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ABSTRACT A new bound on the error probability of coding with limited code length over additive white
Gaussian noise (AWGN) channels is proposed. The developed bound is proved to be universal for two
connected encoding ways. On the one hand, we conceive folding the conventional codes, such as Hadamard
and binary random ones, in order to adapt shorter code length. On the other hand, we further extend the
above folded structure to Gaussian random coding and hence to bound its error probability. Finally, we

demonstrate that the bound of the above two constructions can be unified as
√

log2e
2πnC2−n(C/2−R) where C

represents the capacity of the AWGN channel, n and R stand for the code length and rate, respectively.
This theoretical contribution confirms that, in the context of short code length and low rate, the developed
two constructions exhibit excellent performance even close to the Shannon bound on AWGN channels.

INDEX TERMS AWGN, Hadamard code, binary random code, capacity.

I. INTRODUCTION

THEGREAT progress on channel coding has been made
in the recent three decades [1]–[5], toward achiev-

ing the capacity with affordable implementation complexity.
More explicitly, three kinds of milestone coding tech-
niques, as Turbo code [1], low-density parity-check(LDPC)
code [2]–[4] and polar code [5], nowadays have been at the
center of attention of the coding community, by offering
powerful forward error control (FEC) capability for modern
cellular mobile communication systems [6], [7]. Despite the
outstanding performance in practical use, current theoretical
analysis works such as [5] have proven that the Shannon
capacity can be ultimately reached on discrete memoryless
channels.
According to the classical coding theorem, the capacity-

achieving FEC depends on the increase of the code
length [8], due to the fact that in the asymptotic regime,
the block error ratio (BLER) can decrease exponentially
with the code length. This phenomenon can be described
as [8]

Pe < 2−n(C−R),

where n means code length, C and R stand for the capac-
ity and the rate, respectively. The above theoretical proof
is based on the so-called asymptotic equipartition prop-
erty (AEP) [9]. Meanwhile, Gallager also developed another
theoretical proof in [10] resulting in

Pe < exp(−nE(R)),

where

E(R) = max
ρ,pk

(−ρR+ E0(ρ, pk))

is termed as error exponent while ρ is a real number between
(0, 1]. And

Eo(ρ, pk) = −log
⎛
⎝

J∑
i=1

(
K∑
k=1

pkP
1/(1+ρ)
i,k

)1+ρ
⎞
⎠,

in which pk represents the probability of input alphabet of K
symbols while Pi,k denotes the channel transition probability
with J output symbols. Therefore, the optimal rate R (0 ≤
R < C) can be achieved by maximizing Eo(ρ, pk) over ρ

and input probabilities pk [10].
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FIGURE 1. Folding the code towards shorter code length.

The above-mentioned theoretical results are attained based
on the assumption that the code length is enough large.
However, for some recently emerging scenarios such as ultra-
reliable low latency communications (URLLC) [11], [12], the
code length will be limited to a finite extent in order to shorten
the time delay, while the reliability is still expected to remain
an ultra high level, such as an error probability of 10−5 within
1 millisecond described in [11]. As a result, this scenario will
bring double challenges for channel coding. Unfortunately,
most of the existing coding techniques [13]–[16] only work
well in the middle-reliability region instead of the high-
reliability one, which motivates us to focus on this region in
the context of limited code length.
Meanwhile, it has become crucial to evaluate the coding

performance in the non-asymptotic regime [17]. Although for
finite length, there is no exact expression to bridge the coding
parameters and the error probability [18], most researches
tended to utilize attainable inequalities and approximations
to bound the performance of various families of short
codes [19]–[23]. Specifically, C. E. Shannon firstly proposed
a tight lower bound of error probability over additive white
Gaussian noise (AWGN) channels based on packing spher-
ical cones [24]. More sphere-packing bounds for moderate
code length were derived in [25] and [26]. Gallager further
developed another new bound based on Gaussian random
coding [27]. In [18], Polyanskiy et al. introduced a series
of new lower and upper bounds for finite-length codes on
various channels including the binary symmetric channel,
binary erasure channel and AWGN channel. Especially, an
exact normal approximation was also proposed as a uniform
expression for classic channels, written as

Pe ≈ Q

(√
n

v
(C − R)

)

where Q(·) represents the complementary Gaussian cumula-
tive distribution function and v is channel dispersion defined
as the variance of information density under the capacity
achieving distribution of codewords. In the context of AWGN
channel, for example, channel dispersion is given as

v = P(P+ 2)

2(P+ 1)2
log2

2(e),

where P denotes the transmit power [18].
Following the above-mentioned current theoretical works,

a new upper bound of error probability is developed in this

contribution for coding in AWGN channels, in order to the-
oretically disclose the high-reliability region under limited
code length. Specifically, the bound is obtained by folding
the conventional codes such as Hadamard and binary ran-
dom ones. Furthermore, we extend this structure to Gaussian
random coding. Through theoretical derivation, we demon-
strate that all the above coding structures considered exhibit
a uniform bound of error probability on AWGN channels,
which can be briefly expressed in advance as

Pe <

√
log2e

2πnC
2−n(C/2−R).

The above theoretical result achieved in this work has the
potential to be a new guidance for coding design. On the one
hand, the bound indicates that this way of coding can only
achieve a half of the capacity of the AWGN channel when
the code length n approaches infinity. On the other hand, we
can also exhibit that under limited code length and low code
rate, this coding mechanism performs excellently owing to
its outstanding error exponent, even close to the Shannon’s
bound [24]. In general, this coding technique is demonstrated
to have the potential to adapt URLLC in the context of high
interference, such as massive random-access [28].
The remainder of this manuscript is organized as fol-

lows. Section II firstly introduces the concept of code
folding, while quantifying its capacity on the AWGN chan-
nel. According to the disclosed properties of the folding
channel, an upper bound of block error probability on AWGN
channel is proposed based on folding the Hadamard code.
Furthermore, by extending the code folding structure into a
general configuration as the binary random code, the theo-
retical bound is quantified as an identical form in Section III.
Furthermore, Section IV extends the above coding way
into Gaussian random coding with theoretical analysis. The
numerical results are then presented in Section V, while our
concluding remarks are provided in Section VI.

II. FOLDING THE HADAMARD CODE
A. THE WAY OF CODE FOLDING AND ITS CAPACITY
In order to reduce the code length while maintaining the
amount of information bits, we firstly consider folding a
conventional code as described in Fig. 1. In general, the
original code is described as [x0,0, x0,1, . . . , x0,n−1; x1,0,

x1,1, . . . , x1,n−1; xnf−1,0, xnf−1,1, . . . , xnf−1,n−1] with length
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ns, whose symbols xi,j, i = 0, 1, . . . , nf − 1, j = 0, 1, . . . ,

n− 1, are real numbers while obeying standard normal
distribution. Then the original code is folded into nf dimen-
sions where the ith dimension with length n is described
as xi,j, j = 0, 1, . . . , n − 1. Apparently, the code length is
reduced from ns to n = ns/nf by folding the original code
into the ultimate super-symbols as

x′j =
nf−1∑
i=0

√
aixi,j, (1)

where ai stands for the power scaler of each dimension.
Then the folded super-symbols are transmitted through the
AWGN channel as

yj = x′j + zj, (2)

where zj is the noise term with standard normal distribution.
We substitute Eq. (1) into Eq. (2) and let

x′i−1,j =
i−1∑
t=0

√
atxt,j, (3)

x′′i+1,j =
nf−1∑
t=i+1

√
atxt,j (4)

and

yi,j = yj − x′i−1,j (5)

for i > 0. Then Eq. (2) can be rewritten as

yi,j = √
aixi,j + x′′i+1,j + zj. (6)

Suppose that the decoder can perfectly recover x′i−1,j step
by step, so yi,j can be correctly achieved. In this case, the
interference to xi,j is determined by x′′i+1,j. We further define
the ith sub-channel as

yi,j = √
aixi,j + zi,j, (7)

where

zi,j = x′′i+1,j + zj. (8)

Clearly, the ith sub-channel is also an AWGN channel with
mean 0 and variance

σ 2
i =

⎧
⎪⎨
⎪⎩

nf−1∑
t=i+1

at + 1, i < nf − 1

1, i = nf − 1.

(9)

So the SNR of the ith sub-channel is expressed as

Si = ai
σ 2
i

. (10)

To keep the SNR of each sub-channel as a constant Sf ,
combining Eq. (9) and Eq. (10), we arrive at

ai = Sf
(
Sf + 1

)i
. (11)

We demonstrate that there exists a power scaler ai for
each sub-channel to keep a constant SNR. Thus, the transmit
super-symbol x′j is with power

a =
nf−1∑
i=0

ai

= (
Sf + 1

)nf − 1. (12)

The capacity of the AWGN channel with SNR S = a is
then expressed as

C = 1

2
log2(1 + S). (13)

On the other hand, following (12), we have

log2(1 + S) = nf log2
(
1 + Sf

)
, (14)

i.e.,

C = nf Cf , (15)

where

Cf = 1

2
log2

(
1 + Sf

)
(16)

is the capacity of the sub-channel. The above result shows
that the way of code folding will not reduce the capacity of
the AWGN channel.

B. FOLDING THE HADAMARD CODE
Following the above-mentioned structure, we tend to fold
conventional Hadamard code as an example. At the begin-
ning, an ns × ns Hadamard matrix can be recursively
constructed as [29]

Hns =
[
Hns/2 Hns/2
Hns/2 −Hns/2

]
. (17)

Let H1 = 1, while considering all of the row vectors in
Hns as the codewords, then the matrix can carry k = log2ns
information bits. Based on the properties of Hadamard code,
the inner product of any pair of row vectors will be zero [30].
In other words, their Euclidean distance d is equal to

√
2ns.

Note that, since Hadamard code is a kind of binary code,
it doesn’t strictly satisfy the condition of Gaussian folded
noise introduced in Section II-A. However, in the follow-
ing Section IV-A, we will theoretically demonstrate that the
folded Hadamard code can approach Gaussian distribution
when nf goes to infinity.
Based on the union bound, the block error rate of the

code in the AWGN channel with SNR Sf can be described
as [31]

Pe ≤ 2kQ

(√
ns
2
Sf

)
, (18)

where

Q(x) =
∫ +∞

x

1√
2π

exp

(−t2
2

)
dt. (19)
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Note that, the Hadamard code is now expected to be now
transmitted in the folded Gaussian channel, according to the
process of Fig. 1. Then the symbols from different dimen-
sions nf are overlapped to generate the transmit symbol
x′j, j = 0, 1, . . . , n − 1. Consequently, the folded code is
with length n and rate R = k/n. Following the definition of
the folded channel, there are nf AWGN sub-channels with
constant SNR Sf . So Eq. (18) holds for the folded channel.
By substituting Eq. (14) into Eq. (18), we have

Pe ≤ 2kQ

(√
1

2
nnf
(
(S+ 1)1/nf − 1

)
)

. (20)

Then, the following limit holds as

lim
nf→∞ nf

(
(S+ 1)1/nf − 1

)

= log(S+ 1)

= 2C

log2e
. (21)

Therefore, when nf → ∞, substituting Eq. (21) into Eq. (20),
we have

Pe ≤ 2kQ

(√
nC

log2e

)
. (22)

Furthermore, considering [32]

Q(x) <
1√
2πx

exp

(
−x2

2

)
, (23)

we finally arrive at

Pe <

√
log2e

2πnC
2−n(C/2−R). (24)

The above result exhibits that the block error probability of
the folded Hadamard code is exponentially descending with
the code length only if the rate is less than C/2. Clearly, the
bound cannot achieve the Shannon capacity which requires
R asymptotically close to C along with the code length.
However, in the context of low code rate and short code
length, the bound exhibits excellent good performance owing
to its excellent error exponent.
At the receiver, to achieve the bound, a successive

interference cancellation algorithm is assumed to perfectly
recover the symbols from the sub-channels step by step.
Otherwise, the performance will decrease. Moreover, the
complexity of decoding is a function of ns, which is nor-
mally much larger than the code length n. In Section IV, we
will demonstrate that the proposed code is actually equiva-
lent to Gaussian random code. In this case, the complexity
of decoding will decrease to be a function of n.

III. FOLDING THE BINARY RANDOM CODE
For the Hadamard code, ns is always equal to 2k. It implies
that the information length k will go to infinity along with
nf → ∞. So the bound shown in Eq. (24) only holds for
infinite information length. In the following, we will demon-
strate that Eq. (24) still holds even if we break through the

original limitation of the equivalent distance property of the
Hadamard code, so as to develop a general way of fold-
ing the binary random code. Since there is no fixed relation
between k and ns for the binary random code, it allows the
existence of finite k with infinite ns and nf . As a result,
the bound will be extended to the configuration of arbitrary
code rate and code length.
By uniformly selecting 2k binary sequences with length

ns, the Hamming distance between any two sequences will
obey binomial distribution with mean ns/2 and variance ns/4.
Meanwhile, it will converge to normal distribution with ns
going to infinity based on De Moivre-Laplace theorem [33].
In other words, the squared Euclidean distance between any
two sequences obeys normal distribution with mean ns/2 and
variance ns/4. Then the probability density function (PDF)
of the Euclidean distance can be written as

Pd(x) =
⎧
⎨
⎩

√
2x√

πσ 2
S

exp

(
−
(
x2−μs

)2
2σ 2

s

)
, x ≥ 0

0, x < 0,

(25)

where μs = ns/2, σ 2
s = ns/4. Therefore, the BLER can be

further expressed as

Pe = 2kPe1, (26)

where

Pe1 =
∫ ∞

0
Pd(x)Q

(√
Sf x
)
dx. (27)

The integral in Eq. (27) cannot be obtained directly.
Therefore, we define λ ∈ (0, 1) and split the above integral
into two terms as

Pe1 =
∫ λ

√
ns/2

0
Pd(x)Q

(√
Sf x
)
dx

+
∫ ∞

λ
√
ns/2

Pd(x)Q
(√

Sf x
)
dx, (28)

where Q(x) is a monotonous decreasing function with
Q(x) ≤ 1/2, and

∫ ∞

0
Pd(x)dx = 1. (29)

Then, we arrive at

Pe1 ≤ 1

2

∫ λ
√
ns/2

0
Pd(x)dx+ Q

(
λ

√
1

2
Sf ns

)∫ ∞

λ
√
ns/2

Pd(x)dx

≤ θ

2
+ Q

(
λ

√
1

2
Sf ns

)
, (30)

where

θ =
∫ λ

√
ns/2

0
Pd(x)dx. (31)

Based on Chebyshev inequality [33], i.e.,

Pd(|x− E| > ε) <
V

ε2
, (32)
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where E and V denote the mean and variance of Pd(x),
respectively, in the context of

ε = E − λ

√
n

2
, (33)

we have

θ = Pd

(
x < λ

√
ns
2

)

<
V

(
E − λ

√
ns
2

)2
. (34)

Since Pd(x) cannot be directly achieved, we tend to derive
its upper and lower bound in order to further simplify
Eq. (30). Considering that Pd(x2) obeys normal distribu-
tion with mean E(x2) = ns/2, in the following, we aim
at achieving a lower bound of E. According to the former
definition, we have

E =
∫ +∞

0
xPd(x)dx

=
∫ +∞

0
x

√
2x√

πns/4
exp

(
−
(
x2 − ns/2

)2
ns/2

)
dx. (35)

Then Eq. (35) can be rewritten as

E =
∫ +∞

0

(ns/2)1/4√x√
π

exp

(
−
(
x−

√
ns
2

)2
)
dx. (36)

Let α = (ns/2)1/2 and β = (ns/2)1/4 with α − β > 0,
then we have

E >

∫ α+β

α−β

β
√
x√

π
exp
(
−(x− α)2

)
dx

>

∫ α+β

α−β

β
√

α − β√
π

exp
(
−(x− α)2

)
dx

=
√
ns/2 − (ns/2)3/4

√
π

∫ β

−β

exp
(
−x2

)
dx. (37)

Since

lim
β→∞

∫ β

−β

exp
(
−x2

)
dx = √

π, (38)

we finally arrive at

E >

√
ns/2 − (ns/2)3/4. (39)

Therefore, an upper bound of the variance can be
ultimately obtained as

V = E
(
x2
)

− E(x)2

<
ns
2

−
(
ns
2

−
(ns

2

)3/4
)

=
(ns

2

)3/4
. (40)

Substituting the bounds of E and V into Eq. (34), we have

θ <

( ns
2

)3/4

(√
ns
2 − ( ns

2

)3/4 − λ

√
ns
2

))2

= 1

β
(√

1 − 1
β

− λ
)2

. (41)

Therefore, there always exists λ infinitely close to 1 when
β → ∞ and θ → 0. Consequently, Eq. (30) is reduced to

Pe1 ≤ Q

(√
1

2
Sf ns

)
. (42)

Substituting Eq. (42) into Eq. (26) while combining
Eq. (18) and Eq. (26), we finally conclude that the BLER
bound of the folded binary random coding is identical to
that of the folded Hadamard coding as attained in Eq. (24).
Different from the Hadamard code with fixed ns = 2k,

the binary random code is capable of adapting arbitrary code
length and rate. So the bound of Eq. (24) holds for a general
configuration of finite code length and rate.

IV. FROM BINARY RANDOM CODING TO GAUSSIAN
RANDOM CODING
A limitation of the above theoretical work lies in that,
binary codes including the Hadamard code and binary ran-
dom one don’t strictly satisfy the condition of Gaussian
folded noise introduced in Section II-A. Therefore, we will
theoretically demonstrate that the folded binary code can
approach Gaussian distribution for each sub-channel defined
in Section II-A when nf goes to infinity.

On the other hand, in order to achieve the bound, the fold-
ing number nf will go to infinity even for finite information
length k so that it is unacceptable for practical implementa-
tion. In this section, we will further exhibit that the proposed
way of folding the codes is actually equivalent to the format
of Gaussian random codes. Then, we will also disclose that
the bound shown in Eq. (24) still holds when the coded
super-symbol x′j is replaced directly by a Gaussian variable
with mean 0 and variance a. Without the folding operation
in Eq. (1), the complexity of the encoding and the decoding
is only related to k and n rather than ns and nf .

A. GAUSSIAN APPROACHING FOR BINARY CODES
Note that the binary sequence obeys binomial distribution
with equal probability. Since the original Hadamard code
cannot be considered as random sequences, we introduce a
perfect permutation to eliminate its regular structure in order
to approach the binomial distribution. Then the folded super-
symbol x′j is generated following Eq. (1). Note that here we
have xi,j ∈ {−1, 1} for binary code. Considering each folded
symbol is with constant power coefficients ai, there are only
nf values for ai. By substituting Eq. (14) and Eq. (21) into
Eq. (11), we arrive at

ai = 2C

nf log2e
(1 + S)

i
nf . (43)
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FIGURE 2. An example of ai with nf = 10000, a = 1.

An example of the values of ai with nf = 10000, a = 1 is
portrayed in Fig. 2. Note that ai is monotonously increasing
with i. We divide the curve of ai into

√
nf segments, each

with length
√
nf . For convenience, without loss of generality,√

nf is assumed to be an integer. So the beginning and the
end of the τ th segment have the values of

aτ,1 = 2C

nf log2e
(1 + S)

√
nf τ

nf , 0 ≤ τ <
√
nf , (44)

and

aτ,2 = 2C

nf log2e
(1 + S)

√
nf (τ+1)−1

nf . (45)

Their ratio is then expressed as

ητ = aτ,2

aτ,1
= (1 + S)

√
nf−1

nf . (46)

When nf → ∞, we have ητ → 1, i.e., aτ,2 → aτ,1.
Consequently, Eq. (1) is rewritten as

x′j =
√
nf−1∑
τ=0

√
aτ,1ωτ,j, (47)

where

ωτ,j =
√
nf−1∑
t=0

x√nf τ+t,j. (48)

Therefore, when
√
nf goes to infinity, ωτ,j, as the sum-

mary of the random variables with binomial distribution,
obeys normal distribution with mean zero and variance√
nf . Furthermore, since the linear combination of vari-

ables with normal distribution also obeys normal distribution,
x′j stands for a Gaussian variable, too. Moreover, although
the interference within the same segment doesn’t strictly
obey Gaussian distribution, the fraction term will gradually
approach 0 with the infinite increase of

√
nf . Considering

FIGURE 3. Performance comparison of three codes with code length 128 and rate
0.125 based on Hadamard coding, binary random coding, and Gaussian random
coding.

√
nf as the number of sub-channel defined in Section II-A

and the original code as ωτ,j, the result in Section II-A is
still available for the way of binary coding.

B. FROM BINARY RANDOM CODING TO GAUSSIAN
RANDOM CODING
In the previous subsection, we have proven that the coded
super-symbols x′j obey i.i.d. Gaussian distributions with nf
approaching to infinity when they are constructed by folding
the binary random code. In the following, we will show that,
for any given Gaussian coded super-symbol x′j, there always
exists a binary random sequence with length nf satisfying
Eq. (1), while obeying binomial distribution along with the
length nf going to infinity.
Based on the result in the previous subsection, calculation

of Eq. (1) can be divided into two steps by following Eq. (47)
and Eq. (48), respectively. For the first step, Eq. (47) can
be rewritten as

ω̂0,j = 1√
a0,1

⎛
⎝x′j −

√
nf−1∑
τ=1

√
aτ,1ω̂τ,j

⎞
⎠. (49)

Following Eq. (49), we firstly randomly generate ω̂τ,j, τ =
1, 2, . . . ,

√
nf −1 with standard normal distribution. Then the

variable ω̂0,j can be determined based on Eq. (49). Clearly,
ω̂0,j obeys standard normal distribution, too. Note that ω̂τ,j,
which are considered as real Gaussian variables, are slightly
different from ωτ,j defined in Eq. (48). But this difference can
be negligible according to De Moivre-Laplace theorem [33].
For the second step, Eq. (48) can be written as

ωτ,j = ω′
τ,j − ω′′

τ,j, (50)

where

ω′
τ,j =

∑
x√nf τ+t,j=1

1, (51)
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FIGURE 4. The performance of the proposed bound in AWGN channels with extremely high reliability.

and

ω′′
τ,j =

∑
x√nf τ+t,j=−1

1

= √
nf − ω′

τ,j. (52)

Replacing ω̂τ,j by ωτ,j, we have

ω′
τ,j =

[
ω̂τ,j + √

nf
2

]
, (53)

where [ · ] means rounding to the nearest integer. Although
ω′

τ,j from Eq. (53) may be larger than
√
nf , its probability

will approach zero when
√
nf → ∞. Following Eq. (48), we

construct a binary sequence with ω′
τ,j “1”s and ω′′

τ,j “−1”s.
Moreover, “1”s and “−1”s are randomly generated in the
sequence. In other words, the probability of every position
being “1” and “−1” in the sequence is equal and inde-
pendent. Consequently, this binary random sequence obeys
binomial distribution.
Combining the analyses in the previous two subsections,

we summarize that the transmit super-symbols x′j can be
generated directly by Gaussian random variables or by
overlapping binary random sequences with amplified power
coefficient aj given in Eq. (1). Compared with the latter way,
the way of Gaussian random coding is with lower encoding
and decoding complexity only relative to n.

V. RESULTS
In this section, we firstly simulate three codes constructed
by the proposed methods to evaluate their BLER perfor-
mances. These coding ways are based on the Hadamard

coding, binary random coding and Gaussian random coding,
respectively. The three codes are all with a code length of
128 and a code rate of 0.125, while the maximum likeli-
hood decoding is used at the receiver. As results, their BLER
curves are shown in Fig. 3. From the results, we demonstrate
that all these coding ways exhibit similar error performances,
as concluded through above-mentioned theoretical analysis.
Fig. 4 presents the numerical results for the proposed bound
of BLERs in AWGN channels. Note that the derived the-
oretical result in Eq. (24) is tight in the region of short
code length and low code rate, therefore, we focus on the
length of information bits k as 16, while the code length
n is selected as 128, 512, 1024 and 2048, respectively. For
comparison, we also list the Shannon’s bound [24], and the
normal approximation presented by Polyanskis et al. [18].
Note that, our developed bound is capable of approaching
Shannon bound gradually by increasing the code length, in
the context of extremely low error floor. This phenomenon
supports that the ways of folding the codes and Gaussian
random coding could both be theoretically demonstrated to
approach the Shannon bound toward extremely high reliabil-
ity, in the context of low code rate and limited code length.
Therefore, our developed coding ways, from code folding
to Gaussian random coding, has the potential to apply the
scenario with high reliability and sever interference [28].
Furthermore, in Fig. 5, we simulate the BLER performance
of Gaussian random coding as an example with maximum
likelihood decoding. As expected, the performance of practi-
cal coding is between the derived bound and Shannon bound.
Specifically, at a BLER of 10−5, when the code length is
128, the performance of Gaussian random coding is only
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FIGURE 5. The BLER performance of Gaussian random coding through computer simulations.

0.2dB away from the developed bound. As expected, when
the code length goes higher, the performance will approach
both the derived bound and Shannon bound.

VI. CONCLUSION
Aiming at constructing powerful codes in the context of
short code length and low code rate, two connected cod-
ing ways as code folding and Gaussian random coding were
investigated, by bounding their block error probability perfor-
mances in the AWGN channel. Through theoretical analysis,
we demonstrate that the aforementioned coding ways have

a uniform performance bound as
√

log2e
2πnC2−n(C/2−R), which

firstly describes a tradeoff among code length, rate and reli-
ability for code design while demonstrating its advantage in
short code length and low rate. Finally, numerical results
were also performed to exhibit the excellent performance
even close to Shannon bound in the above-mentioned con-
figuration. The above contribution demonstrated that these
coding ways have the potential to adapt the scenario of
ultra reliability and low latency in the context of massive
interference, which will be the focus of our future works.
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