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ABSTRACT The recent surge in human-controlled robotics and haptic devices research is expediting a
paradigm shift in today’s communication networks towards human-to-robot (H2R) centric technologies
that support Industrial Internet of Things (IIoT) and Industry 5.0. In both IIoT and Industry 5.0, human
skills are extended through collaboration with robots that are geographically separated from the human.
Depending on the dynamicity of the actual use case, human-to-robot communications necessitate low-
latency networking. While Long Term Evolution (LTE) cellular technology has been successful in fulfilling
the bandwidth demands of massively-connected sensors and devices of Industry 4.0, it is insufficient to
meet the low latency demands of the future Industry 5.0 where dynamic interactions between humans
and robots are paramount. In reducing the latency caused by radio resource contention in wireless H2R
communications, in this work, we propose a novel approach that exploits an Attention-based Recurrent
Neural Network (Att-RNN) to improve the Semi-Persistent Scheduling (SPS) resource allocation scheme
adopted by LTE and new radio (NR) standards developed for the fifth generation (5G) mobile networks.
We conduct a series of real haptic experiments to collect H2R traffic traces to train, test and evaluate the
accuracy of Att-RNN in predicting H2R traffic. Then, with extensive simulations based on the empirical
H2R traffic traces, we show that our proposed Att-RNN SPS scheme outperforms classic SPS and
other existing resource allocation schemes in terms of reduced latency and improved resource allocation
efficiency, thus making Att-RNN SPS a suitable candidate in future Industry 5.0 deployments.

INDEX TERMS Haptic communications, remote human-to-robot collaboration, low-latency, long term
evolution, prediction methods, machine learning, 5G.

I. INTRODUCTION

DURING the last half of the past decade, our soci-
ety has witnessed an unprecedented advancement of

Internet-of-Things (IoT) technology and its corresponding
disruptive services, which in turn has led to an eco-system
of IoT-based smart cities, smart healthcare systems, and
smart factories. While NB-IoT [1] and Cat-M1 [2] have
been widely deployed to support IoT networks which pre-
dominantly carry machine-to-machine (M2M) type traffic,
these Long Term Evolution (LTE)-based networks may not
be able to adequately support future human-to-robot/machine
(H2R/M) traffic which incurs additional reliability and
latency performance demands on the network [3], [4]. In [5],

we presented a solution to achieve ultra-low latency uplink
transmission protocol in wireless access networks by exploit-
ing an existing uplink medium access control protocol called
Semi-Persistent Scheduling (SPS) as defined by LTE and 5G
specifications. While our results show promise, it highlighted
a limitation whereby the accuracy of our traffic prediction
algorithm based on the statistical auto-regressive (AR) model
and in turn the latency performance, degrade when support-
ing bursty traffic. According to [6], [7], the traffic distribution
of haptic telerobot and haptic VR applications are charac-
terized by the generalized Pareto distribution with bursty
traffic arrivals. As these applications are key technology
enablers of Industry 5.0 as illustrated by the roadmap shown
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FIGURE 1. The roadmap towards Industry 5.0.

in Fig. 1, investigation into advanced algorithms that yield
more accurate prediction is needed to improve resource block
pair (RBP) allocation in predictive SPS schemes that sup-
port future H2R applications. This motivates our research
into applying more advanced techniques with high prediction
accuracy in support of bursty traffic.
In this article, we harness the use of machine learning

intelligence to address the shortcoming in [5] with particu-
lar focus on supporting human-robot/machine collaboration
for Industry 5.0. With the advancement of the processing
power of contemporary computers and the availability of
large dataset, tools from the machine learning paradigm have
been proven effective for many purposes including regres-
sion, classification and decision making processes [8], [9].
Contrary to traditional computational algorithms which need
to be explicitly programmed, machine learning algorithms
can learn and improve themselves from the input data
and are expected to understand the structure/feature of
a given dataset. Three basic machine learning paradigms
exist, namely supervised and unsupervised machine learn-
ing and reinforcement learning. The supervised machine
learning takes labeled data as its input and applies statis-
tical analysis, Bayesian models etc. to perform regression
or classification on unlabeled data. When learning from the
data, machine learning algorithms improve themselves by
evaluating the deviation between the predicted and given
labels. Examples of regression-type machine leaning are
weather forecasting, future stock prediction and natural lan-
guage processing, while classification-type machine learning
involves facial recognition, optical character recognition and
future event prediction. On the other hand, unsupervised
machine learning algorithms are provided with unlabeled
or partially labelled data, and they need to learn the hid-
den feature, pattern and commonalities among the data so
that categorization and labeling can be performed [10].
Finally, reinforcement learning works by interacting with
the known/unknown environment. It deploys an agent to
take action on every encountered situation within the
environment, and this agent receives rewards/penalties for
performing correctly/incorrectly. By deploying reinforce-
ment learning techniques, the agent is expected to learn
the dynamics of the environment and causality between an

action and its resulting reward/penalty, in which case the
performance of the agent can be improved by choosing the
correct action. Different to supervised learning, where the
ground-truth label of input is provided, the agent of a rein-
forcement learning algorithm only receives an immediate
reward for its action, which does not necessarily repre-
sent the overall worthiness of that action. In other words,
an action resulting in the best immediate reward might
not be the correct choice to achieve the highest long-term
gain.
In this paper, we harness supervised machine learning

(ML) to make accurate predictions of H2R traffic for
resource pre-allocation in SPS schemes of LTE and 5G
networks. Below are a list of major contributions of this
article:

• Proposal of a Feasible RBP Allocator (FRA) to
determine the positions of scheduled resources in
the predictive SPS scheme. Specifically, the FRA
features radio resource collision avoidance amongst
SPS-connected User Equipment (UE) and improves
allocation efficiency by maintaining accessibility of
unused resources for non-H2R UEs.

• Proposal of a novel Attention-based Recurrent Neural
Network (Att-RNN) prediction model that uses empir-
ical H2R traffic characteristics for prediction. In par-
ticular, the sequential-format input and output from the
predictive SPS model is firstly processed with dimen-
sion expansion and logarithmic normalization to allow
high-dimension feature detection and to remove data
skewness. Then, data is fed into an encoder-decoder
architecture such that temporal dependencies within the
input can be captured. An additive attention mechanism
is implemented to let the proposed model selectively
focus on the most relevant input states for improved
prediction accuracy. Finally, at the prediction stage, an
initial input with learnable parameters is introduced at
the decoder, which enables the model to perform with
extra flexibility.

• Comparisons of the accuracy of the proposed Att-RNN
model with that of existing statistical AR and ML-based
models, including feed-forward artificial neural network
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(ANN), Long Short-Term Memory (LSTM), and sev-
eral other attention-based ML, in predicting H2R traffic.
Normalized mean square error (NMSE) and mean abso-
lute error (MAE) performances of each model are
presented, highlighting the accurate prediction achieved
by the proposed Att-RNN model.

• Proposal of an SPS scheme based on the Att-RNN
prediction model, i.e., Att-RNN SPS scheme, that
effectively pre-allocates resources for H2R traffic, and
thereby achieving the latency metric demanded by hap-
tic feedback delivery. System-level simulation results
reveal that our proposed Att-RNN SPS scheme can
improve latency performance and scheduling efficiency
in support of bursty H2R traffic, as compared to existing
AR-based predictive SPS scheme.

Evidently, this study differs from [5] through complement-
ing the design of predictive SPS scheme via a novel resource
block allocator that determines the positions of scheduled
resources and through evaluating latency performance and
prediction accuracy of the proposed Att-RNN SPS scheme
in a more complex and realistic scenario when both H2R
and non-H2R traffic exist.
The rest of this article is structured as follows. In

Section II, medium access control (MAC) layer protocols
of mobile cellular networks and related work on latency
reduction are briefly discussed. Section III describes the gen-
eral working principle of the Att-RNN SPS scheme and how
positions of scheduled resources are determined by the novel
FRA. Section IV presents an overview on recurrent neu-
ral network and its application in communication networks,
followed by the detailed structure of Att-RNN prediction
model for the proposed SPS scheme, following an overview
on recurrent neural network and its application in communi-
cation networks. The implementation of the Att-RNN model
for predictive SPS scheme and its prediction performance
are discussed in Section V. In Section VI, the performance
of the Att-RNN model is evaluated against that of existing
schemes. Finally, our findings arising from this work are
summarized in Section VII.

II. EXISTING LOW-LATENCY SCHEDULING SCHEMES
FOR MOBILE CELLULAR NETWORKS
Currently, the communications community is striving to
improve mobile cellular networks so that emerging new
services can be supported with ultra-low latency. The exten-
sion of current LTE technology into the indoor network
segment to ensure end-to-end connectivity may not be
sufficient to support high-quality mobile real-time H2R
applications [11]. In particular, the uplink latency caused
by contention in wireless resources may severely affect H2R
collaboration. Therefore, improving the uplink resource allo-
cation scheme and the corresponding latency performance
are our main focus. The uplink latency consists of pro-
cessing latency Tproc, queueing latency Tqueue, transmission
latency Ttrans and propagation latency Tprop, where Ttrans
depends on processing speed of communications devices

FIGURE 2. Timing diagram of Dynamic Scheduling (DS) Scheme in LTE.

and frame structures of LTE standards and Tprop depends
on transmission distance and speed of radio signal. In other
words, Ttrans and Tprop can only be reduced by redefining
mobile cellular network standards and upgrading hardware.
On the other hand, Tproc is affected by the transmission pro-
tocols deployed by the communication standards and Tqueue
is largely defined by scheduling functions. In this section,
we discuss scheduling algorithms that bring down uplink
latency.

A. DYNAMIC SCHEDULING (DS) SCHEME
A conventional LTE network uses the DS scheme for uplink
transmission. An overview of this operation is illustrated
in Fig. 2. Once a UE is connected and synchronized to
an E-UTRAN NodeB (eNB), the UE’s uplink and down-
link transmissions are then initialized with transmit timing
advance [12]. The transmit timing advance–TA sets a nega-
tive offset between the start of a received downlink subframe
and a transmitted uplink subframe, such that time alignment
between the eNB and the UE can be achieved. In practice, TA
is determined by propagation latency from UE to eNB. Once
the UE detects the arrival of new uplink data, it transmits a
Scheduling Request (SR) to the eNB on Physical Uplink
Control Channel (PUCCH) at the next SR opportunity–
subframe n. Upon successful reception of the SR, the eNB
transmits a downlink control packet on Physical Downlink
Control Channel (PDCCH) called Scheduling Grant (SG)
at subframe n+ 2, informing the scheduled RBP dedicated
to the UE. The first uplink data frame is then transmitted
by the UE on Physical Uplink Shared Channel (PUSCH), at
4 subframes after the UE received the SG. An important fea-
ture of the LTE uplink data frame is that it contains not only
the uplink data but also a Buffer Status Report (BSR), indi-
cating the size of leftover data in UE’s buffer. By obtaining
the buffer occupancy information, the eNB can dynamically
schedules further RBPs and sends the second SG to the UE
at subframe n+ 10. The subsequent uplink data packets are
therefore transmitted every 8 subframes until the UE’s data
buffer is cleared.
The study in [11] showed that instead of being limited

by LTE bandwidth, the latency incurred by the signalling
process of LTE networks dominates the network latency.
Instead, existing research is focused on designing scheduling
functions in the DS scheme [13]–[16], which only affects
Tqueue and therefore has limited impact on the overall latency
performance.
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FIGURE 3. Timing diagram of Contention Based Scheme (CBS) in LTE.

B. CONTENTION-BASED SCHEME
Contention Based Schemes (CBSs) have been proposed
in [17], [18] to address the latency caused by Tproc. In
general, CBS achieves statistical multiplexing by allowing
multiple UEs to content for the same PUSCH resources for
uplink transmission. First, an eNB assigns a group of RBPs
that can be shared by multiple UEs using a contention-
based (CB) grant and delivers this information via CB-Radio
Network Temporary Identifiers (CB-RNTIs). By decoding
CB grants, the UEs are allowed to send their uplink data
directly using the shared PUSCH resources without waiting
for SR or SG [19]. The procedure of CBS uplink transmis-
sion is illustrated in Fig. 3. Without the need to exchange
SR and SG between UEs and eNB, CBS is able to conduct
uplink transmissions with less latency. However, CBS suf-
fers from data packet collision when multiple UEs transmit
data using the same RBPs during the same subframe, in
which case uplink packets cannot be correctly received and
decoded.
Andreev et al. implemented CBS for Machine-Type

Communications (MTC), which is characterized by small
data transmissions [20]. Their solution to reducing data col-
lision is a random backoff procedure followed by a packet
retransmission mechanism. In [21], CBS was tested and
evaluated with the implementation of consecutive Hybrid
Automatic Repeat reQuest (HARQ) retransmission. The
proposed HARQ retransmission approach is used to increase
the reliability of CBS, and it is shown that CBS is more effi-
cient in terms of resource scheduling than conventional SPS
scheme and the proposed CBS is able to meet reliability
requirement, given data collision is properly handled.

C. SEMI-PERSISTENT SCHEDULING (SPS) SCHEME
The conventional DS scheme imposes a significant amount of
control-signal overhead when transmitting small-sized pack-
ets. Additionally, instead of dynamic resource allocation, the
regularly occurring pattern of constant bitrate (CBR) traffic
motivates an uplink scheme to schedule resources periodi-
cally and deterministically. As such, the SPS scheme was
proposed to address these two issues, and it is most notably
implemented for VoIP [22]. In essence, an eNB periodically
assigns predefined RBPs to an SPS-configured UE without
consuming resource on PDCCH or PUCCH, except for the
initial connection setup stage. The principle of operation of
the SPS scheme with a 10-ms period is illustrated in Fig. 4.
The SPS scheme follows a similar process as in the DS

FIGURE 4. Timing diagram of Semi-Persistent Scheduling (SPS) in LTE.

TABLE 1. Preliminary analysis of uplink transmission latency.

scheme until subframe n + 6. In particular, all SPS-related
parameters including SPS periodicity, scheduling decision,
selected Modulation and Coding Scheme (MCS) and a max-
imum number of SPS transmission are encapsulated in an
SPS-SG. At subframes n + 16 and n + 26, a UE initiates
uplink transmission using the granted periodic RBPs, and
this continues until the maximum number of SPS trans-
mission is reached or other termination mechanisms are
triggered. Such a conventional SPS scheme may not well
suit H2R communications since H2R traffic is bursty and
UE transmissions cannot be timely adjusted once RBPs are
scheduled. This leads to a trade-off between low/high latency
and high/low resource waste in an over/under-scheduling
problem. In particular, SPS might fail to transmit all the
buffered data immediately when data traffic is bursty [23] or
induce noticeable resource waste when data traffic reduces.
When the contention among UEs for uplink radio

resources is light, the minimum uplink latency of DS, CBS
and SPS schemes are presented in Table 1 based on [24].
It should be noted that the transmission latency is valid
when sufficient radio resources are accessible. We can see
that without exchanging SR and SG between UEs and eNB,
CBS and SPS offers 3.5 ms less transmission latency as
compared with the DS. When CBS is implemented, how-
ever, packet collision is likely to happen, which necessitates
the implementation of collision reduction mechanisms and
efficient retransmission techniques [21], [25]. This motivates
our interest in designing an SPS scheme that allows flexible
scheduling and ensures a contention-free transmission with
low-latency performance.

D. EXISTING LITERATURE ON LOW-LATENCY SPS
SCHEMES
Avocanh et al. improved the SPS scheme with a MAC
Layer method–an SPS scheme with Provisioning (SPS-P)
that proactively allocates resources to consecutive future
frames by prediction [26]. The prediction model used by the
SPS-P is based on GBAR (Gamma-Beta Auto Regressive)
algorithm, which is specialized for estimating short-term
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FIGURE 5. Timing diagram of the predictive SPS scheme with a 3 ms SPS periodicity [5].

fluctuation of Videotelephony data traffic. Compared to DS
scheme, the SPS-P reduces packet loss by seven times and
effectively improved the latency performance. Note that the
GBAR algorithm in SPS-P is efficient for arrivals having
variable packet sizes and constant arriving time. However, for
bursty H2R arrivals, this scheme can not be directly applied
due to inaccurate prediction for bursty traffic. Another draw-
back of the SPS-P is that the prediction window is limited,
leaving it unsuitable for long-term traffic prediction. This,
in turn, would require the SPS-P to initiate an entirely
new SPS-P session after current prediction window, which
will inevitably lead to increased latency for the overall
Videotelephony session.
For M2M communications, authors in [27], [28] designed

an adaptive SPS scheme which utilizes the latest buffer
occupancy information contained in the BSR to adjust the
resource allocations for the next uplink SPS transmissions.
Moreover, the proposed adaptive SPS scheme incorporates
a channel condition measuring window, such that MCS
selections that match current channel measurement can be
updated, which provides certain diversity gains similar to the
DS scheme. Simulation results of the proposed adaptive SPS
scheme demonstrate that 85% packets have met delay budget
when 50 gateways are deployed, roughly 3 times higher than
the DS scheme. Moreover, the adaptive SPS scheme is shown
to effectively reduce the uplink packet drop rate by almost
50% compared with the DS scheme. The proposed adap-
tive SPS scheme, however, does not elaborate how positions
of scheduled resources are determined, making it infeasible
for practical implementation. Moreover, the calculation of
resource allocation does not consider new incoming uplink
data after the BSR transmission. Lastly, the periodicity of
adaptive SPS is over 10 ms, and hence ultra-low latency
applications cannot be supported.
In [29], a soft resource reservation SPS scheme was

proposed for teleoperation over mobile networks. The reser-
vation strategy allows a UE to selectively send an SR to an
eNB about whether new incoming data packets have been
received at the UE buffer. Through this procedure, if the
UE did not have any uplink data to send, the eNB will
reschedule the reserved resources for other communications
within the cell. Although this soft resource reservation SPS
scheme does not appear to have any drawbacks as compared
to the conventional DS scheme, it may incur a degradation

in latency performance when compared to the conventional
periodic SPS scheme. Firstly, unlike the conventional SPS
scheme, where no PUCCH resource is consumed after SPS
establishment, the soft resource reservation SPS scheme
must send uplink SR messages each time when transmission
opportunity is needed. This may have a significant impact
on accessible mobile connections of other communications
within the cell. Secondly, an eNB needs to schedule resources
for uplink transmissions 4 ms in advance and the processing
time of PUCCH message is 3 ms. Hence, there will be at
least a 7 ms gap between the SR packet and data packet trans-
mission, introducing the possibility of a UE being unable to
transmit in time even though it has new incoming uplink
data. Results have shown that the resource reservation SPS
scheme achieves an average uplink latency of 10 ms, out-
performing the conventional DS scheme by 5 ms. However,
no comparison has been made between the soft resource
reservation SPS scheme and its preceding counterpart - the
conventional SPS.

III. PREDICTIVE SPS SCHEME FOR LATENCY-CRITICAL
APPLICATIONS
A. GENERAL WORKING PRINCIPLE OF PREDICTIVE
SPS SCHEME
In the proposed Att-RNN SPS scheme, identical predictive
schedulers are deployed in the MAC layers of eNB and cor-
responding UEs. As such, the predictive SPS scheme not
only overcomes the disadvantage of unchangeable resource
allocations of the conventional SPS scheme, but also pre-
serves the advantage of zero control-signaling overhead as
depicted in Fig. 5 which details the timing diagram corre-
sponding to a newly-accepted predictive SPS session with
3 ms periodicity. More specifically, the flow diagram of the
working principle of the Att-RNN SPS scheme is presented
in Fig. 6, specifically illustrating UEj requesting an SPS
session with an eNB. As the Att-RNN SPS scheme follows
a similar procedure to the conventional SPS scheme, it is
expected to be 3GPP-compliant.

B. FEASIBLE RBP ALLOCATOR (FRA)
The FRA is designed to not only avoid resource collision
among SPS-connected UEs, but also maintain the accessi-
bility of unscheduled radio resources for DS scheme. Let
Nmax,j and Nn,j denote the maximum number of schedulable
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FIGURE 6. Flow diagram of working principle of predictive SPS scheme.

RBPs for UEj and the number of scheduled RBPs for UEj at
subframe n. For an established SPS session between an eNB
and UEj, let BRj, pj and cj denote the bitrate of upcoming
H2R traffic, SPS periodicity and bits contained per RBP,
respectively. Upon establishing a predictive SPS session, the
eNB determines Nmax,j based on:

Nmax,j =
⌈
aj
BRj × pj

cj

⌉
(1)

where aj is a multiplication factor determined by H2R traffic
characteristics and is greater than 1.
The principle of FRA for eNB’s MAC layer at subframe

n is described in Figs. 7 and 8. Radio resource allocation
diagram for an example scenario where both UE1 and UE2
request predictive SPS sessions with preiodicities of 3 ms
and 7 ms is illustrated in Fig. 9. Upon receiving SPS-SR
from UE1, the eNB runs the FRA algorithm described in
Fig. 7 to accept/reject UE1’s request. Specifically, if the
amount of remaining contiguous RBPs is less than Nmax,1,
UE1’s SPS request is rejected and this situation is denoted as
“Limitation of UE Admission”. Otherwise, the eNB assigns
Nmax,1 contiguous RBPs to UE1, and Nmax,1 is the maximum
amount of RBPs that UE1 can access during its entire SPS
session. As shown in Fig. 9, the eNB schedules and allocates
Nn,1 RBPs for UE1 at subframe n, while the remaining
(Nmax,1 − Nn,1) RBPs become available to DS-connected

FIGURE 7. FRA algorithm for a new SPS session request.

FIGURE 8. FRA algorithm for an existing SPS session.

FIGURE 9. RBP allocation with FRA in an example scenario.

UEs. Subsequently after every 3 subframes, the eNB runs
the FRA algorithm in Fig. 8 to schedule and allocate various
RBPs to UE1, as depicted in Fig. 9.
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At subframe n+ 4, the eNB establishes another predictive
SPS session with UE2 and it allocates RBPs to UE2 every
7 subframes. Note that at subframe n + 18, when the eNB
schedules and reserves RBPs for both the 7th transmission
of UE1 and the 3rd transmission of UE2, Fig. 9 depicts that
radio resource allocation of the Att-RNN SPS scheme does
not cause collision, even when there exists concurrent uplink
transmissions for multiple SPS-connected UEs. Furthermore,
the unscheduled RBPs within Nmax,1 and Nmax,2 can still
be allocated to DS-connected UEs. Hence the Att-RNN
SPS scheme equipped with FRA can flexibly allocate radio
resources among SPS-connected UEs and DS-connected
UEs. As such, predictive SPS scheme achieves improved
RBP utilization efficiency, as compared with conventional
SPS scheme.
With regard to PUCCH usage, the Att-RNN SPS scheme

differs from the soft resource reservation SPS scheme [29] in
that no additional SR packet is required before data transmis-
sion, thus benefitting from a zero control-signaling overhead.
For uplink latency, as explained in Section II-D, a minimum
of 7 ms extra delay is introduced due to the processing of SR
packets in the soft resource reservation SPS. Moreover, the
predictive SPS scheme schedules RBPs based on network
traffic prediction whereas the soft resource reservation SPS
scheme schedules radio resources by informing eNB the
amount of pending haptic data using SR.

IV. PREDICTIVE SPS SCHEDULER BASED ON ATT-RNN
A. OVERVIEW ON RECURRENT NEURAL NETWORK
FOR SEQ2SEQ PROBLEM
Prediction of H2R traffic supported by the SPS scheme
in nature is a sequence-to-sequence (seq2seq) problem.
Relaying on a sequence of historical arrival data or pattern
features in a time-series form, a sequence of future arrivals,
either in short or long term, can be predicted. Classical
seq2seq methods used in traffic prediction include statistical
prediction algorithms such as AR, AR integrated moving
average (ARIMA), and nonlinear AR exogenous (NARX).
More recently, advanced machine learning techniques are

being explored to improve traffic prediction accuracy. In
that regard, the RNN encoder-decoder model is being con-
sidered as promising solution for seq2seq problems. Both
the encoder and decoder consist of an RNN unit such as
LSTM and in typical language processinng scenarios, or
Gated Recurrent Unit (GRU) [30]. As for the encoder, each
element in the source sentences is fed into the RNN one by
one to generate a context vector. The decoder behaves differ-
ently at training and prediction stages. At the training stage,
the decoder’s RNN is fed with the target sentence and it is
initialized with the context vector from the encoder. While
at the prediction stage, the decoder is fed with a start-of-
sentence (sos) token to generate the first prediction output.
The following outputs are then produced by feeding the
sos token as well as the already-generated outputs. Applied
to language processing, such RNNs show more accurate

prediction, in terms of MSE and RMSE, than classic statisti-
cal and shallow ML models, such as feed-forward ANN [30],
[31].
In [32], the authors showed that the performance of RNN

in seq2seq can be effectively improved by incorporating
attention-based learning. For an output at a given posi-
tion in the output sequence, their attention-based model
selectively puts more weights (hence attention) on more rel-
evant input elements instead of the entire input sequence.
On top of adjusting the weights, attention-based learning
relaxes the need of an encoder to accurately learn the fea-
tures of the entire input by modifying the network structure
such that encoder-extracted feature is passed to decoder at
every time-step. In processing language, results show that the
attention-based model significantly outperforms the conven-
tional encoder-decoder model (RNNencdec) for both short
and long sentences.

B. ATTENTION-BASED RECURRENT NEURAL
NETWORK FOR PREDICTIVE SPS SCHEME
To this end, the Attention-based encoder-decoder model
was proposed as a promising machine learning method for
seq2seq tasks because it is able to capture the long-term
temporal correlation of time series data. This also fits the
demand of k-step ahead prediction for the Att-RNN SPS
scheme as described in [5], as both the input and output are
in a sequential format.
Practiced in empirical scenarios, attention-based learn-

ing have been shown to boost existing RNNs in achieving
more accurate time-series prediction performance. Qin et al.
proposed a Dual-stage Attention-based Neural Network (DA-
RNN) for predicting the target time series based on history
observation of multiple driving (exogenous) series [33].
Apart from the attention operation introduced in [32], their
model performs an additional attention operation among dif-
ferent driving series. In other words, their model performs
spatial attention at the encoder to select relevant driving
series, and applies temporal attention at the decoder to select
the relevant element of the output of the encoder. This design
was verified by using room temperature as target series
and 16 other monitoring data for about 40 days as driv-
ing series. Results show that DA-RNN outperforms not only
traditional statistical time series prediction methods such as
ARIMA and NARX, but also conventional machine learn-
ing models such as RNNencdec and Attention-based RNN
network.
Attention-based RNN has previously been used to achieve

prediction in natural language processing and computer
vision [34]. Similarly, a multi-level attention network for
geo-sensory data (GeoMAN) was proposed in [35]. The
spatial and temporal attention mechanism was utilized in
selecting relevant data series, and meanwhile, the exter-
nal factors of dynamic environment were jointly considered
to achieve the final sensor measurement prediction. The
GeoMAN was tested in water and air quality prediction
base on the data collected from various measuring sensors.
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FIGURE 10. Recurrent neural network encoder-decoder architecture of Att-RNN prediction model.

TABLE 2. Notations for Attention-based prediction model.

Results showed that the proposed GeoMAN achieved the best
performance among considered alternatives such as ARIMA,
LSTM, RNNencdec and DA-RNN.

C. RECURRENT NEURAL NETWORK
ENCODER-DECODER ARCHITECTURE
In this work, our proposed Att-RNN model for H2R traf-
fic prediction employs an RNN encoder-decoder architecture
which is illustrated in Fig. 10. The proposed network com-
prises an LSTM-based encoder and decoder, an attention
block in between, and an ANN-based prediction block at the
final stage. The notation used for explaining the procedure
of our proposed Attention-based prediction model is listed
in Table 2 and the functions of each block are explained in
detail as follows:

1) ENCODER USING LSTM

The encoder is used to extract compressed information from
the source sequences to help the decoder generate accu-
rate predictions. This is achieved by feeding elements of
source sequences into an LSTM unit at the encoder and
extracting generated hidden state (ht) and cell state (ct)
as illustrated in Fig. 10. LSTM was first introduced by
Hochreiter and Schmidhuber [36], and has a recurrent struc-
ture such that the generated information can be fed back
as an input for the next computation. In this way, the
long-term temporal dependencies in the source sequence
can be captured. Moreover, an LSTM unit offers a non-
linear transformation for the input signal without suffering
from vanishing gradient problem. In comparison, conven-
tional non-linear activation units based on sigmoid, tanh

FIGURE 11. Detailed structure of the LSTM unit at encoder.

or Rectified Linear Unit (ReLu) functions may encounter
vanishing gradient in the backward propagation process,
which in turn leads to non-optimized results or slow conver-
gence speed. This issue has less effect on LSTM because it
accumulates information flows over time, therefore allowing
gradients to be unchanged. An improved version of LSTM
contains a forget gate (f ), an input gate (i), a cell gate and
an output gate (o), by which hidden and cell states can be
computed.
For a given source sequence X =

(x1, x2, . . . , xt, . . . , xT) ∈ R
n×T and target sequence

Y = (y1, y2, . . . , yi, . . . , yI) ∈ R
p×I , the flow chart describ-

ing the computation process of a LSTM at encoder is
presented in Fig. 11 and its calculation is shown as follows:

it = σ
(
Wi

[
ht−1; xt

] + bi
)
, (2)

f t = σ
(
Wf

[
ht−1; xt

] + bf
)
, (3)

gt = tanh
(
Wg

[
ht−1; xt

] + bg
)
, (4)

ot = σ
(
Wo

[
ht−1; xt

] + bo
)
, (5)

ct = f t ⊗ ct−1 + it ⊗ gt, (6)

ht = ot ⊗ tanh(ct). (7)

where xt ∈ R
n is the tth element in the source sequence,

ht−1 ∈ R
m is the hidden state from the previous LSTM cal-

culation and [ht−1; xt] represents the concatenation of these
two vectors. Wi, Wf , Wg, Wo ∈ R

m×(n+m) and bi, bf , bg,
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FIGURE 12. Additive attention mechanism implemented by the Att-RNN prediction
model.

bo ∈ R
m are multiplication matrices and bias terms of input,

forget, cell and output gates. The symbol σ and ⊗ denote
sigmoid function and element-wise multiplication, respec-
tively. Specifically, the multiplication factor f t determines
the extent of forgetting the previous cell information and
addition factor ot determines how much information of new
cell state shall contribute to the calculation of new hidden
state ht. It should be noted that when feeding the first ele-
ment of source sequence into the LSTM_en, the hidden and
cell states denoted as h0 and c0 need to be initialized and
provided.

2) ADDITIVE ATTENTION MECHANISM

A collection of hidden and cell states are available when
encoding is complete and they are then processed by the
attention mechanism. In our work, we employ an additive
attention mechanism between the accumulated hidden and
cell states from LSTM_en and the generated hidden and
cell states from LSTM_de. The detailed operation is illus-
trated in Fig. 12, where H = (h1,h2, . . . ,hT)� ∈ R

T×m
and C = (c1, c2, . . . , cT)� ∈ R

T×m denote the accumulated
hidden and cell state, respectively. The detailed mathemati-
cal derivation of the additive attention can be expressed as
follows:

eit = tanh
(
Wa

[
ht; ct; gi−1; di−1

] + ba
)
, (8)

ait = exp
(
ν�eit

)
∑T

t=1 exp
(
ν�eit

) , (9)

aci =
T∑
t=1

ait[ht; ct], (10)

where gi ∈ R
q and di ∈ R

q are the hidden and cell states
calculated by LSTM_de. In particular, the energy score
eit measures the importance of tth hidden and cell states
from the encoder to the ith element of decoder, in order
to make accurate target sequence prediction ŷi. The energy
scores are then normalized by a softmax function [37].
Then, the weighted sum of the accumulated compressed
information from LSTM_en can be calculated using a simple
matrix multiplication operation. Such a procedure achieves
the selection of the most relevant outputs from LSTM_en
for a more accurate target prediction. Wa ∈ R

q×(2q+2m),
ba ∈ R

q and ν ∈ R
q are parameters of the attention mech-

anism which are learnt via a training process that will be
described in Section V. It should be noted that at i = 1,

FIGURE 13. Data pre-processing procedure.

the hidden and cell states of LSTM_de are initialized with
the last hidden and cell state of LSTM_en processed with
feed-forward networks, which means g0 = ANN1(hT) and
d0 = ANN2(cT).

3) DECODER USING LSTM

Finally, the target sequence prediction is realized by the
LSTM_de followed by a simple feed-forward ANN network.
In particular, the LSTM_de generates hidden and cell
states by taking the previous states, weighted compressed
information from LSTM_en and previous target prediction as
inputs. The detailed calculation can be expressed as follows:

i′i = σ
(
W′

i

[
gi−1; zi

] + b′
i

)
, (11)

f ′i = σ
(
W′

f

[
gi−1; zi

] + b′
f

)
, (12)

g′
i = tanh

(
W′

g

[
gi−1; zi

] + b′
g

)
, (13)

o′
i = σ

(
W′

o

[
gi−1; zi

] + b′
o

)
, (14)

di = f ′i ⊗ di−1 + i′i ⊗ g′
i, (15)

gi = oi ⊗ tanh(di). (16)

where zi ∈ R
m+p is the concatenation of the ith element in

the target sequence and weighted compressed information.
Note that zi = [aci; yi] is used in the training stage and
zi = [aci; ỹi] is used in the evaluation stage, respectively.
W′

i, W
′
f , W

′
g, W

′
o ∈ R

q×(q+m+p) and b′
i, b

′
f , b

′
g, b

′
o ∈ R

q

are multiplication matrices and bias terms of input, forget,
cell and output gates of LSTM_de. The ith predicted target
sequence is then derived by feeding the concatenation of
yi−1, aci and gi into the ANN. Note that the ANN in this
work implements ReLU function and it comprises one hidden
layer of nine nodes and one output node.

4) DATA PRE-PROCESSING AND LEARNABLE INITIAL
DECODER INPUT

Different to [33], [35] where multi-variant data is fed directly
into a prediction model, our proposed Att-RNN prediction
model pre-processes raw input and output data to form
proper source and target sequences. We implement this to
remove potential skewness in the raw data. As illustrated
in Fig. 13, the logarithm values of raw data are first com-
puted, and then followed by normalization. Subsequently,
both normalized input and output data undergo a dimen-
sion expansion process denoted as a linear block, such that
potential high-dimension pattern of the input data such as
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FIGURE 14. Human-to-robot (H2R) experimental setup.

FIGURE 15. Experimental haptic feedback data arrivals.

long-term temporal dependencies could be captured. The
existing attention-based RNNs as overviewed in [32] typi-
cally requires fixed size inputs at the decoder. The Att-RNN
prediction model proposed in this work overcome such draw-
back by allowing inputs to have variable size and learnable
parameters for the prediction.

V. SUPERVISED TRAINING FOR ATTENTION-BASED
PREDICTION MODEL
A. TRACED DATA TRAFFIC FROM HUMAN-TO-ROBOT
(H2R) EXPERIMENTS
To verify the proposed Att-RNN prediction model and to
evaluate its performance as a predictive SPS scheme, we
first collect haptic feedback traffic traces from H2R experi-
ments which we then use in our simulations as data generated
by the application layer. Fig. 14 presents our experimental
platform, which comprises a human master haptic control
device that is made up of 22-sensor haptic glove with posi-
tion tracker and hand exoskeleton, and a robot device in a
virtual environment. Based on this platform, real-time human
operations and haptic response from the virtual environment
can be collected. An example of the experimental haptic
feedback data flow with a time window of 1 second is illus-
trated in Fig. 15. In addition, the statistics of inter-arrival
time of haptic feedback data flows from 5 separate H2R
experiments are shown in Table 3. These results reveal that
the data flow generated by the haptic interaction application
of the H2R experiment exhibits randomness and bursty char-
acteristics. In particular, the inter-arrival time between two
adjacent haptic feedback experimental data could range from

TABLE 3. Statistics of data inter-arrival time (ms).

0 ms (multiple data packets were generated simultaneously)
to 200 ms. Therefore, conventional periodic SPS schemes
will not be able to support low latency transmission as
demanded by H2R collaboration. In the following, we train
the proposed Att-RNN prediction model using the empirical
H2R traffic traces and validate its prediction performance.

B. TRAINING AND TESTING DATA
As explained in Section III-A, for UEj with an SPS periodic-
ity of pj, an allocation decision Ĝl for lth SPS transmission is
determined based on available history observations, includ-
ing transmitted data size {Dl−k−M, . . . ,Dl−k}, remaining
buffer length {Bl−k−M+1, . . . ,Bl−k} reported in BSRs and
previously granted data size {Gl−k, . . . ,Gl−1}, where M rep-
resents the selected windows size for prediction and Gl can
be directly calculated from Nl. These form the raw model
of our proposed predictive scheduler. The available historic
observations and prediction output for the lth transmission
is summarized in Table 4, where {Tl−k−M+1, . . . ,Tl−k} and
{Tl−k+1, . . . ,Tl} are the input and output sequences to the
Att-RNN model. Note that in Table 4 “· · · ” stands for
omission of elements and “-N/A-” denotes unavailable obser-
vations due to “Information Lagging”. The elements of raw
input data can be derived by:

Ti = Di + Bi − Bi−1 (17)

where l − k − M + 1 ≤ i ≤ l − k. It is important to note
that there exists a 4 ms leading time between RBP grant
and uplink data transmission and another 4 ms processing
time for decoding an uplink data packet. This results in an
“Information Lagging” such that for lth SPS transmission, a
eNB has observed only the transmitted data and BSR up to
(l− k)th order, where k is determined by:

k =
⌊

7 ms

pj

⌋
+ 1 (18)

Let us consider an eNB that has reached subframe n +
26 in Fig. 5. The eNB needs to schedule for the uplink
transmission at subframe n+ 30 (the 9th transmission), but
it had just finished processing the uplink data transmitted at
subframe n+ 21 (the 6th transmission). Therefore, the eNB
has observed only up to D6, B6 and G8 and thus, the order
of “Information Lagging” is 3.
In essence, the proposed Att-RNN SPS scheme determines

the number of granted RBPs–Nl, based on the estimated
length of the previous data buffer (̂Bl−1) and predicted size
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TABLE 4. Available observations and prediction target of SPS scheduler for lth transmission.

TABLE 5. Number of samples used in off-line training and testing.

TABLE 6. NMSE of prediction for 2 ms periodicity.

of new data that arrive between previous and next SPS
transmission (̂Tl) based on:

Nl =
⎧⎨
⎩
Nmax, if

⌈
Ĝl
c

⌉
> Nmax⌈

Ĝl
c

⌉
, otherwise.

(19)

where Ĝl = B̂l−1+T̂l is the buffer occupancy predicted by the
proposed Att-RNN SPS scheme and c represents the amount
of data contained within one RBP. To obtain the training and
testing data for the Att-RNN prediction model, we first apply
traced H2R arrivals obtained via the experiments described
in Section V-A to the regular SPS scheme with a periodicity
of 2 and 3 ms, and then extract relevant samples including
the amount of transmitted data, BSR and scheduled data for
each uplink transmission. Hence, the newly arrived data T
during an SPS period can be calculated by (17). The total
size of experimental data samples applied to the regular SPS
scheme with a periodicity of 2 and 3 ms for each normalized
network load, is provided in Table 5. Note that 80% of
total samples are used for training and the remaining for
testing.

C. PREDICTION ACCURACY DURING OFF-LINE
TRAINING
In this section, the extracted time series of newly arrived
data N during an SPS period is used for off-line super-
vised training for our proposed Att-RNN prediction model.
Note that the selected windows size M determines the length
of source sequence X. On one hand, a larger window size
provides more information about the network traffic that
in turn, could improve prediction accuracy of the proposed
SPS scheduler. On the other hand, a larger window size
requires the scheduler to wait for a longer time before the

prediction can start, thus leading to degraded scheduling
accuracy within the waiting phase. In this study, we choose
30 as the selected windows size, such that the resulting wait-
ing time of the SPS scheduler is less than 100 ms with the
selected SPS periodicity.
We then verify the proposed prediction model by examin-

ing the H2R arrival prediction accuracy measured by MAE
and NMSE. The MAE of newly-arrived data is determined by
1
n

∑n
l=1 |Tl − T ′

l |, where n denotes number of samples, and T
and T ′ denote actual and predicted size of newly-arrived data,
respectively. MAE measures the magnitude of overall error
in forecasting but its value depends on the scale of exam-
ined data. On the other hand, the NMSE of newly-arrived
data is determined by 1

σ 2n

∑n
l=1 (Tl − T ′

l )
2, where σ is the

sample standard deviation of {T1,T2, . . . ,Tn} [38]. NMSE
measures against the average squared error which is then nor-
malized based on deviation of examined data group. Hence
in this study, NMSE is useful for assessing the accuracy of
a prediction model across data groups with different period-
icities. With MAE and NMSE, we compare the accuracy of
the proposed model with other alternative models including
AR, simple feed-forward ANN, DA-RNN [33], Dot-Product
Attention-based network (DP-Attn) [39] and Self-Attention-
based network (S-Attn) [37]. It should be noted that our
specific prediction task contains only one driving sequence,
and therefore the spatial attention computation in the encod-
ing stage of DA-RNN [33] is removed when it is deployed
for our traffic data. The NMSE and MAE for different peri-
odicities and varying normalized taffic load are listed in
Tables 6–9, respectively.
From the results, we can clearly see that our proposed

Att-RNN prediction model generates the least prediction
error among all considered models and thus highlights
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TABLE 7. NMSE of prediction for 3 ms periodicity.

TABLE 8. MAE of prediction for 2 ms periodicity.

TABLE 9. MAE of prediction for 3 ms periodicity.

its potential in improving latency performance and RBP
allocation efficiency, as will be evident in the next section.

VI. SIMULATION RESULTS AND DISCUSSION
We verify the performance enhancement of the SPS scheme
arising from implementing our trained Attention-based
prediction model by simulating an LTE network that supports
both low-latency H2R UEs and latency-tolerant non-H2R
UEs. The implementation is based on feeding the traced
H2R arrivals into an LTE simulation program–SimuLTE [40],
which is a system-level simulator developed on the well-
known discrete event simulation platform OMNeT++ and it
is widely used to simulate LTE and LTE-Advanced systems.
Prediction via our proposed Att-RNN SPS scheduler is per-
formed online and in real-time while both H2R and non-H2R
traffic is generated and delivered across the LTE network.
The LTE network parameters and traffic characteristics are
summarized in Table 10. In Table 10, a normalized traffic
load of 1 represents the maximum aggregate data offered to
all UEs and this uplink capacity is chosen to be 36 Mbps over
500 radio resource block pairs. In comparison, the amount
of received data–data plane utilization, is dependent on the
number of connected UEs and the packet drop rate.

A. LATENCY PERFORMANCE
Figure 16 compares the average uplink MAC layer latency
performance of H2R UEs incurred by conventional DS,

TABLE 10. Simulation parameters.

conventional SPS, adaptive SPS in [27], [28], AR-based
predictive SPS in [5], and our proposed Att-RNN SPS.
Results shows that the achievable uplink latency of the
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FIGURE 16. Average uplink MAC layer latency of H2R UEs as a function of
normalized traffic load.

FIGURE 17. Detailed latency performance comparison as a function of normalized
traffic load.

conventional DS protocol is around 10 ms latency when
the normalized traffic load is under 0.9, and this rises dras-
tically to 3 seconds when the network is near saturation.
On the other hand, SPS schemes provide relatively stable
latency performance at under 7 ms. It is worth noting that the
resulting average uplink latency of Adaptive SPS is higher
than that of other SPS schemes, reflecting the limitation
of Adaptive SPS to predict bursty traffic. A detailed com-
parison of uplink latencies between the AR-based predictive
SPS and Att-RNN SPS schemes is presented in Fig. 17. Note
that the average uplink MAC layer latency of both AR-based
predictive SPS and the proposed scheme is seen to increase
as traffic loads are reduced. This is predominantly due to
higher prediction errors, which will be explained in more
detail in Section VI-C.

B. DATA PLANE UTILIZATION AND NUMBER OF
CONNECTED H2R UES
Fig. 18 compares the data plane utilization representing over-
all throughput and Fig. 19 shows the number of connected
(admitted) H2R UEs incurred by the investigated uplink

FIGURE 18. Overall data plane utilization as a function of normalized traffic load.

FIGURE 19. Number of connected H2R UEs as a function of normalized traffic load.

MAC schemes. From Fig. 18, the utilization curves of all
schemes increase linearly with the traffic load up to 0.4.
However, the conventional SPS, Adaptive SPS, AR-based
predictive SPS and Att-RNN SPS produce less utilization
when the traffic load is above 0.5. This results from the
decreased number of connected H2R UEs shown in Fig. 19.
As described in Step 2 of Section III-A, the admission control
implemented by SPS scheme could lead to “Limitation of
UE Admission” when (Nmax) increases with normalized traf-
fic load, reflecting the known trade-off between throughput
and latency in wireless communications [41].

C. SCHEDULING AND PREDICTION PERFORMANCE
The ability of different SPS schemes to allocate sufficient
RBPs for uplink transmission is measured by the NMSE of
RBP allocation, whereby a lower NMSE indicates less devia-
tion between actual and ideal allocations and hence a higher
prediction accuracy and allocation efficiency. The simula-
tion results in Fig. 20 show that Att-RNN SPS provides the
best allocation accuracy, which explains the improvement of
latency performance presented in Fig. 16.
The allocation efficiency reflected by buffer occupancy

during simulation is shown in Fig. 21. In general, the
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FIGURE 20. NMSE of RBP allocation for H2R UEs as a function of total normalized
traffic load.

FIGURE 21. NMSE of predicted buffer occupancy as a function of total normalized
traffic load.

prediction performed by Att-RNN SPS is more accurate than
AR-based predictive SPS. However, when the operation con-
dition denoted as (load, periodicity (ms)) is (0.2, 3), (0.3, 2),
(1.0, 2) and (1.0, 3), the prediction accuracies of these two
models are comparable, and this conforms to comparable
latency performances as depicted in Fig. 17. Furthermore,
the results from Figs. 17 and 21 indicate an increasing trend
of prediction error as traffic load is decreased. A possible
reason for this can be attributed to the increasing sparsity of
bursty data arrivals when traffic is lightly loaded, in which
case temporal dependencies is harder to obtain due to the
limited size of raw input data.

VII. CONCLUSION
In this article, we presented a novel scheduler for
the predictive SPS scheme based on an Attention-based
Recurrent Neural Network for H2R traffic prediction, in
order to achieve enhanced latency performance for H2R col-
laboration over LTE-based industrial networks. Specifically,
we interpreted the “Information Lagging” issue arising from
predictive SPS schemes into a seq2seq problem and design
the Att-RNN model for this task. In addition, we proposed
a new feasible RBP allocator that ensures collision-free
radio resource allocation and enhances allocation efficiency
by retaining accessibility of unused resources. Further, we

studied the characteristics of traced data traffic from real
H2R haptic feedback experiments. Simulation results showed
that for all the prediction methods that are compared, their
H2R arrival prediction accuracy may degrade under light
traffic loads, when the temporal dependency is relatively
weak among arrivals in a time-series form. Nonetheless, the
Att-RNN SPS outperforms the existing schemes in latency
performance, achieving < 5ms latency over all network load
range. In summary, our proposed Att-RNN SPS improves the
SPS scheme adopted by LTE and NR standards developed
for 5G, and hence better supports key applications such as
haptic telerobot and haptic AR/VR in advanced industrial
deployments of the future.
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