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ABSTRACT Due to the greatly increased bandwidth of 5G networks compared with that of 4G networks,
the power consumption brought by baseband signal processing of 5G networks is much higher, which
inevitably raises the operation expenditures. Cloud Radio Access Network (CRAN) is widely adopted in
5G networks, which splits the traditional base stations into Remote Radio Heads (RRHs) and Baseband
Units (BBUs), which are equipped with computing resource for baseband signal processing. The number of
required BBUs varies due to the fluctuation of wireless traffic of RRHs. Hence, fixed computing resource
allocation might waste power. This paper investigates energy-efficient dynamic computing resource allo-
cation in CRAN by predicting the wireless traffic of RRHs and allocating computing resource based on
the prediction results aiming at using fewest BBUs to minimize power consumption. For wireless traffic
prediction, a novel method based on two-dimensional CNN LSTM model with temporal aggregation is
proposed. By treating the wireless traffic data as images, this model could extract spatial correlation
from these data to improve accuracy. Moreover, the problem of dynamic computing resource allocation
in CRAN is formulated as an offline four-constraint bin packing problem, considering both uplink and
downlink baseband signal processing capacities of BBUs and Common Public Radio Interface (CPRI)
bandwidths. For solving this problem, a Multi-start Simulated Annealing (MSA) algorithm is proposed.
Simulation results demonstrate that the proposed method for wireless traffic prediction could outperform
the state-of-the-art deep learning models. In addition, the proposed MSA algorithm could achieve lower
power consumption than the state-of-the-art heuristic algorithms.

INDEX TERMS Computing resource allocation, wireless traffic prediction, CRAN, deep learning, two-
dimensional CNN LSTM, multi-start simulated annealing.

I. INTRODUCTION

POWER consumption accounts for an important part of
the expenditures of the network operators. According

to [1], the network operation expenditure takes up about
25% of the total cost base of the network operators, over
90% of which is spent on power consumption. Moreover,
82% - 97% of the power consumption in the network is
spent on powering the Radio Access Network (RAN) [1],
where baseband signal processing is conducted. The situa-
tion even gets worse in the 5G era. The power consumption
of a typical 5G base station is up to twice or more of
that of a 4G base station [2]. Compared with that of 4G

networks, the bandwidth of 5G networks have been greatly
increased, which makes the power consumption brought by
baseband signal processing in 5G networks much higher than
that of 4G networks. Hence, reducing the power consump-
tion brought by baseband signal processing at RAN could
help to reduce the network operation expenditures of the
network operators to prompt the commercial application of
5G technologies, as well as mitigate climate change.
The power consumption of baseband signal processing is

influenced by the architecture of RAN. Cloud Radio Access
Network (CRAN) [3], [4] is an architecture of radio access
network widely adopted in 5G networks, which is illustrated
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FIGURE 1. Illustration of energy-efficient dynamic computing resource allocation in CRAN enabled by wireless traffic prediction.

in Fig. 1. As can be seen in Fig. 1, in CRAN, the tra-
ditional base stations are split into two parts, which are
Remote Radio Heads (RRHs) and Baseband Units (BBUs).
RRHs are responsible for transmitting and receiving the
wireless signals, while BBUs are responsible for baseband
signal processing. Multiple BBUs form a BBU pool, which
makes it easier for dynamic allocation of computing resource.
Moreover, by being connected to the same hub which is
connected to one BBU, multiple RRHs can be served by
one BBU simultaneously for baseband signal processing.
When a BBU is not in use during one time period, it
could be temporarily switched off in order to reduce power
consumption.
Apparently, the more RRHs one BBU serves simultane-

ously, the less amount of BBUs are used and the less power
the BBU pool consumes. However, there exist four con-
straints which limit the minimum number of BBUs required
to serve all the RRHs, which are uplink and downlink base-
band signal processing capacities of BBUs and Common
Public Radio Interface (CPRI) bandwidths. For the first two
constraints, the amounts of computing resource required for
uplink and downlink baseband signal processing of one RRH
are proportional to its uplink and downlink wireless traffic,
respectively. In this paper, the computing resource in BBUs is
measured in Giga Operations Per Second (GOPS). For the
last two constraints, the amounts of uplink and downlink
CPRI bandwidths consumed by baseband signal processing
of one RRH are also proportional to its uplink and downlink

wireless traffic, respectively. As illustrated in Fig. 1, the
RRHs are connected to hubs through optical fibers and each
hub is connected to one BBU through Common Public Radio
Interface (CPRI). Because RRHs don’t compress the signals,
high-speed In-phase/Quadrature (I/Q) sampling signals need
to be transmitted between RRHs and BBUs, which requires
high bandwidth. The uplink and downlink CPRI bandwidths
determine the maximum amounts of I/Q sampling signals
which can be transmitted to and from BBU through CPRI
simultaneously, respectively.
Hence, in order to minimize the total number of used

BBUs to reduce power consumption, the wireless traffic of
RRHs needs to be accurately estimated. Moreover, the wire-
less traffic of RRHs doesn’t stay unchanged. On the contrary,
in real-world scenarios, the wireless traffic of RRHs fluc-
tuates greatly during one day. For example, the wireless
traffic of RRHs at peak time is high, but the wireless traffic
of RRHs at off-peak time is low.
Therefore, prediction of the wireless traffic of the RRHs

in advance is required to facilitate the process of com-
puting resource allocation, aiming at minimizing the total
number of used BBUs to minimize the total power con-
sumption of the BBU pool. Wireless traffic prediction
is an important engineering problem, which is in fact a
time series prediction problem. Many techniques have been
developed by both the academia and industry for solv-
ing the time series prediction problem. Traditional time
series prediction techniques include classic models, machine
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learning techniques and deep learning techniques. Classic
models include Autoregressive Moving Average (ARMA)
models [5], Autoregressive Integrated Moving Average
(ARIMA) models [6] and Seasonal Autoregressive Integrated
Moving Average (SARIMA) models [7]. Machine learn-
ing techniques for time series prediction include Support
Vector Machine (SVM) [8], K Nearest Neighbor (KNN)
Regression [9] and Classification and Regression Trees
(CART) [10]. Deep learning techniques for time series
prediction include Recurrent Neural Network (RNN) [11],
Long Short-Term Memory (LSTM) [12], [13], Gated
Recurrent Unit (GRU) [14], deep autoencoder [15], Restricted
Boltzmann Machine (RBM) [16] and Deep Belief Network
(DBN) [17]. Except for these, temporal aggregation [18] is
another useful technique for time series prediction, which has
the potential to improve the prediction accuracy. Utilizing tem-
poral aggregation, the prediction of lower-frequency series
could be achieved by predicting the higher-frequency series
and aggregating their prediction results.
Once the wireless traffic prediction process is completed,

the demands on uplink and downlink computing resources
and CPRI bandwidths of RRHs could be estimated, which
facilitates the process of computing resource allocation.
Since the aim of dynamic computing resource allocation is
to minimize the total number of used BBUs in order to min-
imize the total power consumption of the BBU pool, this
problem could be formulated as an offline four-constraint
bin packing problem, which is NP-hard. For solving the
bin packing problem, there exist three kinds of tech-
niques, which are approximation algorithms [19], [20], meta-
heuristic algorithms and deep reinforcement learning [21].
Approximation algorithms include Next Fit (NF), Worst Fit
(WF), First Fit (FF), Best Fit (BF), First Fit Decreasing
(FFD) and Best Fit Decreasing (BFD). Metaheuristic algo-
rithms include Simulated Annealing (SA) [22], Genetic
Algorithm (GA) [23] and Particle Swarm Optimization
(PSO) [24].
The main contributions of this paper can be summarized

as follows:
1) In order to better reflect the real-world scenarios,

the problem of energy-efficient dynamic computing
resource allocation in CRAN is formulated as an
offline four-constraint bin packing problem, in which
the uplink and downlink baseband signal processing
capacities of BBUs and CPRI bandwidths are regarded
as constraints. Moreover, the differences among the
demands on computing resource and CPRI bandwidth
of different types of wireless traffic are distinguished.

2) A method for wireless traffic prediction is proposed
based on two-dimensional CNN LSTM model with
temporal aggregation. By treating the wireless traffic
data as images, this model could extract the spatial cor-
relation among the wireless traffic of adjacent RRHs.
Moreover, by employing temporal aggregation, this
model could capture the relationship among the wire-
less traffic during the time slots in the current time

period and the wireless traffic during those in the
upcoming time period to improve the prediction accu-
racy. In addition, by using the sum of the prediction
results of wireless traffic during the time slots in
the upcoming time period as the prediction result,
their prediction errors could be offset, which further
improves the prediction accuracy.

3) A multi-start simulated annealing (MSA) algorithm
is proposed for solving the formulated offline four-
constraint bin packing problem. By randomly selecting
multiple starts, the MSA algorithm could mitigate the
influence of the position of start on the final result to
reduce the number of used BBUs in order to reduce
power consumption of the BBU pool.

4) To conduct performance evaluation more realistically
and accurately, a real-world dataset is utilized for vali-
dating the effectiveness of our proposed wireless traffic
prediction method and MSA algorithm. The numeri-
cal results confirm that our proposed wireless traffic
prediction method based on two-dimensional CNN
LSTM model with temporal aggregation could achieve
more accurate prediction performance compared with
the state-of-the-art deep learning models. Moreover,
the numerical results confirm that our proposed MSA
algorithm could achieve lower power consumption
of the BBU pool compared with the state-of-the-art
metaheuristic algorithms.

II. RELATED WORK
In this section, we will introduce the recent progress of
research in wireless traffic prediction based on deep learning
and computing resource allocation in CRAN.

A. WIRELESS TRAFFIC PREDICTION BASED ON DEEP
LEARNING
Due to the promising potential of deep learning on wire-
less traffic prediction, researchers from both the academia
and the industry have devoted a lot of effort to proposing
deep learning models for wireless traffic prediction. A novel
deep learning architecture named DenseNet was proposed
in [25], which can effectively capture the complex patterns
hidden in cellular data. A Spatial Temporal neural Network
(STN) is proposed in [26], which is a precise cellular traf-
fic forecasting architecture. And a Double STN (D-STN)
is proposed, which employs a light-weight mechanism for
combining the STN output with historical statistics, thereby
improving long-term prediction performance.
Although most proposed deep learning models for wire-

less traffic prediction are based on variants of LSTM
model, some other deep learning techniques have also been
applied for wireless traffic prediction. A novel deep neural
network architecture, STCNet, is proposed in [27] for cel-
lular traffic prediction, which contains ConvLSTM units to
simultaneously capture the spatial and temporal dependen-
cies of cellular traffic. Moreover, transfer learning strategy
is also utilized for exploiting the similarities among different
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types of cellular traffic as well as capturing the pattern
similarity of cellular traffic among different areas. A meta-
learning scheme is proposed in [28], aiming at addressing the
problem of short-term user-level network traffic prediction.
The proposed meta-learning scheme is an ensemble of
different predictors for predicting different types of traf-
fic. Moreover, deep reinforcement learning is utilized for
choosing the appropriate predictor according to the recent
prediction performance. The authors in [29] propose a cross-
service and regional fusion transfer learning strategy in
order to utilize multiple cross-domain datasets for enhancing
the prediction performance. The authors in [30] propose a
spatial-temporal deep learning method for citywide cellular
traffic prediction, which incorporates the attention scheme in
the model architecture design. Taking the effect of handover
into consideration, in [31], a novel cellular traffic prediction
model, STGCN-HO, is proposed, utilizing the handover
graph together with a stacked residual neural network struc-
ture in order to improve the prediction performance. The
authors in [32] propose a novel framework for wireless traffic
prediction, called FedDA, which employs federated learning
to train the wireless traffic prediction model in a collabo-
rative way. Moreover, a dual attention scheme is proposed
for constructing the global model through the aggregation
of intra-cluster and inter-cluster models. In [33], the authors
utilize 5 different types of deep learning models for wire-
less traffic usage forecasting, which are LSTM, GRU, CNN,
CNN-LSTM and CNN-GRU. The forecasting results demon-
strate that the last two models where CNN is utilized for
extracting spatial dependencies existing among neighboring
access points (APs) could forecast the wireless traffic usage
of a single AP when significant spatial correlations exist.
Some researchers combine statistical tools with deep learn-

ing models for improving prediction accuracy. In [34], a
novel single-cell level cellular traffic prediction method
is proposed by combining LSTM with Gaussian Process
Regression (GPR) for improving the prediction performance.
In this method, the dominant periodic components are
extracted utilizing Fourier analysis. In addition, LSTM is
utilized for learning the long-term dependency among the
small random values and GPR is applied for estimating
the residual random components. A novel wireless traf-
fic prediction architecture is proposed in [35], aiming at
improving prediction accuracy by series fluctuation pattern
clustering. Moreover, a novel model based on LSTM, called
TPBLN, is proposed for predicting the baseline component,
while the residual component is predicted through a proba-
bility model, whose parameter is estimated by adopting the
maximum likelihood estimation method.

B. COMPUTING RESOURCE ALLOCATION IN CRAN
Computing resource allocation in CRAN has attracted a lot
of attention from both the academia and industry. In [36],
a novel BBU-RRH association scheme is proposed for min-
imizing the power consumption. Graph partitioning and
rejoining is utilized in the proposed scheme, which could

reduce the communication overhead for energy saving. The
authors in [37] investigate the problem of computational
resources allocation between RRHs and BBUs with the aim
of reducing the number of used BBUs and maximizing the
data rates. They decompose this problem into two sub-
problems, which are about resource block allocation and
BBU allocation, respectively. For BBU allocation, the first fit
decreasing algorithm is utilized for minimizing the number
of used BBUs. The authors in [38] formulate the BBU pro-
cessing allocation problem as a bin packing problem, aiming
at minimizing the total power consumption with guaran-
tee of per-user QoS. For solving this problem, a two-phase
heuristic algorithm is proposed based on BFD algorithm.
In [39], to maximize the computing resource utilization,
computing resource allocation among BBUs is formulated
as a game-theory bargaining problem, taking the Quality of
Service (QoS) demands of services into consideration, which
is solved by a generalized Nash bargaining solution.
Some researchers utilize wireless traffic prediction for

computing resource allocation in CRAN. The authors in [40]
investigate the problem of allocating multiple BBU pools
to multiple RRHs, aiming at raising resource utilization and
reducing power consumption. LSTM is utilized for predicting
the throughput of each RRH and a GA-based resource allo-
cation algorithm (GARAA) is proposed for the allocation
of BBU pools to minimize power consumption. Aiming at
maximizing the QoS and minimizing the blocked connec-
tions, the authors in [41] formulate the problem of dynamic
BBU-RRH mapping and use a Markov model for cell load
prediction and a genetic algorithm for solving the problem
based on the prediction results.
Some researchers take load balancing among BBUs into

consideration. In [42], the problem of dynamic BBU-RRH
mapping is formulated as an optimization problem, aiming
at achieving load balancing among BBUs and improving the
QoS. This problem is solved by utilizing Genetic Algorithm
(GA). The authors in [43] investigate the problem of BBU
computing resource allocation aiming at minimizing the
total amount of used computing resources and concurrently
balancing the use of computing resources among all the
used BBUs. To solve the problem formulated equivalent to
the classical bin-packing problem, they propose a heuristic
genetic algorithm (HeuGA), which combines the FF algo-
rithm with GA algorithm. In [44], the authors investigate
the problem of dynamic BBU-RRH mapping and formu-
late it as a linear integer-based constrained optimization
problem with the aim of achieving load balancing among
BBUs and avoiding unnecessary handovers, which is solved
by an Estimation Distribution Discrete Particle Swarm
Optimization (EDDPSO) algorithm.
Some researchers also consider to turn off idle RRHs for

energy saving. In [45], the problem of real-time BBU/RRH
assignment for CRAN in LTE is investigated, aiming at min-
imizing the number of active BBUs in order to save energy.
This problem is formulated as a multiple knapsack problem
and solved by utilizing IBM’s linear solver CPLEX.
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III. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
In this paper, we consider an area which is divided into M
cells. For each cell, one RRH is located at the center. All the
RRHs are served by one BBU pool, which is consisted of
N BBUs. As illustrated in Fig. 1, the RRHs are connected
to hubs through optical fibers and each hub is connected
to one BBU through CPRI. The connections from RRHs
to hubs can be flexibly switched according to decisions of
computing resource allocator. Moreover, we consider both
the uplink and downlink wireless traffic of three different
types of services, which are calls, Short Messaging Service
(SMS) and Internet.
The total power consumption of the BBU pool during time

period t is:

Ptotal(t) =
N∑

i=1

Pi(t) + Pbasicpool (t), (1)

where Pbasicpool (t) is the basic power consumption required
for operating the BBU pool during time period t and Pi(t)
denotes the power consumption of the i-th BBU in the BBU
pool during time period t, which is:

Pi(t) = ui(t)

(
6∑

k=1

λksi,k(t) + PbasicBBU (t)

)
, (2)

where ui(t) = 1 or 0 indicates the i-th BBU is in use or not
in use during time period t, respectively. Moreover, si,k(t)
denotes the volume of the k-th type of wireless traffic of
the RRHs served by the i-th BBU during time period t.
In addition, λk is a coefficient for determining the power
consumption introduced by baseband signal processing of
the k-th type of wireless traffic and k = 1, 2, 3, 4, 5, 6
correspond to uplink call, downlink call, uplink SMS, down-
link SMS, uplink Internet traffic and downlink Internet
traffic, respectively. Besides, PbasicBBU (t) is the basic power con-
sumption required for operating a single BBU during time
period t.
The volume of the k-th type of wireless traffic processed

by the i-th BBU during time period t is:

si,k(t) =
M∑

j=1

Ci,j(t)sj,k(t), (3)

where Ci,j(t) = 1 or 0 indicates the j-th RRH is served by the
i-th BBU or not during time period t, respectively. Moreover,
sj,k(t) denotes the volume of the k-th type of wireless traffic
of the j-th RRH during time period t.
There exist constraints of the largest total amounts of

uplink and downlink wireless traffic of RRHs which could
be processed by a single BBU. The computing resource in
BBUs is measured in Giga Operations Per Second (GOPS).
Moreover, we assume that the maximum uplink and down-
link baseband processing capacities of a single BBU are
Rmaxup and Rmaxdown GOPS, respectively. The uplink and down-
link requirements on computing resource of the j-th RRH

are:

Lupj (t) = α1sj,1(t) + α3sj,3(t) + α5sj,5(t), (4)

and

Ldownj (t) = α2sj,2(t) + α4sj,4(t) + α6sj,6(t), (5)

respectively, where αk is a coefficient for determining the
amount of computing resource required for baseband signal
processing of the k-th type of wireless traffic.
As mentioned before, the BBUs are connected to hubs

through CPRIs. There exist constraints on both the maximum
uplink and downlink bandwidths of one CPRI. In this paper,
we assume that the maximum uplink and downlink band-
widths of one CPRI are Wmax

up and Wmax
down Gbps, respectively.

The uplink and downlink CPRI bandwidth requirements of
the j-th RRH are:

Bupj (t) = β1sj,1(t) + β3sj,3(t) + β5sj,5(t), (6)

and

Bdownj (t) = β2sj,2(t) + β4sj,4(t) + β6sj,6(t), (7)

respectively, where βk is a coefficient for determining the
amount of CPRI bandwidths required for baseband signal
processing of the k-th type of wireless traffic.

B. PROBLEM FORMULATION
Aiming at minimizing the total power consumption of the
BBU pool, the problem of energy-efficient dynamic com-
puting resource allocation in CRAN could be formulated as
shown below.

Minimize Ptotal(t)

Subject to: C1 : ui(t) ∈ {0, 1}, ∀i
C2 : Ci,j(t) ∈ {0, 1}, ∀i, j

C3 :
N∑

i=1

Ci,j(t)ui(t) = 1, ∀j

C4 :
M∑

j=1

Ci,j(t)L
up
j (t) ≤ Rmaxup , ∀i

C5 :
M∑

j=1

Ci,j(t)L
down
j (t) ≤ Rmaxdown, ∀i

C6 :
M∑

j=1

Ci,j(t)B
up
j (t) ≤ Wmax

up , ∀i

C7 :
M∑

j=1

Ci,j(t)B
down
j (t) ≤ Wmax

down, ∀i.

In the problem formulation, the constraint C1 indicates
that the indicator of the status of the i-th BBU should be
either 0 or 1, meaning the i-th BBU is in use and not
in use during time period t, respectively. The constraints
C2 and C3 constrain that during time period t, each RRH
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FIGURE 2. Illustration of the framework of the proposed wireless traffic prediction method.

should be and at most be served by one BBU which is
in use. The constraints C4 and C5 constrain that for each
BBU, the requirements of computing resource for uplink
and downlink baseband signal processing of all the RRHs
served by it cannot exceed its maximum uplink and down-
link baseband signal processing capacities, respectively. The
constraints C6 and C7 constrain that for each BBU, the
requirements of uplink and downlink CPRI bandwidths of
all the RRHs served by it cannot exceed the maximum uplink
and downlink CPRI bandwidths, respectively.

IV. WIRELESS TRAFFIC PREDICTION BASED ON DEEP
LEARNING
From Section III, we know that to successfully perform
the task of energy-efficient dynamic computing resource
allocation in CRAN, the wireless traffic of the RRHs
needs to be predicted accurately. In this paper, we pro-
pose a novel method for wireless traffic prediction based
on two-dimensional CNN LSTM model with temporal
aggregation.
Long Short-Term Memory (LSTM) is a special type of

Recurrent Neural Network (RNN), which has superiority
over conventional RNN in long sequence prediction. LSTM
has the ability of forgetting some unnecessary features and
keep the necessary features for prediction. Moreover, the
problems of gradient vanishment and gradient explosion are
both taken into consideration in the design of the architecture
of LSTM.
Convolutional Neural Network (CNN) is a classic deep

learning model which has achieved great success in the field

of computer vision. CNN utilizes convolutional operations
for learning spatial relationships from images. Because there
exist spatial correlation among the wireless traffic of RRHs
located close to each other, the wireless traffic data of RRHs
could be treated as images and CNN could be utilized for
extracting spatial correlation from them, which are further
processed by LSTM for wireless traffic prediction.
The framework of the proposed wireless traffic prediction

method is illustrated in Fig 2. As illustrated in Fig. 2,
the proposed deep learning prediction model is consisted
of seven main layers. Moreover, in order to improve the
prediction accuracy, temporal aggregation is utilized in the
design of the proposed method. Specifically, one time period
with length T is divided into p time slots with length T

p and
the wireless traffic during the past p time slots are utilized
to predict the wireless traffic in the upcoming p time slots,
which are aggregated together to generate the prediction
result of the wireless traffic in the next time period. In Fig. 2,
D(k) represents the wireless traffic matrix of a geographical
area covered by H×W cells during the k-th time slot, which
could be written as:

D(k) =
⎛

⎜⎝
d1,1(k) · · · d1,W(k)

...
. . .

...

dH,1(k) · · · dH,W(k)

⎞

⎟⎠, (8)

where di,j(k) denotes the wireless traffic of cell (i, j) during
the k-th time slot. Moreover, S(t) represents the wireless
traffic matrix during the t-th time period, which could be
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written as:

S(t) =
⎛

⎜⎝
s1,1(t) · · · s1,W(t)

...
. . .

...

sH,1(t) · · · sH,W(t)

⎞

⎟⎠, (9)

where si,j(t) denotes the wireless traffic of cell (i, j) during
the t-th time period.
The wireless traffic data of the target area during the past

p time slots are used as inputs of the model, which are pro-
cessed by a two-dimensional convolutional layer activated
by the Rectified Linear Unit (ReLU) function. Next, a two-
dimensional max pooling layer performs downsampling on
the processed data, followed by a flatten layer which trans-
forms the multi-dimensional input data into one-dimensional
data. Then the generated one-dimensional data is processed
by an LSTM layer activated by ReLU function, followed
by a fully connected layer to generate the prediction results
of the wireless traffic in the upcoming p time slots, which
are added together to calculate the prediction result of wire-
less traffic in the next time period. By utilizing the wireless
traffic data in the past p time slots to predict the wireless
traffic in the upcoming p time slots, the model is able to cap-
ture the relationship between the wireless traffic of the time
slots in the last time period and those in the upcoming time
period, which is helpful to improve the prediction accuracy.
Moreover, by employing temporal aggregation, the prediction
errors of the prediction results of the wireless traffic in the
upcoming p time slots could offset each other, which could
raise the prediction accuracy.

V. MULTI-START SIMULATED ANNEALING ALGORITHM
According to the system model introduced in Section III, in
order to minimize the power consumption of the BBU pool,
we need to minimize the total number of used BBUs in the
BBU pool, as shown in Theorem 1.
Theorem 1: At any time period, minimizing the power

consumption of the BBU pool is equivalent to minimizing
the total number of used BBUs in the BBU pool.
Proof: According to Equation (1), (2) and (3), we have:

Ptotal(t) =
N∑

i=1

ui(t)

(
6∑

k=1

λksi,k(t) + PbasicBBU (t)

)
+ Pbasicpool (t)

=
N∑

i=1

ui(t)

⎛

⎝
6∑

k=1

λk

M∑

j=1

Ci,j(t)sj,k(t) + PbasicBBU (t)

⎞

⎠

+ Pbasicpool (t)

=
N∑

i=1

ui(t)
6∑

k=1

λk

M∑

j=1

Ci,j(t)sj,k(t) +
N∑

i=1

ui(t)P
basic
BBU (t)

+ Pbasicpool (t)

=
6∑

k=1

λk

M∑

j=1

[
N∑

i=1

Ci,j(t)ui(t)

]
sj,k(t) +

N∑

i=1

ui(t)P
basic
BBU (t)

+ Pbasicpool (t).

According to constraint C3,
∑N

i=1 Ci,j(t)ui(t) = 1,∀j.
Hence, we have:

Ptotal(t) =
6∑

k=1

λk

M∑

j=1

sj,k(t) +
N∑

i=1

ui(t)P
basic
BBU (t) + Pbasicpool (t).

And we can find that Ptotal(t) is consisted of three portions,
and the first portion is determined by the wireless traffic of
RRHs, which can not be lowered by changing the allocation
of computing resource. Moreover, the value of the third
portion, Pbasicpool (t), is a constant. Hence, minimizing Ptotal(t)
can only be achieved by minimizing its second portion. In
addition, in the second portion, the value of PbasicBBU (t) is also
a constant. Hence, at time period t, minimizing the power
consumption of the BBU pool, Ptotal(t), is equivalent to
minimizing

∑N
i=1 ui(t), which is the total number of used

BBUs in the BBU pool.
Hence, the optimization objective could be transformed

into the equivalent form:

Minimize
N∑

i=1

ui(t),

which means that the formulated problem is essentially an
offline four-constraint bin packing problem, as the RRHs
could be seen as objects and BBUs could be regarded as
bins and our aim is to minimize the number of used bins.
Theorem 2: The formulated problem is NP-hard.
The proof of Theorem 2 can be found in Appendix A. Due

to the NP-hardness of the formulated problem, there doesn’t
exist any exact algorithm for finding the optimal solution
within an acceptable amount of time. Moreover, the for-
mulated problem is essentially a combinatorial optimization
problem, so traditional non-convex optimization methods
cannot be applied for solving this problem. For this kind
of problem, metaheuristic algorithms are usually utilized for
seeking high-quality suboptimal solutions.
In this paper, we propose a Multi-start Simulated

Annealing (MSA) algorithm for solving the formulated
offline four-constraint bin packing problem. The flowchart
of MSA algorithm is shown in Fig. 3.
From Fig. 3, we can find that the design of MSA algorithm

is based on Simulated Annealing (SA) algorithm. SA algo-
rithm is a classic metaheuristic algorithm which has good
performance on finding high-quality suboptimal solutions by
randomly accepting worse solutions in order to overcome
getting stuck at local minima. However, the position of the
start might have influence on the final result. Hence, in order
to better seek for the global minimum, the SA algorithm is
run several times with multiple randomly generated starts to
mitigate the influence of the position of the start on the final
result.
In MSA, First Fit (FF) algorithm is utilized for allocating

BBUs to RRHs under the four constraints. In FF algorithm,
the objects are put into bins in sequence and one object will
be put into the first bin which could accomodate it. Hence,
changing the input sequence of RRHs of the FF algorithm
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FIGURE 3. The flowchart of MSA algorithm.

might generate new allocation results. In order to generate
new starts for the SA algorithm, we apply Swap algorithm a
number of times, which exchanges the positions of two RRHs

Algorithm 1 First Fit Algorithm
Input: The total number of RRHs, M;

The total number of BBUs, N;
The sequence of RRHs, s;
The sequences of uplink and downlink computing resource
requirements of RRHs, Rup, Rdown;
The sequences of uplink and downlink CPRI bandwidth
requirements of RRHs, Wup, Wdown;
The maximum uplink and downlink baseband processing
capacities of one BBU, Rmaxup , Rmaxdown;
The maximum uplink and downlink bandwidths of one
CPRI, Wmax

up , Wmax
down;

Output: The number of used BBUs, n;
The set of RRHs to be served by the j-th BBU, Sj (j = 1
to N);
n = 0;
for j = 1 to N do
Sj = ∅;

end for
for i = 1 to M do
Flag = 0;
for j = 1 to n do
if
∑

k∈Sj Rup[k] + Rup[s[i]] ≤ Rmaxup
and

∑
k∈Sj Rdown[k] + Rdown[s[i]] ≤ Rmaxdown

and
∑

k∈Sj Wup[k] +Wup[s[i]] ≤ Wmax
up

and
∑

k∈Sj Wdown[k] +Wdown[s[i]] ≤ Wmax
down then

Sj = Sj ∪ {s[i]};
Flag = 1;
Break;

end if
end for
if Flag == 0 then
n = n+ 1;
Sn = Sn ∪ {s[i]};

end if
end for

randomly chosen from the input RRH sequence to generate
a new RRH sequence. After a new start is generated, it is
utilized as the input of SA algorithm. Different from SA
algorithm, MSA algorithm keeps a record of the global best
solution. Whenever a new solution is accepted for replacing
the current solution, it is compared with the global best
solution and if it is better, the global best solution will be
updated.
In SA algorithm, a new solution is generated by applying

Swap algorithm to the current RRH sequence to generate
a new RRH sequence, and using the sequence as the input
of the FF algorithm. If the performance of the new solu-
tion is better than the current solution, which means the
new solution uses fewer BBUs, the current solution and
RRH sequence will be replaced by the new solution and
RRH sequence. If the performance of the new solution is
worse than the current solution, the current solution and
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RRH sequence is replaced by the new solution randomly
according to the Metropolis rule, which is as shown below.

P
(
w = w∗) = exp

(
f (w) − f (w∗)

kT

)
, if f

(
w∗) > f (w), (10)

where T is the current temperature and k is the tempera-
ture scale factor. In MSA algorithm, lowering temperature
T means that it is less possible for a worse solution to be
accepted.
At each temperature, there exists NI iterations of gener-

ating new solutions. After NI iterations, the algorithm will
check whether the stop condition is met, which means the
current temperature could not be lowered anymore. If there
still exists room for lowering temperature, the temperature
will be lowered. At each time, the temperature is lowered by
multiplying the current temperature with the cooling rate, r.
Hence, by gradually lowering the temperature, according to
Equation (10), the probability of accepting worse solutions
will be gradually lowered and convergence will eventually
be achieved.
Property 1: The time complexity of MSA algorithm is

O(NSNTNIMlogM), where NS, NT and NI correspond to
the number of starts, the maximum number of temperature
change and the maximum number of iterations at a specific
temperature, respectively.
Proof: From Fig. 3 we can find that there exist three

loops in MSA algorithm. In each iteration of the first loop,
a new start is generated. And there exist NS iterations in the
first loop. In the second loop, the temperature is changed
NT times, which is the maximum number of temperature
change, which is:

NT =
⌈
logr

(
TMinimum
TInitial

)⌉
, (11)

where TMinimum and TInitial correspond to the minimum tem-
perature and the initial temperature, respectively. In the third
loop, the Swap algorithm and First Fit algorithm are applied
NI times to generate new solutions. At any iteration, the time
complexity is determined by First Fit algorithm. The time
complexity of First Fit algorithm has already been proven
to be O(MlogM) [46]. Hence, the time complexity of MSA
algorithm is O(NSNTNIMlogM).

VI. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATASET DESCRIPTION, DATA PREPROCESSING
AND OBSERVATION
In this paper, a range of experiments are conducted uti-
lizing the Telecom Italia Big Data Challenge dataset [47].
Specifically, we utilize the Call Detail Records (CDRs) of
the city of Milan from November 1, 2013 to January 1,
2014. The area of Milan is divided into 100 × 100 grids,
each of size of 235 × 235 square meters. There are 5 types
of CDRs in the dataset, which are: incoming call, outgo-
ing call, received SMS, sent SMS and Internet. For the first
four types, one CDR is generated each time a user issues
or receives a call or SMS. For Internet, one CDR is gener-
ated each time an Internet connection starts or ends and the

FIGURE 4. ATVR values at 1-hour level.

connection lasts for over 15 minutes or the amount of data
a user transferred exceeds 5 MB. The temporal interval of
the CDRs is 10 minutes.

In this paper, the length of time period utilized for com-
puting resource allocation in CRAN is set to be 1 hour, not
10 minutes. This is because that setting the time period of
computing resource allocation to be 10 minutes might make
the network unstable and bring excessive overhead. Hence,
the original CDRs are aggregated in order to create new
CDRs with time interval of 1 hour. However, the original
CDRs are also utilized in the training and testing process of
our proposed model.
The data shape of the original wireless traffic data of each

type of wireless traffic is (8928, 10000). Then in order to
utilize temporal aggregation method, the original wireless
traffic data is combined and divided into two parts, which
are input data and target output data of the model. There
exist 8917 pairs of input and target output data, each of size
(6, 10000). Hence, the data shape of the input data set and
target output data set are both (8917, 6, 10000).
In order to model the temporal correlation in this dataset,

the average traffic volume ratio (ATVR) function ρ(τ) [25]
is utilized, which is defined as:

ρ(τ) = 1

(T − τ) × H ×W

T∑

t=1+τ

H∑

h=1

W∑

w=1

sh,w(t)

sh,w(t − τ)
(12)

The ATVR values of four types of wireless traffic at
1-hour level and 10-minute level are plotted in Figs. 4 and 5,
respectively.
From Fig. 4, we can find that with the increase of τ from

1 to 8 hours, the ATVR values of the four types of wireless
traffic increase dramatically, which indicates that the tempo-
ral correlation of wireless traffic in adjacent time periods are
stronger than those with longer time gaps within 8 hours.
However, we also notice that when the time gap becomes
close to 24 hours, the ATVR values decreases. Apparently
this is due to the periodicity of wireless traffic data. From
Fig. 5, we can find that at 10-minute level, the temporal
correlation of wireless traffic in adjacent time periods are
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FIGURE 5. ATVR values at 10-minute level.

TABLE 1. Experiment settings of wireless traffic prediction.

TABLE 2. Parameter settings of two-dimensional CNN LSTM model.

stronger than those with longer time gaps within 2 hours.
Moreover, by comparing Fig. 4 with 5, we can find that the
time correlation at 10-minute level is much stronger than that
at 1-hour level, which indicates the possibility of employing
the temporal aggregation method to increase the accuracy of
wireless traffic prediction.

B. EXPERIMENT SETTINGS AND EVALUATION METRICS
OF WIRELESS TRAFFIC PREDICTION
The experiment settings of wireless traffic prediction are
given in Table 1. Moreover, the parameter settings of the
proposed two-dimensional CNN LSTM model are given in
Table 2.
For wireless traffic prediction, three commonly used met-

rics are adopted for evaluating the prediction performances
of the models.
The first metric is Mean Absolute Error (MAE), which is

defined as shown below:

MAE =
∑T

t=1
∑H

h=1
∑W

w=1

∣∣̂sh,w(t) − sh,w(t)
∣∣

T × H ×W
. (13)

The second metric is Root Mean Square Error (RMSE),
which is defined as shown below:

RMSE =
√∑T

t=1
∑H

h=1
∑W

w=1

(
ŝh,w(t) − sh,w(t)

)2

T × H ×W
. (14)

The third metric is R-squared (R2), which is defined as
shown below:

R2 = 1 −
∑T

t=1
∑H

h=1
∑W

w=1

(
ŝh,w(t) − sh,w(t)

)2
∑T

t=1
∑H

h=1
∑W

w=1

(
s− sh,w(t)

)2 , (15)

where s is defined as shown below:

s =
∑T

t=1
∑H

h=1
∑W

w=1 sh,w(t)

T × H ×W
(16)

In order to demonstrate the superiority of our proposed
wireless traffic prediction method, a range of experiments
are conducted utilizing several state-of-the-art deep learning
models for wireless traffic prediction and several vari-
ants of LSTM model with the same temporal aggregation
approach applied in our proposed model, whose prediction
performances are compared with that of our proposed
method.
It needs to be pointed out that for our proposed model

and the other variants of LSTM model utilized in the exper-
iments, the same data are utilized, whose size of input and
target output data are both (8917, 6, 10000) as mentioned
before.
However, in order to meet the different requirements on the

input data shape of the models, the data are reshaped in dif-
ferent ways. For example, for the proposed two-dimensional
CNN LSTM model, the input data shape of the Convolution
2D layer is required to be (100, 100, 1). Hence, for the two-
dimensional CNN LSTM model, the input data set shape is
reshaped to be (8917, 6, 100, 100, 1). Then according to
the ratio of training set to test set, 8:2, the input data set
and target output data set are further divided into training
and test sets. In the training set, the sizes of input data set
and target output data set are (7134, 6, 100, 100, 1) and
(7134, 6, 10000), respectively. In the test set, the sizes of
input data set and target output data set are (1783, 6, 100,
100, 1) and (1783, 6, 10000), respectively. However, for the
Convolution 1D layer of the one-dimensional CNN LSTM
model, the input data shape is set to be (2, 10000). Hence,
the input data shape is reshaped to be (8917, 3, 2, 10000) for
the one-dimensional CNN LSTM model. And in its training
set, the sizes of input data set and target output data set are
(7134, 3, 2, 10000) and (7134, 6, 10000), respectively. In the
test set, the sizes of input data set and target output data set
are (1783, 3, 2, 10000) and (1783, 6, 10000), respectively.

C. NUMERICAL RESULTS AND ANALYSIS OF WIRELESS
TRAFFIC PREDICTION
The comparison of the prediction performance of our
proposed model with those of the baseline models are shown
in Tables 3–7, respectively.
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TABLE 3. Comparison of prediction performance on incoming call traffic.

TABLE 4. Comparison of prediction performance on outgoing call traffic.

TABLE 5. Comparison of prediction performance on received SMS traffic.

From Tables 3–7, we can find that the proposed model
achieves the lowest MAE values on all the five types of traf-
fic except for incoming call and Internet traffic, on which
the proposed model achieves the second lowest MAE values.
Moreover, the proposed model achieves the lowest RMSE
values and the highest R2 values on all the five different

TABLE 6. Comparison of prediction performance on sent SMS traffic.

TABLE 7. Comparison of prediction performance on Internet traffic.

types of wireless traffic. These results demonstrate the supe-
riority of our proposed model over the baseline models on
prediction performance.
In order to compare the prediction performance of our

proposed model with the state-of-the-art models more intu-
itively, the prediction results of the state-of-the-art deep
learning models and target values of the five types of wireless
traffic of cell (51, 50) are plotted in Figs. 6–10, respectively.
From Figs. 6–10, we can see that generally speaking, the
prediction results of our proposed model are closer to the tar-
get values than the state-of-the-art models on all of the five
types of wireless traffic.
In conclusion, the proposed wireless traffic prediction

method based on two-dimensional CNN LSTM model
with temporal aggregation could achieve better prediction
performance than the baseline models.

D. EXPERIMENT SETTINGS OF ENERGY-EFFICIENT
DYNAMIC COMPUTING RESOURCE ALLOCATION IN
CRAN
The experiment settings of computing resource allocation in
CRAN are given in Table 8.
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FIGURE 6. Comparison between prediction results and ground truth values of incoming call traffic of cell (51, 50).

FIGURE 7. Comparison between prediction results and ground truth values of outgoing call traffic of cell (51, 50).

For computing resource allocation, the wireless traf-
fic prediction results of the proposed method are uti-
lized. Due to the large size of the dataset, we only
use the wireless traffic prediction results of the central

100 cells for conducting experiments. Moreover, because
the wirless traffic of uplink and downlink Internet trans-
mission are not distinguished in the original dataset, we
assume that the ratio of uplink Internet wireless traffic
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FIGURE 8. Comparison between prediction results and ground truth values of received SMS traffic of cell (51, 50).

FIGURE 9. Comparison between prediction results and ground truth values of sent SMS traffic of cell (51, 50).

to downlink Internet wireless traffic is 1:2. The parame-
ter settings of our proposed MSA algorithm is given in
Table 9.

In order to demonstrate the superiority of our proposed
MSA algorithm, several baseline algorithms are implemented
and their performances are compared with that of MSA
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FIGURE 10. Comparison between prediction results and ground truth values of Internet traffic of cell (51, 50).

FIGURE 11. Simulation results of MSA algorithm in time period 16.

algorithm. The baseline algorithms are First Fit (FF) algo-
rithm, Genetic Algorithm (GA), Particle Swarm Optimization
(PSO) algorithm and Simulated Annealing (SA)
algorithm.

E. NUMERICAL RESULTS AND ANALYSIS OF
ENERGY-EFFICIENT DYNAMIC COMPUTING RESOURCE
ALLOCATION IN CRAN
In order to demonstrate the convergence of MSA algo-
rithm, the simulation results of MSA algorithm in time
period 16 are taken as an example, which is plotted in
Fig. 11. In Fig. 11, during each iteration, the temperature

stays unchanged. And the temperature gradually decreases
with the increase of the number of iterations. From 11,
we can find that the number of used BBUs gradually con-
verge with the increase of the number of iterations. This is
because when the temperature gradually decreases, the prob-
ability of accepting a worse solution decreases according to
the Metropolis rule. Moreover, we can find that for starts
1, 2 and 4, convergence of the number of used BBUs is
achieved at 8. However, for starts 3 and 5, convergence of
the number of used BBUs is achieved at 7. This demon-
strates that the position of the start might influence the
final result. Hence, randomly choosing multiple different
starts might generate better results compared with using one
single start.
The number of used BBUs of MSA algorithm and

the baseline algorithms are plotted in Fig. 12. From
Fig. 12, we can find that almost in every time period, the
MSA algorithm generates the minimum number of used
BBUs.
The total power consumption of BBU pool of the MSA

algorithm and the baseline algorithms are compared in
Fig. 13. In Fig. 13, the fixed algorithm means that the
BBU allocation is not changed during all the periods and we
assume that the maximum number of BBUs are used. From
Fig. 13, we can find that the fixed algorithm consumes the
highest total power consumption of the BBU pool, which
is about twice as much as the total power consumption of
the BBU pool of any other dynamic computing resource
allocation algorithm. This demonstrates the usefulness of
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TABLE 8. Experiment settings of energy-efficient dynamic computing resource
allocation in CRAN.

TABLE 9. Parameter settings of MSA algorithm.

dynamic computing resource allocation for reducing the total
power consumption of the BBU pool. Moreover, we can
find that the proposed MSA algorithm achieves the lowest
total power consumption of the BBU pool, which demon-
strate the superiority of MSA algorithm over the baseline

FIGURE 12. Comparison of number of used BBUs.

FIGURE 13. Comparison of total power consumption of BBU pool.

algorithms on reducing the total power consumption of the
BBU pool.

VII. CONCLUSION
In this paper, the problem of energy-efficient dynamic
computing resource allocation in CRAN is investigated.
Aiming at reducing the power consumption of the BBU
pool, the problem of energy-efficient dynamic computing
resource allocation in CRAN is formulated as an offline
four-constraint bin packing problem, taking both the uplink
and downlink baseband signal processing capacities of
BBUs and both the uplink and downlink CPRI bandwidths
into consideration. The demands on uplink and downlink
computing resources and CPRI bandwidths of RRHs are
estimated according to the prediction results of wireless
traffic of RRHs. For wireless traffic prediction, a novel
method based on two-dimensional CNN LSTM model with
temporal aggregation is proposed. For solving the formu-
lated offline four-constraint bin packing problem, a Multi-
start Simulated Annealing (MSA) algorithm is proposed.
Extensive experiments are conducted utilizing a real-world
dataset, whose results demonstrate that the proposed wireless
traffic prediction method could outperform the state-of-the-
art deep learning models on prediction performance and the
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proposed MSA algorithm could achieve lower power con-
sumption of the BBU pool compared with the state-of-the-art
heuristic algorithms.

APPENDIX A
PROOF OF THEOREM 2
We prove this theorem through reducing the offline one-
dimensional bin packing problem [48], which has already
been proven to be NP-hard, to the formulated problem.
The offline one-dimensional bin packing problem is

defined as follows.
Definition 1 (Offline One-Dimensional Bin Packing

Problem): Given a set of items, which is denoted as
N = {1, . . . ,N}, with the weight set, which is denoted
as W = {w1, . . . ,wN}, where wi denotes the weight of the
item i. The aim is to pack the items into bins with capacity
C and minimize the number of used bins without violating
the capacity constraints.
We can reduce the offline one-dimensional bin packing

problem to the formulated problem as follows. The item set
N can be regarded as the RRH set in the formulated problem.
Moreover, the weight of the item i, wi, can be seen as the
uplink computing resource requirement of the i-th RRH.
Besides, we regard the capacity of bins, C, as the maximum
uplink baseband processing capacity of a single BBU, Rmaxup .
In addition, we set the downlink computing resource require-
ment, the uplink and downlink CPRI bandwidth requirements
of RRHs to be 0s. And we set the maximum downlink base-
band processing capacity of one BBU, the maximum uplink
and downlink bandwidths of one CPRI to be 0s.

Then the optimal solution of the formulated problem
could be transformed into the optimal solution of the offline
one-dimensional bin packing problem, by regarding the i-
th RRH as the i-th item and BBUs as bins. Hence, the
offline one-dimensional bin packing problem can be solved
by solving the formulated problem. Therefore, the offline
one-dimensional bin packing problem is reduced to the for-
mulated problem in polynomial time. This means that the
formulated problem is also NP-hard.
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