
Received 24 August 2021; revised 30 September 2021; accepted 20 October 2021. Date of publication 28 October 2021;
date of current version 12 November 2021.

Digital Object Identifier 10.1109/OJCOMS.2021.3122844

A Deep Neural Network-Based Multi-Label Classifier
for SLA Violation Prediction in a Latency

Sensitive NFV Application
NIKITA JALODIA 1,2,3 (Member, IEEE), MOHIT TANEJA 4 (Member, IEEE),

AND ALAN DAVY 2,3 (Senior Member, IEEE)
1Emerging Networks Laboratory Research Division, Walton Institute of Information and Communication Systems Science,

Waterford Institute of Technology, Waterford, X91 WR86 Ireland

2CONNECT–Centre for Future Networks and Communications, Dublin, Ireland
3Department of Computing and Mathematics, Waterford Institute of Technology, Waterford, X91 WR86 Ireland

4Department of Accountancy and Economics, School of Business, Waterford Institute of Technology, Waterford, X91 TX03 Ireland

CORRESPONDING AUTHOR: N. JALODIA (e-mail: nikita.jalodia@waltoninstitute.ie)

This work was supported by the Science Foundation Ireland (SFI) through the European Regional Development Fund under Grant 13/RC/2077.

ABSTRACT Recent advancements in the domain of Network Function Virtualization (NFV), and rollout
of next-generation networks have necessitated the requirement for the upkeep of latency-critical application
architectures in future networks and communications. While Cloud service providers recognize the evolv-
ing mission-critical requirements in latency sensitive verticals such as autonomous driving, multimedia,
gaming, telecommunications, and virtual reality, there is a wide gap to bridge the Quality of Service (QoS)
constraints for the end-user experience. Most latency-critical services are over-provisioned on all fronts
to offer reliability, which is inefficient towards scalability in the long run. To address this, we propose
a strategy to model frequent violations on the application level as a multi-output target to enable more
complex decision-making in the management of virtualised communication networks. In this work, we
utilize data from a real-world deployment to configure and draft a realistic set of Service Level Objectives
(SLOs) for a voice based NFV application, and develop a deep neural network based multi-label clas-
sification methodology to identify and predict multiple categories of SLO breaches associated with an
application state. With this, we aim to gain granular SLA and SLO violation insights, enabling us to study
and mitigate their impact and inform precision in drafting proactive scaling policies. We further compare
the performance against a set of multi-label compatible machine learning classifiers, and address class
imbalance in a multi-label setup. We perform a comprehensive evaluation to assess the performance on
example-based, label-based and ranking-based measures, and demonstrate the suitability of deep learning
in such a use-case.

INDEX TERMS Network function virtualization, machine learning, deep learning, neural networks, clas-
sification algorithms, multi-label classification, prediction methods, quality of service, service level
agreements, quality of experience, supervised learning, artificial neural networks, multi-layer neural
network, naive Bayes methods, random forests, decision trees, boosting, support vector machines,
imbalanced classification, probabilistic classification.

I. INTRODUCTION

THE NEXT generation of networks hold a vision to
expand communications from the scale of billions in

the world’s population to a virtually limitless scale of inter-
connectivity between humans, machines, and things. As a
result, we are facing a paradigm of exponential growth in

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 2, 2021 2469

HTTPS://ORCID.ORG/0000-0001-9498-807X
HTTPS://ORCID.ORG/0000-0002-2261-5722
HTTPS://ORCID.ORG/0000-0003-0087-4560

JALODIA et al.: DNN-BASED MULTI-LABEL CLASSIFIER FOR SLA VIOLATION PREDICTION

enhanced services and applications, network traffic, and con-
sumers. The global mobile traffic is expected to reach 5016
Exabytes (EB) per month in 2030 [1], which is an explo-
sive surge as compared to 51 EB per month in 2020 [2].
Both supporting and driving this demand, the next genera-
tion of communication networks continue to be driven by a
fundamental restructuring in the way that the networks and
services are deployed and delivered. Network programma-
bility and softwarisation are the key drivers of this change,
and are delivered via the concepts of Software Defined
Networking (SDN) and Network Function Virtualization
(NFV) [3]. These continue to play a pivotal role in the
vision of 6G, forming the backbone of flexible and intel-
ligent networks [4]. SDN abstracts the underlying network
while NFV introduces softwarisation and decouples network
functions from the underlying hardware, overall creating a
hardware agnostic virtualized environment for network appli-
cations [5]. This shift has opened the market to a wider
movement towards virtualised applications and services in
key verticals such as automatic vehicles, smart grid, virtual
reality (VR), Internet of Things (IoT), industry 4.0, etc., and
also includes verticals that previously relied solely on spe-
cialised hardware. A key example of such a sector is the
telecommunications industry, which is driven by one of the
oldest and most complex operational and business support
systems to date [4].
Traditionally, with its specialised infrastructure, the tele-

coms realm has evolved towards a highly reliant service,
with carrier-grade offerings guaranteeing a five-nines stan-
dard of availability [6]. However, with the emergence of such
agile and flexible paradigms as enabled with the coupling of
SDN and NFV, we are seeing an emergence of a new era of
applications driven by the vision of low latency and high reli-
ability [4]. 5G’s usage scenario of ultra-reliable low-latency
communications (URLLC) is further expected to extend in
scope to a high-throughput ubiquitous global connectivity
at scale, driving all major verticals towards a change [4].
As a result of such a shift, the Cloud infrastructure is no
longer host to just Web based application services, but is also
being extended for the next-generation of requirements that
fuel these futuristic application verticals [3]. A key aspect
to driving such a change is in how the Cloud reacts to such
a latency-critical demand, and in being precisely proactive
over time [7].
While static threshold based scaling is still the most dom-

inant scaling policy in use for most systems on the Internet,
some Cloud service providers also offer dynamic scaling
mechanisms [8]. These have more flexibility on the choice of
threshold based on a pre-defined range, and real time network
traffic. While such policies offer better adaptation to meet-
ing desired QoS levels, they still do not match the elevated
service requirements facing the ebb and flow in network traf-
fic and demand. Acknowledging these shortcomings, some
Cloud service providers now also provide an upgrade in the
form of predictive scaling policies [9], [10], [11]. These are
based towards analysing the traffic and key high-level system

usage metrics over time, and increasing the system resources
during regularly anticipated patterns of high incoming traffic.
While service operators come up with new scaling poli-

cies to match the demand facing the current generation of
Cloud based application services, these are still a long way
to go towards supporting latency-critical applications with
high availability values. Since the requirements of real-time
applications such as voice and multimedia communication
differ from the traditional Web-based applications that the
Cloud supports, so do the Service Level Agreements (SLAs).
A momentary increase in latency and jitter in a voice appli-
cation has an immediate influence on the end-user Quality of
Experience (QoE), while not quite so in conventional Web
applications [12]. A key challenge highlighted in the con-
ceptualization of 6G is to impose stringent end-to-end QoS
requirements within heterogeneous services [4]. To this end,
5G deployments include the proposition of network slicing,
clustering applications with similar demands in an appro-
priate Cloud environment [5]. This ensures the placement
of latency-critical URLLC applications in a high availability
slice, where resources are suitably provisioned to ensure reli-
ability. However, 6G expects an improvement in reliability
by atleast two orders of magnitude, i.e., from a five-nines
standard to a seven-nines standard [4].
Further, efficiency and reliability are competing elements

within an SLA, marking a trade-off between system usage
and requirements [13]. While network operators and Cloud
operators may resort to over-provisioning to match the high
requirements for these latency-critical applications in a high
availability network slice, such practices are inefficient in
the long run [7]. 6G expects a 10 to 100 times improvement
on the energy efficiency as compared to 5G [4], which is
a challenge in itself. Over time, we need to be mindful of
the significant carbon footprint of Cloud data-centres too, so
there is more to it than just the end user experience here [3].
In this work, we take the example of a latency-critical

NFV application, and draft realistic Service Level Objectives
(SLOs) in a way that provide more granular insights into
the violations occurring in operational settings. Such insights
would help towards improving the formulation of resource
provisioning policies in a way that is targeted towards
the precise objectives that match service requirements of
the target application use-case, rather than a blanket over-
provisioning of all categories of system resources. Contrary
to simplistic classification methodologies that predict a sin-
gle label that categorises whether the SLA is violated at the
application level, we formulate our work as a multi-label
classification problem. This methodology involves training
models to associate a sample of input data features with a
set of labels from a bigger set of disjoint labels [14], [15],
thus helping us to model individual SLO violations asso-
ciated to the application’s state that contribute to an SLA
violation overall. We further provide a detailed analysis on
how to manage the challenges that such a system presents,
including class imbalance with minority classes. We test the
performance against a cohort of machine learning solutions,

2470 VOLUME 2, 2021

FIGURE 1. Overview of system architecture, objectives, and scope.

and present a methodical analysis towards the development
and effective use of a deep learning classifier for such
objectives.
To the best of our knowledge, this is the first approach

in the area that applies multi-label classification towards
such objectives, and formulates a methodology that combines
realistic SLO definitions to predict precise QoS violations
for such a latency-sensitive use-case. The key contributions
are summarised as follows:

• We work with a real-world deployment of a latency
critical NFV application with two months’ worth of
raw network telemetry data sampled every 30 seconds,
and use that as the basis for all our policy formation
and learning models. An overview of the system and
scope is provided in Figure 1.

• We break down the SLA into a set of realistic SLO
definitions for such a latency critical use-case in an
operational setting. While SLA and SLO definitions
are application specific, we form these measures to be
as realistic as possible to capture the dynamics of a
real-world deployment.

• As opposed to a single-label binary or multi-class classi-
fication objective, we associate and model a multi-label
classifier to effectively predict each SLO violation that
an application state is associated with. Over time, this
helps us to study and mitigate frequent application and
use-case specific bottlenecks, and also in predicting a
more granular state of the application’s behaviour as it
faces a drop in QoS, and a violation in SLA.

• We test the performance of the developed model against
a wide set of compatible machine learning methodolo-
gies, and provide a justified reasoning to the deployment
of a deep neural network model in such a setup.

• We methodically address the challenges that come up
with training such a model at scale, i.e., the associated
problems of varying degrees of class imbalance in a
multi-label setup.

• We evaluate the performance on a wide range of metrics
that include example based, label based and ranking
based measures, and provide an all-round evaluation of
each learning model benchmarked.

The rest of the paper has been structured as follows:
Section II describes the background and related work,
Section III describes the Clearwater NFV application, and
defines the SLA and SLOs drafted for the purpose of
violation prediction. Section IV provides an overview of
the unique characteristics of a multi-label classification
methodology, the mathematical formulation of the problem
statement, the machine learning algorithms applied, and
the definitions of the various metrics used for an all-
round evaluation. Section V addresses the prevailing issue
of class imbalance in the multi-label context, and presents
the methodologies we use to overcome this issue with a
deep neural network model. Thereafter, Section VI expands
on the details of the experimental setup, Section VII
evaluates the results obtained through the various mod-
els, and Section VIII presents the conclusion and future
work.

VOLUME 2, 2021 2471

JALODIA et al.: DNN-BASED MULTI-LABEL CLASSIFIER FOR SLA VIOLATION PREDICTION

II. RELATED WORK
A transition towards complete softwarization of networks
brings in the requirement to adopt more complex mod-
els to guarantee QoS and reliability [16]. This is because
of an impending evolution in not just the way networks
are composed and managed, but also renewed applica-
tion architectures, corresponding QoS and SLA management
techniques, and optimization and automation to cope with
the added complexity [17].
Authors in [16], [18] study the impact of virtualization

in fault management, and the added challenges that the
distinct yet complementary paradigms of SDN and NFV
bring in such a setup. Authors in [19] highlight the shift
from traditionally tracking the QoS of a single service to
that of service compositions in networks, and use a genetic
algorithm to optimize the application reliability in the 5G
network case. Further, authors in [20] quantitatively model
and assess availability from a core network perspective for
an end-to-end NFV enabled service. Reliability block dia-
grams and stochastic reward nets based approaches have
also been leveraged for providing an optimal configuration
of an NFV based SFC for telecommunications standards
availability modeling [6], [21]. An in-depth survey [22]
on the autonomic provisioning and QoS management for
SDN-based networks highlights the need for more in-depth
machine learning models that target and improve policy-
based QoS management, and remark that assuring end-user
QoE continues to be an open research area.
Much of the work done so far addresses QoS with

characterizing and anticipating traffic patterns, and a combi-
nation of reactive and proactive scaling policies. Significant
progress has been made in the context of forecast-
ing and clustering anticipated network traffic [23], [24],
using machine learning to classify network traffic in
NFV [25], [26], and related resource allocation [7], [13].
However, post appropriate provisioning following antici-

pated and identified traffic patterns, there is not a lot of work
that directly addresses the remaining SLA bottlenecks from
an application perspective. Automated SLA management
for use-cases deployed on softwarized networks has been
highlighted to be a critical requirement for next generation
networks [12], [27]. A theoretical SLA management frame-
work that maps high-level requirements to low-level resource
attributes is presented in [28], where the authors highlight
the additional challenges that 5G and future architectures
present. Authors in [29], [30] present a cognitive manage-
ment architecture for these softwarized networks, and discuss
the importance of machine learning techniques in such com-
plete end-to-end management control loops. Existing work
on SLA and SLO violation prediction approaches it as
a single label output classification [31]—either identifying
an overall SLA violation with a binary classification, or
identifying a defined SLO breach with multi-class classi-
fication [32]. A proof of concept for SLA enforcement in
programmable networks in a Cloud-based environment is
presented in [33], where the authors work towards identifying

an SLO breach with a multi-class decision tree classifica-
tion methodology. However, in a realistic scenario, there is
a pressing need for the incorporation of multi-output models
as we move towards more complex decision-making [15]. As
future networks as well as deployed services gain complexity,
it is impractical to define and consider an SLO as a mutu-
ally exclusive single-output target. There is no existing work
in the area of SLA management that leverages advanced
classification methodologies for a multi-output prediction tar-
get, identifying and predicting multiple categories of SLO
breaches as applicable to study their impact.
To fill this gap, we propose the use of multi-label

classification methodology for a multi-output SLO vio-
lation prediction in NFV environments. Multi-label clas-
sification is a branch of predictive classification models
that involves training models to associate a sample of
input data features with more than one class labels [14].
While the primary motivation for such models draws from
the domain of text categorization, image and multimedia
object interpretation, music information retrieval, movie
genre classification, automated video annotation, etc., other
fields such as biology and functional genomics have also
leveraged multi-label classification models to address chal-
lenging research problems [34]. While initial approaches
focused on machine learning based methods to han-
dle multi-label problems [35], [36], [37], [38], there has
been a recent rise in the application of several neural
network architectures to address the complexity and of var-
ied use-cases [15], [39], [40], [41], [42], [43]. Associating
structured data with multiple semantic information at once
holds tremendous potential in the future as we advance
towards solving more complex decision making prob-
lems [15].
To the best of our knowledge, this is the first approach

in the area that applies a multi-label classification method-
ology towards a more granular SLA violation prediction for
a latency-sensitive VNF in a virtualised network environ-
ment, and works with extensive real world data to compare
the performance of both machine learning and deep learning
methodologies towards such an objective.

III. DEFINING SERVICE LEVEL AGREEMENTS
SLAs are closely tied to product and business definitions,
and imply a formally explicit consequence upon breach of
contract when the agreed terms are violated. While an SLA
is a qualitative measure that binds the service provider and
facilitator into a formally agreed contract ensuring QoS for
the end user, this is realised on a set of low level metrics
delivered through SLOs and Service Level Indicators (SLIs).
The SLIs can be defined as quantitative measures that build
upon raw system metrics, which further feed into the SLOs
as a quantitatively definitive target range or threshold towards
the deliverance of an SLA. The breach of an SLA implies
an explicit consequence, often financial; while the SLOs
and SLIs are typically measurable indicators that define the
policy of tolerance [44].

2472 VOLUME 2, 2021

TABLE 1. Raw metrics collected through Monasca during Clearwater vIMS application monitoring. This data is available for each of the VNFCs, and is sampled every 30 seconds.

While the SLA is a formal contract between a service
provider and a consumer, it is often a high-level definition
of the service provided. From a service provider’s perspec-
tive, the SLIs and SLOs are the means to that end, and
imperatively define the measurable service characteristics
that quantifiably deliver that quality. Therefore, the choice
of SLOs are critical towards delivering the QoS promised to
the end user, and vary depending on the type of application
and use-case scenario.
While the end user QoE may be defined by more than just

the server level QoS guarantees, the latter forms the core of
the service offered, and is an important characteristic when
profiling the service offering.

A. PROJECT CLEARWATER CLOUD IMS
The IP Multimedia Subsystem (IMS) is a reference architec-
ture first defined by the 3GPP for delivering fixed-line and
mobile communications applications built on the Internet
Protocol (IP) [45]. Project Clearwater1 is an open-source
implementation of IMS in the Cloud, following IMS archi-
tectural principles and supporting all of the key standardized
interfaces expected of an IMS core network. The Web
services-oriented design inherent to Clearwater makes it
ideal for instantiation within NFV environments as a vir-
tualized VNF. The new Service-Based Architecture adopted
by the 5G standards is very closely related to the inher-
ent Clearwater model, and it has been widely used in
research as a standard testbed setup for NFV related
work [6], [7], [13], [16], [33].
In our work, we use Clearwater as the use-case for a

Cloud based virtualised NFV application. It consists of 6
main components, namely Bono, Ellis, Homer, Homestead,
Ralf, and Sprout. A high level view of these VNFCs and

1. https://www.projectclearwater.org

FIGURE 2. Clearwater vIMS architecture, depicting the various VNFCs and their
high-level functionalities.

their functionalities replicating a standard IMS architecture
is as shown in Figure 2.

B. DEFINING SLOS
We use raw network telemetry data and system metrics
obtained via a standard realization of the Clearwater testbed
setup to define the SLIs and SLOs governing an informal
SLA. These metrics were collected on a 30 second sam-
pling frequency through Monasca,2 an open-source Python
based monitoring service running on each of the Clearwater
VNFCs. The list of these collected metrics is presented in
Table 1, while further details regarding the data is elaborated
upon in Section VI.
These collected metrics are utilised as the foundations for

the SLIs, which when matched with a target threshold or

2. www.monasca.io

VOLUME 2, 2021 2473

JALODIA et al.: DNN-BASED MULTI-LABEL CLASSIFIER FOR SLA VIOLATION PREDICTION

range form SLOs. While the SLOs are largely dependent on
the kind of application use-case, and the underlying SLA,
we recognize them on the basis of the four key areas that
are critical towards the deliverance of required performance.
Authors in [33] recognize the lack of realistic SLOs in
consideration in research, and recommend that an SLO be
composed of a combination of atleast two metrics.
To set a fair ground for our analysis, we define the SLOs

with this definition in mind, and form these rules for the
four key areas that impact the performance of an underlying
system. This is to highlight the varying reason behind the
loss of QoS at any time within the use-case application, so
that the scaling policies can be customised at a more granular
level towards better efficiency.
Formally, the SLOs are defined in terms of SLIs as a

target value:

SLI ≤ target threshold (1)

or as a range of values for service level:

lowerbound ≤ SLI ≤ upperbound (2)

At any time, the state of an SLO can be represented as
either violated or compliant. We define four SLOs for the
Clearwater VNF, targeting the load, computation, disk, and
input/output (IO) characteristics respectively. Let L denote
the set of SLOs thus defined:

L = [SLO1, SLO2, SLO3, SLO4] (3)

This equivalently denotes:

L = [
SLOload, SLOcomputation, SLOdisk, SLOio

]
(4)

The metrics as defined in Table 1 are captured at the
granularity of the individual VNFCs as shown in Figure 2,
and an SLO violation at any of the individual VNFCs triggers
an SLO violation state for the Clearwater application service.
Therefore, we ultimately define the SLOs at the application
level, i.e., for the entire VNF as an application service. Thus,
each data instance is associated with 4 SLOs as defined by
L above, where SLOj, j ∈ [1, 2, 3, 4] assumes one of two
states:

SLOj =
{

1, if Violated (atanyVNFC)

0, otherwise
(5)

The SLOs are formulated after studying the scaling
policies, dynamic monitoring offerings, and alarm def-
initions adopted and used in practice by major cloud
service providers such as Amazon Web Services [46], [47],
Microsoft Azure [48], Google Cloud [49], and Huawei
Cloud [50]. We categorise the SLOs into four broad char-
acteristics, and enhance these for a fine-grained monitoring
of a latency-sensitive application that needs high availabil-
ity and reliability. The formal definitions of the SLOs are
described below, with the thresholds largely defined based
on the application’s usage characteristics, reaction to stress
tests, and use-case requirements. The metrics referenced in
the rule definitions are as captured and described in Table 1.

1) SLO1: LOAD

Load is a measure of the computational work ongoing, and
captures the running processes—either using the CPU, or
in a wait state. The values are normalized by number of
CPU cores. This SLO captures the application state based
on the average load on an instance over a period of the last
1 minute, 5 minutes, and 15 minutes. A short term surge in
load may be due to regular operational usage and thus may
not be a direct cause of concern, but higher load averages
over longer intervals is a direct sign of overload. The data
instances that meet the following criterion are assigned a
violation state for SLO1.

(load.avg1min ≥ γ1 and load.avg5min ≥ γ2)

or

(load.avg15min ≥ γ3) (6)

γ1, γ2, and γ3 are defined as tunable threshold parameters,
and were given the respective value of 0.7, 0.5, and 0.8 in
the experimentation.

2) SLO2: COMPUTATION

This SLO is defined as a combination of certain CPU and
RAM characteristics. While short bursts of IO can spike
system kernel usage and is regular, this combined with the
lack of adequate idle time for the CPU over time when no
IO is in progress is a sign of overload or malfunction. The
SLO is also considered violated if the amount of available
RAM falls below a threshold, which is a warning sign of
inadequate system resource allocation.

(mem.usableperc ≤ γ4)

or

(cpu.systemperc ≥ γ5 and cpu.idleperc ≤ γ6) (7)

γ4, γ5, and γ6 are defined as tunable threshold parameters,
and were given the respective value of 40, 10, and 60 in the
experimentation.

3) SLO3: DISK

This SLO captures prolonged periods of inefficient IO wait
times when the CPU is otherwise idle, which indicates poten-
tial bottlenecks in the read/write operations accrued by the
hard disk.

(
cpu.waitperc ≥ γ7

)

or(
cpu.waitperc
cpu.systemperc

≥ γ8

)
(8)

γ7, and γ8 are defined as tunable threshold parameters,
and were given the respective value of 50, and 2 in the
experimentation.

2474 VOLUME 2, 2021

4) SLO4: IO

This SLO captures the latency when interacting with IO
devices, when there is a sudden and prolonged surge in
incoming network traffic as compared to the moving aver-
age. A moving average (or rolling mean) is defined as the
unweighted mean of the previous M data instances sam-
pled, where the selection of M (sliding window) depends on
the degree of smoothing desired since increasing the value
of M improves the smoothing at the expense of accuracy.
Mathematically, rolling mean with a window of size M at
a time period t is denoted as follows, where at, at−1, . . . ,

represent the value at instance t, t−1, . . . , respectively, and
so on.

RollingMean
M
t = at + at−1 + · · · + aM−(t−1)

M
(9)

We choose M to be 2880 (γ9) for the network traffic
characteristics, which, considering that the sampling hap-
pens every 30 seconds, corresponds to 24 hours. For the
IO read/write characteristics, we use a moving average over
the last 3 sampling instances, so M = 3 (γ10), which corre-
sponds to the last 1.5 minutes. Thus, this SLO considers both
read/write requests per second as compared to the last 90 sec-
onds, as well as the amount of time spent reading/writing
with an IO device as compared to the last 90 seconds.

(
net.inbytes_sec > γ11 net.in

γ9
bytes_sec

and

net.outbytes_sec > net.outγ9
bytes_sec

)

and(
io.readreq_sec > γ11 io.read

γ10
req_sec

or

io.writereq_sec > γ11 io.write
γ10
req_sec

)

and(
io.readtime_sec > io.read

γ10
time_sec

or

io.writetime_sec > io.write
γ10
time_sec

)
(10)

γ11 is defined as a tunable parameter, and was given the
value of 1.5 in the experimentation.

IV. MULTI-LABEL CLASSIFICATION
Multi-label classification is defined as a classification task
where each data sample instance can be assigned n labels
from a set of |L| possible label classes as defined in (3)
and (4), where n ∈ [0,L], and |L| > 1. Each of the class
labels in L is binary, i.e., either 0 or 1, where 0 denotes a
negative occurrence and 1 denotes the positive occurrence.
This implies that L is a set of binary classes that are not

mutually exclusive, and each sample of input data can be
assigned multiple such binary classes as applicable.
In our problem definition, L is the set of all SLO viola-

tion classes, where each class can take a value of 0 or 1,
signifying compliance and violation states respectively.

Semantically, a multi-label target can be thought of as
a set of labels for each sample. Multi-label classification
differs from multi-class classification in that the latter applies
mutually exclusive labels to a data sample, which is not the
case for multi-label problems. The challenge with multi-
label classification is the requirement for such classifiers to
treat the multiple classes simultaneously, accounting for the
correlated behaviour among them.

A. MATHEMATICAL FORMULATION
Formally, let D be a multi-label dataset where X = R

d is a d-
dimensional input instance space of numerical features, and
L = {λ1, λ2, . . . , λq} a finite output label space of |L| = q
discrete class labels (with values 0 or 1), and q > 1.

The task of multi-label learning is to learn a function
f : X −→ 2L from the multi-label training set S with u
examples, S = {(xi,Yi) | 1 ≤ i ≤ u}. To compare, multi-
class classification can be seen as a special case of multi-
label classification where f : X −→ L, while in binary
classification f : X −→ {0, 1}.

For each multi-label example (xi,Yi), xi ∈ X is a d-
dimensional feature vector (xi1, xi2, . . . , xid)�, and Yi ⊆ L
is the set of labels associated with xi. Label associations
can also be represented as a q dimensional binary vector
yi = (yi1, yi2, . . . , yiq)� = {0, 1}q, where each element is
1 if the label is relevant, and 0 otherwise. By contrast, in
single-label (binary or multi-class) learning, |Y| = 1.

B. MULTI-LABEL LEARNING METHODS
Approaches to solve a multi-label classification problem
typically belong to two main categories—(a) problem trans-
formation, and (b) algorithm adaptation [14].

1) PROBLEM TRANSFORMATION METHODS

Problem transformation methods aim to transform and
decompose the multi-label learning problem into one or
many single-label classification tasks, followed by a re-
transformation of the outputs into a multi-label representa-
tion. The key idea of problem transformation methods is to
fit the data to the well-represented set of existing algorithms.
This methodology can be further grouped into three use-

case specific categories based on the kind of transformation
required—binary relevance, label ranking, and multi-class
classification.

2) ALGORITHM ADAPTATION METHODS

Algorithm adaptation methods, on the other hand, aim to
directly tackle the multi-label learning task by adapting
or extending the existing classification algorithms to work
with multi-label data directly. Unlike problem transforma-
tion methods, the key idea of algorithm adaptation is thus
to fit or extend an algorithm to work with a multi-label data
representation.

VOLUME 2, 2021 2475

JALODIA et al.: DNN-BASED MULTI-LABEL CLASSIFIER FOR SLA VIOLATION PREDICTION

C. MACHINE LEARNING METHODOLOGIES
Since multi-label classification can be transformed to a
binary classification task with the label transformation
method as described above, we use two supported meth-
ods to transform the multi-label problem to a single-label
problem—Binary Relevance (BR), and Classifier Chains
(CC). These enable us to compare the performance of
some compatible single-label binary classification algorithms
when adapted to our multi-label use-case of predicting SLO
violation categories.

1) BINARY RELEVANCE (BR)

Given L = {λj | j ∈ [1, q]} as a finite output label space
of q discrete class labels as described above, the Binary
Relevance method involves treating the jth class indepen-
dently, i.e., fitting one binary single-label classifier B for
each class label λj. This is akin to a One-vs-Rest strategy
with binary classes, where q binary classifiers each treat one
of the q label classes independently. In the rest of the paper,
Binary Relevance and One-vs-Rest is used interchangeably,
and One-vs-Rest implies a binary One-vs-Rest strategy.
For a binary learning algorithm B embedded in a problem

transformation methodology, the worst-case bound training
complexity is O(q.FB(u, d)), and the testing complexity is
O(q.F ′

B(d)), where FB denotes the training complexity of
the binary classification algorithm B embedded in a problem
transformation method, and F ′

B denotes its corresponding
testing complexity.
We use logistic regression as a base classifier within the

BR methodology, and evaluate its performance against other
methods.
Logistic Regression is a linear classification model that

uses the logistic (sigmoid) function to take in the input log-
odds and output the probability of outcomes for the binary
dependent variable. This is interpreted as a binary classifica-
tion model by establishing a cutoff threshold on the output
probabilities to classify the outcome as belonging to one of
the two classes.

2) CLASSIFIER CHAIN (CC)

Given L = {λj | j ∈ [1, q]} as a finite output label space
of q discrete class labels as described above, the Classifier
Chain method involves linking q binary classifiers ordered
randomly along a chain, where the jth classifier tackles the
binary relevance problem of label λj. However, the feature-
space of the jth classifier in CC is extended with the binary
label associations of all the previous classifiers linked before
it in the chain, thus also exploiting label correlations to an
extent.
Classifier chains have a worst-case bound training com-

plexity of O(q.FB(u, d + q)), and a testing complexity of
O(q.F ′

B(d + q)). To evaluate the CC methodology, we use
the following machine learning algorithms as base binary
classifiers—Logistic Regression, Naive Bayes, AdaBoost,
and Support Vector Machine (SVM).

Naive Bayes is a supervised learning probabilistic clas-
sifier that leverages Bayes’ theorem with an assumption
of conditional independence between each pair of features.
Owing to the binary feature space, we use the Bernoulli
variant for Naive Bayes as a base classifier.
AdaBoost, or Adaptive Boosting, is an ensemble learning

classification technique that builds multiple weak learners
on the data and adjusts their weights to improve upon mis-
classifications as they occur, overall resulting in a boosted
classifier.
Support Vector Machine (SVM) is a supervised learn-

ing methodology that supports both linear and non-linear
classification through kernel functions. An SVM classifier
is traditionally non-probabilistic, and we deploy one with a
Radial Basis Function (RBF) kernel for a non-linear decision
function.

3) MULTI-LABEL K-NEAREST NEIGHBORS

Multi-label k-nearest neighbors (ML-kNN) extends the
k-nearest neighbors (kNN) algorithm, which is an instance
based lazy learning algorithm [34]. It works by identify-
ing the k-nearest neighbors for an example instance in the
training set, and utilizes the maximum a posteriori (MAP)
rule to make a prediction leveraging the labeling information
gained through the neighbors. While ML-kNN reasons the
relevance of each label separately [37], it inherits the merits
of both lazy learning and Bayesian reasoning. ML-kNN has
a worst-case bound training complexity of O(u2d + quk)),
and a testing complexity of O(ud + qk)).

4) DECISION TREES

Decision Trees are a non-parametric supervised learning
methodology that have been adapted for a multi-label setup
by adapting the C4.5 algorithm [36]. The algorithm builds a
tree-based model with conditional control statements forming
decision rules for classification, and assumes label inde-
pendence in a multi-label setup [37]. Decision tree models
belong to the class of white-box family of algorithms, and
the depth of the decision tree is analogous to the complexity
of the decision rules. Decision tree based multi-label mod-
els have a worst-case bound training complexity of O(udq)),
and a testing complexity of O(uq)).

5) RANDOM FOREST

A random forest is a decision tree based ensemble learning
strategy that works as a meta-estimator and fits a number
of decision tree classifiers on various sub-samples of the
dataset, leverages this information to control over-fitting.
Same as with the adapted decision trees above, random
forests belong to the algorithm adaptation method family
for handling multi-label classification problems. Likewise,
multi-label random forest models have a worst-case bound
training complexity of O(udq)), and a testing complexity of
O(uq)).

2476 VOLUME 2, 2021

TABLE 2. Performance of the various machine learning models as compared to the base deep neural network model, evaluated on all presented multi-label classification metrics.

D. DEEP NEURAL NETWORK
Deep learning is a powerful subset of the machine learning
domain, that uses over three layers of interconnected neurons
(nodes) to create an artificial neural network (ANN) model.
Each neuron within a layer represents a mathematical func-
tion comprising of inputs, weights, bias, and threshold; and
uses an activation function to transform the outputs to a
non-linear space to learn and perform more complex tasks.
Thus, subject to the right choice of architecture and param-
eters for the task at hand, ANNs can be trained to address
a wide variety of complex tasks, including that of directly
addressing multi-label classification.
To this end, we build a deep multi-layer perceptron (MLP)

model, i.e., a fully connected deep feed-forward neural
network to natively address the multi-label classification
problem at hand and compare its performance against other
machine learning methodologies. Specific to the task at hand,
we appropriately design the model such that the output layer
consists of q neurons, each representing a label λj in L,
where L = {λj | j ∈ [1, q]}. We use sigmoid as the activa-
tion function in the output layer, so the jth neuron in that
layer outputs the probabilities in the range [0, 1] of the data
instance belonging to λj. Similar as with logistic regression,
this is interpretable as a binary classification by setting a
cutoff probability threshold value (set to 0.5) for each class
label.

Sigmoid(x) = 1

1 + e−x
(11)

The computational complexity for neural network models
can be written as O(ru · O(n3))), where r is the number
of iterations, and O(n3) is the complexity of the underlying

matrix multiplications. The worst-case bound complexity of
neural networks is thus O(n5)). However, this is a very wide
overestimate, considering that in practice, modern day neu-
ral networks are trained efficiently using stochastic gradient
descent, a variety of optimizations and efficient activation
functions, over-specification, and regularization [51]. To this
end, determining the actual complexity of modern neural
networks is an active research area. The choice of archi-
tecture and learning model is further elaborated upon in
Section VI.
The evaluation results for the performance of each of these

models for the multi-label classification task at hand are as
presented in Table 2.

E. METRICS
Let T = {(xi,Yi) | 1 ≤ i ≤ p} be the test set with p instances,
and f (·) be the learned multi-label classifier. For any unseen
instance x ∈ X, the multi-label classifier f (·) predicts f (x) ⊆
L as the set of proper labels for x. Correspondingly, let
Yi ⊆ L and Zi ⊆ L denote the sets of ground-truth and
predicted labels for an input instance from the p instances
in the test set T .

In traditional single-label classification problems such as
the ones belonging to binary classification or multi-class
classification, accuracy has been the most common eval-
uation metric, usually complemented by precision, recall,
F-measure, and area under the curve for the receiver oper-
ating characteristic (AUC-ROC) [35]. However, multi-label
classification requires a wider and contrasting range of
metrics for an overall comparison of performance, given
the added freedom, flexibility and complexity in such a

VOLUME 2, 2021 2477

JALODIA et al.: DNN-BASED MULTI-LABEL CLASSIFIER FOR SLA VIOLATION PREDICTION

setup [14], [36], [52]. These can be grouped as example-
based, label-based, and rankings-based [14], [34]. The former
two belong to the bipartitions-based evaluation category,
which is based on the idea of comparing the predicted
relevant labels with the corresponding ground truth labels.
The ranking based metrics, on the other hand, offer another
perspective to measure the generalization performance of
multi-label problems, wherein the most relevant label for an
example instance is assigned a value of 1, and so on, with
the least relevant label assigned a rank of q.

1) EXAMPLE-BASED EVALUATION

Example-based evaluation metrics are calculated based on
the average differences of the predicted and actual sets of
labels over all examples of the test set T .
Exact Match Ratio, also known as Subset Accuracy,

computes the fraction of examples for which the predicted
set of labels is an exact match with the ground-truth labels.
This is defined to be the multi-label equivalent of the tradi-
tional accuracy metric; and given that it does not distinguish
between partially correct and completely incorrect, tends to
be an overly strict measure, especially for a larger label
space q. It is formally defined as under, where �·� denotes
an indicator function that returns 1 if �true�, and 0 if �false�.
The best performance of this metric is 1.

Exact Match Ratio = 1

p

p∑

i=1

�Yi = Zi� (12)

Accuracy is defined by micro-averaging the Jaccard
Similarity Coefficients across all examples, and is defined as:

Accuracy = 1

p

p∑

i=1

|Yi ∩ Zi|
|Yi ∪ Zi| (13)

where | · | denotes the cardinality, and the Jaccard Similarity
Coefficient for the ith example instance is defined as:

Jaccard Score = |Yi ∩ Zi|
|Yi ∪ Zi| (14)

Precision is defined as the proportion of correctly pre-
dicted labels to the total number of predicted labels, averaged
over all examples.

Precision = 1

p

p∑

i=1

|Yi ∩ Zi|
|Zi| (15)

Recall is defined as the proportion of correctly predicted
labels to the total number of actual labels, averaged over all
examples.

Recall = 1

p

p∑

i=1

|Yi ∩ Zi|
|Yi| (16)

Fβ Score is defined as a weighted harmonic mean of
precision and recall, whereby β controls the weight of recall
in the combined scoring. The case when β = 1 is referred

to as the F1 score (or balanced F1 score), which implies that
precision and recall are weighted equally in the calculation.

Fβ Score =
(

1 + β2
) Precision× Recall

(β2. Precision) + Recall
(17)

F1 Score = 2
|Yi ∩ Zi|

|Yi| + |Zi| (18)

Subset Zero − One Loss is defined as the fraction of
imperfectly classified examples, with the best performance
at 0.

SubsetZeroOneLoss = 1 − ExactMatchRatio (19)

Hamming Loss is defined as the fraction of labels pre-
dicted incorrectly, and accounts for all misclassifications
(prediction errors and omission errors) over total number
of label classes over all examples. It is more forgiving in
that it penalizes only the individual labels. It is formally
defined as under, where � stands for the symmetric differ-
ence between the two sets, the equivalent of XOR in Boolean
logic. The best performance of this metric is 0.

Hamming Loss = 1

p

p∑

i=1

1

q
|Yi�Zi| (20)

Log Loss, also called the cross-entropy loss, is used to
evaluate the probability outputs of a classifier instead of its
discrete predictions. As applicable in the multi-label context,
the binary variant is defined as under, where P(·) is defined
as the corresponding probability estimate, a threshold value
of which leads to Zi.

Log Loss = −1

p

p∑

i=1

[
Yi · log(P(Yi))

+(1 − Yi) · log(1 − P(Yi))
]
. (21)

2) LABEL-BASED EVALUATION

Label-based evaluation metrics are calculated by evaluating
the classifier’s performance on each class label separately,
and then returning the micro or macro averaged value across
all class labels.
For the jth class label λj, TPj,FPj,TNj,FNj denote the

number of True Positive, False Positive, True Negative, and
False Negative test samples from T with respect to λj, where
TPj + FPj + TNj + FNj = p.

TPj = ∣∣{xi | λj ∈ Yi ∧ λj ∈ Zi}
∣∣

FPj = ∣∣{xi | λj /∈ Yi ∧ λj ∈ Zi}
∣∣

TNj = ∣∣{xi | λj /∈ Yi ∧ λj /∈ Zi}
∣∣

FNj = ∣∣{xi | λj ∈ Yi ∧ λj /∈ Zi}
∣∣ (22)

Any known evaluation measure applicable to a binary clas-
sifier can be adapted to a label-based setup. For any binary
evaluation metric B ∈ {Accuracy,Precision,Recall,Fβ, . . .}
calculated on the basis of B(TPj,FPj,TNj,FNj) for a par-
ticular label, the overall label based classification metrics

2478 VOLUME 2, 2021

can be obtained by one of the following two averaging
methodologies:
Macroaveraging, which implies calculating a metric B for

each class in L, and then averaging over all classes. This
can be seen as per-class averaging, and since it gives equal
weights to all classes, it is a good methodology to highlight
the performance of infrequent classes that are nonetheless
important.

Bmacro = 1

q

q∑

j=1

B
(
TPj,FPj,TNj,FNj

)
(23)

Microaveraging, which implies calculating a metric B
globally over all the examples in T together, aggregating
the measure over all classes as a whole. This can be seen
as per-example averaging, and tends to be dominated by the
performance of the most frequently occurring classes within
the example space.

Bmicro = B

⎛

⎝
q∑

j=1

TPj,
q∑

j=1

FPj,
q∑

j=1

TNj,
q∑

j=1

FNj

⎞

⎠ (24)

An example of the binary evaluation metrics B that the
above averaging methodologies can be applied on include:

Accuracy(TPj,FPj,TNj,FNj) = TPj + TNj
TPj + FPj + TNj + FNj

Precision(TPj,FPj,TNj,FNj) = TPj
TPj + FPj

Recall(TPj,FPj,TNj,FNj) = TPj
TPj + FNj

(25)

and so on.

3) RANKING-BASED EVALUATION

Ranking based evaluation metrics compare the predicted
ranking of the labels with the ground-truth ranking. The
rank predicted by a label ranking method for a label λ is
denoted as Ri(λ).
Coverage is defined as an evaluation that calculates an

average for how far down the list of ranked labels does the
classifier need to go in order to cover all the true labels
of an example instance. It is useful in use-cases where it
is utmost important to get all true labels predicted, even if
that means a few extra false positives [35]. Coverage can
be also considered an example-based metric as it is firstly
computed for each example, and then averaged across the
test set T . The smaller the value of coverage, the better the
performance. It is common in implementations to remove
the subtraction by 1 in the following equation, so as to be
able to extend the metric to handle the degenerate case in
which an example instance has no true labels associated with
it [53].

Coverage = 1

p

p∑

i=1

max
λ∈Yi

Ri(λ) − 1 (26)

Average Precision is defined as the average fraction of
labels ranked higher than a particular label λ ∈ Yi, which
actually are in Yi. This can be also considered an example-
based metric as it is firstly computed for each example, and
then averaged across the test set T . The best value for this
evaluation metric is 1, with larger values indicating better
performance.

Average Precision = 1

p

p∑

i=1

1

Yi

∑

λ∈Yi

∣∣{λ′ ∈ Yi | Ri(λ
′) ≤ Ri(λ)}∣∣

Ri(λ)

(27)

Ranking Loss is defined as an evaluation of the average
proportion of label pairs that are incorrectly ordered for the
example instance, i.e., true labels have a lower score than
false labels. Y denotes the complementary set of Y in L,
where the goal is that the labels in Y be ranked higher than
the labels in Y . This can be also considered an example-
based metric as it is firstly computed for each example, and
then averaged across the test set T . The best value of this
metric is 0.

Ranking Loss = 1

p

p∑

i=1

1

|Yi||Yi|
|E|

|E| = {
(λ, λ′) | Ri(λ) > Ri(λ

′), (λ, λ′) ∈ Yi × Yi
}

(28)

Area Under the Curve (AUC) is defined as either the
area under the receiver operating characteristic (AUC-ROC)
as illustrated in Figure 3, or the area under the precision-
recall curve (AUC-PRC). AUC is an intuitive representation
of the probability of a randomly selected positive example
getting a higher ranking than a randomly selected negative
example. The instance-based definition of AUC as described
below follows closely from the Wilcoxon-Man-Whitney
Statistic [54].

AUC = 1

p

p∑

i=1

∣∣{(λ, λ′) ∈ Yi × Yi | Ri(λ
′) ≥ Ri(λ)

}∣∣

|Yi||Yi|
(29)

This is a label-based ranking metric, and can be calculated
as both a macro and micro averaged value based on 23
and 24. Its value ranges from 0 to 1, the higher the better.

AUC -ROCj =
∫ 1

0
TPRj d

(
FPRj

)
(30)

AUC -PRCj =
∫ 1

0
Precisionj d

(
Recallj

)
(31)

Sensitivity, or Recall, or TPRj = TPj
TPj + FNj

Specificity, or TNRj = TNj
TNj + FPj

FPRj = 1 − TNRj = FPj
TNj + FPj

. (32)

V. ADDRESSING CLASS IMBALANCE IN THE
MULTI-LABEL CONTEXT
Typical classification algorithms perform best when the
distribution of data in each of the binary classes is

VOLUME 2, 2021 2479

JALODIA et al.: DNN-BASED MULTI-LABEL CLASSIFIER FOR SLA VIOLATION PREDICTION

FIGURE 3. AUC-ROC plots depicting the learning of the various machine learning classifiers on individual class labels, as well as the micro and macro averaged performance
on the entire set.

FIGURE 4. Overall distribution of the 4 SLO class labels. The training set contains a positive distribution of 5.64%, 10.05%, 92.16%, 0.23% respectively on the four SLO classes.

equally distributed. However, when dealing with a high
volume of data, especially in the multi-label context,
class imbalance is a typical side effect, since not
all the labels may be evenly distributed across data
instances [15].
Figures 4(a) and 4(b) show a graphical representation of

the distribution of the data in each of the SLO classes in
our use-case. Owing to the special properties of a multi-
label setup, imbalance in a multi-label dataset is measured
differently from regular binary or multi-class classification.
For the multi-label dataset D as described earlier, where
D = {(xi,Yi) | 1 ≤ i ≤ |D|}, measures such as cardinality
and label density are often used in literature to characterize
the distribution of labels [14], [37].

Label Cardinality is a measure that defines the average
number of class labels associated with each data instance in
a multi-label dataset D. It is independent of the number of
label classes |L| = q that exist in D.

Cardinality(D) =
|D|∑

i=1

|Yi|
|D| (33)

Label Density is a measure that obtains the ratio of
cardinality with the number of label classes that exist in D.

Label Density(D) = Cardinality(D)

|L| (34)

However, label cardinality and label density do not
accurately convey the notion of imbalance [55]. A more

2480 VOLUME 2, 2021

TABLE 3. Metrics capturing the degree of imbalance in the multi-label dataset, and

the SLO class labels.

concrete measure of the level of imbalance in a multi-label
dataset is through the combined use of three specialised
metrics—Imbalance Ratio per Label, Mean Imbalance Ratio,
and Coefficient of Variation of the Imbalance Ratio per
Label [56]. These are defined as follows.
Imbalance Ratio per Label (IR) is a measure that is defined

as the ratio between the majority class label λ and each class
label λj ∈ L. It therefore takes on the value of 1 for the
most frequently occurring class label, and a higher value
proportionate to the relative degree of imbalance for the
other class labels.

IR =
argmaxλ∈L

(∑|D|
i=1 �λ ∈ Yi�

)

∑|D|, |L|
i=1, j=1 �λj ∈ Yi�

(35)

Mean Imbalance Ratio (Mean IR) is a ratio that presents
the mean level of imbalance in D. For example, a Mean
IR value of 1.5 represents that there exist, on average, 50%
more samples in the majority class label than the minority
class label.

Mean IR = 1

|L|
|L|∑

j=1

IR
(
λj

)
(36)

Coefficient of Variation of the Imbalance Ratio per Label
(CVIR) is an indicator of whether all class labels suffer from
the same level of imbalance, or if the degree of imbalance
differs between them. For example, a CVIR value of 0.2 rep-
resents that there exists 20% variance in the IR values among
individual class labels. A higher value of CVIR implies a
higher degree of variation of imbalance between individual
class labels.

CVIR = 1

Mean IR

√√√√√
|L|∑

j=1

(
IR

(
λj

) −Mean IR
)2

|L| − 1
(37)

Table 3 presents the measure for the degree of imbalance
in our use-case data, using the above measures. To compare,
a multi-label dataset is considered imbalanced if the Mean
IR is higher than 1.5, and CVIR is over 0.2 [56].
There exists class imbalance in all the class labels, but

the distribution is quite extremely skewed in the last class
label, i.e., SLOio. Such a distribution skews the performance
as portrayed by the evaluation metrics, as the classifier may
not learn the representations of the minority classes in the
training set S . For example, in the cases such as our use-
case where the binary distribution of classes between the
class labels is skewed to such varying range of extremes,
a classifier can achieve 94.12% accuracy by just predicting
the majority classes for all the class labels in L in the test
set at all times. This is also the reason why training based

on maximising accuracy and other conventional metrics do
not perform well in an imbalanced multi-label context.
Moreover, since the prediction value for each neuron in

the output layer is a continuous value in [0, 1] which is
translated to a binary classification by setting a threshold, this
creates a trade-off between precision and recall. The AUC-
ROC is a great way to ascertain the quality of a predictor
without the threshold, and is a very useful metric to evaluate
a classifier, especially in the context of an imbalanced class
distribution [54]. However, it is much more appropriate to
train by aiming to maximize the area under the precision
recall curve (AUC-PRC) during training [57], [58].
Post training, while it is helpful to consider the macroaver-

aged metrics to understand the performance in a multi-label
context, they may not independently convey the full picture
on the model and its learning capabilities for the individ-
ual classes. It may so occur that a class is entirely ignored
by the classifier, and its interactions never picked up and
modeled in the learning phase, while the performance con-
tinues to improve on the macro and microaveraged metrics
due to improvements in learning the other classes. As such,
for such extreme distributions, it is acutely important to also
track each of the class labels individually to understand if
the classifier has been modeling them in the learning phase,
and to ascertain if it is performing better than a random
classifier (i.e., a classifier that assigns classes randomly).
We present a visual representation for the performance of
each of the learning classifiers on the individual classes by
way of confusion matrices and AUC (both AUC-ROC and
AUC-PRC). This aspect adds on to the requirement of track-
ing the classifier’s performance on a wider set of metrics
as mentioned earlier, as it helps to better understand the
shortfalls of a learning strategy, and reveals a bigger picture
behind an overly optimistic prediction performance.
As can be understood from Table 2, neural networks have

a direct advantage in multi-label classification algorithms
by concurrently understanding the correlations and work-
ing on learning all label classes simultaneously. However,
neural network architectures do not implicitly support imbal-
anced classification [59]. There are two ways to directly
address class imbalance in classification problems—either
to take steps to make models resilient to class imbalance,
or to apply rebalancing and resampling techniques to reduce
the imbalance in data [60]. Improving multi-label classifi-
cation for real world data is currently an active research
area [61], [62], and so is addressing imbalance in a multi-
label setup [63], [64], [65]. We address imbalance in our
use-case by adapting two conventional methodologies to a
multi-label context, and use them to improve the performance
of the deep feed-forward neural network model for the
minority class labels.

A. ADDING CLASS WEIGHTS
The most common strategy to address class imbalance is to
introduce appropriate weights for the minority samples, so
as to have a weighted learning cost-sensitive strategy [59].

VOLUME 2, 2021 2481

JALODIA et al.: DNN-BASED MULTI-LABEL CLASSIFIER FOR SLA VIOLATION PREDICTION

In single output classification models, this is usually done
by weighing each class inversely to the ratio of minority to
majority labels within it [66].

1) DEEP FFNN WITH BALANCED CLASS WEIGHTS

Since multi-label classification consists of multiple class-
labels associated with a data instance, and each of the labels
is binary, we adapt the above strategy by weighing each
class label in inverse proportion to its frequency of positive
to negative occurrence. Thus, for each class label λj in L,
where L = {λj | j ∈ [1, q]}, we weigh λj as per the ratio of
its 0 : 1 label distribution in the training set S:

| Totalj |
| Positivej | − 1 (38)

which is equivalent to

| Negativej |
| Positivej | (39)

This ensures that the class labels that have a lower
frequency of positive occurrence in the training set S are
weighted relatively higher than the other class labels, and
thus a misclassification for these infrequent classes is com-
pensated by penalizing it higher in that proportion. Thus, the
classifier is forced to adequately tune the learning model by
also considering the behaviour of the minority classes.
So, for a training set S with 113,303 data instances with

a positive distribution of 5.64%, 10.05%, 92.16%, 0.23%
respectively on the four SLO classes, we correspondingly
apply the relative positive class label weights of 16.74, 8.94,
0.08, 443.32, with this methodology.

2) DEEP FFNN WITH CLIPPED CLASS WEIGHTS

Neural networks do not train well with large weights [67].
While imbalance in classes is measured by orders of mag-
nitude, the extreme weight value of 443.32 for the last class
with the above method, although formally correct, is antici-
pated to be detrimental for performance. Furthermore, SLO3,
the most positively distributed class label, assumed a weight
of 0.08 by the above methodology. This is lower than the
relative weight of 1.0 that is assigned to the distribution of
all negative occurrences, which should deteriorate the learn-
ing for that class label with a drastic addition in the false
predictions for that class label.
Thus, in order to test the above hypothesis, we add a

model with clipped class weights. Here, we clip the class
weights derived from the above methodology such that the
maximum value that any of the class labels assume is set to
a tunable upper limit (we set it to 100.0), and the minimum
value for any weight is 1.0, i.e., equal to that of the negative
distributions. Thus, with this methodology on the four SLO
classes, we correspondingly apply the class label weights of
16.74, 8.94, 1.0, 100.0.

3) DEEP FFNN WITH LOG SMOOTHED CLASS WEIGHTS

While the above methodology is expected to be an improve-
ment on the first one, setting the upper threshold for class
weights is a heuristic nonetheless, and finding its optimal
value would require another grid search each time the
model is changed. Thus keeping in mind that the neural
network weights should be set to low values for optimal
training and bias-variance trade-off, we introduce a log
smoothed model that combines the benefits of the above two
methods.

log

(
α ·

[| Totalj |
| Positivej | − 1

])
(40)

α here is a tunable hyperparameter that can be varied to
change how many class labels should be weighed above 1.
This depends on the distribution of the positive and negative
occurrences within a class label, and the unweighted model’s
learning performance on the skewed classes. We set α to
0.16, which is its maximum value until which the first three
classes are weighed at the default value of 1.0, and only
the most skewed class, i.e., SLO4 takes on a class weight.
This is the methodology that seeks to set the weighting to a
bare minimum, both on the number of classes as well as the
relative ratios. Thus, with this methodology on the four SLO
classes, we correspondingly apply the class label weights of
1.0, 1.0, 1.0, 4.26.

B. RANDOM OVERSAMPLING
An alternative to class weighting is the use of oversampling
or undersampling techniques to either increase the occur-
rence of minority class labels, or decrease the sampling
of the majority class labels respectively during the training
phase [68]. It is to be noted that in the multi-label con-
text, this would also cause indirect over or under sampling
the other class labels that co-occur in Yi on these training
instances. Further, the degree of oversampling has a propor-
tionately high likelihood of disrupting the learning model
in a multi-label context, and is expected to cause overfitting
nonetheless, since the model would see certain data instances
more than once during training [63]. Since oversampling
increases the size of the training set S , it also affects the
distributions of labels overall in that set. While traditional
resampling strategies aim to create a balanced dataset from
an imbalanced one [68], doing so is not as straightforward
in a multi-label context due to the high level of concurrence
between imbalanced labels, its translational impact on a large
number of unique label-sets, and the resultant introduction
of a rather high level of noise in training [63].
To this end, a simplistic methodology involves oversam-

pling one or more class labels until their IR matches up
to the Mean IR, or to oversample one or more imbalanced
class labels until the size of the training set |S| is a certain
percentage larger than the original [56]. However, the exact
dynamics vary largely by the individual data and distribution
characteristics, as well as the complexity and performance
of the classification algorithm in use. Since a deep neural

2482 VOLUME 2, 2021

network model is extremely prone to overfitting and was seen
to already perform well in capturing the imbalance in the
first three class labels, we adopted a random oversampling
strategy wherein we oversample the training set S during
training for the data instances that feature the class label
with the most extreme IR compared to the other class labels,
i.e., SLO4. Corresponding to the IR values in Table 3 stating
the degree of imbalance in each class label, the actual dis-
tribution for each class label (positive occurrence) is 5.64%,
10.05%, 92.16%, and 0.23%. We oversample the instances
containing SLO4 by approximately 4% of |S|, such that the
incidence of SLO4 increases from 0.23% to 4.24%, but still
remains below the distribution of the next closest imbal-
anced class. The new distribution on the bigger training set
becomes 5.45%, 9.84%, 91.04%, and 4.24%, with a cor-
responding IR of 16.70, 9.26, 1, and 21.49. The Mean IR
for the new oversampled training set is 12.11, with a CVIR
value of 0.74.
With this methodology, the model would see an increased

incidence of the most infrequent minority class label in
the mini-batches during training, and this is aimed towards
increasing the odds that the model will at least be able
to capture its behaviour as well as interactions with the
other class labels. Nevertheless, the validation and test set
remain unchanged, and the training can be readjusted by
breaking up the epochs, applying appropriate weight reg-
ularization, and providing finer control to early stopping
callbacks. Figure 4(c) shows the resulting distribution after
we apply the oversampling strategy on our use-case.
Algorithms 1 and 2 present the consolidated proposition

towards effectively addressing class imbalance in a multi-
label setup in a deep FFNN model, that extracts the learning
from the above four methodologies adapted for our use-case
scenario. In the following sections, we present and compare
these strategies, highlight model performance and evaluation,
and present the challenges through such a setup.

VI. EXPERIMENTAL SETUP
The experiments were all set up using Python (version
3.8.5) and its associated data-science libraries. We use the
Scikit-Learn [53] library for all machine learning based
methodologies used in this paper, and Tensorflow [69] ver-
sion 2.4.1 with Keras [70] to program all the deep learning
based implementations.

A. DATASET
We use a publicly hosted dataset3 obtained via a standard
Clearwater testbed, a visualization for which is presented
in Figure 1. The dataset comprises of raw telemetric data
files that track 26 metrics for each of the 6 monitored VNFs
that compose the Clearwater ecosystem, and includes bursts
of abnormal behaviour through its integrated stress testing
tools to simulate VNF congestions and QoS degradations.
The data is sampled every 30 seconds, and spans an overall

3. https://bit.ly/3gPY8c5

Algorithm 1 Decision-Making Strategies Towards
Addressing Extreme Class Label Imbalance for SLA
Violation Prediction in a Latency Sensitive NFV Application

Input: Training Data S ∈ R
d

Compute IR for each SLO class label SLOj | j ∈ [1, |L|]
using Eq. (35), the Mean IR using Eq. (36), and the CVIR
using Eq. (37)
• CLASS WEIGHTED STRATEGY

1: function CLASS WEIGHTED STRATEGY(S)
2: if (Mean IR > 0.5 and CVIR > 0.2) then
3: Compute class weights using Eq. (38)
4: if (Class weight of any SLOj > 100 or < 1) then
5: Compute class weights using Eq. (40)
6: end if
7: end if
8: end function

• RESAMPLING STRATEGY

1: function RESAMPLING STRATEGY(S)
2: if (IR of SLOj ≫ MeanIR) then
3: Randomly oversample S for data instances

belonging to SLOj
4: else
5: Randomly oversample S until IR for SLOj gains

better proximity to the Mean IR
6: end if
7: end function

period of 2 months. This corresponds to 156 features overall,
and 177,098 rows of raw temporal data. A brief description
of the captured metrics is summarised in Table 1.

B. SYSTEM CONFIGURATION
The experiments were performed in a Docker4 based con-
tainerized environment running atop a bare-metal Linux
server with 64 GB RAM, Intel Xeon CPU E5-2660 v2 @
2.20GHz (40 physical processors), 2 NVIDIA Tesla K20m
GPUs, and 500 GB local storage. The Docker image runs
an Ubuntu 20.04 LTS operating system, and CUDA version
11.3 for the GPUs.

C. LEARNING AND ADAPTATION
The data input into any model, be it machine learning or
deep learning, is first standardized via mean centering and
ensuring a standard deviation of 1, i.e., subtracting each data
feature value by its corresponding mean in the training set,
and dividing by the standard deviation. This pre-processing,
as also presented in Algorithm 2, helps in the learning and
convergence of any predictive modeling algorithm [67].
We split the available data into training and test sets in

the ratio of 80 : 20, and the training set is further split into
training and validation sets in the ratio of 80 : 20. Hence,
overall, the data consisting of 177,098 rows is split in the

4. www.docker.com

VOLUME 2, 2021 2483

JALODIA et al.: DNN-BASED MULTI-LABEL CLASSIFIER FOR SLA VIOLATION PREDICTION

Algorithm 2 A Deep Feed-Forward Neural Network Based
Multi-Label Classifier for SLA Violation Prediction in a
Latency Sensitive NFV Application
• PRE-PROCESSING

Input:Data: D ∈ R
d

Output: Pre-processed training set S , validation set V and
test set T
1: function PRE-PROCESSING(D)
2: Split the data in train, test, and validation sets
3: Standardize according to the training set S
4: end function

• DEEP FFNN MODEL

Input: Pre-processed training set S , validation set V and
test set T
Output: Multi-label classification for SLO violations

1: function DEEP FFNN MODEL(D)
2: Construct neural network architecture
3: if (Addressing label imbalance with class weight

based models) then
4: CLASS WEIGHTED STRATEGY

5: else
6: if (Addressing label imbalance with random

oversampling) then
7: RESAMPLING STRATEGY

8: end if
9: end if
10: Apply appropriate values for all key structural and

non-structural hyperparameters
11: Specify the Early Stopping criterion
12: Compile the deep FFNN model
13: repeat
14: Train and fit the model with batches from S ,

using V as validation set
15: Output multi-label classification prediction

values
16: Monitor and evaluate training with validation set
17: until Convergence
18: end function

Use data from the test set T to evaluate the trained
model

ratio 64 : 20: 16, corresponding to train, test, and validation
splits respectively.
The choice of architecture has an important role to play

in the model learning and performance for a neural network
methodology. While there are no fixed guidelines on the
number of layers and the number of neurons in each of
them, the choice is often driven by following a heuristic
based on number of inputs and outputs, and using a ran-
dom search methodology to arrive at an optimal architecture
for the use-case and data at hand. We begin with a shal-
low universal approximation architecture [13], i.e., with one
hidden layer, and the number of neurons in it equal to the
average of the neurons in the input and output layers. We

use its results as a baseline to adjust the number of layers
and neurons, and also adjust the Dropout regularization fac-
tor between layers to control overfitting [71] as the model
gains complexity. This results in a deep learning architec-
ture, and the key results from this random search based
architecture optimization are presented in Table 5 in the
Appendix.
For FFNN model training, we use Binary Crossentropy as

the loss function to be minimized. It is a probabilistic loss
function that computes the cross-entropy loss between true
and predicted labels, and is appropriate for use in a binary
classification based setup. Further, we use Adam [72] as the
optimizer for its computational efficiency and adaptive learn-
ing, with its default learning rate of 10−3. ReLu (Rectified
Linear Unit) is used as the activation function for each of the
hidden layers due to its computational simplicity and high
optimization performance in a deep MLP based setup [67].
As mentioned earlier, we use sigmoid as the activation func-
tion for the output layer to concurrently output the individual
probability of each label’s association with the input data
instance, thus supporting multi-label classification outputs.
Since the label classes are imbalanced, we initialize the

bias in the output layer to reflect this and enable the model
to begin with more reasonable initial guesses, thus contribut-
ing to faster convergence. The bias initialization is derived
through the log of the ratio of positive : negative in each of
the class labels, averaged over all class labels in the training
set. This also eliminates the erratic initial behaviour in the
learning loss curve in the initial epochs of training, where
the model is just learning the bias.
To further control the degree of overfitting during training,

we perform a grid search for the optimal choice of weight
regularization hyperparameters for the neural network model,
and based on the results, apply both L1 and L2 weight
regularization on each of the hidden layers in the FFNN,
with a regularization factor of 10−7 for the unweighted and
class weighted models, and 10−4 for the model with random
oversampling. A visual representation of the outcome of grid
search to this end is presented in Figures 12 and 13 in the
Appendix.
We use a large batch size of 2048 to increase the proba-

bility of class representation from the minority class labels
during the training phase. While we set the maximum
training epochs to 500, we also deploy an early stopping
criteria that tracks the macroaveraged AUC-PRC with a
maximization objective, and a patience of 50 epochs to
ensure that the training is not stopped at a local optimization
minima. At the end of training, model weights are restored
from the best epoch, which is considered as the best
performance achieved during training, before the model
began to overfit on the training set. Finally, the prediction
threshold for probability output is set to 0.5, i.e., probability
outputs below 0.5 are assigned the class 0, and above 0.5
are assigned the class 1. The AUC plots, however, visualise
the values and trade-offs of the model behaviour, should the
threshold be varied.

2484 VOLUME 2, 2021

FIGURE 5. AUC-PRC plots depicting the learning and precision-recall trade-off of the various deep neural network classifiers on individual class labels, as well as the micro
and macro averaged performance on the entire set.

VII. RESULTS AND DISCUSSION
Table 2 presents the results for the performance of the
machine learning methods and base deep neural network
model on the multi-label task as of SLO violation prediction.
The deep feed-forward neural network performs better than
all other machine learning methods on most metrics, and
is followed closely by the decision tree method. However,
when comparing the averaged AUC-ROC for these models
with the performance on individual class labels as shown
in Figure 3, we notice that almost all the machine learn-
ing models have the ROC curves for one or more class
labels lying on the diagonal, or close to the diagonal line,
which represents a random classifier. This is especially true
for the class label SLO4, i.e., SLOio, which none of the
machine learning models learnt well. Hence, the values on
precision, recall, and related example and label-based met-
rics stem from stochastic classification on some class labels,
which is undesirable for the use-case here. Further, using
such machine learning based methods is suitable only in the
cases in which the class labels in the data either have a

low level of correlation between them, or are independent
altogether. However, it is clear from the comparison with
the base deep neural network model that the class labels
are correlated, and in a way that is not straightforward to
learn given the level of imbalance in the multi-label dataset.
Therefore, while binary relevance is the most straightfor-
ward in the way it handles the multi-label data, it is limited
by its assumptions of complete label independence, which
makes it unsuitable for advanced applications. The Classifier
Chain method overcomes the limitations of the independent
label assumption of the one-vs-rest binary relevance meth-
ods, and considers correlations among labels in a random
manner. However, the chaining property still has its dis-
advantages in that it is not a parallel implementation, and
the performance is highly dependent on finding the most
appropriate order of chaining [73], which random ordering
may not always solve. It is also very sensitive to skewed
class distributions [74], and thus limited in applications
depending on the use-case and the size and characteristics
of data.

VOLUME 2, 2021 2485

JALODIA et al.: DNN-BASED MULTI-LABEL CLASSIFIER FOR SLA VIOLATION PREDICTION

FIGURE 6. AUC-ROC plots depicting the learning of the various deep neural network classifiers on individual class labels, as well as the micro and macro averaged
performance on the entire set.

FIGURE 7. Learning Curves depicting training and validation performance for Base
Neural Network Classifier—Deep Feed-Forward Neural Network Model.

ML-kNN also assumes label independence, and more-
over, takes a lot of time to train. It is therefore unsuited
for data of large magnitude. Decision trees are yet another

FIGURE 8. Learning Curves depicting training and validation performance for Deep
Feed-Forward Neural Network Model—Balanced Class Weights.

family of methods that assume label independence in solv-
ing multi-label problems. While the biggest advantage of
using a decision tree methodology is that it is a white-box

2486 VOLUME 2, 2021

TABLE 4. Performance of the various strategies adopted to address the class label imbalance, evaluated on all presented multi-label classification metrics.

method and thus the decisions can be traced back to the
logic behind them; on our use-case, the decision tree model
holds a depth of 35 with 589 leaves. This conveys a high
degree of model complexity that is not as easy to analyze and
interpret. Random forest is an ensemble of decision trees,
and thus prone to the same issues that decision trees face
here.
The deep feed-forward neural network has a clear edge

on the task, stemming from the fact that it is capable of
modeling the patterns behind each of the class labels in par-
allel, and can concurrently capture the correlations between
them. As shown in Figure 6(a), the base FFNN model learns
the behavior of all classes, including class SLO4. However,
a parallel view of the individual classes for the base FFNN
model in Table 4 shows that unlike the other class labels,
SLOio has no true positive or false positive detections. To
address this, we improve the model with class weighting and
oversampling strategies, as elaborated earlier in Section V.
Table 4 presents the performance of these strategies as com-
pared and evaluated on the multi-label classification metrics.
A direct inference from the comparison is a quantification
of how inflated the performance estimates from the base
model were. By adding strategies to address class imbal-
ance, we prevent the model from developing a bias towards

FIGURE 9. Learning Curves depicting training and validation performance for Deep
Feed-Forward Neural Network Model—Clipped Class Weights.

the majority class labels, and ensure that the prediction is
not an overestimation.
As mentioned earlier in Section V, rather than training to

maximize accuracy or any other conventional metric, we train

VOLUME 2, 2021 2487

JALODIA et al.: DNN-BASED MULTI-LABEL CLASSIFIER FOR SLA VIOLATION PREDICTION

FIGURE 10. Learning Curves depicting training and validation performance for
Deep Feed-Forward Neural Network Model—Log Smoothed Class Weights.

FIGURE 11. Learning Curves depicting training and validation performance for
Deep Feed-Forward Neural Network Model—With Random Oversampling.

the deep neural network models to maximize the area under
the precision recall curve (AUC-PRC). Figure 5 presents the
PR curves for these deep FFNN models. A high AUC-PRC
implies high recall and high precision, i.e., low false negative
rate and low false positive rate respectively.
Figure 6 depicts the ROC curves for the individual class

labels. Any point on the curve here signifies a trade-off
between precision and recall, should that be the threshold—
if set low, the recall of the positive occurrence (class value
1) will be high, and the precision will be low; and vice-
versa if the threshold is set high. Which one to prioritize
depends on the use-case—for example in our case the model
can be tolerant of false positives at the cost of minimizing
the false negatives, since false negatives signify missed SLO
violations, which have a higher cost associated with them.

FIGURE 12. Grid search for L1 L2 weight regularization on the deep FFNN
architecture.

FIGURE 13. Grid search for L1 L2 weight regularization on the deep FFNN
architecture used for the oversampled training set.

Thus, in our use-case, we prioritize recall over precision
when measuring performance.
Figures 7, 8, 9, 10, and 11 show the learning curves depict-

ing loss, AUC-PRC, precision, and recall performance for
the corresponding deep FFNN models as they train to con-
verge over the training and validation sets. When comparing
the class weighting strategy, we notice the fluctuations when
the model assumes large weights as per the balanced class
weighting strategy. This is because the model sees an infre-
quent example associated with a very large weight within
some batch of training, which suddenly disrupts the gradi-
ent signal at each occurrence. This also transfers to poor
performance for all evaluations on the test set. Clipping the

2488 VOLUME 2, 2021

FIGURE 14. AUC-ROC plots depicting the performance of the various deep neural network classifiers on individual class labels on the Train vs Test set, signifying the degree
of overfitting.

class weights to a lower range improves both model train-
ing and performance, thus necessitating that formal class
weighting strategies that enforce large weights given a high
ratio of imbalance are unsuitable in this context. The best
performance of the model is achieved when the weights are
smoothed by log scaling, and kept to a minimal ratio. The
log smoothed model outperforms on almost all categories
of metrics with the best convergence and least overfitting,
and achieves the highest macroaveraged AUC-PRC (0.776)
and AUC-ROC (0.959), with a subset accuracy of 99%, and
multi-label accuracy of 99.1%.
As can be seen in Figure 11, the model with random over-

sampling does overfit given the repetitions in the training set,
but the appropriate regularization ensures that the validation
curve is smooth, and the model converges well. The model
has the highest macroaveraged F1 score (0.793) and recall
(0.835), and fares almost at par with the log weighted model
in learning and perform well on all classes. However, while
it minimizes the false negatives the most, it has a slightly
higher number of false positives. The exact classification
distributions for the individual class labels are depicted in

Table 4. Ultimately, the choice between opting for sampling
based strategies or class weighting strategies depends on the
degree of imbalance, the model being used, the use-case
and objectives. In the case of a deep FFNN model, when
the class weights enforced are small, both class weighting
and oversampling work similarly, assigning the equivalent
of small weights to infrequent positive examples in individ-
ual batches during training. However, when the class weights
formally attain large values, the results suggest that oversam-
pling may be better strategy, since it involves a smoother
gradient update in each batch seen during training.

VIII. CONCLUSION AND FUTURE WORK
In this work, we address the problem of SLA and SLO
violation prediction in an NFV environment with the use
of multi-label classification methodology. This enables the
incorporation of multi-output models as we move towards
more complex decision-making in the management of virtu-
alised communication networks, identifying and predicting
multiple categories of SLO breaches as applicable to study
and mitigate their impact towards SLA and SLO violations.

VOLUME 2, 2021 2489

JALODIA et al.: DNN-BASED MULTI-LABEL CLASSIFIER FOR SLA VIOLATION PREDICTION

TABLE 5. Key results from random search for finding an optimal neural network architecture.

FIGURE 15. AUC-PRC plots depicting the performance of the various deep neural network classifiers on individual class labels on the Train vs Test set, signifying the degree
of overfitting.

We work with Clearwater, a latency-sensitive NFV based
vIMS application to draft realistic SLO definitions for this
vertical, and use these as the basis to model the violations
as a multi-output target. We propose the use of a deep feed-
forward neural network classifier to adequately capture and
learn the correlations between the different categories of
SLO violations, and predict them as they (co)-occur given
the state of the NFV application at a point in time.
The results suggest the suitability of such a deep learn-

ing methodology in achieving the target objective, and in

also overcoming the issue of class imbalance in training by
adapting class weighting and random oversampling strate-
gies to a multi-label setup. We achieve a subset accuracy of
99%, and multi-label accuracy of 99.1% in the best model
approach, working with a dataset where the highest class
label imbalance ratio is 395.18, with a mean imbalance ratio
of 105.40.
We reason and demonstrate that our proposed method-

ology can be useful to identify the gaps in SLA policy
enforcement, to further fine-tune the scaling policies for

2490 VOLUME 2, 2021

an enhanced balance between efficiency and reliability, as
well as to identify and address the frequent vulnerabilities
and bottlenecks that a latency-sensitive real-time application
such as this may face. In future work, we plan to inte-
grate our approach with a traffic and workload forecasting
methodology for a higher degree of detail in proactive vio-
lations’ prediction, and to combine this with dynamic policy
enforcement for an end-to-end management control loop.

APPENDIX
Figures 12 and 13 provide a consolidated view of the grid
search that was performed to find suitable weight regular-
ization strategy and hyperparameters for the deep FFNN
models. Table 5 provides an indication of the random search
for an optimal FFNN architecture for the use-case here.
Figures 14 and 15 give an overview of the degree of
overfitting in effect in each of the trained neural network
models.

ACKNOWLEDGMENT
The authors would like to thank Dr. Imen Grida Ben Yahia
and Dr. Jaafar Bendriss for sharing their data from the
Clearwater deployment for academic and public usage.

REFERENCES
[1] “IMT traffic estimates for the years 2020 to 2030,” Int. Telecommun.

Union, Geneva, Switzerland, Rep. ITU-R M.2370-0, Jul. 2015.
[Online]. Available: https://bit.ly/3g828Ux

[2] “Mobility report,” Ericsson, Stockholm, Sweden, Rep. EAB-
20:009174, Nov. 2020. [Online]. Available: https://bit.ly/3gmcI9E

[3] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016.

[4] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road
towards 6G: A comprehensive survey,” IEEE Open J. Commun. Soc.,
vol. 2, pp. 334–366, 2021.

[5] T. Zhang, H. Qiu, L. Linguaglossa, W. Cerroni, and P. Giaccone, “NFV
platforms: Taxonomy, design choices and future challenges,” IEEE
Trans. Netw. Service Manag., vol. 18, no. 1, pp. 30–48, Mar. 2021.

[6] M. Di Mauro, G. Galatro, M. Longo, F. Postiglione, and
M. Tambasco, “IP Multimedia Subsystem in a containerized envi-
ronment: Availability and sensitivity evaluation,” in Proc. IEEE Conf.
Netw. Softw. (NetSoft), Paris, France, Jun. 2019, pp. 42–47.

[7] N. Jalodia, S. Henna, and A. Davy, “Deep reinforcement learning
for topology-aware VNF resource prediction in NFV environments,”
in Proc. IEEE Conf. Netw. Func. Virtualization Softw. Defined Netw.
(NFV-SDN) Dallas, TX, USA, Nov. 2019, pp. 1–5.

[8] “Dynamic Scaling for Amazon EC2 Auto Scaling—Amazon
Web Services (AWS).” [Online]. Available: https://amzn.to/3yPU963
(Accessed: May 2021).

[9] “Predictive Scaling for Amazon EC2 Auto Scaling—
Amazon Web Services (AWS).” [Online]. Available:
https://amzn.to/3c5pQPc(Accessed: May 2021).

[10] “Predictive Scaling for EC2 with Machine Learning—Amazon
Web Services (AWS).” [Online]. Available: https://amzn.to/3vBHlyg
(Accessed: May 2021).

[11] “Using Predictive Autoscaling—Google Cloud.” [Online]. Available:
https://bit.ly/3vFc5hH (Accessed: May 2021).

[12] B. Yi, X. Wang, K. Li, S. K. Das, and M. Huang, “A comprehensive
survey of network function virtualization,” Comput. Netw., vol. 133,
pp. 212–262, Mar. 2018.

[13] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba,
“Topology-aware prediction of virtual network function resource
requirements,” IEEE Trans. Netw. Service Manag., vol. 14, no. 1,
pp. 106–120, Mar. 2017.

[14] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label data,”
in Data Mining andKnowledge Discovery Handbook, O. Maimon and
L. Rokach, Eds. Boston, MA, USA: Springer, 2009, pp. 667–685.

[15] D. Xu, Y. Shi, I. W. Tsang, Y.-S. Ong, C. Gong, and X. Shen, “Survey
on multi-output learning,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 31, no. 7, pp. 2409–2429, Jul. 2020.

[16] S. Cherrared, S. Imadali, E. Fabre, and G. Goessler, “LUMEN:
A global fault management framework for network virtualization
environments,” in Proc. 21st Conf. Innovat. Clouds Internet Netw.
Workshops (ICIN), Paris, France, Feb. 2018, pp. 1–8.

[17] J. Suomalainen, A. Juhola, S. Shahabuddin, A. Mämmelä, and
I. Ahmad, “Machine learning threatens 5G security,” IEEE Access,
vol. 8, pp. 190822–190842, 2020.

[18] S. Cherrared, S. Imadali, E. Fabre, G. Gössler, and I. G. B. Yahia, “A
survey of fault management in network virtualization environments:
Challenges and solutions,” IEEE Trans. Netw. Service Manag., vol. 16,
no. 4, pp. 1537–1551, Dec. 2019.

[19] X. Zheng, N. Huang, S. Yin, G. Wen, and X. Zhang, “A service
deployment method considering application reliability of networks,”
IEEE Access, vol. 9, pp. 28505–28513, 2021.

[20] B. Tola, G. Nencioni, and B. E. Helvik, “Network-aware availability
modeling of an end-to-end NFV-enabled service,” IEEE Trans. Netw.
Service Manag., vol. 16, no. 4, pp. 1389–1403, Dec. 2019.

[21] M. Di Mauro, M. Longo, F. Postiglione, G. Carullo, and M. Tambasco,
“Service function chaining deployed in an NFV environment: An
availability modeling,” in Proc. IEEE Conf. Stand. Commun. Netw.
(CSCN), Helsinki, Finland, Sep. 2017, pp. 42–47.

[22] A. Binsahaq, T. R. Sheltami, and K. Salah, “A survey on auto-
nomic provisioning and management of QoS in SDN networks,” IEEE
Access, vol. 7, pp. 73384–73435, 2019.

[23] L.-V. Le, D. Sinh, B.-S. P. Lin, and L.-P. Tung, “Applying big data,
machine learning, and SDN/NFV to 5G traffic clustering, forecasting,
and management,” in Proc. 4th IEEE Conf. Netw. Softw. Workshops
(NetSoft), Montreal, QC, Canada, Jun. 2018, pp. 168–176.

[24] A. A. Gebremariam, M. Usman, and M. Qaraqe, “Applications of
artificial intelligence and machine learning in the area of SDN and
NFV: A survey,” in Proc. 16th Int. Multi-Conf. Syst. Signals Devices
(SSD), Istanbul, Turkey, Mar. 2019, pp. 545–549.

[25] J. Vergara-Reyes, M. C. Martinez-Ordonez, A. Ordonez, and
O. M. C. Rendon, “IP traffic classification in NFV: A bench-
marking of supervised machine learning algorithms,” in Proc.
IEEE Colombian Conf. Commun. Comput. (COLCOM), Cartagena,
Colombia, Aug. 2017, pp. 1–6.

[26] G. Ilievski and P. Latkoski, “Efficiency of supervised machine learning
algorithms in regular and encrypted VoIP classification within NFV
environment,” Radioengineering, vol. 29, pp. 243–250, Apr. 2020.

[27] C. Sun, J. Bi, Z. Zheng, and H. Hu, “SLA-NFV: An SLA-aware high
performance framework for network function virtualization,” in Proc.
ACM SIGCOMM Conf., Florianopolis Brazil, Aug. 2016, pp. 581–582.

[28] E. Kapassa, M. Touloupou, and D. Kyriazis, “SLAs in 5G: A complete
framework facilitating VNF- and NS- tailored SLAs management,”
in Proc. 32nd Int. Conf. Adv. Inf. Netw. Appl. Workshops (WAINA),
Krakow, Poland, May 2018, pp. 469–474.

[29] I. G. B. Yahia, J. Bendriss, A. Samba, and P. Dooze, “CogNitive 5G
networks: Comprehensive operator use cases with machine learning for
management operations,” in Proc. 20th Conf. Innovat. Clouds Internet
Netw. (ICIN), Paris, France, Mar. 2017, pp. 252–259.

[30] J. Bendriss, I. G. B. Yahia, P. Chemouil, and D. Zeghlache, “AI for
SLA management in programmable networks,” in Proc. DRCN Design
Rel. Commun. Netw. 13th Int. Conf., Munich, Germany, 2017, pp. 1–8.

[31] M. Boucadair, C. Jacquenet, and X. Xu, Eds., Emerging Automation
Techniques for the Future Internet: Advances in Wireless Technologies
and Telecommunication. Hershey, PA, USA: IGI Global, 2019.

[32] J. Bendriss, “Cognitive management of SLA in software-based
networks,” M.S.thesis, Dept. Comput. Sci., Institut Nat. des
Télécommunications, Jun. 2018.

[33] J. Bendriss, I. G. B. Yahia, and D. Zeghlache, “Forecasting and antici-
pating SLO breaches in programmable networks,” in Proc. 20th Conf.
Innovat. Clouds Internet Networks (ICIN), Paris, France, Mar. 2017,
pp. 127–134.

[34] E. Gibaja and S. Ventura, “A tutorial on multilabel learning,” ACM
Comput. Surveys, vol. 47, pp. 1–38, Apr. 2015.

[35] M. S. Sorrower, A Literature Survey on Algorithms for Multi-Label
Learning, Oregon State Univ., Corvallis, OR, USA, 2010, pp. 1–25.

VOLUME 2, 2021 2491

JALODIA et al.: DNN-BASED MULTI-LABEL CLASSIFIER FOR SLA VIOLATION PREDICTION

[36] G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski, “An extensive
experimental comparison of methods for multi-label learning,” Pattern
Recognit., vol. 45, pp. 3084–3104, Sep. 2012.

[37] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algo-
rithms,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1819–1837,
Aug. 2014.

[38] M. A. Tahir, J. Kittler, and F. Yan, “Inverse random under sam-
pling for class imbalance problem and its application to multi-label
classification,” Pattern Recognit., vol. 45, pp. 3738–3750, Oct. 2012.

[39] J. Shen, S. Li, F. Jia, H. Zuo, and J. Ma, “A deep multi-label learn-
ing framework for the intelligent fault diagnosis of machines,” IEEE
Access, vol. 8, pp. 113557–113566, 2020.

[40] W. Hong, W. Xu, J. Qi, and Y. Weng, “Neural tensor network for
multi- label classification,” IEEE Access, vol. 7, pp. 96936–96941,
2019.

[41] A. Maxwell et al., “Deep learning architectures for multi-label classifi-
cation of intelligent health risk prediction,” BMC Bioinformat., vol. 18,
p. 523, Dec. 2017.

[42] J. Mańdziuk and A. Żychowski, “Dimensionality reduction in
multilabel classification with neural networks,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Budapest, Hungary, Jul. 2019, pp. 1–8.

[43] M. Ibrahim, M. Torki, and N. El-Makky, “Imbalanced toxic comments
classification using data augmentation and deep learning,” in Proc.
17th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Orlando, FL, USA,
Dec. 2018, pp. 875–878.

[44] B. Beyer, C. Jones, J. Petoff, and N. Murphy, Site Reliability
Engineering: How Google Runs Production Systems. Sebastopol, CA,
USA: O’Reilly Media, Incorp., 2016.

[45] “A Global Initiative.” The 3rd Generation Partnership Project. [Online].
Available: https://www.3gpp.org/ (Accessed: May 2021).

[46] “Auto Scaling Overview—Amazon Web Services (AWS).” [Online].
Available: https://amzn.to/3fzX3UJ (Accessed: May 2021).

[47] “Auto Scaling Amazon EC2—Amazon Web Services (AWS).”
[Online]. Available: https://amzn.to/3wKtYM7 (Accessed: May 2021).

[48] “Autoscale in Microsoft Azure—Azure Monitor.” [Online]. Available:
https://bit.ly/3wLoMrv (Accessed: May 2021).

[49] “Autoscaling—Google Cloud.” [Online]. Available:
https://bit.ly/3wJxG8J (Accessed: May 2021).

[50] “Auto Scaling—Huawei Cloud.” [Online]. Available:
https://bit.ly/34xww4f (Accessed: May 2021).

[51] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computa-
tional efficiency of training neural networks,” in Advances in Neural
Information Processing Systems, vol. 27, Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Q. Weinberger, Eds. Red Hook, NY,
USA: Curran Assoc., Inc., 2014.

[52] X.-Z. Wu and Z.-H. Zhou, “A unified view of multi-label performance
measures,” in Proc. 34th Int. Conf. Mach. Learn., vol. 70, Aug. 2017,
pp. 3780–3788.

[53] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,”
J. Mach. Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011.

[54] T. Calders and S. Jaroszewicz, “Efficient AUC optimization for clas-
sification,” in Knowledge Discovery in Databases: PKDD (Lecture
Notes in Computer Science, 4702), J. N. Kok, J. Koronacki,
R. L. de Mantaras, S. Matwin, D. Mladenič, and A. Skowron, Eds.
Heidelberg, Germany: Springer, 2007. pp. 42–43.

[55] F. Charte, A. Rivera, M. J. del Jesus, and F. Herrera, “A first
approach to deal with imbalance in multi-label datasets,” in Hybrid
Artificial Intelligent Systems (Lecture Notes in Computer Science,
8073), D. Hutchison et al., Eds. Heidelberg, Germany: Springer, 2013,
pp. 150–160.

[56] F. Charte, A. J. Rivera, M. J. del Jesus, and F. Herrera, “Addressing
imbalance in multilabel classification: Measures and random resam-
pling algorithms,” Neurocomputing, vol. 163, pp. 3–16, Sep. 2015.

[57] J. Davis and M. Goadrich, “The relationship between Precision-Recall
and ROC curves,” in Proc. 23rd Int. Conf. Mach. Learn. (ICML),
Pittsburgh, PA, USA, 2006, pp. 233–240.

[58] T. Saito and M. Rehmsmeier, “The precision-recall plot is more
informative than the ROC plot when evaluating binary classi-
fiers on imbalanced datasets,” PLoS ONE, vol. 10, Mar. 2015,
Art. no. e0118432.

[59] S. Wang, W. Liu, J. Wu, L. Cao, Q. Meng, and P. J. Kennedy,
“Training deep neural networks on imbalanced data sets,” in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), Vancouver, BC, Canada, Jul. 2016,
pp. 4368–4374.

[60] B. Liu and G. Tsoumakas, “Synthetic oversampling of multi-label
data based on local label distribution,” in Machine Learning and
Knowledge Discovery in Databases (Lecture Notes in Computer
Science, 11907), U. Brefeld, E. Fromont, A. Hotho, A. Knobbe,
M. Maathuis, and C. Robardet, Eds. Cham, Switzerland: Springer
Int., 2020, pp. 180–193.

[61] J. Ma, H. Zhang, and T. W. S. Chow, “Multilabel classification
with label-specific features and classifiers: A coarse- and fine-tuned
framework,” IEEE Trans. Cybern., vol. 51, no. 2, pp. 1028–1042,
Feb. 2021.

[62] Y. Zhong, B. Du, and C. Xu, “Learning to reweight examples in multi-
label classification,” Neural Netw., vol. 142, pp. 428–436, Oct. 2021.

[63] A. N. Tarekegn, M. Giacobini, and K. Michalak, “A review of methods
for imbalanced multi-label classification,” Pattern Recognit., vol. 118,
Oct. 2021, Art. no. 107965.

[64] M.-L. Zhang, Y.-K. Li, H. Yang, and X.-Y. Liu, “Towards class-
imbalance aware multi-label learning,” IEEE Trans. Cybern., early
access, Nov. 18, 2020, doi: 10.1109/TCYB.2020.3027509.

[65] B. Liu and G. Tsoumakas, “Making classifier chains resilient to
class imbalance,” in Proc. 10th Asian Conf. Mach. Learn., vol. 95,
Nov. 2018, pp. 280–295.

[66] H. He and Y. Ma, Eds., Imbalanced Learning: Foundations,
Algorithms, and Applications. Hoboken, NJ, USA: Wiley, 2013.

[67] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016.

[68] A. Fernández, S. García, M. Galar, R. C. Prati, B. Krawczyk, and
F. Herrera, Learning from Imbalanced Data Sets. Cham, Switzerland:
Springer Int., 2018.

[69] M. Abadi et al., TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems, 2015.

[70] F. Chollet et al., Keras, 2015.
[71] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[72] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in Proc. 3rd Int. Conf. Learn. Represent. (ICLR),
San Diego, CA, USA, May 2015.

[73] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” in Machine Learning and Knowledge
Discovery in Databases (Lecture Notes in Computer Science, 5782),
W. Buntine, M. Grobelnik, D. Mladenić, and J. Shawe-Taylor, Eds.
Heidelberg, Germany: Springer, 2009, pp. 254–269.

[74] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains:
A review and perspectives,” J. Artif. Intell. Res., vol. 70, pp. 683–718,
May 2021.

NIKITA JALODIA (Member, IEEE) received the
bachelor’s degree in computer science and engi-
neering from the LNM Institute of Information
Technology, Jaipur, India, in 2017, with a
specialization in big data and analytics with
IBM. She is currently pursuing the Ph.D.
degree with the Department of Computing and
Mathematics, Emerging Networks Laboratory
Research Division, Walton Institute of Information
and Communication Systems Science, Waterford
Institute of Technology, Ireland. Since July 2017,

she has been working as a part of the Science Foundation Ireland funded
CONNECT–Research Centre for Future Networks and Communications.
She has also previously worked as a Software Developer with Publicis
(Sapient) Global Markets, India. Her current research interests include
data science, network function virtualization, machine and deep learn-
ing, knowledge-defined networks, Internet of Things, and fog and cloud
computing.

2492 VOLUME 2, 2021

http://dx.doi.org/10.1109/TCYB.2020.3027509

MOHIT TANEJA (Member, IEEE) received the
bachelor’s degree in computer science and engi-
neering from the LNM Institute of Information
Technology, Jaipur, India, in 2015, and the
Ph.D. degree from the Waterford Institute of
Technology, Ireland, in 2020, where he is currently
a Lecturer of Business Information Systems, Data
Science, and Computing with the Department of
Accountancy and Economics, School of Business.
He was a Postdoctoral Research Fellow with
the Programmable Autonomous Systems Division,

Walton Institute; working on EU, National, International, and Industry
Funded Projects. He worked as the Project and Tech Lead on EU-H2020
funded Smart Cities 2030 project. In Walton, he also worked with the
Strategic Division, liaising with all the Research Divisions within the
Institute. He has also been associated with the SFI funded VistaMilk
Research Centre and CONNECT Centre. He has previously worked as
an Experienced Software Research Engineer with the Emerging Networks
Laboratory Division. The title of his dissertation was fog computing support
for Internet of Things applications. He was also a Visiting Research Fellow
with IBM Research Labs, Ireland, from 2017 to 2018. His current research
interests include fog and cloud computing, IoT, distributed systems, and
distributed data analytics.

ALAN DAVY (Senior Member, IEEE) received the
B.Sc. degree (Hons.) in applied computing and
the Ph.D. degree from the Waterford Institute of
Technology (WIT), Waterford, Ireland, in 2002
and 2008 respectively, where he is currently
the Head of the Department of Computing and
Mathematics, School of Science and Computing.
He was the Research Division Manager with the
Emerging Networks Laboratory, WIT’s Walton
Institute of Information and Communication
Systems Science. He has been the Coordinator and

the Principal Investigator on a number of National, International, and EU
projects, such as TERAPOD, SFI-TIDA, and 5GinFIRE’s C2G-RAN. His
current research interests include virtualised telecom networks, fixed and
wireless network management, software defined infrastructure, Internet of
Things, fog and edge computing, bio-inspired systems, molecular/nano-scale
communications, and terahertz communications. He has been a recipient of
the Marie Curie International Mobility Fellowship in 2010, and has worked
with the Universitat Politècnica de Catalunya and IIT Madras in India.

VOLUME 2, 2021 2493

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

