otherwise

(10)

ÊFl =
{
T̂exeavg(vl), if pred(vl) = ∅
ÊSl + T̂exeavg(vl), otherwise

(11)

where vp denotes the set of predecessors of task vl.
After all of the estimated earliest start and finish times

are calculated, the estimated latest start and finish times can
be derived as:

L̂Sl = L̂Fl − T̂exeavg(vl) (12)

L̂Fl =
{
ÊFl, if succ(vl) = ∅
min

[
L̂Ss − T̂ transavg (vl, vs)

]
, otherwise

(13)

where vs denotes the set of successors of task vl.
Consequently, the free float, defined as the maximum

delay before postponing the successor tasks, is calculated
as Eq. (14). The total float [30], a crucial indicator of the
maximum delay tolerance of a path is noted as Eq. (15)

Free Float(vl) = min
(
ÊSs − ÊFl

)
, vs ∈ succ(vl) (14)

Total Float(vl) = L̂Fl − ÊFl (15)

Thus, the tasks in the same set can be further sorted
according to the inverse order of their respective free float.
However, when the task is scheduled to an edge server,

the execution time and data transmission time are changed
accordingly. To track the influence of the scheduling con-
sequence on actual execution time, we promptly update
the free float and the order of tasks in the next batch by
replacing the estimated time with the actual execution and
transmission time.
A path of a DAG is often defined as a series of sequential

nodes and edges that start with the entry node and sink to the
exit node. Among these paths, only the one (or ones) with
the longest execution and communication cost is defined as
the critical path [25]. We can easily obtain the estimated
critical path according to the total float of a path. Hence,
some of the path’s features can be utilized to improve the
exploration efficiency of the proposed deep reinforcement
learning scheme.
Proposition: Tasks on the same critical path are exe-

cuted on the same edge server with the highest processing
capability.
Proof: Let T∗

crit[entry,exit] be the makespan of the criti-
cal path when all of the tasks on the critical path are
executed on the edge server with the highest processing
capability nmax. If there is an alternative decision to sched-
ule task vi, vi ∈ critical path and its successor tasks
on n′, the changed makespan is T ′

critical = T∗
crit[entry,i] +

Ttrans(F i
n′) + T ′

crit[i,exit]. If the makespan is reduced, then
Ttrans(F i

n′) + T ′
crit[i,exit] ≤ T∗

crit[i,exit]; because the transmis-
sion cost is Ttrans(F i

n′) > 0, we have T ′
crit[i,exit] < T∗

crit[i,exit].
This result conflicts with the condition that fnmax > fn′ .Thus,
the proposition stands.
Algorithm 1 shows the details of the proposed task sorting

scheme.

B. PATH QUALITY-BASED ROUTING PATH SELECTION
When the placement of adjacent tasks is determined, the
upcoming problem is to find proper routing paths for data
stream transmission.
First, we use the RPF algorithm proposed in [23] to find

all the possible paths from two edge servers. However, these
paths are hardly to be disjoint, thus leading to the potential
risk of congestion during the multipath routing phase. In
this paper, we propose a path selection scheme and take
path quality as the major indicator.

522 VOLUME 3, 2022

TABLE 1. Algorithm for dynamic task sorting.

A higher routing hop indicates that more links are included
in the path, thus resulting in lower parallelism and a higher
congestion probability. A lower bandwidth brings extra trans-
mission costs. Thus, the path quality qi,j(·) is designed
as the reflection of the path length and equivalent band-
width. Obviously, paths with a higher quality achieve a better
tradeoff between throughput and link usage.

qi,j(p) = 1
∑

ϕx,y∈pi,j
(

1
Bx,y

)
∗ ‖p‖

(16)

where ‖p‖ denotes the number of links in path p.
For a data transmission task with multiple paths, the path

with the best quality is considered as the major path and is
treated as the benchmark to choose the rest of the disjoint
paths. This process is executed recursively until we obtain all
of the disjoint paths. The routing path selection is detailed
in Algorithm 2.

C. DEEP DETERMINISTIC POLICY GRADIENT-BASED
WORKFLOW EMBEDDING
In this paper, we consider a deep reinforcement learn-
ing approach to deal with the MDP featured optimization

TABLE 2. Algorithm for routing path selection.

problem P. We construct a deep deterministic policy gradi-
ent (DDPG)-based workflow embedding scheme.
We believe deep reinforcement learning is an ideal

approach that fits well in solving the proposed workflow
embedding problem because the approach is model-free
and relies lightly on accurate system models [27], thereby
making it capable of dealing with systems with complex
mechanisms and high dimensional behaviors.
A typical reinforcement learning architecture has basically

three fundamental elements: state, action, and reward [31].
In this paper, these elements are defined as follows:
State Space: The state is defined as the reflection of

the predecessor tasks vpand the current task vl. �ki denotes
the in-degree of task vk. Since the number of prede-
cessor tasks varies with different tasks, to include the
required information of the current task, the information
of the predecessor task is defined as a 1 × (�in + 1) vec-
tor, where �in = max

vk∈V′ (�ki) represents the maximum
in-degree of all tasks. Thus, the predecessor information
is defined as Ipred = [(idxp1,EFp1

,Datap1,l)1
, . . . ,

(idxp�i
,EFp�i

,Datap�i ,l
)�i , idxC], were, idxC is the index of

the edge server; this index indicates where the last task on
the critical path is scheduled. Specifically, if none of the pre-
decessor tasks of the current task is on the critical path, idxC
is set to 0. Each tuple in Ipred corresponds to the information
of a predecessor task; this information includes idxl, which
denotes the index of its location of the edge server; EFl,
which denotes the actual earliest finish time of the corre-
sponding task; and Datal, which denotes the size of data
to be transmitted. Obviously, if the number of predecessor
tasks of the current task is less than �i, the rest of the tuples
are set as (0, 0, 0). The information on the current task is a
combination of the required processing power zl and a binary
indicator C representing whether the current task belongs to
the critical path. Thus the state space is a combination of

VOLUME 3, 2022 523

ZHU et al.: WORKFLOW MAKESPAN MINIMIZATION FOR PARTIALLY CONNECTED EDGE NETWORK

predecessor and current task information and is given as
s = [Ipred, zl, C].
Action Space: In this paper, the action consists of three

parts, the placement of the current task, the selection of the
routing paths from predecessor tasks, and the data segment
ratio of subpaths. Denoting idxl as the decision of place-
ment of the current task; that is, the task is offloaded to
nidxl . In regard to routing path and data segmentation, to
make the output compatible with the input of predecessor
tasks, we use the path selection result of algorithm 2. Let
ξ denote the maximum number of sub-paths for all of the
path sets in Pi,j, then, the decision of the multipath rout-
ing phase is defined as a �i × ξ matrix and is given as
� = [[α1

1, . . . , α
ξ
1]1, . . . , [α1

�i
, . . . , α

ξ
�i]�i

]. Each element in
� is related to the predecessor in the corresponding position
of the state. Thus, for tasks with an in-degree less than �i, the
corresponding element in � is a full zero vector. Similarly,
if the number of subpaths is less than ξ , zero padding is
employed. Hence, the action is defined as a = [idxl,�].
Reward: During each step, a certain reward r(s, a) will be

obtained under state s after jointly executing action a. Since
the objective of problem P is to minimize the makespan of
the whole workflow while the goal of reinforcement learning
lies in learning a policy for the agent that leads to maximum
long-term reward, the reward should function as positively
correlated with the actual improvement of the makespan.
With ÊFl indicate the estimated earliest finish time of task
vl if all of the tasks are executed on a pseudo edge server with
average processing ability and the data stream is transmitted
on a pseudo link with the average bandwidth of the real
network. The reward is defined as Eq. (17).

rn =
⎧⎨
⎩
e

(
ÊFl
EFl

−1
)
, if EFl < ÊFl

−e
(
EFl
ÊFl

−1
)
, otherwise

(17)

Notably, the order of the tasks mentioned in the state
space follows the sorting result of Algorithm 1, Line 16. The
scheduling and routing decision of the current task mostly
affects the earliest finish time of the predecessor task of its
successor tasks.
However, the number of possible state-action pairs is still

unimaginably large, and the ratio of the data segment of
subpaths is a continuous variable. It is impractical to enu-
merate all the possible conditions and store them in an
immense Q-table. In this paper, we resort to using DDPG,
a reinforcement learning scheme designed for continuous
action.
The DDPG algorithm is based on the Q value and absorbs

the experiences in actor-critic. Denoting μ as the current
policy parameterized by θμ, the expected reward is defined
as Eq. (18).

Qμ(st, at) = E
[
r(st, at) + γQμ

(
st+1, μ(st+1, θ

μ
)]

(18)

where st+1 is the according state after executing action
μ(st, θ

μ), and γ is the discount factor ranging from [0, 1]
to emphasize the influence of the long-term reward.

To evaluate the performance of the learned policy, a
performance function Iβ(μ) is employed; this function is
shown as Eq. (19).

Iβ(μ) = Es∼ρβ

[
Qμ(s, μ(s))

]
(19)

where ρβ is defined as the probability density function of
the state s.

Like most deep reinforcement learning frameworks, the
goal of training is to find a policy μ to maximize Iβ(μ)

while minimizing the loss function L [32].

L = Es,a,r,s′
[(
Qμ

(
s, a|θQ

)
− y

)2
]

(20)

After obtaining action from the target actor network μ′, the
reward obtained from the target network Q′ can be derived
as Eq. (21).

y = r + γQ′(st+1, μ
′(st+1, θ

μ′)|θQ′)
(21)

Hence, the policy gradient is calculated according to the
sampled K experiences.

∇θμIβ(μ) = 1

K

∑
i

(
∇aQ

(
s, a|θQ

)
|
s=si,a=μ(si)

∗∇θμμ
(
s|θμ

)|s=si
)

(22)

Notably, the selection of routing paths is a major influence
of transmission time and the earliest finish time of the cor-
responding task. In the context of multi-path routing, higher
parallelism not only indicates less data transmission time,
but also brings a latent risk of network congestion. Thus
the network congestion level directly affects the designed
reward. By leveraging deep reinforcement learning as an
experience-driven congestion avoidance approach, the agent
is expected to learn from the previously perceived history
of feedback from the environment. Such history is consid-
ered to contain information about network utility and can be
further exploited for routing path selection of the successor
tasks [33].
Obviously, by modeling the workflow embedding operator

as an agent, the proposed RLWE scheme still suffers from
sparsity in experience because some of the edge servers have
seldom been used. To handle this issue, we propose chang-
ing the exploration process by adding the OU noise after
the action is taken according to the current policy. Thus,
edge servers and subpaths that join the workflow less fre-
quently are likely to be explored with probability ε. With the
modified exploration process included, the proposed RLWE
algorithm is supposed to be trained to explore and exploit
with higher efficiency. Algorithm 3 shows the details of the
proposed scheme.
By using the deep reinforcement learning-based workflow

embedding scheme, the agent can coordinate the demand
of computing resources and routing paths of interdependent
tasks in a workflow.

524 VOLUME 3, 2022

TABLE 3. Deep Reinforcement Learning-Based Workflow Embedding

IV. NUMERICAL RESULTS
In this section, we conduct a series of simulations to validate
the feasibility of the proposed RLWE scheme.

A. EXPERIMENTAL SETUP
Inconsistent with the network setup in [23], in our simu-
lation, we set 10 edge servers in the fully connected edge
network with their respective processing power randomly
sampled at [20, 40] Gflop/s, while the bandwidth is randomly
sampled at [30, 80] Mbit/s as the benchmark network. All of
the simulations are performed on a desktop with an I7-7700K
CPU operating at 4.2GHz and 16GB memory. The proposed
algorithms are implemented by Python 3.6 and TensorFlow
1.14.

B. PERFORMANCE EVALUATION
1) VERIFICATION OF SUBPATH SELECTION

To evaluate the feasibility of the proposed subpath selec-
tion algorithm, we create a new edge network based on the
benchmark network with links of the edge servers randomly
eliminated but ensure that the servers can communicate with
each other within limited hops. We create four groups of

FIGURE 2. Average completion time of three different subpath selection strategies.

workflows, each consecutively consisting of 10, 40, 60,
and 120 task nodes. For each group, we randomly gen-
erate 50 workflows and calculate the average makespan of
each subpath selection strategy. The required computational
resources are uniformly distributed between [2, 6] gigaflops
while the data under transmission are scaled to [5, 10] Mbits.

We consider the following two multipath routing rules as
the baseline.
Top-k: Select the top k = ξ/3 subpaths in terms of their

equivalent bandwidth.
Softmax-k [34]: Compute the softmax values σi = eωi∑ξ

j=1 e
ωj

for each subpath j; then, randomly choose k = ξ/3 subpaths
according to the probability distribution [σi(ω)]ξi=1.
Fig. 2 is an illustration of the simulation result. All three

agents are trained with the learning rate set as cosine anneal-
ing with warm restarts from 10−3 to 10−6, and their upper
bounds decrease exponentially.
Fig. 2 shows that the proposed RLWE outperforms the

top-K and Softmax-K methods over all four batches of
workflows, with average improvements of 8.97% and 8.48%
respectively. Such improvement over the baseline increases
when the workflow scales up. This is because the RLWE
can effectively coordinate the routing paths when multiple
tasks are scheduled, thus minimizing the influence of conges-
tions during multipath data transmission. Notably, the top-K
outperforms Softmax-K on the batch where the number of
tasks is 10 but is at a disadvantage on the rest of the batches.
This finding can also be analyzed from the data transmission
perspective. With fewer tasks included, it is less likely to
route data simultaneously, in such circumstances, selecting
paths with the best quality is obviously a better choice com-
pared with random selection. However, when the workflow
scales up, the path selection strategy with perturbation is an
effective way of avoiding the congestion.

2) PERFORMANCE EVALUATION OF THE PROPOSED
WORKFLOW EMBEDDING ALGORITHM

We further evaluate the proposed RLWE algorithm by using
real-world workflows. Three different structures of the work-
flow named CyberShake, Montage, and EpiGenomics are

VOLUME 3, 2022 525

ZHU et al.: WORKFLOW MAKESPAN MINIMIZATION FOR PARTIALLY CONNECTED EDGE NETWORK

FIGURE 3. Overview of three workflow structures.

TABLE 4. Details of the benchmark workflows.

implemented in our simulation. All of these workflows are
extracted from real-world scientific applications [35]–[37].
CyberShake is a data-intensive application used to charac-
terize earthquake hazards by generating probabilistic seismic
hazard curves for a certain area. Montage is an input/output
(I/O)-intensive application designed to generate custom
mosaics of the sky by using input images in the FITS format.
EpiGenomics is a CPU-intensive workflow for mapping the
epigenetic state of human cells on a genome-wide scale. All
of these applications are provided in the XML format and
can be converted to the DAG-formed workflow with the help
of workflow management system framework tools such as
Pegasus [35], [37]. Fig. 3 and Table 4 are the illustration of
these workflows and details of the workflow implemented
in our simulation respectively.
To verify the effectiveness of our proposed RLWE scheme,

we choose the following algorithms as the baseline: two
single-path workflow scheduling algorithms named FixDoc
and HEFT and a multipath workflow embedding algorithm
named DPE.
DPE [23]: A workflow embedding algorithm designed

for a partially connected edge network. Tasks with the same
predecessor tasks are scheduled in random order, and all of
the possible paths (noted as simple paths) are utilized for
data transmission. The placement of tasks and the splitting
ratio are determined by employing dynamic programming
and matrix analysis.
FixDoc [38]: A DAG scheduling algorithm with fixed

edge server configuration. Tasks are offloaded to homoge-
neous edge servers according to a dynamic-programming
based algorithm to minimize the makespan of a DAG. Here,
tasks are likely to be placed on multiple edge servers
repeatedly to find the optimal solution.
HEFT (Heterogeneous Earliest-Finish-Time) [26]: A clas-

sic algorithm based on topological sorting of workflow.
The average execution time of each task and the average
communication time are used to estimate the earliest finish
time of the tasks. Task priorities are further allocated stati-
cally according to the estimated earliest finish time and are
assigned to the servers heuristically.

1) Analysis on different network connectivity: Four new
networks are created based on benchmark networks with
25%, 50%, 75%, and 100% of their links reserved. The
simulation result is shown in Fig. 4.
In Fig. 4, we find that the makespan of the workflows is

negatively related to the connectivity of the network. This
can be explained from the data transmission perspective.
With the increment of the network connectivity, more routing
subpaths are available during the multipath routing phase,
thereby extending the throughput of the links and further
avoiding the possibility of congestion. Notably, FixDoc and
HEFT are single-path routing algorithms; thus, they benefit
less when the connectivity of the network is above 50%.
DPE and the proposed RLWE share a similar trend when
the network connectivity increases because both of them can
use multiple subpaths to further decrease the transmission
time of the data stream. However, the advantage of RLWE
over DPE lies in two parts, the task scheduling order and
the congestion avoidance mechanism.
Concerning the performance evaluation on different char-

acteristics of the workflows, as a data-intensive application,
CyberShake (Fig. 4-a) is more sensitive to the change in
connectivity of the network, while the I/O-intensive Montage
(Fig. 4-b) and CPU-intensive EpiGenomics (Fig. 4-c) change
slightly. These differences explain why the improvement
of RLWE with the increment of the network connectiv-
ity is higher on CyberShake than that on Montage and
EpiGenomics.
2) Analysis on the different number of edge servers: To

evaluate the performance of the RLWE when the network
scales up, workflows are implemented on edge networks
consisting of 4, 7, 10, and 13 edge servers with 50%
of their links reserved. The simulation result is shown in
Fig. 5.
It is observable that for workflows with higher parallelism

(CyberShake in Fig. 5-(a) and Montage in Fig. 5-(b)), the
execution time becomes the major bottleneck. The makespan
of both single-path and multipath algorithms are high. All
of the algorithms share a similar decreasing trend when
the network scales up. This is because, with more edge
servers available, more tasks can be handled simultaneously.
Moreover, an increasing number of edge servers leads to
higher connectivity of the network, thus providing poten-
tial subpaths with higher efficiency. This explains the reason
why multipath routing algorithms DPE and RLWE bene-
fit more than single path algorithms. The results show that
the proposed RLWE overwhelms the baseline in terms of
makespan.
3) Analysis of different bandwidths: We further evaluate

the effectiveness of the proposed approach on networks with
different bandwidths. We change the average bandwidth as
35, 45, 55, and 65 Mbits/s respectively.
Fig. 6 reveals the influence of the bandwidth. An increas-

ing bandwidth of links will save more transmission time,
and the makespan of all algorithms is reduced consequently.
Obviously, single-path algorithms FixDoc and HEFT benefit

526 VOLUME 3, 2022

FIGURE 4. Makespan of workflows under different network connectivities. (a) CyberShake (b) Montage (c) EpiGenomics.

FIGURE 5. Makespan of workflows under different number of edge servers. (a) CyberShake (b) Montage (c) EpiGenomics.

FIGURE 6. Makespan of workflows under different bandwidths. (a) CyberShake (b) Montage (c) EpiGenomics.

more than those multipath-based algorithms. Nonetheless,
the proposed RLWE outperforms all the baselines.

V. CONCLUSION
This paper focuses on the workflow embedding problem
with interdependent task scheduling and multipath rout-
ing in a partially connected edge network. We propose
a free-float based topology sorting method to determine
the scheduling order of tasks and a filtering algorithm
for selecting routing paths between edge servers. We
further propose a deep reinforcement learning-based work-
flow embedding algorithm RLWE to solve the problem.

Experimental results on real-world workflows show that
our proposed RLWE can coordinate the data stream
of interdependent tasks and can effectively reduce the
makespan of the workflow through multipath routing. The
result also reflects that the RLWE outperforms base-
lines, i.e., DPE, FixDoc and HEFT in terms of makespan
reduction.

REFERENCES
[1] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service entity

placement for social virtual reality applications in edge computing,”
in Proc. IEEE INFOCOM, 2018, pp. 468–476.

VOLUME 3, 2022 527

ZHU et al.: WORKFLOW MAKESPAN MINIMIZATION FOR PARTIALLY CONNECTED EDGE NETWORK

[2] F. Wang et al., “Intelligent edge-assisted crowdcast with deep rein-
forcement learning for personalized QoE,” in Proc. IEEE INFOCOM,
2019, pp. 910–918.

[3] Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies for
Internet of Things: A primer,” Digit. Commun. Netw., vol. 4, no. 2,
pp. 77–86, 2018.

[4] M. T. Beck, M. Feld, S. Werner, and T. Schimper, “Mobile edge
computing: A taxonomy,” in Proc. 6th Int. Conf. Adv. Future Internet,
2014, pp. 48–55.

[5] J. Xu and S. Ren, “Online learning for offloading and autoscaling in
renewable-powered mobile edge computing,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), 2016, pp. 1–6.

[6] T. Dhand, A Unified Framework for Service Availability and Workflow
Scheduling in Edge Computing Environment, Thapar Univ., Patiala,
Punjab, 2017.

[7] H. Kanemitsu, M. Hanada, and H. Nakazato, “Multiple workflow
scheduling with offloading tasks to edge cloud,” in Proc. Int. Conf.
Cloud Comput., 2019, pp. 38–52.

[8] Y. Zhang, Z. Zhou, Z. Shi, L. Meng, and Z. Zhang, “Online
scheduling optimization for DAG-based requests through reinforce-
ment learning in collaboration edge networks,” IEEE Access, vol. 8,
pp. 72985–72996, 2020.

[9] B. Huang, Y. Xiang, D. Yu, J. Wang, Z. Li, and S. Wang,
“Reinforcement learning for security-aware workflow application
scheduling in mobile edge computing,” Security Commun. Netw.,
vol. 2021, May 2021, Art. no. 5532410. [Online]. Available:
https://doi.org/10.1155/2021/5532410

[10] Y.-S. Chang, C.-T. Fan, R.-K. Sheu, S.-R. Jhu, and S.-M. Yuan, “An
agent-based workflow scheduling mechanism with deadline constraint
on hybrid cloud environment,” Int. J. Commun. Syst., vol. 31, no. 1,
2018, Art. no. e3401.

[11] R. N. Calheiros and R. Buyya, “Meeting deadlines of scien-
tific workflows in public clouds with tasks replication,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 7, pp. 1787–1796,
Jul. 2014.

[12] Y. Qin, H. Wang, S. Yi, X. Li, and L. Zhai “An energy-aware schedul-
ing algorithm for budget-constrained scientific workflows based on
multi-objective reinforcement learning,” J. Supercomput., vol. 76,
no. 1, pp. 455–480, 2020.

[13] A. Aggarwal, P. Dimri, A. Agarwal, M. Verma, H. A. Alhumyani,
and M. Masud, “IFFO: An improved fruit fly optimization algorithm
for multiple workflow scheduling minimizing cost and makespan in
cloud computing environments,” Math. Problems Eng., vol. 3, pp. 1–9,
Jun. 2021.

[14] A. Aggarwal, P. Dimri, and A. Agarwal, “Survey on scheduling
algorithms for multiple workflows in cloud computing environ-
ment,” Int. J. Comput. Sci. Eng., vol. 7, no. 6, pp. 565–570,
2019.

[15] R. Xu et al., “Improved particle swarm optimization based workflow
scheduling in cloud-fog environment,” in Proc. Int. Conf. Bus. Process
Manage., 2018, pp. 337–347.

[16] G. L. Stavrinides and H. D. Karatza, “Orchestrating real-time IoT
workflows in a fog computing environment utilizing partial compu-
tations with end-to-end error propagation,” Clust. Comput., vol. 24,
pp. 3629–3650, Jul. 2021.

[17] K. Matrouk and K. Alatoun, “Scheduling algorithms in fog computing:
A survey,” Int. J. Netw. Distrib. Comput., vol. 9, no. 1, pp. 59–74,
2021.

[18] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
Int. Conf. Neural Netw., 1995, pp. 1942–1948.

[19] J. Sun, L. Yin, M. Zou, Y. Zhang, T. Zhang, and J. Zhou,
“Makespan-minimization workflow scheduling for complex networks
with social groups in edge computing,” J. Syst. Archit.,
vol. 108, Sep. 2020, Art. no. 101799. [Online]. Available:
https://doi.org/10.1016/j.sysarc.2020.101799

[20] F. Aubry, S. Vissicchio, O. Bonaventure, and Y. Deville, “Robustly
disjoint paths with segment routing,” in Proc. 14th Int. Conf. Emerg.
Netw. Exp. Technol., 2018, pp. 204–216.

[21] Q. Wang, J. Xue, G. Shou, Y. Liu, Y. Hu, and Z. Guo, “Implementation
of multipath network virtualization scheme with SDN and NFV,”
in Proc. IEEE 28th Annu. Int. Symp. Personal Indoor Mobile Radio
Commun. (PIMRC), 2017, pp. 1–6.

[22] T. Pham and L. M. Pham, “Load balancing using multipath routing
in network functions virtualization,” in Proc. IEEE Int. Conf. Comput.
Commun. Technol. Res. Innov. Vis. Future (RIVF), 2016, pp. 85–90.

[23] H. Zhao, S. Deng, Z. Liu, Z. Xiang, and J. Yin, “Placement
is not enough: Embedding with proactive stream mapping on the
heterogenous edge,” 2020, arXiv:2012.04158.

[24] M. Melnik and D. Nasonov, “Workflow scheduling using neu-
ral networks and reinforcement learning,” Procedia Comput. Sci.,
vol. 156, pp. 29–36, Jan. 2019.

[25] Y.-K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An
effective technique for allocating task graphs to multiprocessors,”
IEEE Trans. Parallel Distrib. Syst., vol. 7, no. 5, pp. 506–521,
May 1996.

[26] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.

[27] Z. Xu et al., “Experience-driven networking: A deep reinforcement
learning based approach,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), 2018, pp. 1871–1879.

[28] T. Braud, P. Zhou, J. Kangasharju, and P. Hui, “Multipath computation
offloading for mobile augmented reality,” in Proc. IEEE Int. Conf.
Pervasive Comput. Commun. (PerCom), 2020, pp. 1–10.

[29] Y. Tian et al., “Traffic engineering in partially deployed segment rout-
ing over IPv6 network with deep reinforcement learning,” IEEE/ACM
Trans. Netw., vol. 28, no. 4, pp. 1573–1586, Aug. 2020.

[30] Y. Y. Yuan, X. Li, Q. Wang, and X. Zhu, “Deadline division-based
heuristic for cost optimization in workflow scheduling,” Inf. Sci.,
vol. 179, no. 15, pp. 2562–2575, 2009.

[31] S. Thrun and M. L. Littman, “Reinforcement learning: An introduc-
tion,” AI Mag., vol. 21, no. 1, p. 103, 2000.

[32] K. Zhu, Z. Zhang, and M. Zhao, “Auxiliary-task based resource
orchestration in mobile edge computing,” IEEE Trans. Green Commun.
Netw., to be published.

[33] N. Jay, N. H. Rotman, P. B. Godfrey, M. Schapira, and A. Tamar,
“A deep reinforcement learning perspective on Internet congestion
control,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 1–10.

[34] D. Kim et al., “Learning to schedule communication in multi-agent
reinforcement learning,” 2019, arXiv:1902.01554.

[35] N. Anwar and H. Deng, “A hybrid metaheuristic for multi-objective
scientific workflow scheduling in a cloud environment,” Appl. Sci.,
vol. 8, no. 4, p. 538, 2018.

[36] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and
K. Vahi, “Characterizing and profiling scientific workflows,” Future
Gener. Comput. Syst., vol. 29, no. 3, pp. 682–692, 2013.

[37] E. Deelman et al., “Pegasus, a workflow management system for
science automation,” Future Gener. Comput. Syst., vol. 46, pp. 17–35,
May 2015.

[38] L. Liu, H. Tan, S. H. Jiang, Z. Han, X.-Y. Li, and H. Huang,
“Dependent task placement and scheduling with function configu-
ration in edge computing,” in Proc. Conf. IEEE/ACM 27th Int. Symp.
Qual. Service (IWQoS), 2019, pp. 1–10.

KAIGE ZHU received the M.S. degree in electri-
cal and communication engineering from Beijing
Jiaotong University, Beijing, China, in 2016,
where he is currently pursuing the Ph.D. degree
with the School of Electronic and Information
Engineering. His research interests include edge
computing and machine learning techniques.

528 VOLUME 3, 2022

ZHENJIANG ZHANG received the Ph.D. degree
in communication and information systems from
Beijing Jiaotong University (BJTU), where he was
an Associate Professor from 2008 to 2013 and
has been a Professor since 2013. He currently
serves as the Director of the Institute of Intelligent
Network and Information Security in BJTU. His
research interests include cognitive radio, wire-
less sensor networks, and edge computing. He has
been the Guest Editor of a number of journals,
including IET COMMUNICATIONS, Sensors, and

International Journal of Distributed Sensor Networks.

FENG SUN received the bachelor’s degree from the
School of Electronic and Information Engineering,
Beijing Jiaotong University in 2017, where he is
currently pursuing the Ph.D. degree in communi-
cation engineering. His research interests include
edge computing and vehicular network.

BO SHEN received the B.S. degree in commu-
nication and control engineering from Northern
Jiaotong University, Beijing, China, in 1995,
and the Ph.D. degree in communication and
information system from Beijing Jiaotong
University, Beijing, in 2006. From 2006 to
2007, he was a Postdoctoral Researcher with
the Institute of System Science, Beijing Jiaotong
University, where he has been a Researcher
and a Teacher with the School of Electronic
and Information Engineering, Beijing Jiaotong

University since 2008. He is currently a Professor with the School of
Electronic and Information Engineering, Beijing Jiaotong University and
the Director of the Key Laboratory of Communication and Information
Systems. His research interests include complex system theory, opinion
evolution, data mining, and NLP techniques.

VOLUME 3, 2022 529

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

