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ABSTRACT This paper investigates the communication reliability for single-input-multiple-output
wireless systems with low-resolution phase quantizers. First, the maximum-likelihood detector with n-bit
phase quantization is derived when there are N antennas at the receiver. Then, three low-complexity antenna
selection strategies for data detection are proposed and their symbol error probability performance is char-
acterized. It is shown that having 3 or more bits is sufficient to attain the full diversity order N, achievable
with infinite-bit quantizers, for quadrature phase shift keying modulation under Rayleigh fading. In par-
ticular, it is established that the proposed low-complexity max-distance and max-norm antenna selection
strategies perform the same as the maximum-likelihood detector in terms of the asymptotic system relia-
bility for n > 3. On the other hand, the diversity order decreases dramatically from N to %’ when n is equal
to 2, as illustrated by our numerical results and proven for the case of N = 2. An extensive numerical
and simulation study is performed to illustrate the accuracy of the derived results and asymptotic system
reliability performance as well as verifying our hypotheses in the high signal-to-noise ratio regime.

INDEXTERMS Low-resolution quantization, ML detectors, selection combining, symbol error probability,

diversity order.

. INTRODUCTION
A. BACKGROUND AND MOTIVATION

OW-RESOLUTION analog-to-digital converter (ADC)

based transceiver architectures have gained increasing
attention both from the wireless industry and academia in
recent years [1]-[4]. Some notable benefits of low-resolution
ADCs in wireless communication are reduction in transceiver
power consumption, simplification in system design (espe-
cially with 1-bit ADCs) and reduction in transceiver form-
factor [2], [5], [6]. The importance of these benefits is
becoming even more pronounced with the emergence of mas-
sive multiple-input multiple-output (MIMO) and mm-wave
technology, which require large numbers of RF chains and
high sampling rates. The stated benefits do, however, come
with the cost of increased distortion in received symbols
due to the high level of quantization noise, which eventually

decreases the system reliability and achievable data rates [1],
[71-9].

As an important step to characterize communication reli-
ability with low-resolution ADCs, three reliability regimes
were established in [8]. They can be called quantization
plateau, slow-decay and quantization invariance regimes. In
the quantization plateau regime, the number of quantization
bits, n, is so small (when compared to the input signal alpha-
bet size) that the system reliability cannot be improved by
increasing the input signal power or the system signal-to-
noise ratio (SNR). In this regime, the system diversity order
(DVO), defined as the ratio of the logarithm of the symbol
error probability to the logarithm of SNR as SNR grows
large, collapses to zero. In the slow-decay regime, n is equal
to the logarithm of the input alphabet size and the symbol
error probability decays to zero slowly with SNR at a DVO
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that is half of the one achieved by high-resolution quan-
tization. In the quantization invariance regime, n is larger
than the logarithm of the input alphabet size and the DVO
does not change with n. In this regime, we achieve the same
DVO that can be achieved by means of a high-resolution
quantizer. These fundamental structural results were only
obtained for single-input single-output (SISO) low-resolution
ADC communication systems in [8], and their extension to
the multi-antenna systems is a completely open problem in
the literature.

In this paper, we focus on the communication reliability
characterization for a single-input-multiple-output (SIMO)
wireless communication system in which the receiver is
equipped with low-resolution phase quantizers. By using
DVO as our main performance metric, we determine com-
munication reliability to first order. We propose three
low-complexity antenna selection strategies for data detec-
tion and we obtain reliability regimes for the proposed
strategies, analogous to those obtained in the case of SISO
systems in [8]. We establish their asymptotic optimality prop-
erties as a function of the quantization bits in terms of DVO,
and compare their performance with the one achieved by the
derived maximum likelihood (ML) detector. Similar to the
SISO case, our results in this paper show that it is enough to
use 3 bits to achieve the full DVO in the case of quadrature
phase shift keying (QPSK) modulation (i.e., one additional
bit on top of the logarithm of the input alphabet size) when
the receiver is equipped with N antennas.

Our main contributions can be further summarized in
detail as follows.

« Motivated by the capacity achieving property of circu-
larly symmetric input distributions for low-resolution
ADCs [9], [10], we focus on the QPSK modulation in
this paper and derive the optimum ML detection rule
with n-bit phase quantization for a SIMO system with N
receive antennas. This result is presented in Theorem 1
and it is a generalization of the ML detector presented
in [11] for multi-bit quantization. We show that the
ML detector achieves the full DVO N for n > 3 when
the channel is subjected to Rayleigh fading (i.e., see
Theorem 5). By using numerical simulations, we also
show that the DVO is only equal to %’ for the ML
detector for when n = 2.

« We propose three low-complexity antenna selection
strategies: (i) the max-norm strategy selecting the
antenna based on the maximum channel magnitude,
(ii) the min-phase strategy selecting the antenna based
on the minimum absolute channel angle, and (iii) the
max-distance strategy selecting the antenna based on
the distances to the decision boundary. We analyti-
cally characterize the symbol error probability (SEP)
performance of all three strategies for the QPSK
modulation under Rayleigh fading. These results are
presented in Lemmas 1, 2 and 3.

o In order to characterize the reliability performance of
the proposed antenna selection strategies in the high
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SNR regime, we also establish the DVO results for these
strategies. We show that the max-norm DVO is equal
to % when n =2, and to N when n > 3 for all N > 1
(Theorem 2). We show that the min-phase strategy can
achieve the DVO 1 when n = 2, which presents a DVO
improvement of 0.5 at this value of n when compared
to the max-norm strategy (Theorem 3). However, the
DVO of the min-phase strategy stays constant at 1 for
n > 3. We show that the max-distance strategy enjoys
the benefits of both max-norm and min-phase strategies,
achieving the same DVO with the min-phase one at
n=2and N = 1,2, whilst achieving the full-DVO N
for n > 3 (Theorem 4).

B. RELATED WORK

The design of efficient signal detectors is an important and
growing research area for low-resolution ADC based com-
munication systems [12]. The conventional approaches such
as those in [13]-[17] cannot be directly used when the detec-
tor is presented with coarsely quantized versions of signals.
As an extension of conventional techniques, an optimal ML
detector is presented in [11] for 1-bit ADC based wireless
systems, where the transmitter is equipped with multiple
antennas. The ML detector complexity grows exponentially
with high signal constellations, the number of transmit anten-
nas and the number of users in the uplink. To overcome this
problem, [11] also presents a low-complexity zero-forcing
receiver, which is simple to implement and shows compa-
rable performance with the ML receiver in the low SNR
regime. However, it experiences an error floor when SNR
is high. The authors in [18] present a near maximum likeli-
hood (nML) detector, which is based on convex optimization
techniques. The nML detector gives better performance than
the ZF-type detector for all SNR regimes. In the current
paper, we generalize the ML detector presented in [11] to
multi-bit phase quantization.

In [19], a sub-optimum detector named naive-ML is
presented for a MIMO system and it shows almost the same
performance as the optimum ML detector in the high SNR
regime in terms of bit error rate (BER). In [20], the authors
present another low-complexity nML detector called one-bit
sphere decoding (OSD), for the uplink of a MIMO system
equipped with 1-bit ADCs. The detection algorithm estimates
the transmitted symbol vector sent by uplink users by search-
ing over a sphere, which contains a collection of codeword
vectors close to the received signal vector at the base station
in terms of the weighted Hamming distance. The authors
discuss the trade-off between performance and complexity
with the dimension of the sphere and the length of the sub-
vectors. A novel iterative detection and decoding scheme for
uplink large-scale multiuser multiple-antenna systems based
on 1-bit ADCs is presented in [21], where the authors pro-
pose a linear low-resolution-aware minimum mean square
error detector for soft multiuser interference mitigation which
can improve the bit error rate performance after several iter-
ations. In [22], the authors focus on the development of
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soft-output detection methods for low-resolution ADCs and
propose another near-optimal detector for a coded mm-wave
MIMO system.

In [23], the authors propose a linear minimum mean square
error (LMMSE) receiver when in-phase and quadrature com-
ponents of the received signal are independently quantized
by using a low-resolution ADC. They provide an approxi-
mation for the mean square error between transmitted and
received symbols, and derive an optimized linear receiver
that performs better than the conventional Wiener filter.
Results in [23] are further extended to an iterative deci-
sion feedback receiver with quantized observations in [24].
More recently, there is progress in machine learning-based
detection approaches as well [4], [25], [26]. In [4], [25]
a reinforcement learning-based approach is used to design
a robust likelihood function learning method for MIMO
systems with 1-bit ADCs. For a similar system, a semi-
supervised learning detector is proposed in [26], which can
be further improved to an online-learning detector.

It is also an important and growing research area to ana-
lyze the performance of low-resolution ADC based wireless
systems when compared to the traditional high-resolution
quantization based ones. To this end, the link capacity with
1-bit ADCs under the additive quantization noise model
(AQNM) is investigated in [1], [5], [27]. For multi-bit low-
resolution ADCs, the capacity is also investigated in [3],
which turns out to be a hard problem to obtain general capac-
ity expressions. In [28], the authors present some bounds
on the link capacity in the high SNR regime for multi-
antenna systems with 1-bit ADCs under flat fading. The
results characterize how the number of antennas impacts the
capacity in the high SNR regime. Further, it is also shown
in this paper that the capacity in the high SNR regime
is lower bounded by the rank of the channel. The work
in [28] is further extended in [27] to obtain a closed-form
expression for multiple-input-single-output (MISO) channel
capacity assuming that the channel state information is avail-
able both at the transmitter and receiver. Mutual information
between the channel input and the quantized channel output
of a 1-bit ADC based MIMO system is obtained in [29]
and [30]. Using a second-order expansion of the mutual
information function, it is shown in this work that the power
penalty due to 1-bit quantization is approximately equal to
%(1.98 dB). This confirms that low-resolution quantization
performs adequately in the low SNR regime while reducing
power consumption. In [31], the achievable downlink rate
of a massive MIMO system with 1-bit ADCs is analyzed.
The results show that it is enough to have approximately
2.5 times more antennas at the base station to overcome the
loss due to 1-bit ADCs.

The use of low-resolution phase quantization has also been
studied in recent years [7]-[9]. Numerical results in [32]
show that a phase-quantized block non-coherent channel with
8-bit phase quantization under the QPSK modulation can
recover about 80-85 percent of mutual information attained
with unquantized observations when there is an extra 2-3 dB
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SNR gain. In [9], it is shown that a rotated 2"-phase shift
keying scheme is the capacity-achieving input distribution for
a complex AWGN channel with n-bit phase quantization.

The material in this paper was presented in part in [33],
where we focus only on the situation in which in-phase and
quadrature channels are independently quantized using 1-bit
ADCs under QPSK modulation with Rayleigh fading. The
present paper expands upon the results presented in [33] and
provides a rigorous error probability performance and DVO
analysis with n-bit phase quantization. Theorem 1 of this
paper presents the ML detection rule. Our analytical results
in Theorems 2-5 along with the numerical ones presented
in Section VI establish a fundamental asymptotic reliability
characterization for low-resolution ADC based SIMO wire-
less systems in the high SNR regime. These results do not
appear in our previous work [33], nor do they exist in any
other previous paper in the literature.

C. NOTATION

We use uppercase letters to represent random variables,
calligraphic letters to represent sets and bold letters to rep-
resent vectors. We use R, RZ and N to denote the real
line, 2-dimensional Euclidean space and natural numbers,
respectively. For a pair of integers i < j, we use [i: j] to
denote the discrete interval {i,i+1,...,j}. For two func-
tions f and g, we will say f(x) = O(g(x)) as x — xp
if |[f(x)] < clg(x)| for some ¢ > O when x is sufficiently
close to xp. Similarly, we will say f(x) = Q(g(x)) as
x — xp if [f(x)] > c|g(x)| for some ¢ > O when x is
sufficiently close to xg. We write f(x) = ©(g(x)) as x — xo
if f(x) = O(g(x)) and f(x) = Q(g(x)) as x — xp. Finally,

NACI N .
g(X)’ =0.

The set of complex numbers C is R? equipped with the
usual complex addition and complex multiplication. We write
Z = Zre + JZim to represent a complex number z € C,
where j = =1 is the imaginary unit of C, and z.
and zj, are called, respectively, real and imaginary parts
of z [34]. Every z € C has also a polar representation

z = |zle’? = [zl(cos(8) + j sin(®)), where |z| £ /22 + 22
is the magnitude of z and 0 = Arg(z) € [ — &, 7) is called
the (principle) argument of z. As is common in the commu-
nication and signal processing literature, Arg(z) will also be
called the phase of z (modulo 27). For a complex random
variable Z = Z.. + jZim, we define its mean and variance
as E[Z] 2 E[Z] + JE[Zin] and Var(z) £ E[lZ - E[Z]|2],
respectively. We say that Z is circularly-symmetric if Z and
e/?Z induce the same probability distribution over C for
all & € R [35], [36]. For x > 0, logx and log,x will
denote natural logarithm of x and logarithm of x in base 2,
respectively.

we will say f(x) = 0(g(x)) as x — xp if lim,_,

Il. SYSTEM SETUP

A. CHANNEL MODEL AND SIGNAL MODULATION

We consider a wireless channel consisting of a transmitter
with one antenna and a receiver with N antennas for N > 1.
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FIGURE 1. The receiver architecture with low-resolution quantization. The signal
detector observes only the n-bit quantized versions of Y; to estimate the transmitted
signal. /=0,1,...,N—1.

The received signals at the receiver antenna array can be
given in vector form as

Y = vSNRHX + W, (D

where X € C is the transmitted signal with C denot-
ing the signal constellation in C, SNR is the ratio of
the transmitted signal power to the AWGN power, H =
[Ho H, HN_1]T with H; € C is the unit power
channel gain between the transmitter and the /-th receiver
antenna, and W = [Wo Wi Wn— 1]T with W; being
the circularly-symmetric zero-mean unit-variance AWGN,
ie., W, ~ CN(0,1), at the [-th receiver antenna. We will
assume that the transmitted symbols are QPSK modulated,
and take the set C as C = {(3/7’(2[5H _1)}?20. For the system
setup given in (1), under high-resolution quantization where
the receiver can fully observe Y =y with perfect channel
knowledge H = h, the ML detector rule can be given as

Hy - «/th(

2
) 2

Xhigh (v, h) = argmin
xeC

where ||(-)||, represents the Euclidean norm of the vec-
tor (-) [37]. In the present paper, on the other hand, we
focus on the case where the receiver quantizes each incom-
ing signal and conveys the quantized received signal vector
o) = [Q(Yo), oy, ..., Q(YN_l)]T to the detector. By
using these quantized observations, the detector has to esti-
mate the transmitted signal X. Hence, there is no direct
generalization of (2) to the low-resolution ADC based signal
detection.

B. RECEIVER ARCHITECTURE

The receiver architecture we consider is based on a low-
resolution ADC in which the signal Y; received from
antenna [ goes through an n-bit phase quantizer for all
[=0,1,...,N—1 as illustrated in Fig. 1. Then, the resulting
quantized received signals are used to determine the trans-
mitted symbol X. In this case, the quantizer Q(-) divides the
complex domain C into 2" quantization regions and outputs
the index of the region in which Y; lies as an input to the
detector. More formally, we declare Q(Y;) = k if ¥; € Ry
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for k € [0 : 2" — 1], where Ry € C is the k-th quantization
region. Since information is encoded in the phase of X with
the above choice of constellation points in our setup, we
choose Ry as the convex cone given by

2 2
Re = {ze(C : Z—ZkgArg(z)—i—rr < Q—Z(k+l)}.

The use of phase quantization in our receiver architec-
ture is motivated by the following factors. First, considering
channel impairments as phase rotations in transmitted sig-
nals, quantization and decision regions for phase modulation
are conveniently modelled as convex cones in the complex
plane [38] as described above, without requiring the use of
automatic gain control. In general, phase modulation is his-
torically known to be optimum up to modulation order 16
under peak power limitations [39] and it is indeed the opti-
mum modulation scheme for achieving the channel capacity
with phase quantized outputs [40]. Second, phase quantiz-
ers can be implemented using one-bit ADCs that consist of
simple comparators, and they consume negligible power (in
the order of milliwatts). As given in [41], the implementa-
tion based on time-to-digital converters (TDCs) can also be
adopted to further reduce the area and power consumption
of the phase quantizer. On the other hand, phase modulation
has an important and practical layering feature enabling the
quantizer and detector design separation in low-resolution
ADC based communications. For a given number of bits,
the phase quantizer needs to be designed only once, and
can be kept constant for all channel realizations. Therefore,
the detector can be implemented digitally as a table
look-up procedure using channel knowledge and quantizer
output [7].

We also assume that full channel state information (CSI)
is available at the receiver. Similar to our previous work
in [8], the motivation behind our model with full-precision
CSI is two-fold. First, in [42], it was shown that it is pos-
sible to attain a high channel estimation precision with the
use of low-resolution ADCs by increasing the number of
training symbols in the closed-loop estimation process. For
example, it was shown in [42] that for SNR = 10 dB, the
estimator based on 3-bit ADC gives a mean square error of
—20 dB with only 11 training symbols. Second, the mixed-
ADC architectures are also commonly investigated in the
literature, and they can be employed to achieve high chan-
nel estimation accuracy [43]. In a mixed-ADC architecture,
high-resolution ADCs (structured through either serial or
parallel connections) are used during the channel estima-
tion stage [42]-[44] and during the data transmission phase,
the receiver switches to low-resolution operation by using
fewer quantization bits. Although the energy consumption is
increased in this approach, this is not a restrictive degradation
for our purposes. Each fading state will span a large group
of information bits at the target multiple Gbits per second
data rates in next-generation wireless systems. Hence, the
energy saving during data transmission is more significant
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than the increased energy consumption during channel esti-
mation. Based on the existing results for channel estimation
accuracy with low-resolution quantizers, the assumption on
the availability of full CSI at the receiver is also commonly
used by many previous works in the field [45]-[47].

lll. OPTIMUM SIGNAL DETECTION

The optimum maximum a posteriori (MAP) detector in our
setup aims to minimize the SEP by using the knowledge
of Q(Y) and channel state information H, which can be
represented as selecting a signal point x(k, k) satisfying

X(k,h) = argmax Pr{X =x|Q(Y) =k, H=h}, ()
xeC

where k = [ko, ki, ..., ky_1]" with Q(¥)) = k; and h =
[ho, hi, ..., hy—1]" with by € C for all [ € [0 : N — 1] and
k; € [0 : 2" — 1]. The main performance figure of merit for
our detection problem is the average SEP given by

p(SNR) = Pr{X # x(Q(Y). H)}. 4)

For uniformly distributed transmit symbols, the MAP
detector becomes equivalent to the ML detector, and there-
fore we will only focus on the ML detection rule for the
rest of the paper. The ML detection rule for the above men-
tioned system setup with n-bit quantization is presented in
the following theorem.

Theorem 1: Assume H; has a continuous probability den-
sity function (pdf) for all /=0,1,...,N—1 and Q(-) is the
complementary distribution function of the standard normal
random variable. Then, x(k, H) is unique with probability
one and the ML detection rule for low-resolution ADC based
receiver architecture with n-bit quantization can be given as

X(k, h) = arg max
xeC
N—1

1
<[] <2— exp(~SNRr?) + g(Arg(), ki, hl)),
=0

®)

where g(Arg(x), k;, hy) is given by (6), as shown at the
bottom of the page.
Proof: See Appendix A. |

Receiver

Antenna nbit Q(Yz-) | Single Antenna

Selection

Quantizer
Rule

ML Rule

FIGURE 2. The antenna selection based low-resolution quantization receiver.

For the special case of 2-bit quantization, we can simplify
the expression in (5) to (7), as shown at the bottom of the
page, where sgn(-) is the signum function.

IV. ANTENNA SELECTION APPROACH AND SIGNAL
DETECTION
The computation of the likelihood function of the ML detec-
tor given in Theorem 1 involves the evaluation of numerical
integrals in (6). This is likely to be an onerous task to carry
out in real-time over each symbol period, especially for large
values of N at high transmission rates. A promising alter-
native to the ML signal detection is the antenna selection
approach, where we first select an antenna that will give us
a favourable diversity branch based on the observed channel
states, and then use the single antenna ML detector to esti-
mate the transmitted symbols over the selected antenna. The
single antenna ML detector, unlike the multi-antenna one
given in Theorem 1, is a simple low-complexity distance
calculator [8]. We illustrate the antenna selection approach
in Fig. 2 pictorially, and will further discuss its advantages
over the ML signal detection in Section VII after establish-
ing fundamental optimality properties and studying system
performance in Sections V and VL

In this section, we will propose three antenna selec-
tion strategies to reduce implementation complexity. The
proposed strategies will be sub-optimum when compared to
the high-complexity ML signal detection, yet they will still
have provable asymptotically optimum SEP decay exponents
in the high SNR regime.

More generally, in the antenna selection based signal
detection approach, we first pick an antenna L* according

(ki+1) =
S(Arg(), ki, hy) = 4 SJNTR;», / ¥ [exp{—SNerz sin (o — Arg(hy) — Arg(x))} cos(a — Arg(hy) — Arg(x))
ki znﬂ—l

x Q(—«/ZSNRU cos(a — Arg(hy) — Arg(x)))] do (6)

where r; = |hy| is the magnitude of A;, Arg(h;) is the phase angle of &; and k; = Q(Y))

N—1

X(k, h) = argmax l_[ Q(—sgn(Re(Y,))v SNRy; cos{Arg(h;) + Arg(x)})

xeC 1=0

x Q(—sgn(Im(¥)~/SNRy; sin{Arg(h) + Arg(x)} ) 7

2664

VOLUME 2, 2021



‘IEEES IEEE Open Journal of the
Com3oc  communications Society

to a given selection strategy based on the observed channel
states. The antenna selection rule in our setup can be defined
formally as follows.

Definition 1: An antenna selection rule s is a mapping

s:CN>[0:N-1], (8)

which takes N fading coefficients as input and outputs the
index of the selected antenna.

Once the antenna L* is selected, the detector only uses the
information available at antenna L* to detect the transmit-
ted signal. Thus, the optimum detector has to minimize the
SEP using the knowledge of Q(Yy+) and Hy», which can be
represented as selecting a signal point x(k*, #*) satisfying

2(k*, h*) € argmax Pr{X = x|Q(Y») = k*, Hp» = I},
xeC
for all ¥ € C and k* € [0:2" — 1]. After selecting an
antenna, the SIMO system considered in Section II reduces
to a point-to-point SISO system. Therefore, the ML detection
rule under a given selection strategy can be given as

%k, n*) = arg min dist(VSNRAx, Hee ), (9)
xeC
where dist(z, A) £ inf,c 4|z — 5| is the distance between
a point z € C and a set A C C, and Hp =
{z e C: Arg(z) +m = 33 2k* + 1)} is the bisector of R+
with Y7~ € Ry [8].

This discussion makes the role of a given antenna selec-
tion strategy and a separation principle clear in our setup. An
antenna selection strategy does not interfere with the opera-
tion of the single antenna ML rule on the selected diversity
branch, implying a layering architecture for receiver design
where antenna selection and signal detection lie on different
layers. Rather, it modifies the effective channel distribution
(possibly favourably) to improve the SEP performance in
the signal detection layer when averaged over the result-
ing fading channel distribution. Our SEP and DVO analysis
below will depend on this observation critically to charac-
terize the system performance, where we will derive the
distributions for the effective channel gains that are used by
the single antenna ML detector to estimate the transmitted
symbols.

A. MAX-NORM ANTENNA SELECTION STRATEGY

In this antenna selection strategy, the antenna with the max-
imum channel magnitude is chosen. The antenna selection
rule can then be formally written according to

L* = argmax Ry, (10)
le[0:N—1]
where R; = |Hj| is the channel magnitude of antenna [.

The main idea behind this selection strategy is to choose the
antenna with the channel that achieves the highest SNR. This
selection strategy does not take into account the phase of the
channel when selecting the antenna L*. Albeit its simplicity,
it has some certain asymptotic optimality properties in the
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high SNR regime, which will be formally established in
Section V. After selecting the antenna L*, the observations
available in the selected antenna is used in (9) to estimate
the transmitted symbol X(k*, h*).

B. MIN-PHASE ANTENNA SELECTION STRATEGY
In this antenna selection strategy, the antenna having the
minimum absolute phase angle is chosen. The min-phase
antenna selection rule can be formally expressed as

L* = argmin |0y,
Ie[0:N—1]

(1)

where ®; = Arg(H;) is the phase angle of the channel in
antenna /. The main motivation behind this selection tech-
nique is to minimize the negative effects of channel rotation
on the SEP performance since the data is phase encoded.
This selection strategy is also motivated by [8, Th. 2] which
establishes the structure of the optimum detector choosing
the channel rotated signal points closest to the bisector of the
quantization region the channel outputs land in. The obser-
vations available in the selected antenna L* is used in (9) to
estimate the transmitted symbol x(k*, 1*).

C. MAX-DISTANCE ANTENNA SELECTION STRATEGY

In this antenna selection strategy, the antenna L* that locates
the rotated constellation points ~/SNRHx, x € C, fur-
thest away from the boundary of the corresponding decision
regions are chosen. The derivation of the antenna selection
rule, in this case, is more complicated than the previous
two considered above. An important observation to derive
the antenna selection rule, in this case, is to realize that the
decision regions, and therefore the corresponding boundaries,
rotate as the channel angles change. For the QPSK modula-
tion, we can obtain the max-distance antenna selection rule
as follows.

Due to symmetry in the problem, it is enough to focus on
only one constellation point, which we will take as x = e/ I
to derive the max-distance antenna selection rule. Let £ =
{Z €eC:0=<Arg(x) <% } It is shown in [8] that the single
antenna ML decision region for this constellation point can

be given as
N\ 27
& = exp<J(k—2" I)F)E
if H € Dy for k € [0 : 2" — 1], where
b4
Doz{zeC:n—ifArg(1)<n’}U

X {zeC:—anrg(z)<%—n}

12)

and
Dy = {z eC: (2k— 1)% <Arg@@) + 7 < (2k+ 1)%},

We use H to refer to a generic fading state above.
The decision regions and boundaries are illustrated in
Fig. 3 for 2-bit and 3-bit quantization.
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FIGURE 3. An illustration of the decision region and distances to its boundaries for

/4
QPSK modulation with 2-bit and 3-bit quantization. Original signal point /4 is
indicated by ‘o’, whereas the rotated ones after multiplication with vSNR and H is
indicated by ‘e’. The decision regions are shaded areas and the boundaries are
indicated by using solid blue lines.

By rotating the decision region in such a way that
its boundary coincides with real and imaginary axes, the
distance to the decision region boundary can be seen
to be the minimum of |Re(«/SNRHeJ%e_J(K_znfl)%ﬂ
and |Im(vSNRHeJ%e_-’(K_Z’H)%Z)L where K = ,%n:?)]
k1(nep,)- Adapting these observations to the present antenna
selection problem, we obtain (13), as shown at the bottom
of the page as the max-distance antenna selection rule.

A concept similar to the max-distance can be found in
literature, especially used for precoding. In [48] and [49],
the precoding techniques aim at minimizing the total multi-
user interference such that the received signals lie as close
as possible to the nominal constellation points are proposed.
The optimization is based on maximizing the safety mar-
gin to the decision thresholds of the receiver constellation
points. The safety margin separates the decision thresholds
and the symbol region that is a downscaled version of the
decision region. In this regard, the max-distance antenna
selection strategy can be considered as the strategy select-
ing the antenna L* with the maximum safety margin to
the decision thresholds, using the terminology given in [48]
and [49].

Finally, we note that there are alternative rotations to the
one presented above in order to derive different versions
of the antenna selection rule given in (13). For example,
by considering a rotation of the decision region along with
the rotated constellation point ~/SNRH;x, x € C, until the
bisector of the decision region overlaps with the real axis, the
distance from the rotated constellation point to the rotated
decision boundary can be expressed as

d; =Re (\/SN_RHze_/ (K;—21) %l)
—)m(v@NﬁHm—Amﬂwg%>L

where K; = Zinzf)l k1{n,ep,)- Further details on finding d;
can be found in [48]. d; given above can be used to obtain
another way to express the max-distance antenna selection
rule (13). In the current paper, we will only focus on (13)
to derive the SEP for the max-distance antenna selection
strategy.

V. THE DECAY EXPONENT FOR THE AVERAGE SYMBOL
ERROR PROBABILITY

In this section, we will analyze the communication robust-
ness that can be achieved with low-resolution ADCs by
focusing on the decay exponent for p(SNR), which is given
by!

log p(SNR)

log SNR

Following the convention in the field, we will call DVO the
diversity order.

The following theorems will establish the DVO results
for our system under the above antenna selection strategies
as well as for the ML signal detection rule. To that end,
we first derive the analytical expression for the SEP for
each antenna selection strategy introduced in Section IV. We
compare the SEP performances of the ML detector with all
three selection strategies in Section VI.

A critical observation to derive the SEP performance of a
selection strategy is that once the antenna L* is selected, the
setup reduces to a point-to-point system in which Hy« = h*
and kz~ = k*. To this end, with a slight abuse of notation,
we define the SEP conditioned on the channel fading as

DVO = — lim
SNR— 0

(14)

P(SNR, ") = Pr{VSNR* e/ +- W ¢ £*], (1)

where r* = |h*|, 6* = Arg(h*x), W* is the noise on
the selected antenna, which is still AWGN with the same
1. We will show that the limit in (14) exists for the antenna selection

strategies we study in the current paper. Hence, there is no ambiguity in
the definition of DVO.

L* = argmax min(‘Re(\/SN_RHZe/%e—./(Kz—W*I)%)

1e[0:N—1]

where K; = Zi:?)l kK1(y,eDy)
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mean and variance due to independence between noise
and fading processes. The set £* is defined as & =
{zeC:0=<Arg(z) < %}. The probability in (15) can be
calculated by conditioning on the real part of W*, which is
denoted by W[, as,

Pr{mr* /T LW £ W = w]

— Q(x/ZSNRr* sine*) (16)
for w > —+SNRr*cos6*. Similarly, for w <

—+/SNRr* cos 6*, we get
Pr[x/SNRr*efg' FW g e Wy = w] —1. (7

Integrating (16) and (17) with respect to the pdf of W[,
which is given by fiyx (W) = \/L;e_wz, we obtain p(SNR, 1*)
as

P(SNR, ") = Q(V2SNR/* cos 6*) + Q(V2SNRy* sin ")
— Q(V2SNRr* cos 6" ) Q(v/2SNR* sin ).
(18)

Averaging p(SNR, HL*) with respect to the pdf of Hi~,
we get the SEP expression for a given antenna selection
strategy.

A. DVO WITH THE MAX-NORM ANTENNA SELECTION
STRATEGY

To obtain the DVO under the max-norm antenna selection
strategy given in Section IV-A, where the detector chooses
the antenna L* according to (10), we first obtain the average
SEP which can be given as in Lemma 1.

Lemma 1: Consider a SIMO system with one transmit
antenna and N receive antennas equipped with n-bit quantizers.
Under max-norm antenna selection strategy, the average SEP
with Rayleigh fading is given according to (19), as shown at
the bottom of the page where p(SNR, /*) is given in (18).

Proof: See Appendix B. |

In this case, using (19), the DVO can be obtained as in
Theorem 2 below.

Theorem 2: Consider a SIMO system with one transmit
antenna and N receive antennas equipped with n-bit quan-
tizers. Under the max-norm antenna selection strategy, the
DVO with QPSK modulation under Rayleigh fading is given
according to

1 _
DVO:{E n=2 (20)

N n>3

for all N > 1.
Proof: See Appendix C. |

B. DVO WITH THE MIN-PHASE ANTENNA SELECTION
STRATEGY

To obtain the DVO under the min-phase antenna selection
strategy given in Section IV-B, where the detector chooses
the antenna L* according to (11), we first obtain the average
SEP which can be given as in Lemma 2.

Lemma 2: Consider a SIMO system with one transmit
antenna and N receive antennas equipped with n-bit quantizers.
Under min-phase antenna selection strategy, the average SEP
with Rayleigh fading is given according to (21), as shown at
the bottom of the page where p(SNR, h*) is given in (18).

Proof: See Appendix D. |

In this case, the DVO is given according to Theorem 3
below.

Theorem 3: Consider a SIMO system with one transmit
antenna and N receive antennas equipped with n-bit quan-
tizers. Under the min-phase antenna selection strategy, the
DVO with QPSK modulation under Rayleigh fading is given
according to

1
_12 n=2and N =1
DVO {1 nzBandN:l0rnz2andN22.(22)
Proof: See Appendix E. |

C. DVO WITH THE MAX-DISTANCE ANTENNA
SELECTION STRATEGY

To obtain the DVO under the max-distance antenna selection
strategy given in Section IV-C, where the detector chooses
the antenna L* according to (13), we first obtain the average
SEP which can be given as in Lemma 3.

Lemma 3: Consider a SIMO system with one transmit
antenna and N receive antennas equipped with n-bit quan-
tizers. Under the max-distance antenna selection strategy,
the average SEP with Rayleigh fading is given according
to (23), as shown at the bottom of the next page.

Proof: See Appendix F. |

Using Lemma 3, the DVO for the max-distance antenna
selection strategy is given in the next theorem.

Theorem 4: Consider a SIMO system with one transmit
antenna and N receive antennas equipped with n-bit quantiz-
ers. Under the max-distance antenna selection strategy, the
DVO with QPSK modulation under Rayleigh fading is given

n T+ poo N—1
p(SNR) = 2 N/4 ’ / p(SNR,h*)r*exp{—(r*)z}[l —exp{—(r*)z}] dr* do* (19)
T Jg-& Jo
on+1p Ftam oo . "2 s ng* N-1 .
P(SNR) = — / /0 P(SNR, )" exp| (") }<1+2 — ) dr* do @1)
T
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according to

8 n=2and Ne({l,2}
N n>3and N > 1.

Proof: See Appendix G. |

We note that the proof of Theorem 4 for n > 3 directly
follows from Theorem 2 since it gives us a lower bound for
the max-distance DVO that matches with the high-resolution
upper bound. Under the max-distance selection strategy, we
are not able to completely characterize the DVO for all N > 1
and n > 2. The remaining case is the one where n = 2 and
N > 3. However, we conjecture that the DVO under the
max-distance antenna selection strategy for this unresolved
case is equal to %’ This assertion is correct for the cases (i)
n=2and N=1 and (ii)) n = 2 and N = 2, as indicated in
Theorem 4. We also perform an extensive numerical study
in Section VI to illustrate the DVO values achieved by the
max-distance antenna selection strategy, which also verifies
our conjecture.

DVO = { 24)

D. DVO WITH THE ML SIGNAL DETECTION RULE

The analysis given above for the sub-optimum single antenna
selection strategies has some important ramifications for
characterizing the DVO achieved by the ML signal detection
rule given in Theorem 1. In particular, the direct analysis of
the SEP by using (5) does not lead to a tractable approach
to discover the DVO for the optimum ML signal detection
with low-resolution quantization and N receive antennas at
the receiver.

However, Theorems 2 and 4 show that the DVO achieved
by the max-norm and max-distance antenna selection strate-
gies is equal to N for n > 3. This is a DVO lower bound on
the performance of the ML detection rule since it always per-
forms better than the max-norm and max-distance antenna
selection strategies by its definition. On the other hand, it
is well-known that the high-resolution DVO that can be
achieved by using N antennas at the receiver is also equal
to N [37]. These observations show that the DVO upper and
lower bounds for the ML signal detection rule coincide with
each other for n > 3, which establishes the DVO that can be
achieved by the ML signal detection with multiple receive
antennas and low-resolution quantization at the receiver for
n > 3. This result is formally stated in the next theorem.

Theorem 5: Consider a SIMO system with one transmit
antenna and N receive antennas equipped with n-bit quan-
tizers. Under the ML detection rule given in Theorem 1, the

DVO with QPSK modulation under Rayleigh fading is given
according to

DVO:{% n=2and N =1

N n>3and N > 1. (25)

It is important to note that Theorem 5 for N = 1 directly
follows from the results in [8]. The case for which we cannot
characterize the DVO for the ML signal detection rule is the
one in which n =2 and N > 2. As in the case of the max-
distance antenna selection strategy, we conjecture that the
DVO is equal to %’ for the ML rule when n =2 and N > 2.
This assertion holds for when N = 1. Theorem 4 further
shows that %’ is a DVO lower bound for the ML rule for
n =2 and N = 2. The numerical results in the next section
will illustrate these points in more detail, providing further
numerical evidence for the conjecture.

VI. NUMERICAL RESULTS

In this section, we present analytical and simulated SEP
results for QPSK modulation with n-bit phase quantization.
Channel fading is unit-power with Rayleigh distributed mag-
nitude, and additive noise is complex Gaussian with zero
mean and unit variance.

A. SYSTEM PERFORMANCE WITH THE ML DETECTOR

First, we investigate the system performance with the opti-
mum ML detector presented in Theorem 1. Fig. 4 plots the
average SEP as a function of SNR for QPSK modulation
with n = 2, 3, 4-bit quantization under Rayleigh fading. We
change the number of receive antennas as N = 2, 3,4 and
simulate the SEP based on the detection rule provided in
Theorem 1. We observe a noteworthy improvement in the
average SEP when n changes from 2 to 3-bit quantization
for QPSK modulation. By using the simulation results, we
find that the DVO changes from % to N when n changes
from 2 to 3 or more, i.e., we observe full diversity order
when the number of quantization bits is 3 as established
in Theorem 5. This shows that using one extra bit, on top
of 2 bits, improves SEP and DVO significantly. We also
observe that the average SEP reduces as we increase n,
but the amount by which it reduces also gets smaller as we
increase n. This observation is a manifestation of the quan-
tization invariance regime for n > 3 since the DVO stays
constant at N for all values of n greater than or equal to 3.

T

p(SNR) = 2N f§+% 1o~ P(SNR, h*){G(x/SN_Rr* cos@*)]N_lrexp{—(r*)z} dr* do*

where p(SNR, h*) is given in (18) and

(23)

G(\/SN_Rr* cos 0*) = g(«/zr* Ccos 49*) - 2”_2[ I ZQ(ﬁr* cos 9*) }2

: __2 afy V2t
with 80 = - fy |1 -20( 5

of the standard normal random variable [50].
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FIGURE 4. Average SEP curves as a function of SNR for QPSK modulation with ML
detection.n=2,3,4and N =2, 3, 4.
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FIGURE 5. Average SEP curves as a function of SNR for QPSK modulation with the
max-norm antenna selection strategy. n=2and N = 2, 3, 5, 10.

B. SYSTEM PERFORMANCE UNDER THE MAX-NORM
ANTENNA SELECTION STRATEGY

Fig. 5 plots the average SEP as a function of SNR
for QPSK modulation with n = 2 bit quantization under
Rayleigh fading. We change the number of receive anten-
nas as N = 2, 3,5, 10. The simulated results are generated
using Monte Carlo simulation, while the analytical results
are generated using our expression in (19). As the plot illus-
trates, the analytical results accurately follow the simulated
results for all four cases. As established in Theorem 2, we
observe that with 2-bit quantization, the DVO remains % for
all N. We also observe that the average SEP reduces as we
increase N, but the amount by which it reduces also gets
smaller as we increase N.

Fig. 6 plots the average SEP as a function of SNR for
QPSK modulation with n = 2, 3,4 bit quantization under
Rayleigh fading. We also change the number of antennas
as N = 2,3,4. The plots are generated using the analyti-
cal expression in (19). The zoomed-in section of the plot
illustrates the average SEP with 2-bit quantization more
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FIGURE 6. Average SEP curves as a function of SNR for QPSK modulation with the
max-norm antenna selection strategy. n=2,3,4and N=2, 3, 4.
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FIGURE 7. Average SEP curves as a function of SNR for QPSK modulation with
min-phase antenna selection strategy. n=2and N =2, 3, 5, 10, 50.

clearly. We observe a noteworthy improvement in the aver-
age SEP when n changes from 2 to 3- bit quantization
for all N = 2,3,4. For example, when we fix the SNR
at 20 dB and 45 dB for N = 2, we observe an average
SEP improvement of approximately 40 and 3 x 10° times,
respectively by using 3 bits at the quantizer instead of 2
bits. This is expected in light of Theorem 2, which states
that using one extra bit, on top of 2-bits, improves the DVO
from % to N. We also observe that the average SEP reduces
as we increase n, but the amount by which it reduces also
gets smaller as we increase n. As proven in Theorem 2,
DVO = N for all n > 3 and DVO = § when n = 2, which
is also verified by Fig. 6.

C. SYSTEM PERFORMANCE UNDER THE MIN-PHASE
ANTENNA SELECTION STRATEGY

Fig. 7 plots the average SEP as a function of SNR for QPSK
modulation with n = 2 bit quantization under Rayleigh
fading. We change the number of antennas as N = 2, 3, 5, 10.
The simulated results are generated using Monte Carlo sim-
ulation, while the analytical results are generated using our
expression in (21). As the plot illustrates, the analytical
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FIGURE 8. Average SEP curves as a function of SNR for QPSK modulation with
min-phase antenna selection strategy. n=2,3,4and N=2, 3, 4.

results accurately follow the simulated results for all cases.
As established in Theorem 3, we observe that the DVO = 1
for n = 2 and N > 2. We also observe that the average
SEP reduces as we increase N, but the amount by which it
reduces also gets smaller as we increase N.

Fig. 8 plots the average SEP as a function of SNR for
QPSK modulation with n = 2, 3,4 bit quantization under
Rayleigh fading. We also change the number of antennas
as N = 2,3,4. The plots are generated using the analyt-
ical expression in (21). We do not observe a noteworthy
improvement in the average SEP even when we use more
quantization bits. For example, when we fix the SNR at
20 dB and 45 dB for N = 2, we observe an average SEP
improvement of approximately 2 and 5 times, respectively
by using 3 bits at the quantizer instead of 2 bits. This is
expected in light of Theorem 3, which states that the DVO
is 1 for all » > 2 and N > 2. We also observe that the
average SEP reduces as we increase n, but the amount by
which it reduces also gets smaller as we increase n.

D. SYSTEM PERFORMANCE UNDER THE
MAX-DISTANCE ANTENNA SELECTION STRATEGY

Fig. 9 plots the average SEP as a function of SNR for QPSK
modulation with n = 2 bit quantization under Rayleigh
fading. We change the number of antennas as N = 2, 3, 4.
The simulated results are generated using Monte Carlo sim-
ulation, while the analytical results are generated using our
expression in (23) for n = 2. As the plot illustrates, the ana-
Iytical results accurately follow the simulated results for all
cases. We observe a noteworthy improvement in the average
SEP when N changes. In all cases, Fig. 9 indicate that the
DVO is equal to % with 2-bit quantization. We note that this
result has been formally established for N = 2 and n = 2 in
Theorem 4.

Fig. 10 plots the average SEP as a function of SNR for
QPSK modulation with n = 2, 3, 4-bit quantization under
Rayleigh fading. We change the number of antennas as
N = 2,3,4. The curves are generated using the analytical
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FIGURE 9. Average SEP curves as a function of SNR for QPSK modulation with the
max-distance antenna selection strategy. n=2and N =2, 3, 4.
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FIGURE 10. Average SEP curves as a function of SNR for QPSK modulation with
the max-distance antenna selection strategy. n=2,3,4and N =2, 3, 4.

expression in (23) for n > 3. We observe a noteworthy
improvement in the average SEP when n changes from 2 to
3-bit quantization for all N = 2, 3, 4. For example, when we
fix the SNR at 20 dB and 45 dB for N = 2, we observe an
average SEP improvement of approximately 17 and 6 x 103
times, respectively by using 3 bits at the quantizer instead
of 2 bits. We also observe that the average SEP reduces
as we increase n, but the amount by which it reduces also
gets smaller as we increase n. Through numerical analysis,
we can observe that using one extra bit, on top of 2-bits,
improves the DVO from %’ to N. To help with analysing
the DVO numerically, we plot the asymptotic SEP curves
as illustrated in Fig. 11. To that end, we observe that the
DVO:Nforallnz3andDVO=%’Whenn=2
which is in line with our formal DVO characterization for
the max-distance antenna selection strategy established in
Theorem 4.

E. SYSTEM PERFORMANCE COMPARISON

Fig. 12 plots the average SEP as a function of SNR
for QPSK modulation under Rayleigh fading with the
max-norm, min-phase and max-distance selection strategies
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FIGURE 11. Asymptotic average SEP curves as a function of SNR for QPSK
modulation with the max-distance antenna selection strategy n=2,3,4and N = 3, 4.
For the clarity of the figure, we only illustrate the asymptotes for N=3,n =2,
N=3,n=3,N=4,n=2and N =4, n=4 cases.
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FIGURE 12. Average SEP curves as a function of SNR for QPSK modulation with
different antenna selection strategies. n=2,3,4and N = 2.

with n =2,3,4 and N = 2. The curves are generated using
our analytical expressions in (19), (21) and (23) for the
max-norm, min-phase and max-distance selection strategies,
respectively.

We observe that the max-distance antenna selection strat-
egy outperforms the other two antenna selection strategies
in terms of average SEP for n = 2 with a notable SEP
margin. For example, when we fix the SNR at 20 dB and
45 dB for N = 2 with n = 2, we observe an average SEP
improvement of approximately 3 and 2 times, by employ-
ing the max-distance antenna selection strategy instead of
the max-norm and min-phase antenna selection strategies,
respectively. On the other hand, the max-norm antenna selec-
tion strategy performs almost similar to the max-distance
antenna selection strategy when n > 3. This is an expected
result since both strategies achieve the full DVO N for n > 3,
i.e., see Theorems 2 and 4. In this case, the max-distance and
the max-norm antenna selection strategy outperforms min-
phase antenna selection strategy by a clear margin in terms
of the average SEP since they can achieve much higher
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FIGURE 13. Average SEP curves as a function of SNR for QPSK modulation with
the ML detector and max-distance antenna selection strategy. n=2,3,4and N = 2.

DVO values for n > 3, i.e., compare the analytical DVO
results in Theorems 2—4.

Fig. 13 plots the average SEP as a function of SNR
for QPSK modulation under Rayleigh fading with the ML
detector and the max-distance antenna selection strategy
with n = 2,3,4 and N = 2. The curves related to the
ML detector are generated using Monte Carlo simulation
and the curves related to the max-distance antenna selec-
tion strategy are generated using the analytical expression
in (23). We observe that the max-distance antenna selec-
tion strategy shows the same DVO performance compared
to the ML detector through our numerical analysis. That is,
with 2-bit quantization the DVO is %V and with 3 or more bit
quantization, the DVO is equal to N for both detection strate-
gies, where the latter results have been formally obtained in
Theorems 4 and 5.

VIl. DISCUSSION: SYSTEM DESIGN GUIDELINES

Our analysis in Section V (analytical) and Section VI
(numerical) establishes fundamental reliability trends for
SIMO channels with low-resolution quantization under
Rayleigh fading. In this section, we provide a brief discus-
sion on system design guidelines that can be gleaned from
this analysis.

The ML detection rule given in Theorem 1 is the opti-
mum signal detection strategy that outperforms the proposed
max-norm, min-phase and max-distance antenna selection
strategies. However, implementation of the ML rule depends
on the computation of the likelihood function given in (5),
which further necessitates the calculation of the integral
expression in (6). This has to be done at each symbol period
and for all constellation points to obtain the maximum likeli-
hood estimator for the transmitted symbol. On the other hand,
the proposed antenna selection strategies are much simpler to
implement in real-time at the hardware level. For all antenna
selection strategies, we first select an antenna before start-
ing the signal detection phase. The antenna selection is a
simple comparison operation among N antennas. After an
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antenna is selected for reception, we use the single antenna
ML rule for detection, which is also a simple distance calcu-
lator, i.e., see [8]. While being less complex to implement,
the proposed antenna selection strategies perform close to
the ML rule with certain asymptotic optimality properties
as established in Section V and numerically illustrated in
Section VI. Hence, the antenna selection approach provides a
low-complexity and high-performance design alternative for
the optimum ML signal detection for SIMO low-resolution
communication systems.>

From a system design point of view, another significant but
less evident feature of the antenna selection approach is the
utilization of the quantization bits. With antenna selection,
we only require one n-bit quantizer to quantize and detect
the transmitted symbols. The output of the selected antenna
can be connected to the input of the quantizer for signal
detection. In the ML signal detection rule, on the other hand,
we jointly utilize all the antennas, where each is equipped
with an n-bit quantizer. From this perspective, an antenna
selection strategy has the potential of consuming N times
less energy than the ML approach as well as simplifying the
receiver design and reducing the form-factor. An open design
problem, which we do not address in the current paper, is the
jointly optimum bit allocation and signal detection problem
using n quantization bits and N receive antennas. Given
the already established optimality properties of the max-
distance antenna selection strategy, we hypothesize that it
would perform close to the solution of this joint optimization
problem.

VIIl. CONCLUSION AND FUTURE GENERALIZATIONS

In this paper, we analyze the SEP performance of a low-
resolution quantization based SIMO communication system.
We present three antenna selection strategies and analyti-
cally characterize their SEP performance limits for QPSK
modulation under Rayleigh fading. We establish that the
max-distance antenna selection strategy, which selects the
antenna based on distances to the decision boundaries, per-
forms the same with the optimum ML signal detection rule
in terms of the DVO (diversity order) metric. In particu-
lar, for both approaches, the decay exponent for the average
SEP is equal to N when the number of quantization bits
is equal to 3 or more, which is the full DVO that can be
achieved by using infinite-bit quantizers. On the other hand,
when the number of quantization bits is equal to 2, there
is a significant reduction in diversity from N to %, as indi-
cated by our numerical results and established analytically
for some specific cases.

2. In the current paper, we focus only on the slowly varying fading sce-
narios where the fading states stay constant for a large block of symbols.
However, even in more rapidly varying fading situations where the antenna
selection needs to be updated more frequently, the proposed approach pro-
vides a low-complexity signal detection framework when compared to the
ML detection given in (5) since the single antenna ML rule is a simple
distance calculator [8] and the antenna selection is also a low-complexity
comparison operation.
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An interesting future extension of this work is the gen-
eralization of the proposed selection strategies to M-PSK
modulation under Nakagami-m fading. This will allow gen-
eralizing our findings to broader cases. We also aim to extend
the analysis in the paper to the cases where the transmitter
also has multiple transmit antennas.

APPENDIX A

PROOF OF THEOREM 1

To obtain the ML detection rule, we have to maximize the
likelihood function £(x) given by

L(x) =Pr{QY) =k |X =x,H = h},

N—-1
= 1_[ PF{VSNRh1x+ WieRylX=xH = hl}.
=0

(26)

In other words, we need to maximize the probability
Pr{ YeRyl|X=xH = hl} and to that end, we first write
the real and imaginary parts of the received signal Y; at
antenna [ respectively as

Y;® = ~/SNRr;cos(; + 6y) + W[°
Y™ = /SNRyysin(6; + 6,) + Wim,

where r; = ||, 6, = Arg(h;) and 6, = Arg(x). Since
Wj¢ and Wlim ~ N(O, %), given H; = hy we have Y[® ~
N (v/SNRr; cos(6; + 65), %) and Y™ ~ N (v/SNRr; sin(6; +
6%), %). Hence the joint pdf of Y;° and Y}m can be
expressed as

g (07 51")
1 2
= exp{ - (y?e — v SNRyr;cos(9; + Gx)>
. 2
- <y;m — VSNRy;sin(9, + ex)) } @7)

Thus, for each [ we can find Pr{Y; € Ry, | X = x, H; = Iy} by
integrating the above pdf within appropriate regions. Since
these regions are convex cones, to make our analysis easier
we convert the pdf into polar coordinates as follows.

Pr{Y; € Ry, | X = x, H; = Iy}

kiD= poe
=/ / lere Y}m(rCOSO,rsinG)rdrdG. (28)
kier 0 '

By substituting (27) into (28) and using the integral identity
given by

/ zexp(—az2 + bz + c)dz

b? 2az — b
= ﬁb exp(c + —)erf<L>
4q> 4a 2./a

1
- — exp(—az2 + bz + c) +C,
2a

VOLUME 2, 2021



‘IEEES IEEE Open Journal of the
Comdoc Commumcatlons Society

where C is a constant,
expression to

Pr{Yl € Ry, | X =x, Hy =h1}

1 SNR
zz_nexp(_SNRr%)+,/ —r1g(Arg(). k1. ). (29)

where  g(Arg(x), ki, by) s
Substituting (29) into (26),
given in (5) can be achieved.

we can reduce this integral

given in Theorem 1.
the ML detection rule

APPENDIX B
PROOF OF LEMMA 1
We will first start with a definition that will simplify the
notation below.
Definition 2: We say a function f is exponentially

equal to SNR? if limSNRHm%

d € R. We write f(SNR) £ SNR? to indicate expo-

nential equality whenever this limit exists. Similarly, we
€ €

also write f(SNR) < SNR? and f(SNR) > SNRY if

log f(SNR) log f(SNR) =~ 4
log SNR logSNR = "

= d for some

limgNR— 00 < d and limgNR- o
respectively.

To start with the proof, we write the cdf of R* =

N

FR,(r*) = PI'{R* < r*} = [1 —exp{—(r*)z}] s
because the channel fading from the transmitter to each
receiving antenna is independent. Therefore, the pdf of R*

can be given as
fre(r*) = 2Nr* exp’ —(r*)Z] [1 - exp{ —(r*)2 }]N_l

To complete the rest of the proof, we follow a similar analysis
to the one given under the proof of Theorem 3 of our previous
work in [8]. As such, * lies uniformly between (§ — 37) and
(% + 7%) with n-bit quantization. Then, we get the expression
in (19) by averaging (18) with respect to the pdfs of R* and 6*.

|Hp+| as

. (30)

APPENDIX C
PROOF OF THEOREM 2
To start the proof, let us first define

+ X
n

2y
3(SNR) /

X Q(x/mr cos 9) Q(Wr sin 0)

) N\ V!
X rexp(—r )[1 - exp(—r )] drd6.
. z 2
By wing QW = [y exp(~y)d from
the Craig’s formula and [I — exp(-H)¥! =
Zﬁvz_ol (Ni_l) (=1 exp(—irz)) from the Binomial expansion,

we can re-express pi (SNR) as

Tt °°N1
o= [ LR

SNR 0
X rexpy— i—}—l—i—& r? Vdrdodp,
sin® B

where (lel) = l,((ll\,v—ll)'l, We further can use [50, eq.

(3.321)] to reduce this integral to

s E+LnN—1 _ )
1(SNR):/2/4 i Z(N. 1)(—1)1
0 Ji-7 oo !

sin? B
- — dodp.
2{(i + 1)sin* B + SNR cos? 0}
After doing some mathematical manipulations using

[50, eq. (2.562)], we define pgnr(B) which is a collection
of functions indexed by SNR given as (31), as shown at the
bottom of the page.

Hence, we can re-express pl(SNR) using pgNr(B) as

-5

We first analyze the above integral expression for n = 2
case. In this case, the numerator of pgnr(8) equals to %
and pl(SNR) can be expressed as

)(—n"

sin’ 8

1(SNR) )(—1)" sin” B psNR(B)dB.

z N—1

e

1(SNR)

_ %+2L" 2 X dﬁ
(SNR) _[1—2’2 /0 O(V/2SNRrcos ) rexp(—r*) St Vs Bl 1 Dsin® b 1 SNR)
) N—1 © N—1 _ )
X [1 —exp(—r )] drdo, _ SNRf%%/Z Z (N . 1>(_1)z
(SNR) /Hz /oo 0(V28NRrsin6)rexp(—r?) vl
= r S rexpl\ —r
p2 %72% 0 p Sln ﬂ dﬂ
x [1 _exp(—rZ)]N’ldrde, \/<z+ Dsin? p{ CHGEREE 4 1]
| i sin? gl sin? g+SNRHtan (% + ) —tan(% — 2))
1 | tan 2(+1) sin f+SNR
PSNR(B) = / ; , do = €1y
2% [+ Dsin® B+ SNRcos? 6 J+Dysin? (G + 1) sin®  + SNR)
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1 _ _ _1yi
Therefore, we have p1 (SNR) = SNR™2 % PR (Ni 1)5/1—%

as SNR — oo. Hence, as SNR — oo, we conclude that
1(SNR) = SNR™26(1),

which implies p; (SNR) © SNR™? for n = 2.

We now consider the proof for n > 3 case. To that end,
by using the Taylor series expansion for tan~!'(-) [50], we
can express pgNr(B) in the high SNR regime as

(3 + %) —un(3 - 5)
2(i+ 1)sin”” B+SNR

by considering the first term of the series which has the
smallest decay rate in terms of SNR. Hence, we can simplify

pl(SNR) to
T T T
{tan(4 + 2") — tan(z — 27)}
/ [T {2 + 1) sin? B}
]_[N 1 2(1+1) sin ,B—i—SNR}

Hence, the above expression becomes

1(SNR) = z{tan(z +2) -
z N— 2

/ ]_[ 2(i+ 1) sin ,3} dg,

as SNR — oo. Since f07
we conclude that

p1(SNR)

as SNR — oo. This implies that p; (SNR)
n>3.

The proof for p>(SNR) and p3(SNR) are similar, and we
get

PSNR(B) =

p1(SNR) =

T
4 20

Al 0 {2(z+1)s1n ﬂ} B < oo,

= SNRVO(1),
< SNR7V for

SNR™?

SNR) < n=2
P2(SNR) =1 SNR-Y n> 3,
and
p3(SNR) = SNR™Y,

for n > 2. Here, we omit the proof to avoid repetition.

Since p(SNR) = ZN =L (p1 (SNR) + p2(SNR) —
we conclude that p(SNR) ® SNR™2 for n = 2 and
p(SNR) = SNR™" for n > 3.

APPENDIX D

PROOF OF LEMMA 2

To find p(SNR), we average (18) over the distributions of
R* = |H;+| and ®px. We first find the distribution of ®;x and
for that we take some insights from the proof of [8, Th. 3].

As such, without loss of generahty let us assume that xp =
¢/T is transmitted and ©; € [ ] forallle[0: N—1].

By defining £2; = |®,|, we can write the cdf of it as Fg,(w) =
%T—na). According to the selection rule, the detector selects ©2*
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p3(SNR)),

in such a way that Q* = min ;. Thus the cdf of Q*
le[0:N—1]

can be derived as

2N y* N
FQ*(w*)zPr{Q*Sw*}=1—<1— )

T

Therefore, in the selected antenna L* we have ©Op» =
sgn(®7+)Q2* where sgn(-) is signum function. Therefore,
we can write the pdf of ®« as

=1y 21 A \N!
for. () =— <1+ ) ;

T

where |A| is the modulus of A.

Then the angle of the rotated constellation point (H*xg)
will be ®* = ©p + 7. Therefore, the pdf of the angle of
the rotated constellation point ®* can be given as

n— nox N-1
21422 28 if gr >

for(0*) =1 7, AN
2 nN(l _21172_{_279)

if 0% <

ENE RN

Since the pdf of Rayleigh fading magnitude in the selected
antenna L* is fr«(r*) = 2r*exp —(r")2 ,
fr+(r*) and fo+(6*) to average p(SNR, #*) to get the SEP
expression in (21).

W€ can use

APPENDIX E

PROOF OF THEOREM 3

The N = 1 case follows from [8]. Hence, we only focus on
N > 2 case for the proof. We first define

|(SNR) /% /

2}1—2 _

2SNchose)rexp( )
)

(«/mrmn(?)rexp( ”)
x(l

) drde,
T+

/0 (\/mr cos 9)

o)

drd6.

X
/N
—_
+

p3(SNR) =

T

X Q( 2SNRy si

<1+2"2

By using Craig’s formula for Q(-) and

n)Nl
)

1

2;9)”‘1 _ (1 N 2n_z)Nfl Ni: (N ,_ 1)

i=0

2"'6 i
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from the Binomial expansion, we can re-express pi (SN R) as

A
()

SNR cos” 0 s
xrexpi—\ ——>—+1)r

Nt

p1(SNR) = (1+2"2)

_,_4\/

drdo dp

+

ENE]
'3

(14202)"

%/7smﬂ'/

ST rrte)

ei
X d
SNRcos2 6 + sin’ 8

0 dp.

Let

1+2” 2
gsNR(0, B) = (Ui smﬂZ( )
2Vl

* <_n(1+2n—2))i

be a collection of functions indexed by SNR. The function
gsNR(8, B) becomes

ei
SNR cos2 0 + sin’ 8

n—2\N—1
g00(0, B) = SNR™! (2 ) sin ,32( >
on Lo
x _n(l+2"*2) cos2 0

as SNR — oo. Further, by using [50, eq. 2.643(9)], we

get fo [Z P 900(0, B)dOdB < oo for N > 2. Hence, as
7

SNR — oo, we conclude that

p1(SNR) = SNR™'0(1)

by using the monotone convergence theorem [51]. Therefore,
p1(SNR) = SNR™!.
The proof for p>(SNR) and p3(SNR) follow similar steps

and we get p>(SNR) = SNR™! and p3(SNR) = SNR™.
Here, we omit the proof to avoid repetition.
Since p(SNR) = ZZ (5, (SNR) + p2(SNR) — p3(SNR)),

we conclude that p(SNR) L SNR! forn>2and N > 2.

We also note that for N = 1 case, the system becomes
SISO and by following similar steps as given in the proof
of [8, Th. 4], we get DVO = 1 for n =2 and DVO =1 for
n>3.

APPENDIX F
PROOF OF LEMMA 3
To prove Lemma 3, we first obtain the following result.

VOLUME 2, 2021

Lemma 4: Consider a finite sequence of random variables
(Uo, Vo), (U1, V1) - - - (Un—1, VN-1),

where Uy, ..., Un—_1, V0, ..., VNy—1 are all iid with a com-

mon pdf of f(u) and cdf of F(u). The joint pdf of U; and

V; is given as

ffe)
Pq

0

if (u,v) € Sy
otherwise,

fU],V](Mv V) = {

where S, is the convex cone given as

T y T
Sy = {(u,v) cR?: Z—agtan_l(;) < Z—i—a},

and P, is the normalization coefficient given as

oo putan(f+a)
Py = / f SO)f (w) dvdu,

tan(§ —a)

— /Ooof(u)F(u tan(% + a))
— f(u)F(u tan(% — oe)) du.

Let ZM = min{U;, V}}, Z"™* = max{U;, V;}, Zmn

max me and L* = arg mame'” Further, let E; be the
1e[0O:N—1] le[0:N—1]

event such that E; £ {ZM" = Z™"} and g,min(z) be the
. 1x
pdf of Z[3". Then, f,min jmax (i, v)
A s
fzglinﬁzzn*ax (u, v) is given by

:fZ(r)nin’Z(r)naxlEO(M, v), and

f(V)gZIr‘n*in () .
errlin,anax (u,v) = F(utan(F+a))—F(u) if v=u (32)
et 0 otherwise.
Proof: To start the proof, We can write
N—1
fzzlin’ZrLTlax (u,v) = 12(; Pr{El}fZlmin’ZFaxlEl(M, V).

Since Pr{El} =N and meln Zlmax‘E (u,v) = fZ(Tin,Z(TaXIEl (u, v)

for all [ € [O N—]l] we have fmin ymax(u,v) =
Lr b L‘k

mein 20|, (u,v). To that end, we then find

Fzm.n gmaxg, (u,v)  which s the joint cdf of Z"

and 75
z*

conditioned on the event Ep. By defining

max Zlmi”, we can represent the event Ey as
le[1:N—1]

Ey & {Z(';”i” > Z7*,}. Let us further define 8z+,(z) and
GZio (z) to be the pdf and cdf of Z* ), respectively.

Thep, for v. > u, \ye have FZ(r)nin’Z(r)nax‘Eo u,v) =
Pz <u,Zi® <v|Z{™ >Z*,}. By using the
Bayes’ theorerp, we can write FZ(Tin’Z(TaX‘ Eo (u,v) =
NF’r{Z* <ZM <u, 2y < v}. Further, by conditioning
on the event Z:O = z, we can write

_()_

FZ(r;nin’Z(TaxlEO (M, V)
u .
=N/0 Pr{zgz{)’"” < M’Z(r)nax <vl|Zr, =z}
X gz (2) dz.
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Due to the independence of Z*, from (Up, Vp), we can

re-write the above expression as
Fz(r)nin’Z(r;naxlE0 (M, V)
u .

= N/ Pr{z <ZM"M <u, 70 < v}gz*o(Z) dz.

0 l
Considering the symmetry of the problem, we note that

Pr{z < 7N <y, Zx < v}
=2Pr{z < Uy <u,Up < Vo <}

Therefore, we have

FZ(r]nin’Z(Tax‘Eo (I/l, V)
u
= ZNf Priz < Up < u, Up = Vo < vigz (2) dz.
0 —

Using the above expression, we can write the joint pdf of
Zi" and Z'® given the event Eg as

]CZ(r)'nin’Z(r)nax|EO (M, V)

_ RSO @Gz @) i @ €Se 3y
0 otherwise,
where Gzx (1) = Pr{z*y<u} and v > u. Since
gzmm(u) =2 Pr{Zm'” <u}N, we can write g,min(u) =
L‘k

NGz (u)fzgm.n(u)
We then focus on finding fZ(rJnin(M). To that end, we first
find the cdf F. Zqin (u) where

Fyin (1) = Pr{Z{)“i” < u}
=2Pr{Uy < u, Vo > Up}
u
= 2/ Pr{Vo > t| Uy = t}f (¢) dt
0

_ % /()M[F(ttan<% + a)) - F(t)]f(t) d.

Therefore, we have
Fopin@) = gof@[F(utan(F +a)) = F@)].

Using the above expression, we now can write

2N
8 zmin () = P—QGZ:O ()

Fw) [F(u tan(% n a)) _ F(u)].

By substituting GZ:O(u) using the expression (34) in (33),
we get the expression (32). That concludes the proof. |

We now use Lemma 4 to prove Lemma 3. To this end,
we will only focus on the event where H; is in D,.-1 for
all I € [0 : N — 1] without loss of generality. Calculating
the conditional SEP on this event will give the uncon-
ditioned SEP due to spherical symmetry in the fading
process. On this event, the distances to the decision bound-
aries are given by the absolute values of real and imaginary
parts of VSNRHe’ % for all transmitted symbols X € C.

(34)
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44 x
R Sz
Zmin — 4 = v/SNRr* cos 0*
V'SNRA* g T o
4 271,
ZP¥ = v = VSNRr* sin 6*
Re

FIGURE 14. An illustration of the average SEP calculation under the max-distance
antenna selection strategy. Without loss of generality, let us assume that the xg is
transmitted and the region of attraction is R = {z eC:0=<Arg(2) < % } Then, the
distances to the decision boundaries are Zl'_“*'" =uand Z"_',‘kax = v. Using polar
VSNRr* cos 6* and

|h*| and 6* = Arg(h*xg).

coordinates, we can represent these distances as zmin
zll_YlaX /SNRr* sin 6* where r* =

Using thlS observation, we define U; = |Re(~/SNR HleJX)l
and V; £ [Im(+/SN Hlef4)| We use Fig. 14 as a visual
guide to illustrate this situation, where (U;, V)) € Szln
on this event. Further, under Rayleigh fading, we have
— _2 _ _

f) = S exp(—gigm), Fa) = 1 - 2Q(52%) and
PL = 2,,1,2

2By following steps which are similar to obtain (18), we
can write

P(SNR. ) = Q(v2u) + Q(V2v)

-9 («/Eu) Q («/Ev) ,
(35)

given that ZM" = u and Z"® = v. We then can obtain
p(SN R) by averaging the above expression with respect to
the joint pdf of Z['" and Z"®*, which can be given as

fZIr‘n*in’Zmax (M, V)

n+1 2 2 .
_ iSNJIXGZ* (w) exp( +|‘$ ) if (u,v) e Szln
0 otherwise,

(36)

N—-1
where GZ:0 () = {F Zqin (w) } with

2—) F(t)) }f(t) dt

o
= P; /OMF(ttan(% + ;T—n))f(t) dr —

being the cdf of Z(r)“i”. By substituting the corresponding
functions, we get the expression (37), as shown at the bottom
of the next page for general n-bit quantization. For n = 2
case, we can further simplify the above expression to

Fymin () = 1 = 492@%).

FZ(r)nin (Lt) =

F?(u)
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Therefore for (u,v) € Szin, we can write

N {Fzgun (u) }N_l exp(—

n+1 M2+V2
SNR )
(38)

fzin*in’zgax(u, v) = m

By averaging the expression (35) over the above joint dis-
tribution f,min ,max (1, v), we get the p(SNR). By using
Li ’ L*

the change of variables u = +SNRr*cos6* and v =
v/SNRr* sin6*, we can convert the p(SNR) expression to
the format given in Lemma 3.

APPENDIX G
PROOF OF THEOREM 4
The proof for the n = 2 and N = 1 case follows directly
from [8]. To obtain the proof for n > 3, we first observe
that the symbol error probability expression given in (23) is
smaller than the one in (19). This is due to the construction of
the max-distance antenna selection strategy, which selects the
antenna that is furthest away from the decision boundaries.
Hence, the DVO achieved by the max-norm antenna selection
strategy forms a lower bound for the DVO achieved by
the max-distance antenna selection strategy. Since the DVO
for the max-norm strategy is equal to the high-resolution
quantization upper bound N for n > 3, we conclude that the
max-distance DVO is also equal to N for n > 3.

The final remaining case to prove is the one where N = 2
and n = 2, which we will prove by using Lemma 3. We
start the proof for this case by defining

(SNR) //

[ Q2(«/_rcos0>]N_lrexp<—r2)drd9,

SNR:/N/

X [l — 4Q2 (\/Ercos 0)]N_1rexp(—r2)drd9,

J(SNR) //

X Q(Wrsin@)[l —4Q2(\/§rcos9)]
X rexp(—rz)drdé),

V2SNRr cos 9)

V2SNRrsin 9)

V2SNRr cos 9)

where Q(x)
+ o
(ﬁrcos 9)]N7] = 25\1;01 (N?I)(—él)in"(\/ircos 0) using

= )dp and Q*(x) =

s
1 r2 X2
;fo eXp(_2sm2/3

N-1

the Binomial expansion, and hence we can re-express

p1(SNR) as

o= [ LTS

i : 2
X Fexp [—r2 (H— + Z Sgn'(z)zcos 9)}

P 7
X drdfdBdy; - --

=4’

it

SNR cos2 6

sin’ B

dyi,
where sgn(-) is given as

if a>0

1
sgn(a) = {—1 if a <O.

Using [50], we can simplify the above expression as

o= - ///42(1)“”’

7.[1+1
dodBdy; --- dy,

x 2(1 —{—Bcos2 0)

e

()

><tan L1+ B)

214+ B
SNR

sgn(i) ; i
S+ Y ?1 2. Using the Taylor series

expansion [50], in the high SNR regime tan~!(1 + B)
converges to 1. Therefore,

(=4

7-[1+1
ddyi --- dyi,

where B =

SN / / /‘2 (N _. 1) (—4?1
1 4t
X —_1 ap d)/l - dyi,

as SNR — oo.
By substituting N =2 in the above expression we get

sin? /3
B _/ / \/1 SNR ;1
sin? ﬁ sin? Y1

By doing further mathematical manipulations, we get
16 f 1 dp.
2 SNH
i o 1+ sin B

as SNR — oo. Therefore, we conclude that pl(SNR)
SNR™! as SNR — .

p1 SNR

dB dy.

p1(SNR) = (39)

€

2" u V2t
F min B y—— 1_ -
zgn 0 «/nSNR/o { Q(«/SNRtan<4
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w3 (-

V2u
«/SNR) } Gn

i dt—2""%11-20
SNR
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The proof for p>(SNR) and p3(SNR) follow similar steps
and we get p>(SNR) = SNR™' and p3(SNR) = SNR™.
Here, we omit the proof to avoid repetition. Therefore, we

can conclude that p(SNR) < SNR™! forn=2and N =2.

Hence, the DVO is equal to %’ for this case.
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