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ABSTRACT End-users and service providers have recently favored lower latency services. Edge com-
puting has improved user quality of service (QoS) guarantees through the reduced geographical distance,
decreased use of the network backbone, and flexible placement of the container hosting edge devices.
The under-utilized isolated edge computing idling nodes are significant for service providers, especially
for Internet of Things (IoT) applications. However, the nodes’ minimal maintenance remains a hindrance
due to related increased failures. Orchestrating over the edge alongside core environments allows toler-
ant services and more demanding ones to coexist without impacting the user experience. Therefore, the
orchestrator’s second priority is achieving and maintaining the QoS through optimal recovery method
selection by either migrating the live containers or re-instantiating them. This paper proposes an Optimal
Container Migration/Re-Instantiation (OC-MRI) model to optimize the orchestration methods focusing on
downtime, container dependencies, and latency requirements. Next, we introduce a real-time heuristic-
based solution, Edge Computing-enabled Container Migration/Re-Instantiation (EC2-MRI). Both models
are bench-marked alongside staple greedy approaches. Simulation results showcase the lowest latencies
and downtime with the OC-MRI model. Furthermore, the EC2-MRI model shows comparable results to
the optimal model with minimal lag.

INDEX TERMS Container orchestration, hybrid computing, integer programming, migration/re-
instantiation.

I. INTRODUCTION

THE RECENT rapid adoption of 5G networks sig-
nificantly increased the pre-existing interest in edge

computing. This is mainly due to the 5G paradigm’s readi-
ness for rapid network changes coupled with its ability to
accommodate the increasing number of users and gener-
ated traffic. Within 5G, edge computing allows providers to
shift their services away from the core cloud and towards
end-users by utilizing the abundant resources found in pre-
existing under-utilized edge communication devices. This
shift further lowers latencies and offloads traffic from the
network’s main backbone. Real-time dependent applications,
such as 4K streaming, instant speech translation, and intelli-
gent transportation systems may then run seamlessly [1]–[3].
The push to adopt edge computing has generated a significant

amount of literature targeting the optimization of its main
attributes with more focus on latency and energy costs,
capital (CAPEX), and operational expenditure (OPEX) [4].
The concept of containers was proposed to further build

on the premise of edge computing. Container-type solu-
tions were introduced to replace traditional virtual machines
(VMs) to increase the system’s flexibility and scalability fur-
ther. This change is due to the containers’ ability to coexist
in a shared platform allowing more services to run with
higher efficiency and mobility. Consequently, containers have
decreased CPU requirements compared to VMs that require
hardware stack virtualization. Containers can also recover
more quickly and require a significantly lower share of the
system’s memory without requiring an entire OS image.
These attributes allow for microservices to be hosted on
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less sophisticated units. In contrast, robust computing units
can be placed in the vicinity of end-users in the form of
roadside units (RSU), base stations, and routers.
Containers hosted on the edge require additional con-

straints over core cloud-hosted containers to perform their
intended tasks properly, as edge devices are typically less
accessible and maintained less frequently. The containers
must then achieve high robustness through other methods
instead of relying on heavy hardware-based safeguards and
traditional data center-based setups typically associated with
core clouds [5]. This exposes the containers to more fre-
quent outages, both planned (maintenance and updates) and
unplanned (hardware failures and overloads) [6]. Redundant
copies may be implemented to tackle this issue. However,
this may affect the efficient utilization rates and system size,
which are the advantages of using these containers. Thus,
the desired approach is to maintain efficiency while low-
ering downtime when recovering, which lessens the impact
on quality of service (QoS) once a failure is detected. This
is vital in the edge environment due to the high availabil-
ity requirement typical of its services, from urgent services,
such as an emergency response, to standard services, such
as IoT-based manufacturing and smart-city management.
Traditionally, containers were allowed to either migrate from
the failing edge node or re-instantiate by allowing the edge
node to return to online status. Migrating with the antici-
pation of a failure serves to maintain their last state. The
downtime will last until a new viable host is determined
and the live capture image of the container is transferred.
Conversely, the downtime in re-instantiation is dependent on
the time a failed edge node needs to perform a hard reset and
re-establish the connection with the end-user. This can be
done by using the archived stateless image of the container
instead of recovering the current data in the container.
An intelligent orchestration paradigm to decide between

migration and re-instantiation is needed to achieve an optimal
solution for placement while lowering downtime. Choosing
the method depends on several network-related constraints
to reduce global downtime. The decision process must also
address the type of hosted services within the container
and its compatibility and affinity towards migration and
re-instantiation. For example, the migration should allow
the system to recover seamlessly and maintain a high ser-
vice up-time for a container with a stateful application.
Comparatively, re-instantiation techniques are used when it
is not necessary to preserve the application states [7]. The
recovery method is not controlled solely by the application
persistence requirement. Other metrics must be addressed,
such as the end-user experience, cost, and security concerns.
This paper introduces a novel container orchestrator based
on an integer linear programming optimization model to
address the challenges of traditional orchestration and find
the optimal placement with minimal downtime in hybrid
computing environments. In addition, due to the time com-
plexity of the optimization model, this work introduces a
comparably accurate heuristic model capable of achieving

near-optimal results at a fraction of the time and complexity
of the optimization model, thereby allowing it to provide
real-time orchestration. The presented solutions are invoked
once a failure is detected or deemed imminent. First, the
host captures a snapshot of all hosted containers and gener-
ates a list of their given resources. It then provides a list of
dependencies between the containers and similar constraints.
A new placement is then generated using the decision,
either migration or re-instantiation, to minimize the contain-
ers’ downtime along with the access delay latency. To this
end, the proposed approach enhances the QoS by minimiz-
ing the container downtime and satisfying the carrier-grade
requirements of the provided services, namely availability
and performance. The main contributions of this work are
summarized as follows:

• Formulate the problem of container migration vs. re-
instantiation while considering edge-related placement
requirements such as latency and downtime.

• Develop an intuitive clustering method to generate rep-
resentative user clusters capable of reducing solution
space-related problems for optimization and heuristic-
based solutions.

• Propose a real-time heuristic model orchestrator capa-
ble of providing comparable results to the optimization
model.

• Evaluate the performance of the proposed optimization
model and heuristic algorithm in comparison with the
greedy migration and re-instantiation algorithms.

The remainder of this paper is organized as follows:
Section II presents some of the previous related work
addressing this problem. Section III describes the system
model adopted in this paper. Section IV formulates the
optimization problem. Section V presents the proposed
heuristic algorithm along with a brief discussion of its
complexity. Section VI presents and discusses the results
of the system’s performance evaluation process. Finally,
Section VII concludes the paper.

II. RELATED WORKS
Current research trends describe a significant interest in
exploiting the benefits of containers within an edge comput-
ing environment. A number of approaches were proposed
to address the challenges facing the implementation of
containers from both academia and industry.
Hawilo et al. created a solution focused on a specific

type of VMs performing Network function virtualization
(NFV) functionalities with the setup assuming all VMs are
housed within a single data center [8]. The developed solu-
tion is based on an integer programming (IP) optimization
model orchestrator. The system facilitates the placement of
the virtual network functions (VNFs) taking into consider-
ation different constraints such as inter-container relations
and service function chain (SFC) delays.
Barbalace et al. Heterogeneous migration scheme for

Containers migration for natively-compiled containerized
applications across compute nodes with differing instruction
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Set Architectures [9]. Their focus on edge computing and
migration schemes specifically to address the issues of state-
ful services. Their approach produces negligible overhead
most noticeable during migration.
Rodrigues et al. proposed an analytical model to resolve

Service Delay in edge cloud computing (ECC) systems.
The approach seeks to minimize the delay for both com-
munication and computation elements. The results were
compared to models addressing processing delay only [10].
Although the authors tackle additional types of delays and
have achieved an improvement over traditional methods, the
lack of placement, downtime-related constraints, and delay
can be considered a drawback.
Alam et al. leveraged lightweight virtualization to generate

a modular solutions that works with the Docker system [11].
their solution achieved high availability metrics by rely-
ing on the innate redundancies generated by docker with
their proposed solution allowing for on-demand service
deployment on heterogeneous architecture layers.
Kaur et al. addressed the optimization problem by con-

sidering that the core cloud is optimized based on delay and
energy with the decision whether or not to offload to the
edge. The multi-algorithm service model operates by jointly
allocating workload assignment based on assigned weights
and computation capacities of the respective VMs. They also
implemented a method to ensure the acquired results remain
consistent [12]. While their approach is effective, it failed
to take into account the network operation, failures, and
containers’ dependencies.
Abdullaziz et al. focused on the migration aspect of con-

tainer orchestration by making it a more reliable option [13].
The authors achieved this by leveraging live orchestra-
tion as a method of achieving low downtime comparable
to re-instantiation. Their method is broken down into two
tiers. The first migrates user connectivity, while the sec-
ond migrates user containerized applications. They have also
addressed the possible causes of prolonged container migra-
tion downtime. Their results boast lower downtime by up to
50% shorter than that of the state-of-the-art migration.
Oleghe presented in his work [14] the frameworks and

algorithms most commonly used in container placement
problem, the types of containers currently dominating the
edge space and the heuristic approaches currently favored in
the research community to offer real time solutions.
Govindaraj and Artemenko followed a similar approach

in [15]. With a focus on the complex orchestration of cyber-
physical systems. Their work discussed the role of Edge
Computing (EC) for factory automation applications. Taking
Linux based containers as the basis, they built a live migra-
tion scheme called redundancy migration that reduced the
downtime by a factor of 1.8 compared to the stock migration
in Linux containers.
Wang et al. developed a unified mobile edge computing

wireless power transfer (MEC-WPT) design framework with
offloading and computing optimization for the edge while
specifically relying on latency constrained computation. They

minimized the total energy consumption subject to each
node’s individual computation latency constraints [16]. The
authors leveraged the Lagrange duality method to obtain the
optimal solution in a semi-closed form.
Machen et al. took the idea of migrating containers and

virtual machines in a layered format [17]. Their approach
using readily available technologies starts by migrating the
non-state related aspects of services or VM and achieved
much lower downtimes than traditional methods. The three-
layer model also allows the pre-caching of popular appli-
cations at MECs, so that the time required for future
instantiation of such applications can be shortened.
Alicherry and Lakshman developed a classic linear assign-

ment algorithm using computational nodes and presented an
algorithm for assigning VMs to data nodes that minimizes
various latency metrics under different constraints [18]. The
solution considered variable total access time allowances,
with and without constraints, to showcase the system’s
adaptability.
Vaucher et al. developed a novel Container Orchestrator

focusing on addressing issues such as having the containers
being hosted on heterogeneous clusters [19]. Their focus was
security-related issues stemming from the use of Intel-based
SGX (software guard extension) enabled containers on a
portion of the containers in a chain, and how to place them
in such a way to maintain its relations to non-SGX enabled
containers while preserving the security of the whole chain.
However, the solutions listed above focus on the recov-

ery mechanism itself with focus on either re-instantiation or
migration solely. In contrast, our work considers both poten-
tial recovery mechanisms as viable orchestration options.
A second limitation of the related works is that their
proposed solutions mostly exclusively consider the edge
or core. This limits the optimality of the solutions to
said solution space at a cost that could favor the users
or providers at a time. Our solution considers the joint
edge and core orchestration, allowing for a larger and more
comprehensive solution space. Therefore, this paper pro-
poses a comprehensive intelligent orchestrator based on an
integer programming optimization model to minimize the
impact of migration and re-instantiation on the contain-
ers’ downtime and access delay. Accordingly, the proposed
intelligent orchestration frameworks follow a more com-
prehensive approach concerning the recovery mechanisms
used, adds the core to the solution space to act as an offset,
and select the optimal placement that meets the container’s
demands, thereby achieving a highly optimized solution

III. SYSTEM MODEL
This work adopts a hybrid distributed computing environ-
ment similar to proposed works for modern networks. The
global environment where the container and hosted services
are placed is comprised of two platform types, namely the
core cloud and the edge devices, as shown in Fig. 1. The
core clouds are typically hosted using server farms and data
centers. This allows for an abundance of resources, both
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FIGURE 1. System Model: Core clouds and edge devices hosting service hosting
containers.

computing and memory, in these environments. However,
the size of the required structures to host them, the infras-
tructure, and the human intervention required to maintain
them greatly limit suitable geographical placements in the
real world.
Conversely, edge devices are a newly tapped resource that

became available in the wake of the adoption of software-
defined networks (SDN) and similar paradigms. That relies
on the abstraction and virtualization of network functions
to allow generic computing units to act as full-fledged
networking units [20]. This presents a challenge for seek-
ing an abundance of resources while also maintaining low
latencies, which makes the optimization of this problem more
crucial.

A. PHYSICAL RESOURCES
The core clouds physically operate from data centers or
server farms. The servers are given abundant resources com-
pared to their edge counterparts. The servers communicate
with servers housed within the same rack or separate racks
within the exact geological location. Cross-core communi-
cation is allowed due to the latencies, but it is not exercised
extensively due to the increased complexity [21]. The laten-
cies experienced within the core are kept to a minimum due
to the advanced communication backbone and high band-
width mediums used between servers, typically fiber-optic
cables. The latencies between the core cloud and user are
much higher, mainly due to the propagation delay resulting
from the distance between them. The amount of computing
power and memory resources in each server are limited in
variation due to the homogeneous nature of the physical rack
servers typically used in data centers.
In contrast, the edge devices are typically either re-

purposed communication nodes such as routers and RSUs,
or larger units such as small dedicated edge nodes and 5G
smart towers. The limited physical size of the edge units and
the sporadic nature of their deployment enforces a singular
rack structure. The racks typically host a limited number of
servers compared to those found in large data centers. The

FIGURE 2. Migration mechanism with placement consideration.

latencies within the same rack are similar to those found
in the core cloud. However, the delay between the edge
device and end-user is more negligible than that of the core
cloud. The resources are more limited than those of the core
cloud and have a higher variance between each edge node’s
memory and computation resources.

B. CONTAINERS
The containers and the hosted services can vary based
on their latency requirements. This ranges from latency-
stringent services, such as those related to financial trans-
actions and security, to looser requirements, such as those
related to text messaging and advertising services. In addi-
tion to the containers’ latency requirements, the required
resources are uniquely tailored based on the task they serve.
For example, from high-memory, low-computation in trans-
coding 4K videos and AR gaming to high-computation, low-
memory requirements in navigation and sensor processing
units.

IV. OPTIMAL CONTAINER
MIGRATION/RE-INSTANTIATION (OC-MRI) MODEL
FORMULATION
A. GENERAL MODEL DESCRIPTION
The model aims at minimizing two delay metrics. The first is
the downtime resulting from the migration or re-instantiation
process initiated for a container upon the imminent failure
of its hosting computing node. The second is the access
delay caused by the placement distance of the container to
the end-user. The two processes have their own required
static downtime, but choosing a new location has a signifi-
cant impact on both the downtime and new access delay, as
shown in Figs. 2 and 3. The following section details how
we optimally minimize the downtime within the objective
function. Meanwhile, the access delay is optimally mini-
mized by enforcing costs upon both the objective function
and its related constraints.
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FIGURE 3. Re-instatiation mechanism with placement consideration.

• Computational Resources Constraint: Using this con-
straint, the proposed model selects the computing nodes
that satisfy the containers’ computational requirements.
The resources are CPU cores and available memory.

• Network Delay Constraint: Using this constraint, the
proposed model filters the nodes to select those that
do not violate both the access delay and delay between
master and slave containers in the cloud.

• Availability Constraints: Each container is classified as
unattached for single container-based services, master,
or slave for services that consist of multiple contain-
ers working in a hierarchical set up to perform their
tasks. To maintain the usability of QoS of the over-
all services offered by various containers, the proposed
model defines the following constraints:

– Affinity Constraint: This ensures that the master
container and its slaves must be hosted on the same
physical server if the communication tolerance time
between them is lower than the master’s recovery
time.

– Anti-Affinity Constraint: Conversely, the slave con-
tainers and their master should be deployed on
different servers if the slave has a higher tolerance
time than their master’s recovery time.

B. NOTATIONS AND DECISION VARIABLES
The developed model relies on the following set of variables
as shown in Table 1. The table outlines each variable and
how it relates to our problem setup covering all the types
of constraints discussed in more detail below.

C. MATHEMATICAL FORMULATION
This subsection outlines the binary decision variables, the
objective function, and the model’s constraints.

TABLE 1. Table of notations.

• Decision Variables:

Xce =
{

1 if Container ‘c’ is placed on node e
0 otherwise

Ydec_twoc =

⎧⎪⎪⎨
⎪⎪⎩

YMigc = 1 ‘c’ Migrated
YMigc = 0 otherwise

YRe−instc = 1 ‘c’ Re-instantiated
YRe−instc = 0 otherwise

• Objective Function:

min
Nc∑
c

DownTimec + AccDcu. (1)

• Boundary constraints:

Xce,Y
Dec
c ∈ {0, 1} ∀c ∈ C, e ∈ E (2)
Dec ∈ {Re− instantiation,Migration}

Downtimec ≥ 0; ∀c ∈ C (3)

• Placement Constraints:
Nc∑
c=1

(
Xce × Rescr ≤ Reser

); ∀e ∈ E, r ∈ R (4)

Nc∑
c=1

(
Xce × AccDcu ≤ AccDeu

); ∀e ∈ E, u ∈ U (5)

Ne∑
E=1

Xce = 1; ∀c ∈ C (6)

• Availability Constraints:

(Xce + Xc′e) ≤ 2 or
(
Xce + Xc′e

original
)

≤ 2;
∀e ∈ E, c ∈ C, c′ ∈ CD,TTc′ ≤ TRc (7)

(Xce + Xc′e) ≤ 1 or
(
Xce + Xc′e

original
)

≤ 1;
∀e ∈ E, c ∈ C, c′ ∈ CD,TTc′ ≥ TRc (8)
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• Re-instantiation/Migration Delay Constraints:

YRe −inst
c + YMigc = 1; ∀c ∈ C (9)

DPc = Xce ×
( Ne∑
e=1

XOriginalce × Dee
′

ce

)
; ∀c ∈ C (10)

DDecc = SODecc × YDecc ; ∀c ∈ C (11)

Downtimec = DDecc + DPc + Hmod; ∀c ∈ C,

Dec ∈ {Re− instantiaion,Migration} (12)

Constraint (2) determines that the placement and re-
instantiation/migration decision variables are binary num-
bers. Constraint (3) determines that the container downtime
must be a positive number. Constraint (4) determines that
the candidate computing node must meet the computational
requirements of the potential container. Constraint (5) spec-
ifies that the access delay to the container is less than
the threshold access delay of the corresponding container.
Constraint (6) determines that only one computing node can
host a container.
The containers in the solution space are classified as three

types: master, a container that relies on input from subor-
dinate containers to finish its operation, slave, a container
or group of containers that are needed by others to oper-
ate but require no inputs for others to operate normally, and
finally free containers that are simply stand-alone single con-
tainer service. To maintain the interdependent relationship
between different containers, constraints (7)-(8) determines
if a container placement is dependent on its relation to its
possible slaves. Thus, it either forces all related containers
to a suitable physical location or allows them to be placed
more freely. Furthermore, constraint (9) determines that a
container can be either migrated or re-instantiated. Finally,
constraints (10) and (11) determine that a container should
be placed on a server that satisfies the delay requirements
while minimizing the migration or re-instantiation overhead.
Based on the previous constraints, the model selects to either
migrate or re-instantiate each container to minimize its down-
time. Lastly, constraint (12) shows that the downtime of each
container is calculated in terms of the placement latency
and the overhead delay resulting from the choice of recov-
ery process offset by the Hmod modifier. This is based on
the container’s type, the critical nature of its state, or the
information it holds controlling its affinity to re-instantiate
or migrate.

D. IMPLEMENTATION
The proposed model was implemented using python envi-
ronment for ease of use during experimentation. For the
objective function in eq. (1), the values for both latency and
downtime were generated based on the test-bed. At the same
time, the resources-based constraints were predetermined
based on the environment size and allocated edge devices.
Finally, the generated matrices based on the container types
were generated to include a portion with inter-dependencies
to be used in constraints (7)-(8).

E. COMPLEXITY
Although integer programming problems can be solved using
traditional branch and bound algorithms [22], these problems
are typically classified as NP-complete [23]. This is fur-
ther emphasized by the size of the problem’s search space.
Accordingly, the problem’s search space can be estimated to
be 22×Nc×Ne where Nc is the total number of containers and
Ne is the total number of host nodes. This is due to the fact
that there are 22 possible values (migrate or re-instantiate)
for each container to be placed at each host node. For exam-
ple, for the case of Nc = 10 and Ne = 5, the search space
is 1.267 × 1030. Therefore, finding an optimal solution for
this problem in a real-world scenario can be computationally
infeasible due to the exponential growth in the search space
size. Thus, a low-complexity heuristic algorithm capable of
live decision making is needed to address this problem.

V. EDGE COMPUTING-ENABLED CONTAINER
MIGRATION/RE-INSTANTIATION (EC2-MRI)
The optimization model has allowed us to find the optimal
placements through orchestration to achieve carrier-grade
quality, whereby the mathematical model focused on satis-
fying different criteria, mainly downtime and latency. While
successful at achieving optimal results, the model is compu-
tationally complex. This drawback is mainly due to its lack
of scalability, as illustrated by the aforementioned complex-
ity. Without real-time orchestration, it is counter-intuitive to
offer the system in its current state for orchestrating highly
dynamic environments, such as mobile edge computing due
to the following:

• The need for total access to the solution space for proper
orchestration.

• Treatment and optimization of users and containers as
individual unique elements.

• High computational time and significant resources
required to perform the orchestration task.

Given that downtime is the primary optimization objective,
the model’s orchestration processing time must be taken into
consideration. This additional delay is especially significant
when considering the highly mobile nature of edge users,
and the sporadic nature of SDN and 5G based edge devices
where it may become detrimental. The optimization model
cannot be retrofitted or adjusted in a way that would address
all the aforementioned issues while maintaining its accuracy.
A better lightweight real-time solution is thus required. We
choose to pursue a heuristic-based approach due to its flex-
ible nature and capability of handling frequent changes to
the network. They can also circumvent the global environ-
ment’s staggering size and its effect on any system’s ability
to provide seamless orchestration unnoticeable to the end-
user. Orchestration can benefit from taking place within the
edge environment by removing the communication overhead
of offsite orchestration. This design aspect minimizes the
additional delay caused to the orchestration communication
overhead by a core cloud that is typically required when
done using the centralized approach. This requirement is
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FIGURE 4. User and container solution space setup.

addressed by limiting the heuristic model’s complexity, thus
allowing it to run on the edge environments, eliminating
the drawback. However, to achieve this, the overall solu-
tion space must be segmented into isolated sub-spaces to
maintain the required low complexity.
The requirements above present their own set of chal-

lenges when creating the heuristic model. To address them
efficiently, the system’s behavior is comprised of two main
stages. The first intends to run offline and sporadically, and
focuses on simplifying the solution space by tackling the
number of elements through clustering and chaining. It also
further simplifies the problem by segmenting the generated
clusters and chains based on their interactions and proximity
to each other. This stage is intended only as an environ-
ment initialization point. It is a fail-safe when the existing
edge-space results in many failures that indicate a consider-
able divergence from the last segmentation cycle. Its offline
nature gives it access to core cloud environments’ exclusive
resources, especially the abundance of low-cost computa-
tional power and access to the global solution space. Fig. 4
shows the breakdown of the undertaken task. Firstly the
generation stage is where the solution space is simplified,
followed by the auditing stage where the candidates are vet-
ted for accuracy and reliability. Lastly, the finalization stage
where the heuristic assigns control of the outputted elements
to the best-suited orchestration controller, as discussed below.

A. GENERATION STAGE
The live requirement placed on the edge-computing con-
tainer migration/re-instantiation (EC2-MRI) model demands
limited complexity. However, relying on a greedy or similarly
generic approaches, while boasting the highly sought-after

simplicity, not only does it not guarantee near-optimal place-
ments, its output can vary vastly. To achieve our target of
matching the placement benefits of the OC-MRI model, we
must first solve the solution space size issue. This solution
can be achieved by reducing and segmenting the solution
space into isolated and self-managing subspaces.

1) USER CLUSTERING

The OC-MRI was allotted several concessions regarding the
edge user’s main distinguishing attributes since it was not
developed as a live orchestrator, with the main concession
its ability to ignore the mobility of user clusters. However,
the heuristic approach cannot follow suit. As such, the pro-
cess of generating the user solution space must be given
additional attention. This is to ensure that the system is gen-
erating a healthy and stable solution space and not fall into
a counterproductive cycle of “build-to-fail” environments.
This outcome will keep triggering the offline stage more fre-
quently, with little actual orchestration taking place. When
generating a new edge space, simply permitting all users
entry into the space as individual entities lacks scalability
and reproduces the OC-MRI’s drawbacks in our heuristic
solution. On the other extreme, using advanced clustering
techniques can be too time-intensive even for offline opera-
tions. Their high granularity will also steer the solution back
towards the build-to-fail state. We address these hurdles in an
intuitive approach by first subjecting the user solution space
to the subtractive clustering process. This process generates
the clusters necessary to provide coverage for the overall
solution space and a corresponding list of representative
candidate users acting as the centroid of their host clus-
ter. While not highly complex, this clustering method has
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Algorithm 1 Chain Generator
Input: C = {1, 2, . . . , |Nc|}, CD, Segment tables
Output: Cluster & Anti Cluster tables
1: for e ∈ Clustertables(i) do
2: for c ∈ Nc do
3: if (Xce +Xc′e) ≤ 2 or (Xce +Xc′eoriginal) ≤ 2 then
4: Rename c to ChainID.c
5: update CnChainTable(u(i))
6: end if
7: if (Xce +Xc′e) ≤ 1 or (Xce +Xc′eoriginal) ≤ 1 then
8: update AntiCnChainTable(u(i))
9: end if
10: end for
11: end for
12: return Cluster & Anti Cluster tables

been implemented several times and proven to work well.
It was used most recently in the research efforts within 5G
ultra-dense networks [24]. The main premise is segmenting
user space to ensures the distance between the candidate
clusters is significant by raising the Squash factor related to
the overall user space and adjusting the Accept/Reject ratios
based on the average mobility index of the users occupying
each edge space.
The results of the subtractive clustering process are a num-

ber of disjoint clusters, from said list we choose a candidate
that is near the center of the generated segment to act as
the representative user, for the purposes of generating the
audit threshold value and the mobility audit as well. After
the centroid list is generated, we apply a straightforward
rigid distance-based clusterer that produces a radial border
around the centroid. This captures as many users adhering
to equation (13) where S is the user’s diameter coordinate
space divided over the number of potential clusters. T is an
integer variable ranging from 1 to 3 representing the mobility
of each user (stationary, pedestrian, vehicular) and I repre-
sents the tolerances of the users present in the overall user
space. This equation is used to limit the cluster upper limits
in both the physical coverage area and the number of users
hosted. It also nearly eliminates the presence of build-to-fail
user clusters scenario.

Maxclusteringdistance =
(
STunclustered − SImin

)
. (13)

2) CONTAINER CHAINING

The optimization model allowed containers with links to
exist on multiple edge devices given the tolerances outlined
in equation (7). The heuristic model cannot handle such
complex tasks as the placements and interactions can easily
grow in complexity quite rapidly. To address this issue, a
reduction step similar to what was done in the user solution
space is implemented. Unlike the user solution space, seg-
menting and clustering are not required in their traditional
meaning. Instead, containers are chained together based on
their affinities as shown in Algorithm 1.

3) CHAIN GENERATOR

The chain generator aims at maintaining the size and com-
plexity requirements of the second algorithm. Individually
orchestrating the containers will be difficult. Thus, the algo-
rithm generates a master list of all container chains based on
the affinity constraint (7). Container chains are then clustered
into singular entities and assigned new IDs. The new format
changes the IDs from integers to floating variables with the
integer digits representing the cluster ID and the fraction dig-
its preserving the container unique IDs. Anti-affinity is then
generated based on constraint (8). Once the key elements
of the table are generated, the corresponding computational
requirements for each container chain is amended based on
the aggregated value of contained clusters. Lastly, an affin-
ity binary variable is generated based on the highest Hmod
modifier for each cluster chain. While this approach guar-
antees a semi-optimal solution, it is still limited by the loss
of multi-host based solutions due to the over simplification
of the affinity constraint to maintain a lower complexity in
the later algorithm.

4) AUDITING STAGE

Once the users have been placed into clusters and the con-
tainers have become grouped into more monolithic chains,
we have to ensure the feasibility of our new solution space
in various aspects. We begin addressing this with the user
clusters. Two major causes of failure have to be avoided.
First the tolerance offset from the representative user vio-
lates that of the masked user (cluster host user). The second
is a preventative step to avoid immediate failures related
to mobility of the users. To address this issue, an auditing
threshold is first enforced on each cluster guided by the fol-
lowing equation (14) where I is the mobility index the user
and i is the cluster number:

Auditthreshold =
(
Maxiclusteringdistance/2

)
− I (14)

Once the auditing threshold is invoked, all users found in
violation of it, based on their tolerances or mobility, will
be checked to ensure that they can remain members of the
cluster and the representative user can be an effective sta-
ble substitute. Failed users are pulled from their host cluster
and designated as a free agent under the control of the core
until the next clustering cycle. The next cycle is triggered
periodically or when triggered based on significant degrada-
tion in the EC2-MRI performance. The degradation can be
caused by significant changes in the host devices number and
available resources or the live portion of the auditing stage
offloading a more extensive than allowed number of users
from the clusters to become free agents under the direct core
cloud control. Fig. 5 illustrates the generation of a threshold
and an example of a mobility violation-based user expulsion.
Container auditing on the other hand is relatively more

straightforward. By using the overall size of the container
chain, it checks to ensure that the available containers are
placeable while maintaining the latency constraints. In addi-
tion, to maintain feasibility through multiple iterations, a
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FIGURE 5. Auditing stage, the red portion highlights the margin of mobility
violation.

Algorithm 2 Segmenter
Input: E = {1, 2, . . . , |Ne|}, U = {1, 2, . . . , |Nu|}
Output: Segment tables
1: for u ∈ Nu do
2: for e ∈ Ne do
3: if Dp(e(i)) < UserCluster(MaxTolerance) then
4: update SegmentTable(u(i))
5: end if
6: end for
7: Sort SegmentTable(u) based on latency to u(i)
8: end for
9: return Sorted Segment Tables

resource-specific over-provisioning is enforced. The margin
limits the maximum resources for a container and remov-
ing a whole chain ensures that the remaining chains remain
hostable. This approach is necessary given the relative oppor-
tunistic nature of the used placement algorithm and to avoid
build-to-fail states. Any chains found to be violating this
threshold will be removed along with their attached users
from the clusters.

5) EDGE DEVICE ALLOCATION STAGE

Once the auditing stage is finalized, the edge devices that
can house the remaining cluster chains are polled sequen-
tially and an ordered candidate list is prepared based on
Algorithm 2.
Segmenter: Generates a single dynamically sized table of

candidate edge devices based on their availability within
a user latency allowance. The table size is based on the
highest latency threshold. This can result in a significantly
large table in cases of densely placed servers coupled with
loose latency requirements, which is addressed in step 4. The
chain generator is polled for each region after all the tables

Algorithm 3 Orchestrator
Input: Cluster & Anti Cluster tables, Segment tables,

ChainID.c
Output: placement request

for i =< sortedsigmenttablesize do
2: while Xsu �= 1 do

find dcsu = min
c ∈ Cu

{ 1
|V|

∑
v∈V

dcs,v}
4: if ChainID �= AntiClustertable(i) then

if candidate resource allowance > ChainID
resource requirments then

6: poll candidate
if placement successful then

8: EXIT
end if

10: end if
end if

12: end while
end for

14: if no candidate found then
remove ChainID.c from Cluster, Anti Cluster tables,
and Segment tables.
orchestration raised to core cloud controller

16: end if
return

have been generated to eliminate any edge devices deemed
incapable of containing the generated container chains. The
servers are then organized based on latency and computing
power. Then, only the top candidates for each region are
maintained and the rest are discarded. The number of top
candidates maintained is based on the density of edge devices
found in each region.

B. EDGE-CONTROLLED LIVE ORCHESTRATION
PLACEMENT STAGE
The model is trigger activated once a container or VM signals
a failure or fails to respond, it enacts Algorithm 3. Starting
from the hosting edge node, an iterative check of the can-
didate table is initiated. This is followed with sequential
requests based on their ranking. The requested edge devices
check their computational availability and their currently
hosted containers for any anti-affinity violations. If none are
found, the request is approved and the algorithm terminates.
If the table is exhausted with no solutions, the edge device
raises the request to the core hosting secondary algorithm to
orchestrate a viable solution. At this stage, the drawbacks of
the clusters in the first stage are rectified, but the container
chain is removed from the candidates list for that region
until the next periodic operation of the provisioning stage.

C. CORE-CONTROLLED LIVE ORCHESTRATION
PLACEMENT STAGE
The heuristic chooses to treat a container differently if it is
a free agent from the start or was removed due to repeated
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failures. This method maintains overall system complexity.
However, relying on a generic approach, such as a greedy
migration or re-instantiation, would be deemed counter-
intuitive because it can keep victimizing a group of users
to an unhealthy edge device or a sub-optimal latency. To
address this, the core can make use of its abundance of
resources to orchestrate such stragglers using the original
methods outlined in the OC-MRI model. The main limita-
tion of the optimization model was the lack of scalability
with relation to the solution space. However, while acting
as a backup to the EC2-MRI model, this is no longer a
requirement. When orchestrating has either failed during the
live stage or in the case of the free agents, the core can use
the distance S to create the solution space limits for a single
user and perform live orchestration. The core can tackle this
orchestration in two methods based on the number of entities
under its control at the instance of a failure:

• Use the free agent’s tolerance to generate the solution
space

• Use the distance S to generate a slightly complex solu-
tion space and optimize all controlled nodes within the
influenced region.

D. COMPLEXITY
In contrast to the OC-MRI model, the proposed EC2-
MRI heuristic has taken a number of steps to avoid such
a limitation and focused on achieving a lower compu-
tational complexity, even with the discussed two stages.
The overall complexity is governed by the complexity of
each of the stages. The complexity of the first stage being
O(Nu × Ne + Nc × Ne) where Nu is the number of users,
Ne is the number of host nodes, and Nc is the number of
containers to be placed. However, since this is done only
once offline, this will not impact the system’s overall com-
plexity. On the other hand, the complexity of the second
stage is O(Nc ×Ne) under the assumption of the worst case
being that each container is placed freely with zero affin-
ity. Thus, the overall complexity is linear in the number of
containers and host nodes. Using the same values as in the
previous example, the complexity would be in the order of
50 operations.

VI. PERFORMANCE EVALUATION
To best test the two solutions put forth, a suitable device is
necessary for both bench-marking and environment simula-
tion. To evaluate the performance of the proposed solutions,
a physical workstation with 6 Cores and 12 threads of CPU,
a 11 GB GPU, and 32 GB of RAM is used to build the test
bed and implement both the OC-MRI and EC2-MRI models.
Three test beds of varying size are implemented to

represent settings from sporadically populated to densely
populated edge environments and to better represent and
highlight the variable nature of edge environments. Once
the test beds are properly populated, both models are tested
in contrast to two generic algorithms, namely greedy re-
instantiation and migration. These greedy algorithms are

TABLE 2. Test bed size.

introduced to act as base benchmarks to highlight each of the
proposed models’ benefits and drawbacks. The algorithms’
behavior is created through assigning a higher affinity to
either the migration or the re-instantiation decision vari-
ables to force the intended behavior without allowing for
non-solvable states. The resulting latency and downtime gen-
erated by each orchestration approach is measured from the
users’ point-of-view to act as the main metrics for the mod-
els’ performance. In addition, other metrics specific to the
clustering algorithm are presented to highlight the efficacy
of the proposed clustering approach. Finally, given that the
EC2-MRI is the only implantable solution, further discussion
and metrics related to its inner modules are presented.

A. TEST BED
A number of test beds are generated to perform the most
comprehensive method of testing the two models and the
bench markers, with equal distribution to each size as shown
in Table 2. Accordingly, the simulation environment is gen-
erated through five stages starting with the user clusters, core
placement, edge devices, resource allocation, and finally con-
tainer placement. Before any testing takes place, the earlier
seeding of the users and containers gets remapped based on
their cross latencies where the distance between any related
entities such as core cloud and edge device is represented as
distance. The only caveat is for any communication taking
place over the core-edge separation region, typically between
core cloud and edge devices or end-users, will incur a flat
latency penalty to represent the typical lag of traditional
network backbone, which we are trying to minimize.

1) USER CLUSTER SEEDING

The EC2-MRI offline stage’s related processing delay is not
taken into account to maintain objectivity, as the users’ clus-
ters assumed to be present in the OC-MRI are used from the
output of the EC2-MRI finalization stage. Additionally, all
processing time for the models left are ignored when measur-
ing the downtime to focus on the orchestration effect alone.
However, the heuristic failed call and response attempts are
included as they are not deemed to be related to processing
and are an integral part of the heuristic model’s behavior.
The user clusters are generated based on the user clustering
algorithm outlined in Section V-A1 of the heuristic model.
Each cluster is occupied with a minimum of five users and
capped at 25 users. To ensure proper clustering, a random-
ized mobility metric is attached to the users while ensuring
that no highly mobile users are also given stringent latency
requirements. This is done to maintain the solvability of the
solution space for all algorithms and maintain the practical-
ity of the simulation environment. Once the clustering and
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FIGURE 6. User clusters seeding and core edge latency penalty.

auditing stages are completed, separate sub spaces are gen-
erated around each cluster as shown in Fig. 6 the outline of
core edge latency barrier is outlined along with the represen-
tation of the user clusters and free agents. At this stage, the
only restriction aside from only seeding in the edge space
is the overlapping between user clusters, were the smaller
clusters are quashed and made into free agents. This step is
enforced to ensure that no unrealistic latencies occur in the
later stages of test bed setup given that the edge devices are
generated related to the cluster centroid.

2) CORE CLOUD SEEDING

The core clouds are first assigned a location within the core
designated space. Following this, a number of servers will
be assigned to each of the cores to represent tray workstation
style devices with minimal latencies. Once the servers are
assigned to a distinct core, they are then designated to their
specific racks within each core. This generates the necessary
latencies within the data centers and between the core clouds
and user clusters. The delays generated by their placement
within the core are not represented in the latency map. But
to maintain accuracy, a latency for inter-rack communication
is randomly assigned in the range of 2-5ms, and 7-10ms for
cross-rack communication.

3) EDGE DEVICE SEEDING

The edge devices’ placement in the vicinity of the user
clusters impacts both the possible size of the edge device
and its offered resources. The sizes of used edge devices
fall into three generalized tiers: small for devices such as
routers, medium representing devices such as an RSU, and
large for devices similar in size and capability to 5G towers.
The probability of these placements has been controlled as
shown in Fig. 7. The regions are split based on their latency
with respect to the user clusters. The mapping based latency
uses a scale from 10ms to 32ms representing typical edge
latencies within levels 2-4 of 5G environments as outlined
in [25]. The distribution for each edge device type is static

FIGURE 7. Edge device placement with respect to user cluster.

TABLE 3. Edge device size based placement.

TABLE 4. Edge node resource availability.

TABLE 5. Container resource requirements.

in all test beds generated. The ratios for each used type as
shown in Table 3 outline each region’s ratio for total device
types from the main pool based on the assigned percentage.

4) RESOURCE ALLOCATION

The available resources for services are categorized as either
computational power or memory. The edge devices will have
an abundance of either but not both. The unit of measure
for both will be in their capacity to meet the demands of a
singular small container of either type. Table 4 shows the
allocation based on the size and type.

5) CONTAINER PLACEMENT

The containers were categorized through a similar method to
the resource allocation based on the size requirements and
their resource affinity. Table 5 shows the relation between
their size and the required resources. However, they addition-
ally require a latency threshold. The containers are assigned
affinities to represent container chains performing a singular
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FIGURE 8. Downtime distribution OC-MRI.

service where cross communication is required, then the
latencies between them are restricted. Once the containers
are randomly distributed between user cluster, the downtimes
assigned to each container relates to its type and size with
values ranging from 2s to 5s with additional time tacked
on GPU heavy containers following the approach in test-
ing used in [26]. The aforementioned affinities and overall
latency requirements are adjusted based on the length of the
chain to maintain both solvability and plausibility. Finally,
a 15% anti affinity is assigned to any container not belong-
ing to the same chain. These probabilities are maintained
throughout the general testing.

B. DOWNTIME AND LATENCY ANALYSIS
Both the latency and downtime were generated by the place-
ment distance in the latency mapping during edge device
seeding stage, the ranges used stem from typical downtimes
expected with general current memory based migration tech-
niques [27], [28]. the downtime used as input for the models
tests relies on the type of container recovering along with
the transfer time associated with the typical size of said
containers.

1) DOWNTIME

The proposed optimization and heuristic models are bench-
marked against two base greedy algorithms. The models
experience a highly varied downtime response when tran-
sitioning between the small test bed towards the large
test bed. The resulting range of downtime experienced has
been divided into 10 segments of equal length to better
contrast the different models’ behavior within each time
range. The OC-MRI, as is shown in Fig. 8 performs best
in the sporadic environments with high adherence to the
effect of the container type modifier Hmod, with a major-
ity of placements falling within the 3.25 to 4.75 seconds
range. The optimization model maintained great performance
throughout with minimal additional lag even when expand-
ing to the medium and large test beds peaking at 4
and 5.5 seconds respectively. Following the performance of

FIGURE 9. Downtime distribution EC2-MRI.

FIGURE 10. Downtime distribution greedy re-instantiation.

OC-MRI, the heuristic based approach used in EC2-MRI per-
formed comparably well with respect to downtime as shown
in Fig. 9 boasting similar results. However, it is noteworthy
that it experiences a consistent dip in the placement oppor-
tunities within the initial 2.5 second range. This is attributed
to two factors, the monolithic chains presence making the
use of the low latency of small edge devices less likely due
to their limited resources, and the presence of conflicting
modifier Hmod values within a single chain both leading to
higher latencies. Finally, the performance of the base bench
marking algorithms has resulted in a much higher downtimes
with very limited placements in the first 1.5 seconds totaling
less than 25% for all test bed sizes combined in each algo-
rithm as shown in Figs. 10 and 11. Overall, the OC-MRI
model maintained the lowest downtime values throughout the
latencies with high adherence rate of the Hmod. The heuristic
approach, while showing a few drawbacks related to con-
tainer chaining, still maintained comparable downtime values
to the optimization model. The greedy algorithms using the
Hmod modifier were turned into a forced migration orches-
tration modeling the behavior similar to the recovery method
in [26] had significantly higher downtime regardless of the
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FIGURE 11. Downtime distribution greedy migration as per [17].

FIGURE 12. Latency experienced by the user, OC-MRI.

effect of the container type. This is due to their simplistic
approach, ignoring the container requirements, and relying
solely on their pre-configured biases.

2) LATENCY

Similar to downtime. the min and max latencies generated
by all models were used to create 10 time based segments
to allow for better contrast when comparing the models’
behavior to each other with each latency range. The laten-
cies offered by the OC-MRI followed a similar trend to its
performance in the downtime metric with great distribution
heavily weighted towards lower latencies as shown in Fig. 12.
While the performance between the small and medium test
beds was comparable, a significant lag was generated during
the large test bed bench-marking with a noticeable reduction
in the placement opportunities in the lower latency thresh-
olds. The performance of the EC2-MRI favored the middle
range of latencies with a slight offset towards the upper range
in the large test bed stage as shown in Fig. 13. This can be
attributed to the necessary shift away from the user caused
by the container chaining favoring the middle and large sized
edge computing units. Both base benchmark algorithms have

FIGURE 13. Latency experienced by the user, EC2-MRI.

FIGURE 14. Latency under greedy Re-instantiation orchestration.

shown inconsistent latency response to the increase in the
test bed size. The results of the greedy recovery mecha-
nisms were heavily weighted towards the upper 4ms with
little to no change in the distribution throughout the testing
process as shown in Figs. 14 and 15. the distribution notices
a failure to allocate proper placements when approaching
the outer region of the edge space adjacent to the core with
the Hmod variable impact on their operation becoming more
negligible. While the EC2-MRI has consistently achieved
comparable results to the OC-MRI optimal placements, the
cost of reducing the size of the solutions space through con-
tainer chaining remains an obstacle. A better approach such
as splitting the larger chains or restricting the chaining of
medium and large containers can be beneficial, but at the
cost of increasing the complexity and size of the solution
space. Another approach to investigate is more offloading of
reliable containers onto the core.

C. HEURISTIC ANALYSIS
While the heuristic model has a call and response aspect to
it with regards to confirming placement availability before
attempting to migrate or opting for re-instantiation, this

VOLUME 3, 2022 27



ALEYADEH et al.: OC-MRI IN HYBRID COMPUTING ENVIRONMENTS

FIGURE 15. Latency under greedy Migration orchestration as per [17].

FIGURE 16. Successful placement within the first two iterations of the EC2-MRI.

behavior will naturally create additional overhead delay that
can prolong downtime beyond preset tolerances. To inves-
tigate the amount of delay generated from this aspect of
the model’s functionality, Fig. 16 shows the percentages a
solution was achieved in the first two iterations for vary-
ing cluster sizes. The testing was focused on the amount
of clustering for each test bed to ensure better stress testing
through forcing longer chains to compete for a lower number
of viable edge-devices capable of hosting the chains as a sin-
gular object. As shown, the system maintained a high success
rate despite the varying chain lengths with little degradation
when stress testing under a high rate of container chaining
of 60%.
The heuristic approach segmentation is based on a unified

set of clustering techniques that don’t differ significantly
regardless of the addressed test-bed size. This approach is
necessary to limit the complexity of the system and the
variable nature of the test-beds. The clustering techniques
used showed minor improvements regardless of test-bed size
compared to the OC-MRI model; this is most visible in
Figures 9 and 13.

TABLE 6. Clustering accuracy.

TABLE 7. Effect of auditing on error avoidance.

The clustering stages’ accuracy has a direct impact on
the EC2-MRI downtime and latencies through two means.
Beginning with the clustering accuracy as shown in Table 6,
the system’s setup stage’s ability to cover the solution space
efficiently, creating reliable clusters, is of high importance.
But another aspect that needs to be taken into account is
the number of free agents generated as the overhead of core
based orchestration is best avoided when aiming for lower
downtimes. The table shows a high ratio of edge controlled
clusters regardless of the test bed size, with free agents ratio
never reaching 20%.
The audit stage of the offline setup stage requires a

dedicated metric when testing its efficacy. To measure its
effectiveness, an isolated test run on all three test bed is
performed with and without the auditing module. This was
done to check the changes it evokes in the number of failure-
generated free agents. as shown in Table 7. The audit stage
is able to offload all errors within the small test bed envi-
ronment and approximately 40% and 25% reduction during
the medium and large tested respectively; greatly lowering
the cases or un-placeable container user pairs offloaded as
free agents in the orchestration stage.

VII. CONCLUSION
Proper placement of edge services has become increas-
ingly critical for both network service providers (NSPs) and
end-users. This paper explored container orchestration in
a hybrid computing environment. The various challenges
hindering container edge adoption were identified and dis-
cussed. The paper presented two solutions while providing
detailed insights on system modeling and building blocks
of a container orchestrator. The first is an integer pro-
gramming optimization model, namely the OC-MRI model,
that addressed the container orchestration between edge
devices and core clouds. The model adhered to a number
of performance and availability-aware constraints. The main
target of the model was to achieve minimal downtime for
fault recovery through calculating the decision variable to
either re-instantiate or migrate. The model also achieved
lower latencies as a secondary objective indirectly enforced
through the manipulation of constraints and impact of the
downtime variable. Although the proposed model minimized
the downtime and provided noticeable improvements to the
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latencies, it remained limited by its lack of scalability and
prohibitive time complexity, making real time implementa-
tion infeasible. To address this issue, a heuristic solution was
presented through the EC2-MRI model. The algorithm con-
sisted of two stages to maintain the overall system’s ability
to run in real time. The two stages allowed for the highly
complex portions to be run on the core cloud where compu-
tation resources are abundant and inexpensive while the latter
stage is implemented on the edge devices where real time
decision making is required and computation resources are
scarce. Additional metrics were used to critique the system’s
unique modules and their impact on the overall system’s
accuracy to better highlight the benefits of the EC2-MRI
algorithm.
Using the current results as a starting point, we aim to con-

vert the optimization model into a multi-objective one. This
move is necessary to address the issue of the optimization
cost of running the edge device as they have highly variable
costs stemming from their placement and unit size. Another
possible improvement is the use of the Hmod variable. To
better utilize it and avoid conflicting magnitudes in container
chains, it is best to convert it into a multiplier type modifier
(values below 1 representing ranges of affinity to migrate,
and values above 1 representing re-instantiation) to allow for
better granularity when assigning affinity.
In terms of the heuristic model, the EC2-MRI is cur-

rently only reactive. However, a reactive approach is the
natural path when aiming to lower downtime. We must
first address the behavior of the system in a dynamic envi-
ronment to better adjust the system. The best approach to
address this issue is to start with a mobility model capable
of identifying changes in the trajectories of the user clusters
using the current method of subtractive clustering and mak-
ing adjustments to maintain the lowest latency and highest
robustness. To develop these venues of research, a heteroge-
neous intelligent mobility model will be necessary. Unlike
the conventional mobility models currently used, we pro-
pose to use a restricted path based model that will not allow
for free motion. Instead, a preset map of restricted paths
representing roads and pedestrian pathways within streets
or large building such as malls and stadiums, where edge
computing faces the highest demands, will be developed.
Lastly, we aim to use the input of the OC-MRI and EC2-
MRI to train a machine-learning based model to investigate
its efficacy as a real-time solution when compared to the
EC2-MRI from both an accuracy and complexity point of
view. This is paramount given the time-based nature of the
solution and the necessary orchestration to account for fail-
ure recovery and users leaving and entering predesignated
statically assigned clusters.
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