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ABSTRACT In recent years, with the rapid enhancement of computing power, deep learning methods
have been widely applied in wireless networks and achieved impressive performance. To effectively exploit
the information of graph-structured data as well as contextual information, graph neural networks (GNNs)
have been introduced to address a series of optimization problems of wireless networks. In this overview,
we first illustrate the construction method of wireless communication graph for various wireless networks
and simply introduce the progress of several classical paradigms of GNNs. Then, several applications
of GNNs in wireless networks such as resource allocation and several emerging fields, are discussed in
detail. Finally, some research trends about the applications of GNNs in wireless communication systems
are discussed.

INDEX TERMS Wireless networks, graph neural networks, resource management.

I. INTRODUCTION

THE ADVENT of fifth-generation (5G) wireless com-
munication systems has driven the revolutionary appli-

cations extending far beyond smartphones and other
mobile devices [1]. Meanwhile, intelligent communication
becomes a novel developing trend of future communication
systems [2]. Recently, more and more researchers adopt the
deep learning (DL) method to study the problems in wireless
networks motivating by the successful application of DL in
the related fields of computer [3].

A. FROM TRADITIONAL DEEP LEARNING TO GRAPH
NEURAL NETWORK
According to the usage of domain knowledge, DL meth-
ods can be divided into the data-driven DL method and

the data- and model-driven DL method. The data-driven
DL methods without using the domain knowledge generally
have poor interpretability and robustness, while having fast
inferencing speed compared with the model-based method.
A classic work using multi-layer perceptrons (MLPs) is
to solve the power control problem of wireless networks
by using the MLPs to approximate the weighted minimum
mean square error (WMMSE) algorithm [4]. The data- and
model-driven DL methods are rising in recent years and its
core idea is to retain the main theoretical characteristics of
the classical model algorithms, while using the DL meth-
ods to partially enhance or replace its related difficult or
time-consuming process. Compared with the data-driven DL
methods, the data- and model-driven DL methods have better
interpretability and robustness with slower inferencing speed.
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For example, Bora et al. used the generated model from
neural networks instead of the standard sparsity model to rep-
resent data distributions [5]. Shlezinger et al. designed a deep
neural network (DNN) to implement the channel-dependent
part of Viterbi algorithm, while keeping the unchange of
the rest remains [6]. Kim et al. studied a family of sequen-
tial codes parameterized by recurrent neural network (RNN)
architectures [7]. Gregor and LeCun designed a non-linear
and parameterized feed-forward architecture with a fixed
depth to approximate the optimal sparse code [8]. Some
overviews are presented to summary the application of
machine learning (ML) or DL with aiming to improve the
quality-of-experience (QoE) of wireless networks [9], [10].
The data collected in these tasks is typically represented
in the Euclidean domains. Although the existing works
using the DL models defined in the Euclidean domains
achieve a better performance in small-scale networks, they
fail to exploit the underlying topology of wireless networks.
Consequently, the performance decreases sharply when the
network scale becomes large [11], [12].
In wireless networks, an obvious feature is that the high

dynamics of network topology caused by some uncertain
factors, e.g., the user mobility, changes in traffic pattern or
adjustment of the network resource, etc. In addition, the wire-
less data may be collected from non-Euclidean domains and
represented as graph-structured data with high dimensional
features and interdependency among communication devices.
These issues bring difficulties to apply directly the learning
model defined in Euclidean domains in wireless networks. A
straightforward way solving these difficulties is to incorpo-
rate the network topology information, which is described as
an adjacency matrix depending on the specific node index,
into the architecture of neural networks. However, the indices
of communication devices in wireless networks may change
due to the reallocation of resources and the movement of
communication devices, i.e., dynamic graph-structured data.
This motivates us to design a novel learning model with
taking into account the interdependencies between commu-
nication devices and the dynamics of wireless networks [13].
The emerging GNNs enable the graph-structured data to be
processed effectively and to use the global parameterization,
common system of coordinates, vector space structure, or
shift-invariance [14]. In the last few years, many researchers
have begun to use GNNs to mine the deep information hidden
in the graph-structured data to further improve the abilities
of learning and simulating the interaction between nodes.

B. RELATED OVERVIEWS AND CONTRIBUTIONS
Some overviews about the paradigms and applications of
GNNs are represented in the past few years. The authors
of [15] introduced comprehensively four basic paradigms of
GNNs and described the representative models in detail.
Differentiating from [15], the authors of [16] further
reviewed graph reinforcement learning and graph adversarial
methods. The authors of [17] summarized the state-of-the-art
of the main models and algorithms of graph learning from

four aspects, i.e., graph signal processing, matrix decompo-
sition, random walk, and deep learning. The aforementioned
surveys introduced in detail the characteristics of different
GNN paradigms but briefly introduced the application of
GNNs in some fields except for wireless networks. The
authors of [18] summarized the GNN approaches in terms
of the spatial domain and spectral domain, respectively.
Furthermore, this work integrates the spatial and spectral
domain models into a unified framework. The authors of [19]
further discussed the expressive power of GNNs and further
summarized the relationships among GNNs, the Weisfeiler-
Lehman algorithm, and distributed local algorithms. The
authors of [20] illustrated the excellent performance of GNNs
depending on the three characteristics of equivariance, sta-
bility and transferability, which are further determined by the
selection of the optimization objective and technologies, as
well as the design of graph filters. The methods using soft-
ware or hardware to accelerate GNNs were reviewed from
the perspective of computation speed in [21]. In order to
fill the research on the interpretability of GNNs, the uni-
fied methodology and standard testbed for evaluating the
interpretability of GNNs were summarized comprehensively
in [22]. There are also several overviews on applying the
GNNs to solve the problems in the traffic domain [23], power
systems [24], and recommender system [25]. In addition, the
relationship between GNNs and the latest neural-symbolic
computing that aims at integrating the abilities of learning
from the environment and of reasoning from what has been
learned was introduced in [26].
In this paper, we aim to present a comprehensive overviewof

the application of GNNs in wireless networks. Meanwhile, we
also provide some potential research directions for researchers
who are interested in this topic. A detailed organization of
this overview is illustrated in Fig. 1. In particular, the main
contributions of this overview are summarized as follow.

• The methods of constructing wireless communication
graph (WCG) for Mesh/Ad-hoc networks, Cellular
networks, or Wireless Local Area Networks (WLANs)
are illustrated elaborately.

• Several classical paradigms of GNNs applied in wireless
networks are introduced to acquire a better understand-
ing of the concepts and structures of GNNs.

• A comprehensive review of GNNs applied in wireless
networks is summarized in termsof theexistingdirections,
e.g., resource allocation and several emerging fields.

• Some challenges and potential research directions are
summarized and discussed for the application of GNNs
in wireless networks.

The rest of this paper is organized as follows: In Section II,
we introduce several basic definitions of graph-structured
data and summarize the construction methods of WCG for
Mesh/Ad-hoc networks and Cellular networks/WALNs. In
Section III, we review several classical paradigms of GNNs
that applied in wireless networks. In Section IV, we introduce
the application of GNNs in wireless networks. In Section V,
we discuss a few valuable directions for the application of
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Section IV.  Application in Wireless Networks

A.  Resource Allocation B.  Emerging Fields
1)  Power control

2)  Link scheduling

3)  Others

1)  Channel estimation

2)  Traffic prediction

3)  Vehicle communication

4)  Others

Section III.  Paradigms of GNNs

A.  Graph Convolutional Neural Networks
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D.  Other Hybrid Methods
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A.  Graph Convolutional Neural Networks

B.  Graph Attention Networks

1)  Spectral-based GCNs

2)  Spatial-based GCNs

C.  Spatial-Temporal Graph Neural Networks
D.  Other Hybrid Methods

Section V.  Key Issues and Future Development

A.  Acquisition of high-quality data D.  Robustness of the learning model G.  Research of GNN-based deep unfolding method

Section VI.  Conclusions

Section I.  Introduction

A.  From Traditional Deep Learning to  Graph Neural Network B.  Related Overviews and Contributions

Section I.  Introduction

A.  From Traditional Deep Learning to  Graph Neural Network B.  Related Overviews and Contributions

B.  Distributed GNN learning model

C.  Data privacy issues

E.  Scalability of the learning model

F.  Cross-layer optimization

H.  Model design with complex constraints

4)  Brief discussion

5)  Brief discussion

Section II.  Definition and Construction of Graph

A.  Definition of Graph B.   Construction of Wireless Communication Graph
1)   Mesh/Ad-hoc Networks

2)   Cellular Networks/WLANs

FIGURE 1. Road map of the overview.

TABLE 1. Commonly used notations.

GNNs in wireless networks. Finally, we conclude this work
in Section VI. For ease of reading, the notations commonly
used in graphs are summarized in Table 1.

II. DEFINITION AND CONSTRUCTION OF GRAPH
In this section, we would like to first describe several basic
definitions of graph-structured data. Then, the construction
methods of WCG for different wireless network scenar-
ios, e.g., Mesh/Ad-hoc networks, Cellular networks, and
WLANs, are illustrated in detail.

A. DEFINITION OF GRAPH
Graph-structured data is a kind of non-Euclidean data and is
commonly expressed as G = (V,E), where V and E are the
sets of nodes and edges, respectively [27]. Let vi ∈ V be a
node and eij = (vi, vj) ∈ E be an edge from node vi to node
vj. The adjacency matrix of a graph is represented as A. If
eij ∈ E, Aij = 1, otherwise, Aij = 0. The graph is undirected

if A is symmetric, otherwise, the graph is directed. The
degree matrix D of an undirected graph is a diagonal matrix,
where Dii = |N (vi)|. The Laplacian matrix of an undirected
graph is defined as L = D − A. The normalized Laplacian
matrix is defined as L̃ = IN −D− 1

2 AD− 1
2 . Note that the nor-

malized Laplacian matrix L̃ is a real semi-positive definite
matrix. Accordingly, it can be decomposed into L̃ = U�UT ,
where U is the eigenvector matrix and � is a diagonal matrix
of [�]ii = λi with λi being the eigenvalue. While for the
directed graph, the in-degree and the out-degree matrices
are defined as D(in)

jj = ∑N
i Aij and D(out)

ii = ∑N
j Aij, respec-

tively. The transition probability matrix P of a given directed
graph is defined as P = (D(out))−1A. Accordingly, a sym-
metric normalized Laplacian of directed graph is defined as−→
L = I − 1

2 (�
1
2 P�− 1

2 + �− 1
2 PT�

1
2 ), where � is generated

according to P and perron vector [28]. It is worth mention-
ing that, from the reviewing results, there is almost no work
to deal with directed graph based on spectral domain, but
based on spatial domain. In a graph, each node may have
its own attribute feature. The feature matrix of a graph is
defined as X ∈ R

N×d. If feature matrix X changes over time,
the graph is defined as a spatial-temporal graph.

B. CONSTRUCTION OF WIRELESS COMMUNICATION
GRAPH
The first thing of using GNNs is to transform a wireless
network into a graph. In general, according to the specific goal
of the research, the topology structure of wireless networks
may be constructed into an undirected graph or directed graph.
According to the types of communication links and communi-
cationdevices inwirelessnetworks, itcanbefurtherconstructed
into a homogeneous or heterogeneous graph. In the sequel, the
construction methods of WCG for various wireless network
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FIGURE 2. Illustration of constructing WCG for homogeneous Mesh/Ad-hoc
networks with 3 transceivers [29].

scenarios, e.g., Mesh/Ad-hoc networks, Cellular networks, or
WLANs, are illustrated elaborately.

1) MESH/AD-HOC NETWORKS

Suppose there are N transceiver pairs in homogeneous
Mesh/Ad-hoc networks. To build a WCG for this kind of
wireless network, we view the i-th transceiver pair as the i-th
node of WCG, the feature vector of the i-th node includes
the direct channel state information (CSI) hii1 and other
environmental information, such as the weight wi of the i-th
node. The edge between nodes vi and vj in WCG may be
undirected or directed. The feature vector of the undirected
edge includes the interference CSIs hij and hji. While the
feature vectors of two directed edges between nodes vi and
vj can include hij and hji, respectively.2 Fig. 2 shows a con-
struction method of WCG for homogeneous Mesh/Ad-hoc
networks with 3 transceivers.
In heterogeneous Mesh/Ad-hoc networks, suppose there

are N types of communication links. We treat the i-th
transceiver pair with link type m as node vim in the WCG. The
set of neighboring nodes with link type n of node vim are rep-
resented as N (n)

im
. The feature vector of node vim includes the

CSI himim of direct link, and other environmental information
corresponding to the link of type m. The feature vector of the
edge between nodes vim and vjn should also be considered
from the perspective of undirected and directed. The feature
vector of the undirected edge includes the CSIs, i.e., himjn
and hjnim of interference links. While the feature vectors of
the directed edges between nodes vim and vjn include the
himjn and hjnim , respectively. Fig. 3 illustrates a construction
method of WCG for heterogeneous Mesh/Ad-hoc networks
with 2 link types, where vjn is the feature vector of node
vjn , ejnim is the feature vector of the edge between nodes vjn
and vim , and “Link im” indicates the i-th communication link
with type m.

2) CELLULAR NETWORKS/WLANS

In general, Cellular networks/WLANs may consist of
M (M ≥ 1) access points (APs) and N (N ≥ 1) user

1. It is worth noting that the dimension of hij between nodes vi and vj
is determined by the number of antennas equipped by the transceiver pair.

2. The construction method of the feature vectors of nodes and edges is
not limited in the method aforementioned and mentioned later, which can
be adjusted and supplied according to the specific research tasks.

FIGURE 3. Illustration of constructing WCG for heterogeneous Mesh/Ad-hoc
networks with 2 link types [30].

FIGURE 4. Illustration of constructing WCG for Cellular networks/WLANs with a
single AP.

equipments (UEs). Considering a simple situation including
only one AP, which allocates the resources, such as power
control and user association, etc., to the UEs. We treat the
i-th UE as a node of WCG should be built while ignoring
AP. The feature vector of the i-th node includes the CSI hii
and other environmental information. The feature vector of
the edge between nodes vi and vj includes the CSI hii and
hjj, etc., which can also be ignored due to all UEs share
one AP. An illustration of constructing WCG for Cellular
networks/WLANs with a single AP is shown in Fig. 4.
We further consider a more complex situation including

multiple APs in Cellular Networks/WLANs, in which one
AP may serve multiple UEs, and one UE may also access
multiple APs. We first consider the scenario that one UE
just accesses one AP and one AP serves multiple UEs. As
shown in Fig. 5 (a), UEs 1-4 and UEs 5-7 communicate with
AP1 and AP2, while AP2 and AP1 are interfered with UE4
and UE5, respectively. The WCG of this kind of wireless
networks can be built in two manners, which are illustrated in
Fig. 5 (b) and Fig. 5 (c), respectively. In Fig. 5 (b), there are
two types of nodes indicating APs and UEs, respectively. The
information of position, channel configuration, and device
type are considered to be the feature vector of nodes. The
feature vector of the edge between nodes vi and vj includes
the direct/interference CSI and other link information. In
contrast to Fig. 5 (b), the APs are ignored in Fig. 5 (c),
which includes only one type of nodes indicating UE. The
feature vector of a node includes the position of UE, channel
configuration and device type, etc. The direct/interference
CSIs and other link information can be considered to be
the feature vector of edge. In practice, we can choose the
appropriate manner according to the specific research tasks.
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FIGURE 5. Illustration of constructing WCG for Cellular networks/WLANs with
multiple APs.

FIGURE 6. Illustration of constructing WCG for ultra-dense Cellular
networks/WLANs [31].

In addition to the Cellular networks/WLANs scenar-
ios aforementioned, there are also other scenarios, such
as one AP may serve multiple UEs and one UE may
access multiple APs, called Heterogeneous Ultra-Dense
Network (HUDN) [31]. We treat the UEs and APs as two
types of nodes, as shown in Fig. 6 (a). The feature vec-
tor of a node indicating UEs includes the CSIs to every
AP. However, the feature vector of a node indicating APs
includes the CSIs to every UE. The edge of WCG should be
built only exists between nodes indicating UEs and nodes
indicating APs when the UE can be detected. As shown in
Fig. 6 (b), the first-order neighborhood, K = 1, of UEs is
the APs that have edge connect, the second-order neighbor-
hood, K = 2, of UEs is the UEs that connect to the first-order
neighborhood. Similarly, the corresponding neighborhood of
AP is shown in Fig. 6 (c). The details of designing the
GNN model using this WCG can be found in [31], which
exploit feature information from first-order and second-order
neighborhood.

III. PARADIGMS OF GNNS
In this section, we simply introduce a few classical
GNN models, mainly including graph convolutional neural
networks, graph attention networks, spatial-temporal graph

FIGURE 7. Overview of the paradigms of GNNs.

neural networks, and other hybrid methods. The overview
of these paradigms is shown in Fig. 7.

A. GRAPH CONVOLUTIONAL NEURAL NETWORKS
Graph convolutional neural networks (GCNs) implement the
convolutional operation on graph-structured data, i.e., in
non-Euclidean space [14]. The core idea of GCNs is to
learn a mapping function, which can combine the neighbor
nodes’ information with its feature information to generate
a new node representation. According to different convo-
lution methods, GCNs can be divided into spectral-based
GCNs [32]–[40] and spatial-based GCNs [41]–[46]. In the
sequel, we simply introduce several classical models of
spectral-based GCNs and spatial-based GCNs, respectively.

1) SPECTRAL-BASED GCNS

Since the number of neighbors may be different for different
nodes, a fixed convolutional kernel cannot be used on a
graph. To address this problem, the graph-structured data is
generally converted to the frequency domain. Specifically,
for a given input graph signal x ∈ R

d and a graph filter
g ∈ R

d, the graph convolution is defined as [15]

x ∗G g = F−1(F(x) � F(g))

= U
(
UTx � UTg

)
= UĝUTx, (1)

where ∗G denotes the graph convolution operation, F(x) =
UTx denotes the graph Fourier transform, F−1(F(x)) =
UF(x) denotes the inverse graph Fourier transform, �
denotes the Hadamard product, and ĝ = diag(UTg).

Various spectral-based GCNs have been defined by
changing ĝ. For example, Bruna et al. proposed spectral
CNN (SpectralCNN) in which ĝ is learnable parameters [32].
However, due to the existing of the eigen-decomposition
of L̃, SpectralCNN faces several challenges, such as low
computational efficiency of eigen-decomposition and the
learned graph filters cannot be applied in a graph with
different structure [27]. To overcome these shortcomings,
Defferrard et al. proposed Chebnet via redefining the graph
filter with Chebyshev polynomials [33]. By constraining
the number of parameters, Kipf et al. further proposed a
model named GCN, which has the ability to overcome the
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overfitting, to minimize the number of operations at each
layer, i.e.,

X∗G = W
(
IN + D− 1

2 AD− 1
2

)
X, (2)

where W is a learnable weight matrix. In order to tackle the
case in which IN +D− 1

2 AD− 1
2 ∈ (0, 2) may lead to gradient

explosion, the authors further transform IN+D− 1
2 AD− 1

2 into
D̃− 1

2 ÃD̃− 1
2 , where Ã = A+IN and D̃ii = ∑

j Ãij. Compared
to GCN, Chebnet has higher computational complexity, but
it has stronger expression ability. Chebnet’s K-order con-
volution operator can cover K steps neighbor nodes of the
central node, while GCN only covers the first-order neighbor
nodes. However, the perception domain of graph convolution
can be expanded by stacking multiple GCN layers, so the
flexibility is relative high.
Ma et al. proposed a directed graph convolution network

based on directed Laplacian, which is defined as [28]

Z = 1

2

(
�̃

1
2 P�̃− 1

2 + �̃− 1
2 P̃T�̃

1
2

)
XW, (3)

where D̃(out)
ii = ∑

j Ãi,j, P̃ = (D̃(out))−1Ã and �̃ is calculated

based on P̃. The directed graph filter is approximated by the
first-order Chebyshev polynomials.
Remark 1: The application of spectral-based GCNs in

wireless networks will be introduced in Section IV. The
definition of graph filters for spectral-based GCNs usually
combines the adjacency matrix A of wireless network topol-
ogy and the channel state information H, which can make
full use of the complex wireless information. On the other
hand, H is expressed as the propagation relationship between
nodes from the aspect of wireless network environment.

2) SPATIAL-BASED GCNS

The spatial-based graph convolution is similar to the image
convolution. The two convolution operations all extract the
neighbor information of a node to obtain a richer feature rep-
resentation of the node or the pixel. The difference between
image convolution and spatial-based graph convolution is
that the nodes in a graph are unordered while the pixels in
an image are irregular, and the number of neighbors of each
pixel in an image is limited while the number of neighbors
of each node in a graph is not sure. So, spatial-based graph
convolution operation cannot use a fixed-size convolution
kernel like the image convolution operation. Thus, the key
of spatial-based GCNs is to define the convolution oper-
ation with different neighborhood numbers and keep local
invariance.
The most widely used spatial-based GCNs in wireless

networks are message passing neural network (MPNN) and
diffusion-convolutional neural networks (DCNNs). MPNN
was proposed in [42], which is a unified framework
of spatial-based GCNs, and decomposes the spatial-based
graph convolution into a message aggregation phase and a

combination phase, i.e.,

m(t)
vi =

∑

vj∈N (vi)

M(t)
(
X(t−1)
i ,X(t−1)

j , eij
)
, (4a)

X(t)
i = U (t)

(
X(t−1)
i ,m(t)

vi

)
, (4b)

where eij is the feature vector of the edge between nodes vi
and vj, M(t)(·) and U (t)(·) are the aggregation function and
the combination function in the t-th iteration, respectively.
m(t)
vi is the message aggregated from node vi’s neighbors

and X(t)
i is the hidden state of node vi in the t-th iteration.

It is observed that the computational efficiency of MPNN
decreases with the increase of the number of nodes.
Hamilton et al. further proposed Graph SAmple and

aggreGatE (GraphSAGE) model via fixing the number of
neighbors for message passing to overcome the shortcom-
ings of MPNN [43]. The graph convolution operation of
GraphSAGE is implemented by

X(t)
vi = σ

(
W(t)g(t)

(
X(t−1)
i ,

{
X(t−1)
j ,∀j ∈ SN (vi)

}))
, (5)

where W(t) and g(t)(·) are a learnable weight matrix and an
aggregation function in the t-th layer, respectively. σ(·) is
a nonlinear activation function. SN (vi) is a random sample
of the node vi’s neighbors. The main difference between
MPNN and GraphSAGE is that GraphSAGE randomly sam-
ples a fixed number of neighbors for each node, while MPNN
utilizes all the neighbors of each node. In addition, the
diffusion-convolution operation in the DCNNs model builds
a potential representation by scanning the diffusion process
of each node through the transition probability matrix, i.e.,
Z(t) = σ(W(t) � PtX), where Z(t) is the hidden state in the
t-th layer and Pt denotes the t power of P.
Remark 2: The GCN models introduced above meet the

graph structures with the same node type and edge type.
However, in wireless networks, the types of communica-
tion devices and of communication mechanisms between
devices may be diverse, that is, the corresponding WCG
may be a heterogeneous. Therefore, the design of het-
erogeneous graph convolution is helpful to learn different
types of information and is more suitable for the busi-
ness needs of practical network scenarios. In Section III,
several works on designing graph convolution for heteroge-
neous WCG are introduced. However, the existing methods
are designed based on spatial-based GCNs. There are few
works on designing heterogeneous graph convolution based
on spectral-based GCNs.

B. GRAPH ATTENTION NETWORKS
One notes that in a graph, different neighbor nodes gen-
erally have different influences on the central node. This
implies that one needs to distinguish the influences of
nodes with a proper means during the design process of
the learning model. Attention mechanism [47] has been
regarded as an expressive means of information fusion by
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FIGURE 8. Illustration of the implementation details of attention mechanism [48].

assigning weight to given information. In recent years, atten-
tion mechanism is also introduced into GNNs, such as,
Velickovic et al. proposed an attention mechanism based
GNN model, i.e., Graph Attention Network (GAT), by
adaptively allocating weight to different neighbors in the
aggregation operation [48], which is defined as follows

X(t)
i = σ

⎛

⎝
∑

j∈N (vi)

α
(
X(t−1)
i ,X(t−1)

j

)
W(t−1)X(t−1)

j

⎞

⎠, (6)

where α(·) is the attention mechanism, X(t)
i is the hidden

state of node vi at the t-th layer. In addition, multi-head
attention mechanism is further introduced to improve the
expression ability of the attention layer, that is, K inde-
pendent attention mechanisms can be utilized and then the
output are concatenated together, i.e.,

X(t)
i = ‖Kk=1σ

⎛

⎝
∑

j∈N (vi)

αk
(
X(t−1)
i ,X(t−1)

j

)
W(t−1)X(t−1)

j

⎞

⎠, (7)

where ‖ denotes the concatenation operation and αk(·) is
the k-th attention mechanism. The illustration of single-head
attention mechanism and multi-head attention mechanism
are shown in Fig. 8, where ρ

(k)
ij denotes the attention weight

between node vi and node vj obtained by the k-th attention
mechanism. Other GNNs models using attention mechanism
could be found in [49]–[52].
Remark 3: The essence of the attention mechanism is to

weigh the information transmitted to distinguish the impor-
tance of different types of information. In wireless networks,
especially heterogeneous wireless networks, the environmen-
tal information may be diverse, such as communication
equipment, communication links, etc., which may affect the
problems in different ways. Therefore, it is unreasonable to
treat different types of information equally in the design of
the learning model. On the contrary, one or more attention
mechanisms should be designed according to the relevant
prior knowledge to distinguish the influences of different
types of information. There are few applications of graph
attention mechanism in wireless networks.

C. SPATIAL-TEMPORAL GRAPH NEURAL NETWORKS
Spatial-temporal GNNs (STGNNs) play an important role
in dealing with graphs that have dynamic node inputs

FIGURE 9. Illustration of how ASTGCN captures spatial and temporal dependencies.

while connected nodes are interdependent. There are two
categories of STGNNs from the perspective of capturing
temporal dependency, i.e., RNN-based methods [53]–[57]
and CNN-based methods [58]–[62].
Chen et al. utilized the residual recurrent GNN (Res-

RGNN) to predict the traffic flow in traffic network [53].
Res-RGNN utilizes the spatial attributes to capture the spa-
tial features with diffusion convolution, while using graph
recurrent unit (GRU) to discover the temporal dependency
for each node. Specifically, the implementation of RGNN
unit at time t is

r(t) = σ
(
�r ∗G

[
x(t), e(t), s(t−1)

]
+ br

)
, (8a)

u(t) = σ
(
�u ∗G

[
x(t), e(t), s(t−1)

]
+ bu

)
, (8b)

c(t) = tanh
(
�c ∗G

[
x(t), e(t), (r(t) � s(t−1))

]
+ bc

)
, (8c)

s(t) = u(t) � s(t−1) +
(

1 − u(t)
)

� c(t), (8d)

y(t+1) = Wos(t), (8e)

where x(t), e(t) and s(t) denote the graph signal, external
feature and the outputted hidden state at time t, respectively.
r(t) and u(t) represent the reset gate and update gate at time
t, respectively. �r,�u and �c are the learnable graph filters,
Wo is the learned weights of the output layer. y(t+1) denotes
the output at time t + 1.
Guo et al. proposed an attention mechanism based spatial-

temporal GNN (ASTGCN) to predict traffic flow in traffic
network [59]. Specifically, ASTGCN utilizes the spectral-
based GCNs, i.e., ChebNet [33], to capture the spatial
dependency among different nodes in traffic network graph.
Meanwhile, one dimension CNN is utilized to capture
temporal dependency for each node in time series. The
implementation details of capturing spatial and temporal
dependencies are illustrated in Fig. 9.
Remark 4: With the development of communication tech-

nologies, the wireless network becomes more complex and
huge with massive terminals. As a result, the resource man-
agement of wireless networks becomes more and more
challenging. To improve spectral efficiency, prediction plays
an important role in wireless networks. Applying STGNNs
to traffic prediction has attracted extensive attention in both
academic and industry, which contributes to the resource
management of wireless networks. Of course, other direc-
tions not involved in this overview also need to consider the
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FIGURE 10. Overview of GAEs.

spatial-temporal dependencies during designing the GNNs
for wireless networks.

D. OTHER HYBRID METHODS
Inspired by the conventional auto-encoders, graph auto-
encoders (GAEs) utilizing GNNs as encoders to learn
low-dimensional latent representations (or embeddings) of
nodes have been investigated for wireless networks. The goal
of encoders in GAEs is to encode the structural information
of nodes. While the decoder in GAEs aims at decod-
ing the structural information about the graph from the
learned latent representations [63]. The general overview
of GAEs is shown in Fig. 10. Specifically, the encoder
maps node v to a low-dimensional embedding vector zv
based on the node’s structural information, and the decoder
extracts the information interested from the low-dimensional
embedding vector. GAEs have been used in many fields by
virtue of their concise encoder-decoder structure and effi-
cient encoding ability [64]–[69]. Kipf and Welling proposed
the variational GAE using a GCN encoder and a simple
inner product decoder, which aims at the link prediction
in citation networks [64]. The encoder maps each node to
a low-dimensional latent representation using GCN, then a
network embedding Z can be obtained. The decoder com-
putes the pair-wise distance given network embedding and
applies a non-linear activation. Finally, the decoder outputs
the reconstructed adjacency matrix.
In recent years, reinforcement learning (RL) has been

gradually applied to graph-structured tasks, such as
graph generation [70], [71], graph classification [72], and
graph reasoning tasks [73]–[78], etc. You et al. proposed
a graph convolutional policy network (GCPN) based on
RL and GCNs to address the problem of non-differentiable
objective functions and constraints [71]. Graph attention
model (GAM) was proposed based on RL and random walks
to solve the graph classification task [72]. The generation of
random walks was modeled as a partially observable Markov
decision process. The RL agent performs two actions at each
time step, i.e., predicts the label of input graph and generates
the rank vector using designed rank network. The reward is
designed as J (θ) = EP(S1:L;θ)

∑L
l=1 rl, where rl = 1 if the

GAM classified the graph correctly, otherwise, rl = −1.
Sl is the environment. Xiong et al. proposed a DeepPath
model to find the most informative path between two target
nodes with the goal of solving the knowledge graph reason-
ing task [73]. The action of RL agents is to predict the next

node in the path at each step and output a reasoning path
in the knowledge graph. The reward functions include the
scoring criteria: global accuracy, path efficiency and path
diversity.
Remark 5: The main advantage of GAEs is to mine the

topological information in the graph, and then learn an effec-
tive low dimensional feature vector representation for each
node or the whole graph. This feature vector representation
can reflect the characteristic that can separate from other
nodes or graphs to a certain extent. Although RL has been
widely used in wireless networks, the application of RL in
GNNs is still in its infancy. Generally speaking, the intro-
duction of RL can enable GNNs to achieve approximate
optimal performance without the prior information of the
environment, and have independent exploration and optimal
decision-making capabilities. Therefore, the introduction of
RL into wireless communication technology has important
practical significance.

IV. APPLICATIONS IN WIRELESS NETWORKS
In this section, we focus on introducing comprehensively
the application of GNNs in wireless networks. As shown
in Table 2, the applications of GNNs in wireless networks
mainly cover resource allocation and a few emerging fields.
The commonly used algorithms are illustrated in Fig. 11 for
each research direction in wireless networks.

A. RESOURCE ALLOCATION
Resource allocation is one of the key issues for wireless com-
munication systems. Applying GNNs to study the problem
of resource allocation mainly focuses on power control, link
scheduling, channel allocation, and spectrum allocation, etc.

1) POWER CONTROL

A large amount of works has studied the power control
problem using traditional optimization methods and DNNs.
Unfortunately, the traditional optimization methods face high
computational complexity. On the other hand, with the
expansion of the wireless network scale, the scalability
and generalization of DNNs will become worse. Motivated
by these observations, many researchers utilize the GNNs,
which have the natural characteristics of solving the problem
with graph-structured data, to investigate the power control
problem in wireless networks.
To develop scalable methods to solve the power con-

trol problem in wireless networks, Shen et al. proposed an
interference graph convolutional neural network (IGCNet)
based on MPNN for K-user interference channels [29]. In
particular, the K-user interference channels are modeled as
a complete WCG with node and edge labels, as shown in
Fig. 2. The aggregation and combination rules of IGCNet
are designed as follows

γ
(t)
j,i = MLP1

(
hji, hij,wi, hjj,β

(t−1)
j

)
, (9a)
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FIGURE 11. Paradigms of GNNs used in different application fields.

α
(t)
i = CONCAT

⎛

⎝MAXj∈N (vi)

(
γ

(t)
j,i

)
,
∑

j∈N (vi)

γ
(t)
j,i

⎞

⎠, (9b)

β
(t)
i = MLP2

(
α

(t)
i , hii,β

(t−1)
i ,wi

)
, (9c)

where MAX(·) is to take the largest value in a set, MLP1 and
MLP2 represent two different MLPs, CONCAT denotes the
operation of vector concatenations. γ

(t)
j,i denotes the feature

vector of the edge connecting node vj and node vi in the
t-th iteration. α

(t)
i is the aggregated information from the

neighbor nodes to the central node vi, and β
(t)
i is the updated

hidden representation of node vi in the t-th iteration. The
IGCNet is trained in an unsupervised manner to learn the
optimal power control.
In addition, a family of neural networks, i.e., message

passing graph neural networks (MPGNNs), is designed to
solve the problem of radio resource management in wire-
less networks [79]. It demonstrates that MPGNNs satisfy
the permutation equivariance property and have the ability
to address the resource management problem of large-
scale wireless networks while enjoying a high computational
efficiency. To guarantee an effective implementation, this
work further proposed a wireless channel graph convolu-
tion network (WCGCN) belonging to the MPGNNs class.
The effectiveness of WCGCN is evaluated with respect to
the power control and beamforming problems. It demon-
strates that WCGCN matches or outperforms the classic
optimization-based algorithms and does not need domain
knowledge and has significant speedups. However, MPGNNs
just consider the problem with simple constraints or without
constraints, complex resource constraints need to be further
considered.
To solve the power allocation problem for device-to-

device (D2D) wireless networks, Spectral-based GCNs was
employed in [80]–[82]. The proposed model, i.e., the ran-
dom edge graph neural networks (REGNN), performs the

convolutions over a random graph formed by the fading
interference patterns in wireless networks. The authors
further presented an unsupervised model-free primal-dual
learning algorithm to train the weights of the REGNN
to overcome the difficulties incurred by the constrained
objective function. Additionally, REGNN is utilized to
solve the problem of power control in decentralized wire-
less networks [83]. To adapt the time-varying topologies,
the first-order meta-learning is adopted to adapt the new
network configurations with a few shots exploiting the data
obtained from multiple topologies. The problem of down-
link power control in wireless networks over a single shared
wireless medium is investigated and addressed by using
spectral-based GCNs and primal-dual learning [84]. The
main highlight of the works aforementioned is to solve
the resource management problem under the complex con-
straints via the primal-dual learning method in homogeneous
wireless networks.
Compared with the homogeneous wireless networks, it is

more challenging to design the GNNs-based learning mech-
anism for the resource allocation problem in heterogeneous
wireless networks. Zhang et al. focused on addressing the
problem of power control or beamforming using MPNN
in heterogeneous D2D networks [30]. This work considers
a heterogeneous D2D network with two types of links, in
which each kind of link holds different features, as depicted
in Fig. 3. In particular, let r = (n,m) be the interference
from link type n to link type m, the update rules in relation
(n,m) is defined as follows

ejnim[l] = φe(n,m)

(
vjn [l− 1], ejnim [0]

)
, (10a)

v(n)
im

= φv(n,m)

⎛

⎝vim [l− 1], max
j∈N (n)

im

ejnim[l]

⎞

⎠. (10b)

where φer and φvr are an edge update function and a node
update function of relation r, respectively. The aggregation
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TABLE 2. Applications of GNNs in wireless networks.

rules is given by

vim[l] = ρv→v
m

({
v(n)
im

[l]
}

n

)
= 1

ci,m

∑

n

v(n)
im

[l], (11)

where ci,m is the number of relations causing interference to
link im. ρv→v

m (·) is the aggregation function of node to node
with link type m.

Similarly, Guo and Yang considered the power control
problem in multi-cell cellular networks [85]. Specifically,
this work models the cellular networks as a heterogeneous
graph, i.e., wireless interference graph, and then proposed
a heterogeneous GNN (HetGNN) based on spatial-based
GCNs, called PGNN, to learn the power control policy

in multi-cell cellular networks. Inspired by the finding that
the parameter sharing scheme determines the invariance or
equivalence relationship, the optimal power control policy
has a combination of different PI and PE properties that exist-
ing heterogeneous GNNs do not satisfy [115]. Additionally,
Zhang et al. considered the joint user association and power
control problem in HUDNs [31]. The HUDNs are also mod-
eled as a heterogeneous graph, which is shown in Fig. 6. A
heterogeneous GraphSAGE (HGSAGE) that extended from
GraphSAGE [43], is used to extract the latent node represen-
tations. To embrace both the generalization of the learning
algorithm and the higher performance of HUDNs, the learn-
ing process of HUDNs is divided into two phases. The first
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phase of HUDNs learns a representation with a tremendous
generalized ability to suit any scenario with different user
distributions in an off-line manner. The second phase of
HUDNs is to finely tune the parameters of GNN online
to further improve the performance for quasi-static user
distribution.
Gao et al. investigated the optimal power assignment and

node selection based on the instantaneous channel state
information of the links in free space optical (FSO) fron-
thaul networks [86]. Spectral-based GCNs are utilized to
exploit the FSO network structure with small-scale train-
ing parameters. Then, a primal-dual learning algorithm
is developed to train the GNN in a model-free manner.
Wang et al. addressed the asynchronous decentralized wire-
less resource allocation problem with a novel unsupervised
learning approach [87], [88]. Specifically, the interference
patterns between transmitting devices are modeled as a
graph to capture the asynchrony patterns via the activation
of the edges on a highly granular time scale. A decen-
tralized learning architecture, i.e., the aggregation graph
neural networks (Agg-GNNs) is designed based on the graph
representation of interference and asynchrony. Chen et al.
proposed a spatial-based GCNs based framework to address
the high complexity of the practical implementation of wire-
less Internet of things (IoT) networks [89]. The effectiveness
of the framework is evaluated by the link scheduling in D2D
networks and the joint channel and power allocation in D2D
underlaid cellular networks.
The methods proposed by the aforementioned works

all are based on data-driven neural networks with poor
interpretability and scalability. Inspired by the algorith-
mic unfolding of the iterative WMMSE, i.e., unfolded
WMMSE (UWMMSE), Chowdhury et al. proposed a data-
and model-driven neural architecture to solve the power allo-
cation problem in a single-hop Ad-hoc wireless network [90].
The optimization problem that should be solved is

min
w,a,b

M∑

i=1

(wiqi − logwi), (12a)

s.t. qi = (1 − aihiibi)
2 + σ 2a2

i +
∑

i 	=j
a2
i h

2
ijb

2
j , (12b)

b2
i ≤ pmax, (12c)

where w = [w1,w2, . . . ,wM]T , a = [a1, a2, . . . , aM]T ,b =
[b1, b2, . . . , bM]T are vectors of optimization variables. The
allocated power is computed by a function p = �(H; θϑ , θν)

of the channel state matrix through a layered architecture �

with trainable weights θϑ and θν . Precisely, setting b(0) =√
pmax1, the t-th layer of UWMMSE is implemented as

follows

ϑ(t) = 

(
H; θ

(t)
ϑ

)
, ν(t) = 


(
H; θ (t)

ν

)
, (13a)

a(t)
i = hiiν

(t−1)
i

σ 2 +∑
j h

2
ijb

(t−1)
j b(t−1)

j

, (13b)

FIGURE 12. Illustration of UWMMSE [90].

w(t)
i = ϑ

(t)
i

1 − a(t)
i hiib

(t−1)
i

+ ν
(t)
i , (13c)

b(t)
i = α

(
a(t)
i hiiw

(t)
i

∑
j h

2
jia

(t)
j a

(t)
j w

(t)
j

)

, (13d)

and the output power is determined as p = �(H; θϑ , θν) =
(b(L))2. α(z) := [z]

√
pmax

0 simply ensures that b(t)
i ∈

[0,
√
pmax]. The function 
 parameterized by θϑ and θν

is chosen to be spectral-based GCNs. The whole workflow
of UWMMSE is shown in Fig. 12, which has better inter-
pretability and scalability compared with the data-driven
learning models. Numerical experiments demonstrate that
UWMMSE not noly significantly reduced the computational
complexity, but also improved the performance compared to
the conventional WMMSE [91].

2) LINK SCHEDULING

Although the overall performance of wireless networks can
be improved via power control, it is not enough to eliminate
the strong interference for ultra-dense wireless networks.
Link scheduling is regarded as an effective means to further
improve the performance of wireless networks.
To overcome the high computational complexity of the

traditional optimization methods and eliminate the costly
channel estimation, Lee et al. proposed a novel DL-based
graph embedding method to implement the link scheduling
in D2D networks [92]. In detail, this work firstly models
the D2D network as a fully connected directed graph, then
computes a low-dimensional feature vector based on the dis-
tances of both communication and interference links without
requiring the accurate channel state information for each
node. Finally, a multi-layer classifier is utilized to learn the
scheduling policy in a supervised and unsupervised man-
ner, respectively. Numerical results show that this method
can achieve near-optimal performance compared with the
state-of-the-art methods but with a small number of training
samples, and has competitive generalization and scalability.
A distributed scheduling scheme was proposed to over-

come the difficulty encountered in solving the maximum
weighted independent set (MWIS) problem for wireless
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networks [93]. The authors proposed a distributed MWIS
solver based on spectral-based GCNs for link scheduling
by combining the learning capabilities of GCNs and the
efficiency of greedy MWIS solvers. The proposed solver
achieves superior performance over greedy baselines with
minimum increase in complexity, and generalizes well across
different types of graphs and utility distributions.
Besides, the information of the dynamics, the topology

structure and evolutionary patterns of dynamic networks can
be fully exploited to improve the temporal link prediction
performance. In dynamic network scenarios, Lei et al. intro-
duced a novel non-linear GCN-GAN model by leveraging
the benefits of spectral-based GCNs, LSTM as well as the
GANs to tackle the challenging temporal link prediction
task [94]. While in ultra-dense D2D mmWave communica-
tion networks, in order to effectively control the interference
between communication pairs, spatial-based GCNs and
primal-dual learning are utilized to solve the problem of
joint beam selection and link activation across a set of
communication pairs via inactivating part communication
pairs [95].

3) OTHERS

To improve the spectral efficiency in densely deployed
WLANs, Nakashima et al. proposed a deep RL model using
spectral-based GCNs for channel allocation [96]. The idea
behind their work is that the objective function is modeled as
a parametric function of topologies, channels and communi-
cation quality. He et al. studied the spectrum allocation via
learning the low dimensional representations of a graph by
modeling the V2X network as a graph, where each vehicle-
to-vehicle link is a node in the graph [97]. According to the
learned characteristics, multi-agent RL is used for spectrum
allocation. DQN is used to learn to optimize the total capac-
ity of the V2X network. In [98], GraphSAGE is employed to
predict the potential links between APs for cell-free massive
MIMO.

4) BRIEF DISCUSSION

The application of GNNs in resource allocation mainly
focuses on power allocation and link scheduling, while there
is less work related to spectrum allocation and channel allo-
cation. In addition, almost all works adopt GCNs and a few
of them introduce RL in terms of the paradigms of GNNs.
Although these works have achieved good results, there are
also some issues needed to be considered. For one thing,
resource allocation tasks in some wireless networks, such
as intelligent factories and intelligent transportation, etc.,
may have many simple or complex constraints needed to be
handled. Most of the existing works directly use projection
strategy for simple constraints, while Lagrange dual learn-
ing framework is used for complex constraints. Although
Lagrange dual learning framework can deal with complex
constraints, it can not guarantee the complete satisfaction
of constraints, and the training efficiency is not ideal. For

another thing, in some wireless network scenarios with delay-
sensitive traffics, the designed model should have low time
complexity on the basis of achieving certain performance.
A small amount of works has discussed the processing
delay of the designed model, but there is still a certain
distance from practical application. Therefore, the problem
of model complexity is a direction worthy of exploration and
research. On the other hand, most of the work is to solve
the optimization problem of a single network layer. With the
development of information and communication technolo-
gies, joint resource allocation at different network layers,
i.e., cross-layer optimization, is a potential direction for the
design of learning methods based on GNNs. The advantage
of cross-layer optimization is that it can comprehensively uti-
lize the information between different network layers, and
then it may get performance improvement potentially.

B. EMERGING FIELDS
GNNs are also applied in other wireless networks scenarios.
Although these studies are in their infancy, the results of
the existing works show that GNNs have a good application
prospect in these directions.

1) CHANNEL ESTIMATION

Accurate CSI is important for guaranteeing the performance
of massive MIMO high-dynamic networks. However, tra-
ditional solutions rely so much on hypothetical statistical
models that they are hard to adapt the high-dynamic network
environment. To overcome this defect, many researchers use
DL to estimate channel of wireless communication system
in recent years, but the ability of DL to extract spatial depen-
dency is limited. However, GNNs have advantages in spatial
dependency mining, so GNNs have been applied in this field
in recent years.
The estimation of channels between the intelligent reflect-

ing surface (IRS), the base station (BS), and the users is
necessary for the optimal tuning of phase shifters at the
IRS. Jiang et al. proposed a DL model to configure the
IRS and beamforming at the BS such that the system util-
ity function is maximized directly based on the received
pilots instead of the channel coefficients [99]. Specifically,
spatial-based GCNs is utilized to directly map the received
pilots to the beamformers at the BS and the reflective pat-
tern at the IRS. While in [100], GAT is employed to solve
the channel estimation for the two-way backhaul link of
high-altitude platform stations with reconfigurable intelligent
surfaces. Numerical results show that for the full-duplex
channel estimation, the performance of the GAT estima-
tor is better than the least-squares. Moreover, numerical
results also show that even if the training data does not
include all changes, the GAT estimator is robust to hardware
impairments and small-scale fading characteristics changes.
As a further case of channel control, Scotti et al. consid-
ered the inference task of massive MIMO detection under
time-varying channels and higher-order qadrature amplitude
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modulation and proposed a message-passing solution based
on GNNs, i.e., MIMO-GNN [101].
Yang et al. proposed a new channel tracking method based

on GAE [102]. Specifically, the channel tracking framework
is designed as

ē
′
i,j(t) = MLPcodere

(
ēi,j(t), v̄i(t), v̄j(t)

)
, (14a)

v̄
′
i(t) = MLPcoderv

⎛

⎝v̄i(t),
∑
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′
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⎞

⎠, (14b)
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(
ē

′
i,j(t)

)
, (14c)

v̂i(t) = MLPdecoderv

(
v̄

′
i(t)
)
, (14d)

where v̄i(t) and ēi,j(n) are the resultant node feature of node
i and edge feature between nodes i and j at time t, respec-
tively. MLPcoderv and MLPcodere are coders for node and edge,
respectively. In contrary, MLPdecoderv and MLPdecodere are
decoders. It’s not hard to find that the designed framework
combines MPNN and codec. Numerical results confirm that
the GNN-based scheme outperforms the feed-forward neural
network in terms of the MSE.

2) TRAFFIC PREDICTION

Generally speaking, effective resource management can
improve the utilization of network resources. In addition,
if one can predict the required resource of future wire-
less traffic, resource management will become more flexible
in wireless networks. However, the high spatial-temporal
interdependencies make traffic prediction more challeng-
ing. There are fewer works on wireless network traffic
prediction using GNNs, mainly including cellular network
traffic prediction and satellite network traffic prediction.
To improve the accuracy of cellular traffic prediction,

Zhao et al. proposed a new Spatio-Temporal GCNs incor-
porating Handover infOrmation (STGCN-HO) prediction
model using the transition probability matrix of the han-
dover graph [103]. STGCN-HO builds a stacked residual
neural network structure that combines spectral-based GCNs
and CNN with gated linear units [116] to capture the spatial
and temporal interdependencies of traffic. Compared with
RNN, STGCN-HO has a faster training speed due to the
use of CNN, and has the ability to train or predict cell or
base stations with the information collected from the entire
graph at the same time. In addition, compared with CNN
grid, STGCN-HO can predict both base stations and the cells
within the base stations. While in reference to the satellite
network traffic prediction, Yang et al. pointed out that the
traditional network traffic prediction model could not effec-
tively extract the spatio-temporal characteristics of network
traffic. Therefore, they proposed a network traffic prediction
model GCN-GRU via combining the spectral-based GCNs
with GRU [104]. Specifically, GCN-GRU model utilizes
the spectral-based GCN to extract the spatial characteris-
tics of the satellite network traffic, and utilizes GRU model
to extract the temporal characteristics of the satellite network

FIGURE 13. Illustration of GCN-GRU.

FIGURE 14. Illustration of graph construction for CAVs.

traffic, and finally predict satellite network traffic through
the fully connected layer. The illustration of GCN-GRU is
shown in Fig. 13, where r(t), u(t), c(t) and s(t) correspond
to (8a)-(8d) and Xt is the input feature at time t.

3) VEHICLE COMMUNICATION

Recently, GNNs have been applied to control the connected
autonomous vehicles (CAVs) lane changing decisions for a
road segment, to mitigate the highway bottleneck conges-
tion, and to allocate spectrum in V2X networks. Dong et al.
proposed a DL model that combines spectral-based GCN
and a deep Q network to control multiple CAVs to make
cooperative lane change decisions [105]. The graph con-
struction methods of CAVs is shown in Fig. 14. There is
a state S(t) that is considered as a triplet at time t, i.e.,
S(t) = {X(t),A(t),M(t)}, where X(t),A(t) and M(t) denote
the node feature matrix, adjacent matrix and a mask matrix
that document the index of autonomous vehicles at time t,
respectively. From the perspective of CAV operations, the
proposed model not only enables CAV to successfully carry
out lane changes to meet its personal intention of merging
from the prescribed ramp, but also guarantees safety and effi-
ciency. Similarly, RL algorithms are employed to train CAV
driving behaviors, which can be used to relieve highway
bottleneck congestion [106].

4) OTHERS

In addition to the aforementioned related works, GNNs are
also used to solve other problems in wireless networks.
Shao et al. proposed Branchy-GNN using the branch network
and source-channel coding to reduce the computational cost
and intermediate feature transmission overhead for efficient
point cloud processing [107]. Fujihashi et al. proposed a
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novel soft point cloud transmission scheme that combines
GNN-based point cloud coding and near-analog modulation
for future wireless streaming of holographic and three-
dimensional data [108]. Jeong et al. provided AR services
via three-dimensional GNN using cameras and sensors on
mobile devices [109]. Lohani and Glasser designed a model
based on spectral-based GCNs to maximize the through-
put of unmanned aerial vehicle (UAV)-assisted ground
networks [110]. Spectral-based GCNs were utilized to solve
the network localization problem of a wireless network in
two-dimensional space [111]. In [112], spatial-based GCNs
was first used to predict the achieved throughput in highly
dense WLANs using channel bonding. Using the topology
extraction ability of GNN, spectral-based GCNs based learn-
ing routing scheme was proposed to implement onboard
routing in small satellite networks [113]. Lee et al. ana-
lyzed and enhanced the robustness of the decentralized
GNN in different wireless communication systems, making
the prediction results not only accurate but also robust to
transmission errors [114].

5) BRIEF DISCUSSION

Emerging fields where GNNs are applied mainly include
channel estimation, channel tracking, MIMO detection, traf-
fic prediction, vehicle communication, point clouds, and so
on. There is not much work in these fields, but some fields
are worthy of further exploration. For instance, the traffic
prediction task not only plays a pivotal role in the man-
agement of wireless network resources but also has higher
requirements for data collection and acquisition. On the one
hand, traffic prediction generally requires long-term histor-
ical data. It also involves issues such as the granularity of
data collection, the level of data collection, and data privacy,
which in turn brings varying degrees of difficulties. On the
other hand, for scenarios with high requirements for traffic
prediction service delay, the model designed is required to be
as low as possible in complexity, so as to achieve real-time
prediction capabilities. In addition, in terms of the applica-
tion of the paradigms of GNNs in emerging fields, GCNs
are frequently utilized. While there are also a small number
of new paradigms of GNNs applied, such as GAT, GAE, and
several generalized GCNs. According to the characteristics
of different business needs, we can measure and compare
different GNNs paradigms, and then adopt the best GNNs
paradigm to better solve the problems faced.

V. KEY ISSUES AND FUTURE DEVELOPMENT
Although GNNs have made some progress in the application
of wireless networks, some key issues need to be fur-
ther studied in-depth. Accordingly, some ongoing or future
research directions that are worth exploring are summarized
as follows:

A. ACQUISITION OF HIGH-QUALITY DATA
One of the fundamental elements of the data-driven DL
method is to obtain a lot of training and testing data of

wireless networks. The higher the quality of data, the better
the training of the model. Though many researchers have
studied the application of DL in wireless networks, most
of the datasets used in the existing work are generated by
numerical simulation, which is somewhat different from the
real data of wireless networks. Furthermore, unlike the suc-
cessful application of DL in image processing and social
networks, etc, there is a lack of publicly recognized data
set for the physical layer and media access layer of wireless
networks. Therefore, it is urgent to collect and construct
opening wireless network datasets for method comparison
and performance verification.
Wireless networks have some unique characteristics, such

as high dynamic, heterogeneous terminals, and non-uniform,
resulting in many difficulties in obtaining the data of wire-
less networks, especially the real-time communication data
of the physical layer and media access control layer. The data
of wireless networks can generally be obtained from spec-
trum measurement instruments, base station, core network
equipment, user terminals, and so on. Different data acqui-
sition devices may be provided by different manufacturers,
who may define different data extraction formats, feature
names, and data calculation methods, and may also be dif-
ferent in the time granularity of extraction. This makes it
very challenging to collect massive data in the real wireless
network, especially at the physical layer and media access
control layer. Meanwhile, the construction of opening testing
and training datasets is still a very urgent and challenging
task for the successful application of DL and GNN, etc, in
wireless networks.

B. DISTRIBUTED GNN LEARNING MODEL
As we all know, the goal of whether the data-driven DL
methods or the data- and model-driven methods is to learn
the super parameters of NNs that depend on the super-
computing power. Furthermore, the learning abilities of the
DL methods are proportional to the network complexity.
However, in wireless networks, the computing capacity of
communication nodes is very limited, especially for the
battery-powered lightweight devices. How to design a proper
DL model is a challenging and opening problem for the
battery-powered lightweight devices. Fortunately, distributed
ML is regarded as an effective and efficient technology to
balance the performance and the computational resource and
to reduce the required amount of training and testing data.
However, several issues are needed to be considered when
designing a GNN-based distributed learning model, such as
the split of the GNN-based learning model, the parame-
ter updating strategy, the integration of the results of each
distributed running node, etc. In addition, the convergence
of the whole distributed learning model is also should be
guaranteed.

C. DATA PRIVACY ISSUES
Generally speaking, the acquisition of the data of wireless
networks inevitably touches the user’s privacy. However,
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privacy protection is one of the core issues in the field
of information and communications technology in the
future, and the process of data acquisition is cumbersome.
Consequently, the acquisition of real network data will face
many difficulties. On the other hand, distributed learning
model needs data interaction, which also involves data pri-
vacy. In some scenarios with high requirements for data
privacy protection, data interaction security needs to be
ensured. Some methods can be used to solve data privacy
issues, such as secure multi-party computing and trusted exe-
cution environments, etc. Another popular solution is to use
the federated learning, which has the outstanding advantage
of privacy protection.

D. ROBUSTNESS OF THE LEARNING MODEL
Although DL methods have been successfully applied in
many fields, their effectiveness depends on high-quality
training datasets. When the training dataset contains signifi-
cant complex noise, anomaly intrusion, category imbalance,
etc., its effectiveness cannot be guaranteed. This implies
that the robustness of the learning model should be consid-
ered when designing the DL model for wireless networks.
Generally, the robustness of the model can be discussed from
two aspects, i.e., malicious or abnormal data and the defense
ability of the model. On the one hand, when a malicious
attacker attacks the model with input data, it can generally
be defended by adversarial training, input transformation,
gradient shielding, and detection and rejection. On the other
hand, the model’s ability to resist attacks can be improved
by improving the model itself and combining it with other
security technologies.

E. SCALABILITY OF THE LEARNING MODEL
In wireless networks, network scale, network state, and
network service data volume may be highly dynamic, which
requires stronger scalability of the designed model. For
example, the changes in network scale (such as changes
in the number of communication devices) and network state
(such as changes in the location and attributes of network
communication nodes) are enough to bring great challenges
to the design of the learning model. Fortunately, GNNs
have the ability to address these problems based on the
existing research work, but the current work is still in its
infancy and needs further research. On the other hand, with
the high dynamic change of network business data volume,
such as the sharp increase of business data volume, the real-
time processing capability of the model should be enhanced
accordingly.

F. CROSS-LAYER OPTIMIZATION
Most of the existing works have covered different individ-
ual network layers in terms of GNNs applications. These
algorithms generally cannot obtain the global optimal solu-
tion from the perspective of whole communication networks.
More recently, with the development of information and

communication technologies, joint resource allocation at
different network layers, i.e., cross-layer optimization, is
regarded as a potential direction for further improving
the performance of learning methods. The advantage of
cross-layer optimization is that the information at multiple
network layers can be fully explored and exploited to design
learning methods. Although cross-layer optimization has
the potential to improve performance, it introduces more
optimization parameters. Meanwhile, the objective function
will be more complicated, which in turn requires higher com-
puting power and may introduce relatively large processing
delays. Parameter abstraction can reduce the complexity to
a certain extent, but it may reduce the optimality of the
generated configuration.

G. RESEARCH OF GNN-BASED DEEP UNFOLDING
METHOD
One shortcoming of the data-driven learning method is the
lack of interpretability due to the NN-based methods treat
the learning of mapping between the input and output as a
black box, which weakens the domain knowledge. To tackle
the shortcoming, an emerging direction is the algorithm
unfolding (unrolling) aiming at combining the knowledge of
data and domain fields. Motivated by the successful applica-
tion of algorithm unfolding solving some classical problems
like UWMMSE, recently, deep unfolding is regarded as
an effective combination to not only effectively utilize the
interpretability and scalability of model-driven algorithms,
but also use the expressive power of data-driven methods.
Although deep unfolding has been paid a lot of attention
from both the industry and academia, the problem to be
solved has only a few simple constraints. Meanwhile, there
is a little work to deeply study the GNN-based unfolding
models to solve the optimization problem in the wireless
network under practical constraints. This implies that there
are still a lot of works to be explored for wireless networks.

H. MODEL DESIGN WITH COMPLEX CONSTRAINTS
So far, a large amount of work focuses on designing data-
driven or data- and model-driven DL models aiming to solve
the optimization problem of wireless network, however, these
problem investigated is generally formulated subjecting to
simpler constraints. In practical wireless communication, the
transmission schemes may be investigated under some com-
plex constraints, such as the per-antenna or per-base station
power constraint, the quality of service constraint, delivery
latency, etc. How to design an effective and efficient DL
model under complex constraints is still an opening and
challenging issue. Although Lagrange dual learning frame-
work has been used to deal with such problems, there are
still some problems with this method. On the one hand, the
convergence speed and the effectiveness of the Lagrange dual
learning framework are closely related to the updating step-
sizes of the Lagrange multipliers and the model parameters,
while the update step-sizes of the Lagrange multipliers and
the model parameters are coupled with each other, which
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makes it difficult to determine the approximate update step-
sizes to maximize the performance of the DL model. On
the other hand, the DL models trained based on Lagrange
dual learning framework are generally difficult to fully sat-
isfy constraints (especially for the problems with large-scale
complex constraints), and the generalization performance of
models is also questionable.

VI. CONCLUSION
In this paper, we first illustrated the construction method of
WCG for various wireless networks. Then, we simply intro-
duced several classical paradigms of GNNs that have been
applied in wireless networks, and made a classified intro-
duction for the application of GNNs in wireless networks,
mainly including resource allocation and several emerging
fields. From the overview results, the application of GNNs
in wireless networks is still in its infancy. Many challenging
problems are needed to be further solved and improved.
Finally, based on the existing results, several key issues
and research directions are summarized for participators
interested in this domain.
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