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ABSTRACT Detection of drones carries critical importance for safely and effectively managing unmanned
aerial system traffic in the future. Given the ubiquitous presence of the drones across all kinds of
environments in the near future, wide area drone detection and surveillance capability are highly desirable,
which require careful planning and design of drone sensing networks. In this paper, we seek to meet this
need by using the existing terrestrial radio frequency (RF) networks for passive sensing of drones. To
this end we develop an analytical framework that provides the fundamental limits on the network-wide
drone detection probability. In particular, we characterize the joint impact of the salient features of the
terrestrial RF networks, such as the spatial randomness of the node locations, the directional 3D antenna
patterns, and the mixed line of sight/non line of sight (LoS/NLoS) propagation characteristics of the air-to-
ground (A2G) channels. Since the strength of the drone signal and the aggregate interference in a sensing
network are fundamentally limited by the 3D network geometry and the inherent spatial randomness,
we use tools from stochastic geometry to derive the closed-form expressions for the probabilities of
detection, false alarm and coverage. This, in turn, demonstrates the impact of the sensor density, beam
tilt angle, half power beam width (HPBW) and different degrees of LoS dominance, on the projected
detection performance. Our analysis reveals optimal beam tilt angles, and sensor density that maximize
the network-wide detection of the drones.

INDEX TERMS A2G channel, beam tilt, directional antenna pattern, drone detection, LoS/NLoS, stochastic
geometry.

I. INTRODUCTION

DUE TO the widespread use of drones across the mili-
tary, commercial, and government sectors, surveillance

of drones is emerging as an important and challenging
problem. While such proliferation of drones introduces obvi-
ous benefits, it also increases the potential for accidental
or deliberate violations, such as, invading privacy of peo-
ple, intruding into restricted government or business areas,
or colliding with air-crafts and causing accidents. In situa-
tions like these, technologies to detect, track, and interdict
possible aerial threats become indispensable [1]. Since the
detection of the drones is the first enabling step for the rest
of the surveillance measures to take place, robust detection
of the drones is of fundamental importance. Moreover, due

to the pervasive presence of the drones in today’s world, the
wide area coverage of drone detection capabilities is also
highly desirable.
Most state of the art drone detection methods typically

use one of the following modalities or a fusion of them:
ambient radio frequency (RF) signals, radar, acoustic sig-
nals, and computer vision. Among these, a good majority
of the sensing techniques rely on the use of the RF sig-
nals, due to some of the advantages it offers over the other
modalities, such as, the long detection range, effectiveness in
NLoS environments, and the low-cost of the RF sensors [2].
The existing RF drone sensing techniques can be broadly
classified into the following two categories: active sensing
and passive sensing. In the active approach, the sensors are
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required to continuously broadcast wireless signals, and then
analyze the signals reflected from the drone, to discover any
unique signatures associated with a drone, such as, the ones
caused by the drone’s propellers, or the vibration patterns of
the drone’s body. In the passive approach, the sensor eaves-
drops on the communication signal exchanged between the
drones and their ground controllers (GCs) and looks for sig-
natures unique to drones, such as the spectral features, traffic
pattern, and the communication rate between the drones and
their GCs.
While extensive research [1]–[4] has been carried out

that focus on the signature analysis techniques, these stud-
ies make the fundamental assumption that the target drone
is within the range of the said sensors and that the RF
interference at the sensor’s receiver is low enough for the
sensor to reliably detect the presence of an aerial object.
Since the detection performance is fundamentally limited by
the intensity of the drone’s signal at the sensor and the level
of possible RF interference [1] at the sensor, careful system
design is required to ensure sufficient signal-to-interference
(SIR) level, before the signature analysis techniques can
be put into practice. Especially in dense urban areas, with
large number of mobile users, such high SIR levels can be
extremely difficult to achieve. The detection performance
can further suffer in such areas, as the probability of having
a LoS link towards the drone is generally low due to high
buildings. One of the ways to achieve a high SIR and a high
probability of LoS, is by employing a dense and pervasive
network of sensors. While the shorter A2G radio links in a
dense sensor network improve the probability of detection
and false alarm, the dense deployment also improves the
area coverage probability [5].
Although dedicated RF sensor networks for drone detec-

tion can be deployed in a limited stretch within a region of
interest (ROI), it cannot achieve the desired wide-area cover-
age. To this end, we propose the use of the existing terrestrial
RF infrastructures that operate in the same frequency as the
target drone. Drones are expected to widely use the com-
mon cellular network frequencies in the future for command,
control, and payload communications [6]–[10]. Moreover,
given the anticipated high density of the long term evolu-
tion unlicensed (LTE-U) base stations (BSs) in the 5G era,
it is possible to use these resources for passive sensing of
the commercial off the shelf (COTS) drones, that use WiFi
links to communicate with their GCs. Since COTS drones
are widely used across different applications, and both WiFi
devices and LTE-U BSs operate in the unlicensed industrial,
scientific and medical (ISM) radio bands [11], such detection
framework remains applicable to a large group of drones.
In the rest of the paper we do not limit the terrestrial sens-
ing network to a specific technology, and provide a generic
framework that is applicable to drones that may operate in
either the cellular and ISM bands.
Since the legacy terrestrial networks are not primarily

designed for drone detection, we need to account for the
features that are unique to these networks and impact the

signal intensity as well as the interference level. In partic-
ular, the drone’s signal strength and the interference from
the intended users of the sensors depend largely on the spa-
tial locations of the sensors relative to the target drone and
the users. Other factors that may impact the fading of the
signals significantly, are the directionality of the antenna pat-
terns (for example, cellular BSs usually have a tilted antenna
pattern) and the degrees of LoS dominance in the A2G and
the terrestrial channels. Thus the coupling of the 3D antenna
patterns, and the propagation characteristics with the topo-
logical randomness of the network need to be considered
explicitly using tools from stochastic geometry.
Notation: X∼U [a, b] denotes that the scalar random vari-

able X is uniformly distributed between a and b. X∼χ2
2 and

X∼σχ2
2 denote a standard (unit variance) and a scaled (vari-

ance of σ 2) Chi-squared random variable with two degrees
of freedom. X∼χ ′2

2(λnc) and X∼σχ ′2
2(λnc) denote a stan-

dard (unit variance and non-centrality parameter λnc) and a
scaled (variance of σ 2 and non-centrality parameter σλnc)
NonCentral Chi-squared random variable of degree 2. X is

used to denote a complex random variable. X
d→ Y denotes

that the random variable converges to the random variable
Y in distribution. a (mod b) is used to describe the modulo
operation and the result is the remainder of the Euclidean
division a

b .

II. LITERATURE REVIEW
Recently some works have emerged that investigate the
topic of drone detection by cellular networks. Papers such
as [12], [13] discuss application of various machine learn-
ing algorithms such as logistic regression, decision tree and
KNN, where the data is composed of radio measurements
collected from the cellular networks. However, the authors of
these papers only report the detection performance yielded
by the said machine learning algorithms, and do not build
a theoretical framework that can characterize the impact of
the various network and RF parameters, such as the node
density, the drone altitude, and the beam width and the bore-
sight angles of the antenna patterns at the BS receivers, on
the detection performance. In [14], [15] the authors describe
various enabling technologies and algorithms that allow the
5G infrastructure to be leveraged for drone detection. Both
of these papers reply on the use of 5G millimeter wave
(mmWave) BSs, as radars, and thus are not applicable to
studying the detection performance of a passive sensing
scheme. Further, they also lack a theoretical framework for
the analysis of the projected detection performance. In our
work we used tools from stochastic geometry to build such
an analytical framework dedicated to detection of drones by
existing cellular networks.
Most of the related stochastic geometry-based literature

aims to study the coverage probability in the following two
main scenarios, that involve drones: 1) drone-assisted aerial
cellular networks serving ground users; and 2) ground cel-
lular network serving drone users. For example, papers such
as [16]–[18], evaluate the cellular coverage performance of
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TABLE 1. Related work on RF-based detection/communication involving drones.

drone assisted aerial cellular networks, without consider-
ing any realistic A2G channel characteristics and antenna
patterns. While the authors in [19], study the impact of
a mixed LoS/NLoS A2G channel on the performance of
a drone-assisted heterogeneous networks, possible impacts
of 3D antenna patterns were ignored. Some other recent
papers [20], [21] considered dedicated ground BSs serving
a network of drones under practical 3D antenna patterns.
While the cellular coverage performance of the network was
studied in these recent works, passive sensing performance
of drones has not been taken into account. Since the
characterization of the signal and the interference is com-
pletely different in a passive sensing scenario, none of
these existing papers can be directly applied to a non-
dedicated passive sensing network that we consider in
our study.
In our work, we develop a unified analytical framework

which jointly takes into account the impact of the random
network geometry, the mixed LoS/NLoS A2G propagation
characteristics, and the 3D directional antenna patterns on
the detection performance of a non-dedicated RF sensing
network. To the best of our knowledge, such an analytical
framework motivating the use of the existing RF infras-
tructures is not available in the literature. This study is an
extended version of our conference paper [22], where we
investigated the performance of a sensor network with an
isotropic antenna pattern. In the journal version, we incor-
porate a realistic directional antenna pattern, defined by the
International Telecommunication Union (ITU) for a cellular

network [23], that takes both the beam tilt angle and the
HPBW into account. We also consider an A2G channel
model that allows us to differentiate between the detec-
tion performance in suburban and urban environments. Our
analysis reveals several useful network design insights, such
as, the existence of a critical sensor density and a critical
beam tilt angle that optimize the detection coverage. We
also demonstrate how the coverage probability of detection
is impacted by the choice of the probe sensor (i.e., whether
to consider detection by the nearest sensor or the nth nearest
sensor), and how the most favorable choice is dependent
on the sensor density, the drone altitude, the beam tilt, the
HPBW, and the A2G propagation characteristics.
For easier comparison, we present a brief summary of the

literature review section in Table 1. This table includes the
following abbreviations that have not been used earlier in
this manuscript: ‘BPPP’ for binomial Poisson point process,
‘SDR’ for software defined radio, ‘ULA’ for uniform linear
array, ‘Y’ for yes, and ‘N/A’ for not applicable.

III. SYSTEM MODEL
A. NETWORK OVERVIEW
As shown in Fig. 1, we consider a scenario in which a target
drone is flying over a network of ground RF sensors. In the
rest of the paper, we use the term sensor in a generic sense,
to refer to a transceiver that is capable of sensing the band
where the drones also communicate. While the ground sen-
sors are serving their own intended user equipments (UEs),
they aim to detect the target drone in the presence of the
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FIGURE 1. The signal of interest from the drone and the interference at the probe sensor.

uplink transmissions from the UEs. Our assumption is that
the drone transmission is co-channel with the ground sensors
(such as LTE-U BSs) and the respective UE transmissions,
as the drone uses a co-channel RF link (such as a WiFi link
in the case of a COTS drone) for command, control, and
communications with its GC. From the detection point of
view, the active ground UEs therefore act as a network of
interferers, and their uplink signals constitute the network
interference, while the signal of interest (SOI) to be detected
is captured from the target drone.
We assume that the sensors and UEs are deployed on

the horizontal plane at heights of hs and hue following two
independent stationary homogeneous Poisson point processes
(HPPPs) [24], denoted by �B and �u, with the densities
λm−2 and kuλm−2, respectively, where ku>0 represents the
user load of each sensor. Note that any sensor can serve
multiple users in single time-frequency resource block (RB)
depending on the underlying multiuser-detection (MUD)
capability, in which case user load becomes an integer such
that ku≥2, and may be partially loaded which makes ku a
positive fraction (ku≤1). We assume that the probe sensor,
which is tasked with detecting the target drone, is located
at the origin, as depicted in Fig. 2. The distance of the
i-th nearest UE to the probe sensor is denoted by Ri,u such
that Rk,u≤R�,u for k<�. We further assume that each UE is
associated with its nearest sensor, and hence the probability
density function (PDF) of the distance of the intended UE
to the probe sensor (i.e., R1,u) is [25]:

fR1,u(r1,u) = 2πkuλr1,u exp(−kuλπr2
1,u), (1)

which describes the Rayleigh distribution with a scale
parameter σ 2 = 1

πkuλ
.

Considering the tilted directional antenna pattern at the
sensors, we take into account the detection of the target
drone not only at the nearest sensor but also by the farther

FIGURE 2. The problem of drone detection in a Poisson field of sensors and
interferers.

ones. Note that the natural choice would be to consider the
detection at the nearest sensor if the antenna power pattern
was perfectly isotropic [22]. As the antenna power pattern
becomes non-isotropic, some farther sensors can receive a
better-quality SOI. Thus for the purpose of generality, we
consider detection of the target drone by its n-th nearest
sensor, and the PDF of the horizontal distance between the
probe sensor and the ground projection of the 3D location
of the drone (denoted as the random variable Rd) is given
as [25, pp. 41]:

fRd(rd) = 2πn

�(n)
λnr2n−1

d exp
(
−λπr2

d

)
, (2)

which is the n-th nearest neighbor distance of the HPPP, �B.
Note that (2) describes the generalized Gamma distribution
with the scale parameter σ 2 = 1

πλ
.
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B. A2G PROPAGATION CHANNELS
Due to the higher altitude of the drones, the A2G channels
are more likely to have a LoS component as compared to
the terrestrial links. The probability of the A2G link having
a LoS component (i.e., LoS state), is defined as a function
of the horizontal distance rd as follows [26]:

PA
LoS(rd) = 1

1 + a exp
{
−b

[
180
π
tan−1

(
hd−hs
rd

)
− a

]} , (3)

where a and b are constants which depend on the envi-
ronment, hd is the altitude of the target drone, and βd =
tan−1([hd − hs]/rd) is the UAV elevation angle, or equiva-
lently the elevation-angle-of-arrival (AOA) of the respective
LoS link at the sensor. Note that the channel is composed
of only the NLoS links (i.e., NLoS state) with the prob-
ability 1 − PA

LoS(rd). As illustrated by Fig. 3, the NLoS
component is assumed to be composed of Md multipath
components (MPCs), where each path is characterized by
a random amplitude gain αm with unit mean-squared value
(E{αm2} = 1) [27], a random phase φm (φm ∼U [0, 2π)), and
a random AOA βm at the probe sensor (βm ∼U [−π

2 , π
2 ]).

We also assume that {αm}, {βm}, and {φm} are indepen-
dent and identically distributed (iid) random variables with
1 ≤ m ≤ Md [28], [29]. Note that the A2G links can have
MPC contributions scattered by obstructions located both
above and below the ground sensor, and we therefore have:
−π

2 ≤ βm ≤ π
2 .

Depending on the A2G channel state sA being LoS or
NLoS (i.e., sA ∈ {LoS, NLoS}), the large-scale fading in the
said A2G channel is characterized as the combination of free
space path loss (FSPL) and respective additional path loss
(�PL) ηsA , arising from the shadowing and scattering caused
by the environmental obstacles (e.g., buildings, lampposts).
We assume different additional path loss for the LoS and
the NLoS links such that ηNLoS > ηLoS, in general. Thus,
the path loss over the A2G link is given in the dB scale as
follows

PLsA = 20 log(dLoS) + 20 log

(
4π fc

c

)

︸ ︷︷ ︸
FSPL

+ 20 log
(
ηsA

)
︸ ︷︷ ︸
LoS/NLOS �PL

,

(4)

where dLoS =
√
r2
d + (hd − hs)2 is the LoS distance between

the probe sensor and the target drone, and c is the speed
of light. We use (4) for describing the LoS and NLoS
components of received drone signal in (16) and (17).

C. TERRESTRIAL PROPAGATION CHANNELS
In the terrestrial channels between the sensors and UEs,
the probability of having a LoS component is generally
lower as compared to the A2G links, especially over long
propagation distances (e.g., between the probe sensor and
distant interfering UEs—other than the nearest UE). On
the other hand, the LoS probability becomes significant for
short-distance connections (e.g., between the probe sensor

and its intended UE). We therefore describe the terres-
trial channel between the probe sensor and intended UE
as a mixture of LoS and NLoS links (similar to A2G
channels), and assume NLoS-only links for the channels
between the probe sensor and interfering UEs. Adopting the
urban micro-cellular (UMi) street canyon model of the 3rd
Generation Partnership Project (3GPP) [30], we assume that
the intended UE link can either be in LoS state or NLoS
state (sT ∈ {LoS, NLoS}) and the probability of the link
being in the LoS state is given as a function of the hori-
zontal distance between the probe sensor and its intended
UE as

PT
LoS(r1,u) = min

(
18

r1,u
, 1

)(
1 − exp

{
− r1,u

36

})

+ exp
{
− r1,u

36

}
. (5)

We therefore assume that the intended UE has both the
LoS and NLoS links (i.e., mixed LoS/NLoS channel) with
a probability in (5), and has only NLoS links otherwise.
We use (5) for describing the LoS and NLoS compo-
nents of the interfering signals in (15). As illustrated by
Fig. 3, we assume that each NLoS link between each UE
and the probe sensor, is composed of Mu MPCs and that
each of these MPCs are characterized by a random ampli-
tude gain άm with unit mean-squared value (E{ά2

m} = 1),
a random phase φ́m,i (φ́m,i ∼U [0, 2π)), and a random
AOA β́m,i (β́m,i ∼U [−π

2 , 0]). Here, i and m respectively
denote the UE order/index and the MPC index, and for
all values of i, {άm,i}, {β́m,i}, and {φ́m,i} are sequences
of random variables that are i.i.d. in both 1 ≤ m ≤ Mu
and 1 ≤ i < ∞.

Note that significant portion of the MPCs of the terrestrial
links arrive at the ground sensor from below the horizon
due to the ground UEs having height such that hue < hs,
thereby producing AOAs in the range [−π

2 , 0]. Note also
that the AOA of the LoS link for the intended UE is given
as β1,u = −tan−1([hs − hue]/r1,u). We also assume that the
path loss in terrestrial LoS and NLoS links are respectively
expressed by rγL

1,u and rγI
1,u, where γL and γI are the respective

path loss exponents (PLE).

IV. IMPACT OF DIRECTIONAL ANTENNA PATTERNS
A. 3D ANTENNA PATTERN, DETECTION ZONE, AND
INTERFERENCE ZONE
We assume that each UE and the target drone have been
equipped with a single isotropic antenna. The ground sen-
sors, on the other hand, have a 3D antenna pattern that are
mechanically or electrically steered towards a certain eleva-
tion angle in the vertical domain. In this work, we adopt a
directional antenna power pattern which is defined by the
International Telecommunication Union (ITU) in the vertical
domain as follows [23]

G(β) = GP,max − min

[
12

(
β − βtilt

β3dB

)2

,Am

]
, (6)
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FIGURE 3. NLoS propagation in A2G and terrestrial channels.

where β is the elevation angle (of either the ground UEs
or target drone), Am is the side-lobe level (SLL), GP,max is
the maximum directional gain (along the boresight), βtilt is
the beam tilt angle or boresight elevation angle, and β3dB
is the HPBW of the vertical antenna pattern at the probe
sensor. We note that the antenna power pattern in (6) can
be used for many different settings (e.g., 3GPP [30]) with a
proper choice of model parameters.
Focusing on the signal reception through main lobe only,

we realize that the elevation angles (either for the ground
UEs or target drone) in the range of βlb ≤ β ≤ βub yield a
receive antenna gain higher than (GP,max − Am) dB, where

βlb = βtilt −
√

Am
12 β3dB and βub = βtilt +

√
Am
12 β3dB. Thus the

intended ground UE can successfully (i.e., with a moderate
to high receive gain) communicate with the probe sensor
only if it is located at a suitable distance (i.e., all values
of r1,u for which βlb ≤ β1,u ≤ βub) from the probe sen-
sor. We refer to the collection of such nearest UE locations
as the interference zone, as uplink signals received from
other UE locations gets severely diminished due to expe-
riencing the minimum receive gain of −Am dB. Similarly,
the SOI of the target drone can be successfully received
by the probe sensor only when the ground projection of
the drone’s 3D location is inside a so-called detection zone,
where we have βlb ≤ βd ≤ βub. Apart from the beam tilt
angle, the HPBW, and the height of the probe sensor, the
area and location of the detection zone and the interference
zone respectively depend on the altitude of the target drone
and the intended ground UE. As shown in Fig. 4, we note
that both of these zones form circular disks around the probe

sensor, where the inner and outer radius of the interference
zone are given respectively as ru,lb = (hs −hue) cot(βlb) and
ru,ub = (hs −hue) cot(βub), and those for the detection zone
are rd,lb = (hd −hs) cot(βub) and rd,ub = (hd −hs) cot(βlb),
respectively. Please note that, the reason we define the
detection and the interference zone with respect to the
antenna pattern, is that the detection performance is deter-
mined by the composite signal strength only, as opposed
to the level of the signal-to-interference-ratio (SINR) in a
communication scenario. In detection we only care about
sensing the presence of the drone, and sensors are not
required to decode the detected signal, as in the case of
communication.
We define events A and B to describe the conditions

in which the intended UE and target drone are in the
interference zone and the detection zone, respectively. The
probability of these events, i.e., P(A) = P(βlb ≤ β1,u ≤ βub)

and P(B) = P(βlb ≤ βd ≤ βub), are the measures of how
well the mainlobe is aligned towards the intended UE and
the target drone, respectively. Using the respective horizontal
distance distributions in (1) and (2), they are given as:

P(A) =

⎧⎪⎪⎨
⎪⎪⎩

ϕA(βtilt − β3dB)

−ϕA(βtilt + β3dB), βlb ≤ 0, βub ≤ 0
ϕA(βtilt + β3dB), βlb ≤ 0, βub ≥ 0
0, βlb ≥ 0, βub ≥ 0,

(7)

P(B; n) =

⎧
⎪⎪⎨
⎪⎪⎩

0, βlb ≤ 0, βub ≤ 0
ϕB(βtilt + β3dB), βlb ≤ 0, βub ≥ 0
ϕB(βtilt + β3dB)

−ϕB(βtilt − β3dB), βlb ≥ 0, βub ≥ 0,

(8)
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FIGURE 4. Ground interference zone with respect to the dominant interferer for downtilt antenna.

where

ϕA(x) = exp
{
−λπ [(hs − hue) cot(x)]2

}
,

ϕB(x) =
n−1∑
s=0

[
λπ(hd − hs)

2 cot2(x)
]s

s!

× exp
{
−λπ(hd − hs)

2 cot2(x)
}
. (9)

Note that P(B; n) denotes P(B) with the probe sensor
being the n-th nearest sensor for the target drone, and ϕA(x)
and ϕB(x) are defined as in (9).

B. NUMERICAL EXAMPLE
In order to get an insight into the probabilities in (7) and (8),
we depict their values in Fig. 5(a) and Fig. 5(b), respec-
tively, against varying tilt angle βtilt for various choices of
3dB beamwidth β3dB, node density λ, and drone altitude
hd assuming a particular antenna pattern with Am = 20 dB,
GP,max = 17 dBi, ku = 1, and hue = 0. In Fig. 5(b),
under the same configuration, P(B) is plotted for both the
nearest (‘N1’) and the 2nd nearest (‘N2’) sensor. Later in
Section VII-B, we demonstrate that, the impact of the vary-
ing βtilt on the detection performance is mainly governed by
the corresponding changes in P(A) and P(B).
In view of both static and dynamic beamforming tech-

niques, we assume that the mainlobe is steerable across the
entire vertical plane. This allows us to explore the detection

performance across a wider range of beam tilt angles includ-
ing both negative and positive elevation angles, portraying
respectively, a lower and an upper bound on the sensing
performance, that is achievable by existing non-dedicated
RF infrastructures. Moreover, with a rapid growth in the use
of unmanned aerial systems (UASs) across various fields,
the idea of installing RF infrastructures that are capable of
serving both ground and aerial users are being studied heav-
ily, which in turn makes such up-tilted directional antenna
patterns more feasible. In Fig. 5(a) and Fig. 5(b), as the tilt
angle changes from −30◦ to 30◦ and moves from the left to
the right side of the βtilt axis, both ru,lb and ru,ub increase.
This causes the interference zone to move away from the
origin of the 2-D Euclidean plane, sweeping through the
intervals of the intended UE distance, R1,u, that are low and
high in probability density (fR1,u ). Thus in Fig. 5(a) we see
that P(A) keeps increasing as long as the extent of the overlap
between the interference zone and the high probability den-
sity interval of R1,u (narrow neighborhood of the E{R1,u})
increases, increasing the total probability mass (measured
as

∫ ru,ub
ru,lb

fR1,u(r1,u) dr1,u) in the interference zone. However
P(A) starts to drop, as βtilt increases beyond a critical angle
that maximizes the total probability mass.
Similarly in Fig. 5(b), we see that as the beam tilt angle

increases beyond βtilt ≥ −
√

Am
12 β3dB (i.e., βub ≥ 0), the

detection zone moves inward (i.e., both rd,lb and rd,ub
decrease), which in turn increases the overlap between the
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FIGURE 5. Probability of alignment with sensor antenna pattern as a function of the
beam tilt.

detection zone and the high probability density (fRd(rd))
intervals of the horizontal distance between the drone and
the probe sensor, Rd (a narrow neighborhood of E{Rd}). This
causes P(B) and the total probability mass (

∫ rd,ub
rd,lb

fRd(rd) drd)
in the detection zone to increase until a certain critical tilt
angle is reached and the detection zone moves too close to
the origin reducing the total probability mass. Since the val-
ues of both E{R1,u} and E{Rd} decrease with an increase
in the sensor (λ) and the UE (kuλ) density, the high prob-
ability density intervals for both Rd and R1,u move towards
the origin. Thus in Fig. 5(a), we see that, as λ increases
from λ0 to 10λ0 (where λ0 = 10−6 m−2), the tilt angle that
maximizes P(A) moves towards the lower bound of the tilt
angle range. Similarly, in Fig. 5(b), as λ increases, the tilt
angle that maximizes P(B) moves towards the upper bound
of the tilt angle range. Since a higher drone altitude also
causes the elevation angle of the drone to become steeper, it

also results in P(B) being maximized at a tilt angle that is
closer to the upper bound of the tilt angle range. By observ-
ing Fig. 5(a) and by taking derivative of (7) with respect to
βtilt and λ, the tilt angles for which dP(A)

dβtilt
> 0, also yields

dP(A)
dλ > 0, and the tilt angles for which dP(A)

dβtilt
< 0, yields

dP(A)
dλ < 0. Similarly, from Fig. 5(b) and (8) we note that

the tilt angles for which dP(B)
dβtilt

> 0, yields dP(B)
dλ < 0 and

dP(B)
dhd

< 0, whereas the tilt angles for which dP(B)
dβtilt

< 0,

yields dP(B)
dλ > 0 and dP(B)

dhd
> 0.

V. DRONE DETECTION IN RF SENSING NETWORK
In this section, we formulate a binary hypothesis testing
problem that detects the presence of a target drone by sensing
any change in the distribution of the received signal strength
(RSS) due to the presence of an A2G link between the probe
sensor and the target drone. When the target drone is not
present, which is referred to as the null hypothesis H0, the
composite received signal R(t) at the probe sensor is given by

H0 : R(t) = Y(t) + N(t), (10)

where Y(t) is the aggregate interference and N(t) is the
additive white Gaussian noise (AWGN) with a two-sided
power spectral density N0/2. In the presence of the target
drone, the alternative hypothesis H1 is given by

H1 : R(t) = Z(t) + Y(t) + N(t), (11)

where R(t) also involves the SOI Z(t), in addition to Y(t)
and N(t).
The aggregate interference term Y(t) in (10) and (11) is

given as [27]:

Y(t) = Y1(t) +
∞∑
i=2

Yi,NLoS(t), (12)

where Y1(t) is the signal received at the probe sensor from the
intended UE over the mixed LoS/NLoS link, and Yi,NLoS(t)
is the signal received from the i-th nearest UE (regardless of
being the intended or interfering UE) over the NLoS links.
The LoS component of Y1(t) is obtained by applying the
receive antenna gain (according to the antenna pattern at the
probe sensor) and large-scale fading (path loss) to the UE
transmit signal as follows

Y1,LoS(t) =
(

k

R1,u

)γL
2√

2PuG(β1,u)gu(t − τ1)

× cos(2π fct + θ1,u). (13)

Similarly, the NLoS component of the i-th nearest UE, for
i = 1, 2, . . . , is computed after applying sensor antenna gain
and both the small- and large-scale fading to UE transmit
signal, which produces

Yi,NLoS(t) =
Mu∑
m=1

άm,i

(
k

Ri,u

)γI
2
√

2PuG(β́m,i)gu(t − τi)

× cos(2π fct + θi,u + φ́m,i). (14)
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Thus the total received signal for the intended UE is given
by (13) and (14) as follows

Y1(t) =
{
Y1,LoS(t) + Y1,NLoS(t), with PT

LoS(r1,u)

Y1,NLoS(t), with 1 − PT
LoS(r1,u),

(15)

where PT
LoS(r1,u) is the probability of the respective LoS

state given in (5). In the above equations (13) and (14), we
use the following notation: fc is the carrier frequency, c is
the speed of light, k = c

4π fc
, Pu is the transmit power of

the ground UEs, gu(t) is the unit-energy signal waveform
for the UEs, τi is the random delay in transmission of the
i-th nearest UE, and θi,u is the signal phase of the i-th near-
est UE taking values in the range [0, 2π). In this analysis
we do not require the ground UEs to be synchronized and
allow them to transmit independently and asynchronously.
In view of this, we assume {τi} and {θi,u} to be two
sequences of i.i.d random variables with τi ∼ U [0,T] and
θi,u ∼ U [0, 2π).
The SOI received at the probe sensor from the target

drone is similarly described with its LoS and NLoS compo-
nents. We obtain the LoS component by applying the sensor
antenna pattern and large-scale fading to the drone’s transmit
signal as follows

ZLoS(t) = k

dLoS

√
ηLoS

√
2PdG(βd)gd(t − τd)

× cos(2π fct + θd), (16)

while the NLoS component is obtained by applying both the
small- and large-scale fading along with the sensor antenna
pattern as follows

ZNLoS(t) =
Md∑
m=1

αm
k

dLoS

√
ηNLoS

√
2PdG(βm)gd(t − τd)

× cos(2π fct + θd + φm). (17)

As before, the composite SOI is computed by (16)
and (17) as

Z(t) =
{
ZLoS(t) + ZNLoS(t), with PA

LoS(rd)

ZNLoS(t), with 1 − PA
LoS(rd),

(18)

where PA
LoS(rd) is the probability of the respective LoS state

given in (3). The notation used in (16) and (17) is as follows:

k = c
4π fc

, Pd is the transmit power of the drone, gu(t) is the
unit-energy signal waveform for the drone, τd is the random
delay in the transmission of the drone with respect to the
probe sensor, and θd is the signal phase of the drone taking
values in the range [0, 2π). As we do not assume to have any
knowledge of the drone signal waveform at the probe sensor,
we assume that θd ∼U [0, 2π), τd ∼U [0,T]. This enables us
to be inclusive of most existing RF infrastructures. We can
thus project a realistic bound on the detection performance,
by accounting for the respective performance losses, due to
the lack of the said signal information.
We assume that both UE and the drone signals are nar-

rowband, such that fc 
 1
T with T being the symbol duration

at the probe sensor. For the sake of analytical tractability,
we assume the general signal waveforms for the UEs and
the drone to be a unit-energy step function:

u(t) =
{

1√
T
, for 0 ≤ t ≤ T

0, otherwise.
(19)

Lemma 1: The in-phase/quadrature (I/Q) decomposition
of the composite received signal R(t) is represented as R =
Z+ Y + N. The IQ components of the AWGN, NI and NQ
(such that N = NI+NQ) are i.i.d Gaussian random variables,
each distributed as ∼ N (0,N0/2) [31], [32], and the IQ-
decomposition for the aggregate interference is given in (20),
shown at the bottom of the page, where ρi,u = ∫ T

0 gu(t −
τi)gu(t) dt is the cross-correlation between the transmit and
receive waveforms for the i-th nearest UE, and {ρi,u} is
a sequence of i.i.d random variables with ρi,u ∼ U [0, 1].
Similarly, I/Q decomposition of the SOI is given in (21),
shown at the bottom of the page, where η = ηNLoS/ηLoS, and
ρd = ∫ T

0 gd(t − τ)gu(t)dt is the respective cross-correlation
and ρd ∼ U [0, 1].
Proof: See Appendix A.

VI. DETECTION AND COVERAGE PERFORMANCE OF
THE RF SENSING NETWORK
In this section, we evaluate the detection performance of
the sensing network. To this end, we first derive the distri-
bution of the RSS of the composite received signal at the
probe sensor, and then derive the probabilities of false alarm,
detection and coverage.

Y =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑∞
i=1 ρi,u

(
k
Ri,u

)γI
2 ∑Mu

m=1 άm,i

√
PuG(β́m,i)ej(θu,i+φ́m,i)

+ ρ1,u

(
k

R1,u

)γL
2√
PuG(β1,u)ejθ1,u , withPT

LoS(r1,u)

∑∞
i=1 ρi,u

(
k
Ri,u

)γI
2 ∑Mu

m=1 άm,i

√
PuG(β́m,i)ej(θu,i+φ́m,i), with1 − PT

LoS(r1,u)

(20)

Z =

⎧⎪⎨
⎪⎩

kρde
jθd

dLoS

√
ηNLoS

[∑Md
m=1 αm

√
PdG(βm)ejφm + √

η PdG(βd)
]
, withPA

LoS(rd)

kρde
jθd

dLoS

√
ηNLoS

∑Md
m=1 αm

√
PdG(βm)ejφm , with1 − PA

LoS(rd)
(21)
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A. STATISTICAL DISTRIBUTION OF RSS
In order to derive the distribution of the RSS, we first
describe the distribution of the I/Q components of the aggre-
gate interference and the SOI in the following two theorems,
and then present the overall distribution of the received
signal.
Theorem 1: For a sufficiently large number of MPCs over

the NLoS link (i.e., Mu), a given value of the horizontal
distance R1,u, a given value of the UE cross correlation coef-
ficient ρ1,u, a given value of intended UE’s signal phase θ1,u
and a given value of the Stable random variable V (defined
below), the conditional distributions of the I-Q components
(Y = YI + jYQ) of Y are given as follows YI ∼N (μI,Y, σ 2

Y)

and YQ ∼N (μQ,Y, σ 2
Y), where

μI,Y =
⎧⎨
⎩

kρ1,u
√
PuG(β1,u) cos(θ1,u)

R
γL
1,u

, with PT
LoS(r1,u)

0, with 1 − PT
LoS(r1,u),

(22)

and

μQ,Y =
⎧⎨
⎩

kρ1,u
√
PuG(β1,u) sin(θ1,u)

R
γL
1,u

, with PT
LoS(r1,u)

0, with 1 − PT
LoS(r1,u),

(23)

with the variance

σ 2
Y = 4VkγIPu

π(γI−1)

[
kuλC−1

4
γI

2

γI + 2
�

(
γI + 8

2γI

)
h(β3dB)

] γI
2

, (24)

where C 4
γI

is a parameter based on the particular value of

γI, h(β3dB) is the function given as

h(β3dB) = β3dB

(
e0.23GP,max√

0.23π
erf

(√
0.23Am

12

))

− β3dB

(
2

π

√
Am

12
eGP,max−Am

)
+ eGP,max−Am ,

(25)

and V is the random variable following a Stable distribution,
denoted S(αV, βV, γV), with the stability parameter αV = 2

γI
,

the skewness parameter βV = 1, and the scale (dispersion)
parameter γV = cos( π

γI
) [33]. The choice of isotropic antenna

at the probe sensor results in h(β3dB) = 1.
Proof: See Appendix B.
Theorem 2: For a sufficiently large number of MPCs over

the NLoS link (i.e., Md), a given value of the horizontal
distance Rd, a given value of the drone correlation coefficient
ρd, a given value of the random phase θd, and a given value
of the Stable random variable V the conditional distributions
of the I-Q components (Z = ZI + jZQ) of Z are given as
follows ZI ∼N (μI,Z, σ

2
Z ) and ZQ ∼N (μQ,Z, σ

2
Z ), where

μI,Z =
{

kρd
√
PdG(βd) cos(θd)

dLoS

√
ηLoS

, with PA
LoS(rd)

0, with 1 − PA
LoS(rd),

(26)

and

μQ,Z =
{

kρd
√
PdG(βd) sin(θd)

dLoS

√
ηLoS

, with PA
LoS(rd)

0, with 1 − PA
LoS(rd),

(27)

with the variance

σ 2
Z = 2k2ρ2

dPdh(β3dB)

d2
LoSηNLoS

. (28)

Proof: See Appendix C.
Let RI and RQ be the in-phase and the quadrature compo-

nents of the I/Q decomposition of the received signal such
that R = RI + jRQ. The RSS is therefore given in terms of
in-phase and quadrature components as follows:

Rs = R2
I + R2

Q. (29)

Using the distributions of the I/Q decomposition of the
aggregate interference and SOI given in Theorem 1 and
Theorem 2, we characterize the distribution of the RSS
under the hypotheses H0 and H1 defined in (10) and (11),
respectively, in the following theorems.
Theorem 3: For a given value of the horizontal distance

R1,u, a given value of the UE correlation coefficient ρ1,u,
and a given value of the Stable random variable V , the con-
ditional distributions of the RSS under H0 can be described
as a scaled non-central Chi-squared distribution of degree
2 and non-centrality parameter λnc

σ 2
0
, i.e., Rs ∼ σ0 χ ′2

2(
λnc
σ 2

0
),

where

σ 2
0 = σ 2

Y + N0

2
,

λnc =
⎧
⎨
⎩

k2ρ1,u
2PuG(β1,u)

R
γL
1,u

, withPT
LoS(r1,u)

0, with1 − PT
LoS(r1,u),

(30)

and σ 2
Y is given in (24). Note that when λnc = 0 (i.e., along

with the NLoS channel state), the distribution of Rs reduces
to a scaled Chi-squared distribution.
Proof: See Appendix D.
Theorem 4: For a given value of the horizontal intended

UE distance R1,u, the horizontal drone distance Rd, a given
value of the drone correlation coefficient ρd, a given value of
the UE correlation coefficient ρ1,u, and a given value of the
Stable random variable V , the conditional distributions of the
RSS under H1 can be described as a scaled non-central Chi-
squared distribution of degree 2 and non-centrality parameter
λnc
σ 2

1
, i.e., Rs ∼ σ1 χ ′2

2(
λnc
σ 2

1
), where

σ 2
1 = σ 2

Z + σ 2
Y + N0

2
, (31)

and

λnc =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, with (1 − PA
LoS(rd))(1 − PT

LoS(r1,u)),

λ1, with (1 − PA
LoS(rd))PT

LoS(r1,u),

λ2, with (1 − PT
LoS(r1,u))PA

LoS(rd),(√
λ1 + √

λ2
)2

, with PT
LoS(r1,u)PA

LoS(rd),

(32)

where σ 2
Z is given in (28), and

λ1 = k2ρ1,u
2PuG(β1,u)

RγL
1,u

, λ2 = k2ρ2
dPdG(βd)

ηLoSd2
LoS

. (33)

Proof: See Appendix E.
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B. PERFORMANCE EVALUATION
We now investigate the detection performance by deriv-
ing the probability of false alarm, referred to as PFA, the
conditional probability of detection for a given value of
rd, referred to as PD(rd), and the network wide detection
coverage probability referred to as PD,Avg. We decide on
H1 when the RSS measurement exceeds a fixed threshold
γth, and pick H0 otherwise. PFA and PD(rd) can therefore
be derived using the complimentary cumulative distribution
functions (CCDFs) F̄Rs(γth;H0) = Pr(Rs ≥ γth;H0) and
F̄Rs|Rd(γth|rd;H1) = Pr(Rs ≥ γth|rd;H1), respectively.
Theorem 5: The probability of false alarm, PFA, at the

probe sensor for the drone detection problem described in
Section III is given in (34), shown at the bottom of the page
where σ 2

0 and λ1 are given in (30) and (33), respectively,
and QM(·) is the Marcum Q-function [34].
Note that the distribution of the aggregate interference, as

stated by (22), (23), and (24), does not depend on the location
in the stationary HPPP �B [25]. Moreover, the distribution
of the interference is not impacted by the location of the
target drone either. Therefore the probability of false alarm
at all sensor locations in the network �B, for all possible
locations of the target drone, has the same value and it is
represented by (35), shown at the bottom of the page.
Proof: See Appendix D.
On the contrary, the distribution of the RSS, as stated

by (26), (27), and (28), in the presence of a target drone
is dependent on the link distance between the target drone
and the probe sensor. Therefore considering the horizon-
tal distance (rd) between the drone and the sensor to
be a constant, enables us to evaluate the impact of the
interferer density, the drone altitude, and the RF configu-
ration (i.e., the beam tilt and the HPBW) on the detection
probability, PD(rd), regardless of the sensor density. Thus
PD(rd) indicates the detection probability, at the probe sensor
(located at the origin), due to a given set of drone locations,
{(x, y, hd) ∈ R

3:x2 + y2 = rd2}, and is given in the following
theorem.
Theorem 6: The conditional probability of detection,

PD(rd), at the probe sensor that is horizontally rd units away
from the target drone is given in (35), where σ 2

1 and λ2 are

given in (31) and (33), respectively, and λ3 = (
√

λ1+√
λ2)

2.
Since the closed form PDF for the stable random variable V
is not available, the expectation with respect to V , EV [.] is
computed by averaging the respective function of V over a
large number of samples drawn from the given distribution
of V .
Proof: See Appendix E.
In order to evaluate the detection coverage probability

achieved by the sensor network in the ROI, we consider
detection by the nth-nearest sensor, and the distribution of
the random horizontal distance (Rd) between the target drone
and the probe sensor is then given by (2). Following the
notion of single coverage [5], [25], a certain drone location
(x, y, hd) in the ROI is said to be covered if the drone is
successfully detected by at least one sensor in the network,
and the coverage probability is defined as the fraction of
the ROI that at least has single-coverage. Thus the coverage
probability, PD,Avg, achieved by the sensor network, �B, is
given in the following theorem.
Theorem 7: The detection coverage probability, PD,avg,

can hence be obtained by taking expectation of the condi-
tional probability of detection, PD(rd) in (35), with respect
to the random variable Rd, over the all possible values of rd
as follows

PD,avg =
∫ ∞

0

2(πλ)n

�(n)
r2n−1
d exp (−r2

d)PD(rd) drd, (36)

which characterizes the detection performance regardless of
particular location (i.e., a particular value of Rd) of the target
drone in the network.
Proof: See Appendix F.

VII. NUMERICAL ANALYSIS
In this section, we numerically analyze the impact of various
network, propagation and RF parameters on the detection
performance of the proposed detector.

A. OVERVIEW OF KEY EXPRESSIONS
Before we provide our numerical results, in this section we
would like to summarize some of the key expressions derived
in the earlier sections and comment on their significance. In

PFA = EV

[∫ ∞

0

∫ 1

0
2πkuλr1,u exp (−λπr2

1,u)

(
PT

LoS(r1,u)QM

(√
λ1

σ0
2
,

√
γth

σ0
2

)
+ PT

NLoS(r1,u) exp

(
− γth

2σ0
2

))
dρ1,u dr1,u

]

(34)

PD(rd) = EV

[∫ ∞

0

∫ 1

0

∫ 1

0
2πkuλr1,u exp(−λπr2

1,u)

×
(

PT
LoS(r1,u)PA

NLoS(rd)QM

(√
λ1

σ 2
1

,

√
γth

σ 2
1

)
+ PT

NLoS(r1,u)PA
LoS(rd)QM

(√
λ2

σ 2
1

,

√
γth

σ 2
1

)

+ PT
LoS(r1,u)PA

LoS(rd)QM

(√
λ3

σ1
2
,

√
γth

σ1
2

)
+ PT

NLoS(r1,u)PA
NLoS(rd) exp

(
− γth

2σ1
2

))
dρd dρ1,u dr1,u

]
(35)
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FIGURE 6. Single sensor ROCs for varying node densities (hd = 300 m, rd = 923 m, Isotropic).

Section IV, equations (22) through (25) characterize the mean
(μI,Y, μQ,Y) and variance (σ 2

Y) of the I-Q components of the
total interference signal, Y, at the probe BS. Equations (26)
through (28) characterize the mean (μI,Z, μQ,Z) and the vari-
ance (σ 2

Z) of the I-Q components of the drone signal, Z, at
the probe BS. The reason for considering these equations as
crucial, is that the mean and the variance terms are expressed
in terms of the node density (λ), antenna pattern parameters
(βtilt, and β3dB), and the A2G and terrestrial propagation
parameters. Thus, these equations are crucial to understand-
ing how the LoS and NLoS energies in these signals are
dependent on these factors, which in turn decides the distri-
bution of the received signal strength (RSS) (as discussed in
Section V, and represented by equations (30) through (33))
at the BS, and the final performance metrics such as PD
and PFA, which are essentially the complementary cumu-
lative distribution functions (CCDF) of the RSS, under the
alternative and the null hypothesis.
Finally, equations (34)-(36) characterize the immediate

performance metrics of interest, i.e., the conditional detec-
tion probability, PD(rd), the probability of the false alarm,
PFA, and the detection coverage probability, PD,Avg, and thus
they are crucial to gaining understanding of the numerical
results.

B. NUMERICAL RESULTS
In particular for the case of the isotropic antenna pat-
tern, the conditional detection performance is evaluated in
Section VII-C by plotting PD(rd) in (35) against the respec-
tive PFA (i.e., the receiver operating characteristic (ROC)),
whereas the detection coverage performance is depicted
by plotting PD,avg in (36) for a fixed desired value of
PFA = αFA. For the directional antenna pattern, the con-
ditional (see Section VII-D) and the detection coverage
(see Section VII-E) performances are plotted in pairs, i.e.,

(PD(rd),PFA) and (PD,avg,PFA), respectively, as functions
of beam tilt, HPBW, drone altitude, and node density.
We assume a fully-loaded network with ku = 1 in the

interference-limited regime so that the AWGN is negligi-
ble compared to the interference power, i.e., σ 2

Y 
 N0
2 so

that σ 2
0 = σ 2

Y . We further assume Pu = Pd = 20 dBm,
fc = 3.5 GHz, hs = 35 m, hue = 0 m, GP,max = 17 dB,
and Am = 20 dB [23]. The terrestrial channel is identi-
fied with the PLE γI ∈ [2.13, 4.89] for the NLoS links [35]
and γL = 2 for the LoS links. For this work, we consider
suburban and urban settings for the A2G channel which are
characterized by (3) and (4), with the following set of param-
eters: (a, b) = (4.88, 0.429), (ηLoS, ηNLoS) = (0.1, 21) dB
for the suburban setting, and (a, b) = (9.6117, 0.1581),
(ηLoS, ηNLoS) = (1, 20) dB for the urban setting [26].

C. SENSORS WITH ISOTROPIC ANTENNA PATTERNS
Fig. 6(a) and Fig. 6(b) show the ROCs for the isotropic
antenna pattern and two different PLEs where the UE den-
sity λ increases from 10−6 m−2 to 10−4 m−2. Regardless
of the PLEs, the conditional detection performance PD(rd)

for a given drone location (hd = 300 m, βd = 18◦, i.e.,
rd = 923 m) drops for all values of PFA, as the UE density
increases. This is because any increase in λ also increases
the dispersion VγG of the aggregate interference. For a given
λ and PFA, the PD(rd) in a suburban area is higher than that
in an urban area, which is due to the higher probability of
LoS and the lower A2G path loss experienced in a suburban
area. By comparing Fig. 6(a) and Fig. 6(b), we see that for
a fixed PFA and λ, the PD(rd) for γI = 3.5 is significantly
lower than that for γI = 4. This is due to the fact that the
dispersion of the aggregate interference increases as the PLE
γI for the interfering links decreases (γG ∝ λ

γI
2 ). Fig. 7(a)

demonstrates the impact of the drone altitude on the condi-
tional detection performance of the probe sensor for γI = 4.
We observe that for rd = 923 m, as hd increases from 300 m
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FIGURE 7. Impact of h and λ on the detection performance (γI = 4, ’Isotropic’).

to 600 m, PD(rd) drops for all values of PFA. This is due
to the fact that the increased A2G link distance dLoS causes
a drop in the SIR of the SOI.
Next, we use Fig. 7(b) to illustrate the impact of the

node density, λ on the detection coverage performance. For
a given value of PFA, PD,avg changes in a non-monotonic
pattern with respect to λ. When λ increases, the reduced
average A2G link distance and the increased LoS dominance
increase the average SIR of the SOI causing the PD,avg to
increase. However the increased λ also increases the aggre-
gate interference which in turn reduces the PD,avg for a fixed
PFA. Thus we find that there exists a critical node density λc
that optimizes the detection coverage performance. We note
that λc in both suburban and urban environments increase
as the required PFA decreases from 0.0025 to 0.001. We
also observe that the value of λc for a fixed value of PFA
in suburban area is lower than that in an urban area.
For all the plots in Fig. 7(a) and Fig. 7(b) we include the

results obtained by both the theoretical analysis presented
in this paper, and a simulation based investigation as well.
While the curves with the markers represent the theoretical
analysis, the line curves illustrate the results obtained from
the simulation. We note that the theoretical analysis tracks
the simulation results quite closely. Lastly the process of
the simulation is the same as that proposed in papers such
as [36]–[39], where we consider a 1 km×1 km system area,
and randomly drop BSs and UEs at 2D coordinates, where
each coordinate is generated according to a uniform distribu-
tion x ∼ U [−500 m, 500 m], and y ∼ U [−500 m, 500 m],
with total number of the BSs and the UEs in the system area
being λ m−2 × (106 m2), and kuλ m−2 × (106 m2), respec-
tively. We then fix the drone location (xd, yd, hd), such that
r2
d = x2

d + y2
d ≤ (923)2, pick one of the nearest BSs to the

said drone location, and compute the received signal strength
at the chosen BS for the two cases, i.e., with and without
a contribution from the drone signal, and plot the null and

alternative empirical cumulative distributions of the received
signal strength in these two cases to obtain the probability
of detection, PD(rd), and the probability of false alarm, PFA,
respectively. The coverage probability of detection, PD,avg, is
obtained by generating the 2D coordinates of the drone loca-
tion (xd, yd) randomly according to the uniform distributions:
xd ∼ U [−500 m, 500 m], and yd ∼ U [−500 m, 500 m],
computing the probability of detection for each location of
the drone, and then taking the average of the probability
detection for all the drone locations.

D. SENSORS WITH DIRECTIONAL ANTENNA PATTERNS:
CONDITIONAL DETECTION PERFORMANCE
In this section we discuss the impacts of the beam tilt, the
HPWB, and the A2G propagation on PD(rd) and PFA, and
use the key ideas about probability of alignment described
by (7) and (8) in Section IV, to explain the variation in
PD(rd) and PFA with respect to the said parameters. While
the lack of alignment between the drone and the probe sensor
is characterized by P(B) = 0, the receive gain of the LoS SOI
and the LoS interference signal are monotonically increasing
with respect to P(B) and P(A), respectively. Fig. 8(a) and
Fig. 8(b) together depict the impact of the antenna pattern
alignment between the drone and the probe sensor, on the
conditional detection performance. Both figures employ the
same antenna pattern configuration: βtilt ∈ [−30◦, 30◦] and
β3dB ∈ {8◦, 12◦}, but Fig. 8(a) considers a drone elevation
angle (βd = 85◦, hd = 100 m) that remains outside the drone
detection zone (βd ≥ βub) of the probe sensor for all βtilt and
all β3dB. Due to this lack of alignment the LoS drone signal
experiences a very low receive gain of −20 dB for all beam
tilts, leading to very a low SOI and a very poor PD(rd). On
the other hand, Fig. 8(b) demonstrates the improved detection
performance for a drone location (βd = 15◦, hd = 100 m)
that is within the detection zone for all values of β3dB and
a sub-range of βtilt.
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FIGURE 8. PD(rd) and PFA versus βtilt (γI = 4, λ = 10−5m−2, hd = 100 m,
‘directional’).

1) IMPACT OF ANTENNA TILT

Fig. 8(a) shows us that when P(B) = 0, there exist critical
beam tilts, respectively β ′

tilt,PD
and β ′

tilt,PD
, that maximize

PD(rd) and PFA. This is because, as βtilt increases and the
interference zone moves away from the origin, P(A) keeps
increasing until the interference zone moves too far away
beyond the intervals of R1,u where the probability den-
sity fR1,u(r1,u) is high. This in turn increases the respective
receive gain of the LoS interference signal, Y1,L(t). Since
the increase in the receive gain is much stronger than the
increased path loss and the decreased probability of LoS
caused by the outward movement of the interference zone,
in the absence of the drone-sensor alignment, the RSS of the
received signal is mainly governed by P(A). Thus, similar
to P(A) in Fig. 5(a), there exist critical tilt angles each for
PD(rd) and PFA, that maximize the said quantities. Since

P(A) drops to zero beyond βtilt ≥ −
√

Am
12 β3dB and regard-

less of the particular value of βtilt, the LoS interference
signal experiences a constant SLL of −20 dB, PD(rd) and
PFA remains constant beyond the threshold beam tilt angles
β ′′

tilt,PD
and β ′′

tilt,PFA
. Since P(B) increases beyond zero for

FIGURE 9. PD,avg for h = 135 m, as a function of βtilt and λ (β3dB = 12◦ , γI = 4,
‘SU’, ‘3GPP-like’).

βub ≥ 0◦, the receive gain experienced by the LoS SOI and
the respective PD(rd) in Fig. 8(b) improve significantly for

βtilt ≥ βd −
√

Am
12 β3dB.

2) IMPACT OF HPBW

Fig. 8(a) also shows that when P(B) = 0, as β3dB increases,
PD(rd) and PFA for all βtilt increase. This is due to the
fact that as β3dB increases, the power of both the NLoS
drone signal and the NLoS interference signal increase for
all βtilt, increasing both PD(rd) and PFA. Moreover, as β3dB
increases, the critical beam tilts β ′

tilt,PD
and β ′

tilt,PFA
, move

towards the lower bound of the βtilt. This is because, the
interference zone for a wider β3dB sweeps through the high
probability density interval of R1,u at a faster rate with
respect to the βtilt, and achieves the maximum of P(A)

sooner at a more negative tilt angle. Similarly, Fig. 8(b)
illustrates that when P(B) ≥ 0, as β3dB increases from
8◦ to 12◦, the range of βtilt that allows for an improved
PD(rd) gets wider, due to the increase in the width of the
interference zone.
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FIGURE 10. PD,avg for λ = 1.5 × 10−5 m−2, as a function of βtilt and drone altitude
hd (β3dB = 12◦ , γI = 4, ‘SU’, ‘3GPP-like’).

3) IMPACT OF A2G PROPAGATION

Contrary to the common intuition, Fig. 8(a) demonstrates that
when P(B) = 0, PD(rd) in an urban environment is higher
than the PD(rd) in a suburban environment, for all beam tilt
angles. Due to the lack of alignment, the LoS component
of the SOI experiences a very low receive gain, whereas
the NLoS components experience much higher receive gain.
Since the probability of NLoS is higher in an urban environ-
ment as compared to a suburban environment, the average
power of the drone signal and the respective PD(rd) is higher
in an urban environment. Fig. 8(b) shows that the range
of βtilt for which P(B) > 0, the PD(rd) in the suburban
environment becomes higher than the PD(rd) in the urban
environment.

E. SENSORS WITH DIRECTIONAL ANTENNA PATTERNS:
AVERAGE DETECTION PERFORMANCE
In this section we analyze the impact of the antenna radiation
pattern (βtilt and β3dB), the drone height (hd), the network
density (λ), the propagation parameters (‘SU’ vs ‘U’), and the
various choice of the probe sensor on the detection coverage

performance with directional antenna patterns. Please note
that, as opposed to the conditional probability of detection,
in Section VII-D, the coverage probability discussed in this
section, is not dependent on the link distance between the drone
and the sensor, but on the sensor density itself. However due
to space limitation, we only include our analysis of the impact
of βtilt, hd and λ on PD,avg. For the ease of analysis, we divide
the associated interval of βtilt in 3 contiguous sub-intervals,

namely: I1 = [−30◦, β ′
tilt,PFA

), I2 = [β ′
tilt,PFA

,−
√

Am
12 β3dB)

and I3 = (−
√

Am
12 β3dB, 30◦], where β ′

tilt,PFA
is the critical tilt

angle that maximizes the PFA, as mentioned in Fig. 8(a).
In I1, P(B) remains zero and P(A) increases monotonically
with respect to βtilt. In I2, P(A) starts to drop and P(B)

starts to increase. In I3, P(A) drops to its minimum and
remains constant in the rest of the interval, whereas P(B)

keeps increasing with the increasing tilt angle.

1) IMPACT OF NODE DENSITY

As λ varies, both UE and sensor density change. Any varia-
tion in the UE density impacts both the PFA and the PD,Avg
by changing the receive gain and the path loss of the LoS
interference signal, and the variance of the NLoS interference
signal, whereas changes in the sensor density only impacts
the PD,Avg by changing the receive gain and the path loss
experienced by the LoS SoI. However, the changes in the
receive gain with respect to the increased λ can be very
different for different values of the sensor beam tilt.
For example, In Fig. 9(a) and Fig. 9(b), we see that in

the I1 interval, PFA and PD,Avg increase with λ increasing
from 3λ0 to 75λ0. This is because in I1, an increasing λ

leads to higher P(A), higher receive gain, and lower path
loss of the LoS interference signal. All of these factors
together create an increasing pattern in the composite RSS
and PD,Avg with respect to the node density λ. However in
the I2 interval (where dP(A)

dβtilt
< 0 and dP(B)

dβtilt
≥ 0) the PD,avg

can be decreasing or non-monotonic with respect to the λ.
This is because when λ increases, the path loss of the SOI
and the interference signal decrease but the receive gain
of the LoS SOI and LoS interference signal also decrease.
Since in the I2 interval we have: dP(A)

dβtilt
< 0, we also have:

dP(A)
dλ < 0, which leads to decreasing receive gain of the

LoS interference signal with respect to λ. Similarly, due to
having dP(B)

dβtilt
≥ 0 in I2, we also have: dP(B)

dλ < 0, which in
turn causes the receive gain of the LoS SOI to decrease with
an increasing λ. Since in I3 we have: P(A) = 0, P(B) > 0
and dP(B)

dβtilt
< 0, we also have: dP(B)

dλ > 0. Thus as λ increases,
the receive gain of LoS SOI also increases. This combined
with the decreasing pathloss of the SOI and the interference
signal causes the PD,avg to be increasing with respect to the
λ. Thus we realize that for a given βtilt there might exist
a critical node density λc that maximizes PD,avg. As illus-
trated in Fig. 11(a) we see that, as the given βtilt becomes
steeper, the value of the λc also increases.

Comparing the PD,avg and the PFA for a particular node
density (either 3λ0, 15λ0 or 75λ0), across the 3 intervals
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FIGURE 11. Critical λ, and critical hd of PD,avg for ‘NN-1’, and ‘NN-2’ (β3dB = 12◦ , γI = 4, ‘SU’, ‘3GPP-like’).

(I1, I2 and I3) we realize that the optimal detection coverage
performance is attained at a certain critical tilt angle in
I3, where the RSS of the composite signal is maximized,
but the amplitude of the interference signal is minimized
in a probabilistic sense (as P(A) becomes 0 in I3). As the
density increases the critical tilt angle moves towards the
upper bound of the βtilt range.

2) IMPACT OF DRONE ALTITUDE

Regardless of the sensor beam tilt, an increase in the alti-
tude hd causes a drop in the SOI amplitude due to the
increased 3D link distance. It also causes the PA

LoS in (3)
to increase (due to the higher elevation angle, βd), which in
turn increases the average SOI amplitude. Thus we see that
in I1, where P(B) = 0, the PD,avg under suitable parame-
ter configuration may show a non-monotonic pattern with
respect to the altitude (as in Fig. 10(a), and Fig. 10(b), the
PD,avg for hd = 85 m, and hd = 185 m are both smaller
than the PD,avg for hd = 135 m, in the I1 interval).
However, since in I2 we have: P(B) > 0 and dP(B)

dβtilt
> 0,

we also have dP(B)
dhd

< 0, which causes the receive gain of
the SOI to decrease with the increasing hd. This combined
with the increased 3D link distance and path loss creates
a decreasing pattern in the PD,avg with respect to hd in
the I2 interval. Finally, in the I3 interval, where P(B) > 0
and dP(B)

dβtilt
< 0, we also have: dP(B)

dhd
> 0, which means

that the receive gain increases as hd increases. Since the
increase in the hd also increases the pathloss, this results
in a non-monotonic relationship between the PD,avg and the
hd in the I3 interval. Thus we realize that for certain tilt
angles, there exists a critical drone altitude hc, that max-
imizes PD,avg by overcoming the increased pathloss with
the increased receive gain. In Fig. 11(b) we illustrate the
impact of the tilt angle on the critical altitude. We observe

that as the given βtilt increases from 5◦ to 25◦ the value of
hc becomes larger.
Comparing the PD,avg and the PFA for a particular drone

height (either 85 m, 135 m or 185 m), across the 3 intervals
(I1, I2 and I3) we realize that the optimal detection cover-
age performance is attained at a certain critical tilt angle
in I3, that maximizes the PD,avg by maximizing P(B) and
minimizes the PFA by letting P(A) drop to zero. As the
altitude increases the critical tilt angle moves towards the
upper bound of the βtilt range.

3) IMPACT OF CHOOSING THE NTH NEAREST SENSOR

The plots in Fig. 9(a) and Fig. 9(a) along with the plots
in Fig. 10(a) and Fig. 10(b), illustrate that when P(B; 2) >

P(B; 1) and the increased receive gain is higher than the
increased pathloss, the 2nd nearest sensor (denoted as ’N-2’)
yields a higher PD,avg, as compared to the nearest sensor
(denoted as ‘N-1’). Thus both in Fig. 9(a) and Fig. 9(b),
and Fig. 10(a) and Fig. 10(b), at very steep positive angles,
PD,Avg yielded by ‘N-2’ is higher than that yielded by
’N-1’. While for very low node density (λ = 3λ0) and
very low drone altitude (hd = 135 m) ‘N-1’ is preferred
at all βtilt, as λ and hd increase, the threshold beam tilt
beyond which the ‘N-2’ is preferred over the ‘N-1’, becomes
steeper.

VIII. CONCLUSION
In this work we introduce an analytical framework to study
the joint impact of the sensor and the UE densities, A2G
channel characteristics, and 3D antenna patterns, on RF-
based detection of drones by a network of ground RF sensors.
In particular, we derive analytical expressions for the proba-
bilities of detection and false alarm at each individual sensor,
as well as the coverage probability of detection for the entire
sensor network, considering both isotropic and directional
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antenna patterns. Our analysis reveals that there exists a crit-
ical sensor density and critical beam tilt that optimize the
detection coverage. Contrary to the common intuition, we
discover the benefits of using far-flung sensors as opposed
to the nearest sensor, and thus are able to select the best
probe sensor, among all the sensors in the sensing network,
that optimizes the detection coverage probability. Our find-
ings can help in using existing/future terrestrial RF networks
for detecting drones, which in turn can improve the safety
of unmanned aerial traffic and urban air mobility in the
future.

APPENDIX A
BASEBAND SIGNAL REPRESENTATION
The I-Q components of Z = ZI + jZQ are obtained by pro-
jecting the respective random process Z(t) onto a set of
orthonormal basis functions: {fI(t) = √

2gu(t) cos(2π fct),
fQ(t) = −√

2gu(t) sin(2π fct)} [32]. We show the I-Q decom-
position of Z for the LoS case, in (37). Using gu(t) =
gd(t) = u(t) as in (19) and τd ∼ U [0,T] in Section V, we
get ρd = ∫ T

0 u(t)u(t − τd) dt = ∫ T
τd

1
T dt = 1 − τd

T and thus
we get: ρd ∼ U [0, 1]. Similarly we have ρi,u ∼ U [0, 1], for
1 ≤ i < ∞. Following similar algebraic simplifications we
can show that

ZQ =
Md∑
m=1

kρdαm
√
PdG(βm) sin (φm + θd)

dLoS

√
ηNLoS

+ kρd
√
PdG(βd) sin(θd)

dLoS

√
ηLoS

, (37)

YI =
∞∑
i=1

Mu∑
m=1

k
γI
2 αm,iρi,u

Ri,u
γI
2

√
PuG(βm,i) cos(θi,u + φm,i)

+k
γL
2 ρ1,u

√
PuG(β1,u) cos (θ1,u)

(R1,u)
γL
2

, (38)

YQ =
∞∑
i=1

Mu∑
m=1

k
γI
2 αm,iρi,u

Ri,u
γI
2

√
PuG(βm,i) sin(θi,u + φm,i)

+k
γL
2 ρ1,u

√
PuG(β1,u) sin (θ1,u)

(R1,u)
γL
2

. (39)

APPENDIX B
DISTRIBUTION OF AGGREGATE INTERFERENCE
AMPLITUDE
We will consider two cases separately; first the NLoS setting
and then the LoS setting.
Case 1 (sT =NLoS): Using complex random variables Ui,

Xi, Bm,i, we rewrite (20) as:

Y =
∞∑
i=1

Ui
(
Ri,u

) γI
2

, Ui = Ui,I + jUi,Q,

where Ui,n = ρi,uXi,n = ρi,u
∑Md

m=1 Bm,i,n, and, Bm,i =
k

γI
2 άm,i

√
PuG(β́m,i)ej(φ́m,i+θi,u) with n ∈ {I, Q}.

Distribution of Ui,n: Using moment properties of the
respective random variables we can show that for all i and
m, E[Bm,i,Q] = 0, and

E[Bm,i,Q
2] = k

γI
2 2PuE[α2

m,i]E[G(β́m)]

= k
γI
2 2Pu

∫ 0

− π
2

G(β́_m)f_β́_m(β́_m) dβ́

= k
γ _I
2 Pu

h(β_3dB)

2
, (43)

ZI =
M∑
m=1

∫ T

0

[
kαm
dLoS

√
2PdG(βm)√

ηNLoS
gd(t − τd) cos (2π fct + θd + φm) × √

2gu(t) cos(2π fct)

]
dt

+
∫ T

0

[
k

dLoS

√
2PdG(βd)√

ηLoS
gd(t − τd) cos (2π fct + θd) × √

2gu(t) cos (2π fct)

]
dt

=
M∑
m=1

kαm cos (θd + φm)
√
PdG(βm)

dLoS
√

ηnN

∫ T

0
gd(t − τd)gu(t) dt

︸ ︷︷ ︸
=ρd

+k cos (θd)
√
PdG(βd)

dLoS

√
ηLoS

∫ T

0
gd(t − τd)gu(t) dt

︸ ︷︷ ︸
=ρd

YI =
∞∑
i=1

Ui,I
(
Ri,u

) γI
2

+ ρ1,u

(
k

R1,u

)γL
2√
PuG(β1,u) cos(θ1,u)

YQ =
∞∑
i=1

Ui,Q(
Ri,u

) γI
2

+ ρ1,u

(
k

R1,u

)γL
2√
PuG(β1,u) sin(θ1,u) (40)

YI|R1,u, ρ1,u, θ1,u,V ∼ N (μI,Y, σ 2
Y), with μI,Y = kρ1,u

√
PuG(β1,u) cos(θ1,u)

RγL
1,u

(41)

YQ|R1,u, ρ1,u, θ1,u,V ∼ N (μQ,Y, σ 2
Y), with μQ,Y = kρ1,u

√
PuG(β1,u) sin(θ1,u)

RγL
1,u

(42)
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where the expression for h(β3dB) is the same as in (25),
which is not dependent on either m or i. Since {άm,i}, {β́m,i},
and {φ́m,i} are sequences of random variables that are i.i.d in
both m and i, {Bm,i,n} is also a sequence of random variables,
i.i.d in both m and i, for both n ∈ {I, Q}. Now using CLT [31]

we see that Xi,Q = ∑Mu
m=1 Bm,i,Q

d→ N (0, σ 2), as Mu → ∞
where σ 2 = E[B2

m,i,Q] as in (43). Similarly we can show

Xi,I = ∑Mu
m=1 Bm,i,I

d→ N (0, σ 2).
Since {Bm,i,I} and {Bm,i,Q} are two sequences of i.i.d ran-

dom variables in i, we conclude that {Xi,n} is a sequence of
i.i.d Gaussian random variables for with Xi,n ∼ N (0, σ 2) for
all i, and both n ∈ {I, Q}. Similarly we realize that Ui,n is
also a sequence of random variables that are i.i.d in i, since
Ui,n = ρi,uXi,n, and {ρi,u} and {Xi,n} are also sequences of
random variables, i.i.d in i.
Distribution of Yn: Since Ui is a series of i.i.d random

variables and [Ri,u]∞i=1 is defined with respect to a PPP,
YI and YQ become jointly Stable random variables [33],
such that Yn ∼Sc(αY, βY, γY), with αY = 4

γI
, βY = 0, and

γY = πλkuC−1
4
γI

E{|Ui,n| 4
γI }, where

Cx =
{ 2

π
, for x = 1

1
π

sin
(

π
2x

)
�(x), otherwise.

(44)

Now using the moment properties of the Gaussian (Qn) and
the Uniform (ρi,u) random variables, we obtain for both
n ∈ {I, Q}:

E

{
|Ui,n| 4

γI

}
= 1

πγI
kI

4
γI Pu

2
γI

2

γI + 2
�(

1

2
+ 4

γI
)h(β3dB). (45)

Decomposition of Stable Random Variables: Next, using the
decomposition property of Stable random variables [33]
we get Y = √

VG such that G = GI + jGQ is a
complex Gaussian random variable such that for both
n∈ {I,Q}, Gn ∼Nc(0, 2γG), where γG = 2(γY)

γI
2 , and

V ∼ S(αV, βV, γV), with αV = 2
γI
, βV = 1, γV = cos( π

γI
),

and V and G are independent random variables [33].
Therefore, YI|V and YQ|V are i.i.d random variables with
Yn|V ∼ N (0, σy

2), where σy
2 = VγG = 2V(γY)

γI
2 as in (24).

Case 2 (sT = LoS): Using the random variables Ui,I
and Ui,Q as in Case 1 (sT = NLoS), we rewrite (20) as
in (40), shown at the bottom of the previous page. Using
(
∑∞

i=1
Ui,n

(Ri,u)
γI
2

)|V ∼ N (0, σy
2), from Case 1 (sT = NLoS),

the distribution of YI and YQ in (40), are given as in (41)

and (42), shown at the bottom of the previous page,
respectively.

APPENDIX C
DISTRIBUTION OF SOI
Let’s define

Bm = kρdαm
√
PdG(βm) sin (φm + θd)

dLoS

√
ηNLoS

, (47)

where E[Bm|Rd, ρd, θd] = 0. Since {αm}, {φm} and {βm} are
sequences of i.i.d random variables, {Bm|Rd, ρd, θd} is also
a sequence of i.i.d random variables. Thus for a large value
of Md [31], by the application of the Central Limit Theorem
(CLT) we have the following cases.
Case 1 (sA = NLoS):

Zn ∼ N (0, σz
2)

σ 2
z = E[B2

m|Rd, ρd, θd],∀n ∈ {I, Q},
where E[B2

m|Rd, ρd, θd] is computed as in (46), shown at the
bottom of the page.
Case 2 (sA = LoS):

ZQ|Rd, ρd, θd = kρd
√
PdG(βd) sin (θd)

dLoS

√
ηLoS

+
Md∑
m=1

Bm|Rd, ρd, θd
d→ N (μQ,Z, σz

2),

(48)

ZI|Rd, ρd, θd = kρd
√
PdG(βd) cos (θd)

dLoS

√
ηLoS

+
Md∑
m=1

Bm|Rd, ρd, θd
d→ N (μI,Z, σz

2),

(49)

where

μQ,Z = kρd
√
PdG(βd) sin (θd)

dLoS

√
ηLoS

, (50)

μI,Z = kρd
√
PdG(βd) cos (θd)

dLoS

√
ηLoS

. (51)

APPENDIX D
CUMULATIVE CDFS OF RSS WITH NULL DISTRIBUTION
We first derive the conditional distributions under the null
and the alternative hypotheses

F̄Rn|V,R1,u,sT

(
γth|v, r1,u, sT;H0

)
,

E

[
B2
m|Rd, ρd, θd

]
= k2Pdρ2

d

d2
LoSηNLoS

E[α2
m]E[ sin2(φm + θd)]E[G(βm)]

= k2Pdρ2
d

2d2
LoSηNLoS

E[G(βm)] = k2Pdρ2
d

2d2
LoSηNLoS

∫ π
2

− π
2

G(βm)fβm(βm) dβm

= k2Pdρ2
d

2d2
LoSηNLoS

(
e0.23GP,max

π

∫ π
2

− π
2

exp

(
βm − βtilt

β3dB

)2

dβm +
(

1 − 2β3dB

π

√
Am

12

)
e(0.23(GP,max−Am))

)
(46)
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and

F̄Rn|V,R1,u,Rd,sT,sA

(
γth|v, r1,u, rd, sT, sA;H1

)
,

respectively.
Case 1 (sA = NLoS): For this scenario, we have

H0:RI,RQ
|V∼ N (0, σ0

2). We now define a random variable:

X0 = Rs

σ0
2

= RI
2

σ0
2

+ RQ
2

σ0
2

,

where, X0 conditioned on V , is distributed as a Chi-Squared

random variable of degree 2: X0
|V∼ χ2

2 . Thus we obtain the
CCDF of the RSS as:

F̄Rs|V(rs;H0) = P(Rs ≥ rs)

= P(X0 ≥ rs
σ0

2
) = exp

(
− rs

2σ0
2

)
. (52)

Case 2 (sA = LoS): After scaling RI and RQ by σ0
2, we

get X0 = Rs
σ0

2 = RI
2

σ0
2 + RQ

2

σ0
2 , and

H0 :
RI

σ1

|V,R1,u,ρ1,u∼ N
(

μI,Y

σ0
, 1

)
,

RQ

σ1

|V,R1,u,ρ1,u∼ N
(

μQ,Y

σ0
, 1

)
.

Using the values of μI,Y and μQ,Y from (22) and (23) we get:

X1
|V∼ χ ′2

2(a
2 = λ1σ0

2) and a2 = μI,Y
2 + μQ,Y

2 = k2ρ2Pu
2σ0

2R1,u
2 .

The CCDF in terms of Marcum’s Q function is given as [34]:

F̄X1(x1;H1) = Q
(
a = √

λ1, b = √
x1

)

=
∫ ∞

√
x1

exp

{
−a2 + u2

2

}
uI0(au) du, (53)

where I0() represents the Modified Bessel Function of the
first kind, and zero-order:

F̄Rs|V,R1,u,ρ1,u(rs;H0) = Q

(
a =

√
λ1

σ0
, b =

√
rS

σ0

)
. (54)

Taking expectation of (54), with respect to the ran-
dom variables R1,u, V , and ρ1,u using (1) and
ρ1,u ∼ U [0, 1], we obtain the PFA = F̄Rs(rs;H0) =
EV,R1,u,ρ1,u [F̄Rs|V,R1,u,ρ1,u(rs;H0)], which yields the expres-
sion in (34).

APPENDIX E
CUMULATIVE CDFS OF RSS WITH ALTERNATIVE
DISTRIBUTION
Following completely analogous steps as in Appendix D
and using the distributions of Y and Z in Theorem 1 and
Theorem 2, we derive the CCDFs of the RSS in four different
cases as follows.
Case 1 (sA=NLoS, sA = NLoS):

F̄Rs|Rd,V(rs;H1) = exp

(
− rs

2σ1
2

)
.

Case 2 (sA=NLoS, sA=LoS):

F̄Rs|Rd,ρd,V(rs;H1) = Q(a =
√

λ2

σ1
, b =

√
rs

σ1
).

Case 3 (sA=LoS, sA=NLoS):

F̄Rs|Rd,ρ1,u,V(rs;H1) = Q(a =
√

λ1

σ1
, b =

√
rs

σ1
).

Case 4 (sA=LoS, sA=LoS):

F̄Rs|Rd,ρd,ρ1,u,V(rs;H1) = Q(a =
√

λ3

σ1
, b =

√
rs

σ1
),

where

λ3 = λ1 + λ2 + 2
√

λ1λ2 cos(θd − θ1,u).

Since θd ∼U [0, 2π), we have

(θd − θ1,u) (mod 2π)∼U[0, 2π).

Thus, we have:

cos(θd − θ1,u)∼U [−1, 1]

and

λ3∼U
[
(
√

λ1 − √
λ2)

2, (
√

λ1 + √
λ2)

2
]
.

Without loss of generality, we assume that λ3 = (
√

λ1 +√
λ2)

2. Taking expectation of F̄Rs|Rd,ρd,V(rs;H1), with
respect to the random variables Rd, V , and ρd using
ρd ∼ U [0, 1], we obtain the conditional probability of detec-
tion at a sensor that is located at a distance of rd from the
target drone,

PD(rd) = F̄Rs(rs|Rd;H1) = EV,ρd

[
F̄Rs|V,Rd,ρd(rs;H1)

]
,

which yields the expression in (35).

APPENDIX F
DETECTION COVERAGE PROBABILITY
For a target drone at xd = (xd, yd, hd), its ground projection
location is xd = (xd, yd). Let D be the event that the n-
nearest sensor to the target drone is located at the origin
(0, 0) ∈ R

2. Thus we have:

P(D) = P(||xd|| − dr

2
≤ Rn ≤ ||xd|| + dr

2
)

= fRn(||xd||) dr. (55)

Let C be the event that the target drone is detected by the
n-nearest sensor. Thus we have

P(C) = P(Rs(Rn) ≥ γ ). (56)

Let E be the set of all 2D locations in a ring of width dr,
centered around the origin (0, 0), with inner and outer radii
of ||xd||− dr

2 and ||xd||+ dr
2 , such that, E = {x ∈ R

2 : ||xd||−
dr
2 ≤ ||x|| ≤ ||xd||+ dr

2 } . Thus using (55) and (56) we get the
probability that ∀x ∈ E, is detected by the n-nearest sensor
as below
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P(C ∩ D) = P(C|D)P(D)

= P(Rs(||xd||) ≥ γ )fRn(||xd||) dr
= PD(||xd||)fRn(||xd||) dr

=
∫ ||xd||+ dr

2

||xd||− dr
2

PD(rn)fRn(rn) drn.

Similarly, the coverage probability in the entire
ROI is characterized as the probability that ∀x ∈
R

2 is detected by the n-nearest sensor, is given as below
∫ ∞

0
PD(rn)fRn(rn) drn. (57)

Substituting (2), in (57), yields the expression in (36).
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