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ABSTRACT To solve the complex beam alignment issue in non-line-of-sight (NLOS) millimeter wave
communications, this paper presents a deep neural network (DNN) based procedure to predict the angle of
arrival (AOA) and angle of departure (AOD) both in terms of azimuth and elevation, i.e., AAOA/AAOD
and EAOA/EAOD. In order to evaluate the performance of the proposed procedure under practical
assumptions, we employ a trajectory prediction method by considering dynamic window approach (DWA)
to estimate the location information of the user equipment (UE), which is utilized as the input parameter
of the trained DNN to generate the prediction of AAOA/AAOD and EAOA/EAOD. The robustness of the
prediction procedure is analyzed in the presence of prediction errors, which proves that the proposed DNN
is a promising tool to predict AOA and AOD in NLOS scenarios based on the estimated UE location.
Simulation results shows that the prediction errors of the AOA and AOD can be maintained within an
acceptable range of ±2◦.

INDEX TERMS Deep learning, mmWave, NLOS, trajectory prediction, estimation.

I. INTRODUCTION

THEEXPLOSIVE demand in users’ mobile data experi-
ence makes an increasing strain on the network’s use of

the available wireless spectrum. In order to solve this issue,
one of the most important missions for the telecommuni-
cations industry is to explore higher frequency in wireless
communication networks [1]. As such, in the fifth-generation
of wireless communication networks (5G), millimeter wave
(mmWave) frequencies, ranging from 30-300 GHz, are being
explored to overcome the spectrum shortage. With its rich
spectrum resources, mmWave can support high data rate
transmissions, which makes mmWave one of the most
promising technologies in future wireless networks [1]–[5].
However, mmWave also faces some challenges, such as high
propagation loss, resulting in short propagation distances,
and signal blockage caused not only by building materi-
als and foliage, but also human body and high oxygen
absorption [6].
To address the path loss issues of mmWave communi-

cations, one effective solutions is beamforming [7], which
brings plenty of benefits, such as better coverage at a cell’s

edge, improved signal quality, tracking the user equipment
(UE), and allowing cooperation among base stations (BSs).
Although directional beamforming helps compensate for the
significant path loss incurred by mmWave signals, it comes
up with a complex beam alignment issue. More specifically,
it is essential for a BS to know the angle of arrival (AOA)
and the angle of departure (AOD) of its users in order to
determine the beamforming direction.1 A natural approach
to perform beamforming training to improve the alignment
accuracy is to exhaustively search for all possible pairs to
identify the best beam alignment [8]. When there are only
line-of-sight (LOS) channels in the mmWave communication
system, the exhaustive search procedure has a calculation
complexity of exponential growth [9]. With dense base sta-
tion deployment, signals are able to be transmitted through
LOS channel, however, due to the dynamics of the environ-
ment (e.g., blocking because of the UE mobility, and the high
deployment cost of mmWave) the LOS channel might not be

1. Note that the state of the art algorithms typically use precoding vectors
for beamforming, which is essentially a function of the AOA and DOA.
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always available. In this case, the non-light-of-sight (NLOS)
link should be considered to solve the coverage issues, which
can be established when a reflective path exists between the
transmitter and receiver [10], [11].
With NLOS propagation, multiple copies of the transmit-

ted signals arrive at different times at the receiver, each with
a different amplitude [12]. Due to the nature of narrow beams
in mmWave communication, only limited number of angles
can be covered by a beam. In this case, to identify the most
suitable NLOS channel, the BS can search the obstacles
surrounding the UE, such as buildings, and pick up the pos-
sible buildings as the reflector to form the NLOS channel.
However, there could be many reflectors in the urban city
scenario around UEs, leading to high complexity and latency,
especially when UE has a mobility thus discontinuous angle
change is expected due to the blockage. Moreover, these
surfaces may have significantly different reflecting factors,
which could affect the received signal power. To identify
which surface is the best reflector, an efficient way is to
find the AOA and AOD of the strongest received power
beam of the NLOS path [13]. Therefore AOA and AOD
for mmWave beam in NLOS scenario are the key parame-
ters required for determining the suitable NLOS propagation
path for a UE.
However, if current techniques, such as exhaustive beam

search are applied, a significant overhead and a heavy com-
putational burden can be imposed on the system. In order to
solve this issue, Machine learning (ML) [14] is a potential
method, which has received great attention due to its capa-
bility of finding valuable and hidden patterns from huge
unknown datasets, such as in channel information [15]. On
one hand, ML is extremely flexible and accurate in making
predictions. On the other hand, massive data in the commu-
nication system is easy be to obtained. Thus, communication
systems can benefit a lot with plenty of data [16]. Further,
when compared to traditional methods, ML can learn com-
plex relationships between raw input and output data through
a training process [17]. Based on the intrinsic parameters of
the collected data found by ML, predictions can be done
with a trained model. This brings some advantages to ML
over mathematical methods, such as, not relying on a spe-
cific mathematical models, resulting in flexible and adaptable
algorithms, and being able to learn just from data.
It is quite challenging to identify the AOA and AOD of

NLOS channels in wireless networks, mainly due to the user
mobility, since the surrounding environment is constantly
changing. Especially, it is more practical to assume that
the UE location is unknown in such an estimation [18]. In
this case, a UE trajectory prediction algorithm could be a
utilized. By generating the channel information of the whole
NLOS area and training the deep neural network (DNN) with
part of the channel information, we can first predict the
trajectory of the UE to obtain its location information from
the trajectory prediction algorithm (TPA). With the estimated
location information as an input, the trained neural network
is utilized to predict the AOA and AOD of the potentially

best NLOS beam for each position on the UE’s predicted
path.2

In this paper, we create a NLOS simulation model to
generate the datasets, consisting of received power, loca-
tion, and the number of clusters from raw data obtained by
K-means, which is used to train a DNN without UE monility
prediction. This trained DNN is then used to estimate the
AOA and AOD in given positions. After the training, we form
a new dataset, where the position of the UE is unknown to
the trained DNN. In this case, the TPA is applied to predict
the UE and generating the location information. Based on
that, we test the DNN and estimate both the next position as
well as AOA and AOD of NLOS channel. Lastly, a compari-
son in terms of predicting AOA/AOD between convolutional
neural networks (CNN) and our networks is performed. The
main contributions of this paper are summarized as follows.

1) A procedure for predicting the AOA/AOD of the
potentially best NLOS beam based on a DNN for
a 3D mmWave outdoor scenario is proposed. With
the dataset including, received power, location, and
the number of clusters from raw data obtained by
K-means, the trained neural network can predict the
AOA/AOD of NLOS beams in the azimuth and
elevation.

2) In order to make the simulation scenario more prac-
tical, we assume that the location information is
unknown to the trained DNN. In this case, a robot
path plan is utilized to design the TPA for UE to gen-
erate the location information. With the new location
information predicted by TPA as an input of the trained
DNN, AOA and AOD are estimated. Results show that
the trained neural network can predict the AOA/AOD
with very low loss around 0.02%. Moreover, our DNN
algorithm is compared with CNN in the case of train-
ing and predicting AOA and AOD with the dataset
consisting of known location information to prove our
model is more suitable for predicting and estimating
AOA and AOD in NLOS channel.

The rest of this paper is organized as follows. Related
work is discussed in Section II. The system model of
our simulation, including simulation environment design,
DNN structure, data collection, and trajectory prediction are
stated in Section III. The procedure and basic principle of
predicting the AOA/AOD of potentially best NLOS beam
and UE possible trajectory is proposed in Section IV. In
Section V, we discuss and analyze the results and we per-
form the robust check on our system. Conclusion and future
works are summarized in Section VI.

II. RELATED WORK
The channel feasibility of mmWave NLOS outdoor mobile
communication was demonstrated in [18] via an experimen-
tal campaign. They found that although some well-known

2. Note that when we input the predicted UE location information into
the trained DNN, the data is completely unfamiliar for the DNN.
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lossy objects such as the human body have poor penetration,
they can be treated as good reflectors at mmWave frequency.
In [15], the authors proposed an Artificial intelligence (AI)
enabled procedure to predict channel statistical characteris-
tics based on convolutional neural networks (CNN) to obtain
the mapping relationship between the location information
of transmitter and receiver antennas. In [17], a channel con-
dition identification method using a recurrent neural network
structure with a long short-term memory block was proposed.
Specifically, the authors classified NLOS and LOS chan-
nels with ML. An efficient deep learning model to predict
optimal mmWave beam and blockage status was presented
in [19]. Their method can not only predict mmWave beams
and blockages with success probabilities but also predict the
optimal mmWave beams to approach the upper bounds while
requiring no beam training overhead. The authors in [20]
discussed and evaluated typical neural network architectures
that are suitable to the beamformed fingerprint positioning
problem in NLOS positions. Regarding trajectory prediction,
an efficient vehicle trajectory prediction framework based
on a recurrent neural network was proposed in [21]. In
the framework, ML was employed to analyze the tem-
poral behavior and predict the future coordinates of the
surrounding vehicles. On the other hand, the dynamic win-
dow approach to reactive collision avoidance was proposed
in [22]. The authors in [23] provided some use cases of
beam management in a V2X scenario. Among them, the
initial beam alignment, beam tracking, and beam recovery
cases are also the considerable cases in the mmWave beam
management in the urban scenario. A field experiments on
the downlink throughput performance of beam tracking in
small cell BS was presented in [24]. The authors showed
that in NLOS scenario, although the signal quality reduces
due to the reflection, it is still possible for the UE to connect
to the access point through the reflected paths. A practical
experiment was conducted in [25] to prove that a connection
between BS and UE can be maintained in NLOS mobility
scenario, however, the throughput is limited because of low
effective scatterers. Further, authors in [26] employ the rein-
forcement learning method for the beam managementf in
mmWave, which is aim to explore the channel information,
such strongest received power, AOA/AOD, path loss and
etc..

III. SYSTEM MODEL
In this section, we present the channel model based on our
research, specifically the received power and AOA/AOD.
In the system model, we consider that there is a single BS

and a single UE. We utilize the ray tracing software, Wireless
Insite to build the simulation environment. Ray tracing is a
classical deterministic method used or modeling radio prop-
agation. By tracing paths in the simulation environment, the
received power can be obtained as [27]

PR =
NP∑

i=1

Pi, (1)

FIGURE 1. The Wireless InSite spherical coordinate system.

where NP is the number of paths and Pi is the time averaged
power in watts of the ith path. Pi is given as

Pi = λ2

πη0

∣∣E(θ,i)gθ (θi, φi)+ E(φ,i)gφ(θi, φi)
∣∣2
, (2)

where λ is the wavelength, η0 is the impedance of free space,
E(θ,i) and E(φ,i) are θ and φ components of the electric field
of the ith path at the receiver point, respectively, and gθ and
gφ are the direction of arrival of path i from the θ and φ
directions, is given by

gθ (θi, φi) = √(
|Gθ (θi, φi)|ejφθ

)
, (3)

where Gθ is the θ component of the receiving antenna gain,
and ψθ is the relative phase of the θ component of the far
zone electric field.
The way to calculate AOA and AOD in azimuth and ele-

vation angles are related to the antenna in the Wireless Insite
(WI) software [28]. The location, orientation, and polariza-
tion of the antenna are set by the location of the associated
transmitter or receiver and the rotation angles about the X, Y,
and Z axis for each association of the antenna with a trans-
mitter or receiver. The coordinate system used for singular
rotation is shown in Fig. 1.
In this case, the angles θA and φA, with reference to the

spherical coordinate system, give the direction from which
the propagation path arrives at a receiver point. From Fig. 1,
the AOA in azimuth and elevation angles can be obtained as

â = sin(θA) cos(φA)x̂+ sin(θA) cos(φA)ŷ

+ sin(θA) cos(φA)ẑ. (4)

Similarly, the AOD in azimuth and elevation angles can be
obtained as

ĥ = sin(θH) cos(φH)x̂+ sin(θH) cos(φH)ŷ

+ sin(θH) cos(φH)ẑ. (5)
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FIGURE 2. Flowchart showing the procedure for DNN enabled beam tracking in
millimeter wave communications.

Regarding the UE position, the whole considered area
consists of a rectangle, divided into N grids of one meter
squared. We number the position coordinate from the first
position on the lower left corner of the area to the last
position on the top right corner. The UE can move to the
nearest four grids in four different directions (up, down, left,
and right) with the velocity of one meter per second. Further,
it is also considered that the UE is able to avoid obstacles.
In other words, if there is an obstacle in front of the UE,
it has to find another way to go around the obstacles. More
specifically, the UE and obstacles have their own radius.
While UE is moving, for every step the algorithm calculates
the distance between the UE and the nearby obstacle. If the
distance is smaller than the UE’s radius, the algorithm will
find another direction for the UE’s next move, else the UE
will keep moving on the previous direction. The details are
stated in Section IV-C.

IV. DEEP LEARNING BASED BEAM TRACKING
APPROACH
In this section, we present the procedure for the ML based
AOA/AOD prediction based on the analysis of UE trajectory
in NLOS millimeter wave communications. The flow chart
of the procedure is shown in Fig. 2.
With the simulation environment described in Section III,

we obtain the raw network datasets [29], including the
received signal power, AOA, AOD, and actual UE location
information. Further, we process the raw data into the right
data, which is suitable for the training of the neural network.
With the processed data, we train the DNN to predict the

AOA/AOD in azimuth and elevation. The DNN is trained by
70% data with the received power, location information and
the number of clusters from raw data obtained by K-means as
the input. In the following, we present the main procedures
involved in the DNN enabled beam tracking, namely data
processing and database building, AOA/AOD prediction and
the UE trajectory prediction.

FIGURE 3. Simulation Environment (Based on The University of Glasgow campus,
Gilmore Hill, UK).

When training the DNN, apart from AOA and AOD,
other parameters such as received power, real UE location
information, and a cluster by K-means are also considered
as inputs of the DNN. With the trained DNN, we input only
predicted UE locations into it, which is predicted by the UE
trajectory prediction algorithm so that the DNN can predict
the AOA and AOD with the predicted UE locations. To eval-
uate the performance of our AOA and AOD prediction, we
calculate the error between the predicted AOA and AOD
with the real AOA and AOD on different locations.

A. DATA PROCESSING AND DATABASE BUILDING
The simulation environment, which is based on the
University of Glasgow Gilmorehill campus. The ray tracing
software, Wireless InSite (WI), is used to build the sim-
ulation environment. Ray tracing is based on geometrical
optic (GO) and the uniform theory of diffraction (UTD).
The interactions between rays and objects can be classified
as reflection, transmission, scattering, and diffraction. An
area (shaded in blue in Fig. 3) of X × Y meters, was con-
sidered in WI, with N grid positions for the UE to move.
In this simulation scenario, we have one receiver and one
transmitter, with X × Y available positions. We do not con-
sider scattering which is caused by surface roughness, due
to the complexity of the simulation environment.
After collecting the raw network datasets from the simu-

lated environment, we label received power, AOA in azimuth
(AAOA), AOD in azimuth (AAOD), AOA in elevation
(EAOA), AOD in elevation (EAOD), and user location as
features. We divide the whole dataset into training and test
datasets based on the ratio 7:3. After that, we apply K-means
clustering to the raw data, which creates another feature that
improves the DNN training accuracy. K-means clustering is
a method that partitions n observations into k clusters in
which each observation belongs to the cluster with the near-
est mean [30]. The K-means algorithm classifies the raw data
in different classes. Thus, we have metrics containing the dif-
ferent classes divided by the K-means method. In this case,
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FIGURE 4. Basic DNN structure.

we have different features for DNN training: received power,
AOA in azimuth (AAOA), AOD in azimuth (AAOD), AOA
in elevation (EAOA), AOD in elevation (EAOD), and user
location. However, due to the different units among these
features, we first normalize the input data before we input
the data into neural network. By normalization, we compute
the deviation of the data from the mean and we divide it by
the standard deviation. The transformed value of the input
value xnorm after standardization can be expressed as

xnorm = (high− low)× (x− minX)

maxX − minX
, (6)

where high and low are the range of data after scaling.
maxX and minX are the minimum and maximum value of
the attribute X of input dataset [31].

However, we cannot use the transformed data to cal-
culate the error between the real AOA/AOD and the
predicted AOA/AOD. In this case, after AOA/AOD is
predicted with the trained neural network, we apply the
inverse-normalization to transform the data into its real form.

B. AOA/AOD PREDICTION BASED ON DNN
1) DNN DESIGN

Artificial neural network (ANN) is a computing system
which is inspired by biological neural networks [32].
Generally, DNNs are deeper version of ANNs with more
hidden layers to improve its representation or recognition
ability [33]. The basic structure of a DNN is shown in Fig. 4.
The input layer is at the bottom. Each node on the input

layer, shown in the figure refers to the number of inputs
inserted in the DNN. The output layer is at the top, and the
number of nodes stands for the number of outputs coming
out from the DNN. In the middle of the DNN, there are some
hidden layers, which have strong relevance with the design
of DNN. Each neuron on the hidden layer in the network
is actually a non-linear transform. For example, the relu

TABLE 1. Parameter of neural network.

function is a non-linear transform, which can be defined as
f (x) = max(0, x). Relu has some advantages, such as fast
convergence, less required data, and sparse activation, which
are very important for short response time systems like the
wireless communications system [34]. Therefore, the output
of the network z is a cascade of nonlinear transformations
of the input data I, which can be expressed as

z = f (I) = f (L−1)
(
f (L−2)

(
· · ·f (1)(I)

))
, (7)

where L is the number of layers and α are the weights of
neural network.
In the DNN, the weights for the neurons are required to

be optimized while training. Usually, in DNN, the number of
hidden layers, and the number of nodes on hidden layers are
large and thus it causes the DNN to be more complex [35].
However, there is a trade-off between the number of hidden
nodes and the accuracy. In our case, the basic DNN structure
of predicting AAOA and AAOD is shown in Table 1, where
we have considered four hidden layers. The input features in
our DNN are received signal power, location information of
UE, clusters by K-means and AOA/AOD in elevation when
we predict AOA/AOD in azimuth. The number of inputs
we insert in the input layer for training DNN is 3, while
the number of input nodes for each hidden layer are 1028,
512, 256, and 64. The number of outputs coming out from
output layer is 4. The desired output in this DNN is AAOA,
AAOD, EAOA, and EAOD.
The performance of the DNN can be improved by using

some hyper parameters to address challenges such as over-
fitting and learning rate selection. Overfitting results in the
model learning the statistical noise in the training data, and
this causes poor performance when the model is evaluated
on new data. One approach to reduce overfitting is to fit all
possible neural networks on the same dataset and average the
predictions from each model [36]. However, this is not fea-
sible in practice because of the low efficiency [36]. Dropout
is a regularization method that approximates the training of
a large number of neural network neurons with different
architectures in parallel [36]. While training, we randomly
dropout some number of layer outputs with dropout rate
(one of the hyper-parameters) 0.4 for predicting AOA and
AOD in azimuth and elevation. This makes the layer to be
treated-like a layer with a different number of nodes and
connectivity to the prior layer.
Secondly, we add an initializer for the DNN on the input

layer to initialize its weight. The aim of the initializer is to
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prevent layer activation outputs from exploding or vanish-
ing during the course of a forward pass through DNN. If
exploding or vanishing happens, loss gradients will either be
too large or too small to flow backward beneficially, and this
makes the neural network to converge slower. The initializer
we use is Xavier [37], which could maintain the variance
of activation and back-propagated gradients all the way up
or down the layers of the network. Xavier initialization sets
a layer’s weights to values ranging from a random uniform
distribution to

βlayer = ±
√

6√
ni + ni+1

, (8)

where ni is the number of incoming network connections
to the layer, and ni+1 is the number of outgoing network
connections from a given layer.
Thirdly, we also test the performance of DNN predicting

AOA and AOD in azimuth and elevation with different learn-
ing rates. The learning rate is another hyper-parameter in
neural network training, which controls how much change
is made to the model in response to the estimated error each
time the model weights are updated. It has a huge influ-
ence on the speed of the training process. Large learning
rates may lead to a sub-optimal set of weight or an unsta-
ble training process. On the other hand, small learning rates
may result in a long training process or the system could
even get stuck [38]. To find a suitable learning rate in each
stage of training, we apply the adaptive learning rate gra-
dient descent to the DNN. Because each stage adapts the
learning rate, often some configurations are required in each
stage. The specific activation function in hidden layers is
Relu. Further, the activation function of output layer is lin-
ear activation function, which is defined as y = cx. It thus
creates an output signal proportional to the input.
We use Adam optimization algorithm, which has been

used for the classical stochastic gradient descent procedure
to update network weights based on training data [37]. The
Adam optimization algorithm has a number of benefits,
such as low computational complexity, having little memory
requirements, and its high suitability to problems with very
noisy/or sparse gradients [39].

2) AOA AND AOD PREDICTION

The procedure of AOA/AOD prediction is presented in
Algorithm 1. In this scenario, the location of UE is known
and we use the actual UE location as the input when we
train the DNN to predict. Specifically, to predict the AOA
and AOD, we input the features generated with the method
in Section IV-A and standardize all the features in order to
have them on the same scale. Then the DNN is configured
via the method stated in Section IV-B (1) to improve the
performance of our system.
After training the DNN, we input the same features from

a test dataset into the trained neural networks to predict the
AOA/AOD using the actual UE location as input. We cal-
culate the absolute error between the predicted AOA/AOD

Algorithm 1: DNN Enabled AOA and AOD Prediction
Input: Received power, location information, and

clusters by K-means in the training dataset
Output: Errors between real AOA/AOD and predicted

AOA/AOD
initialization;
1. Normalize the input data;
2. Input the data into neural network;
3. Add dropout layer and initializers into neural
network;
4. Train the neural network;
5. Input the location information in testing dataset into
trained neural network;
6. Generate predicted AOA and AOD;
7. Calculate the absolute errors between real
AOA/AOD and predicted AOA/AOD;

and the real values to evaluate the prediction performance.
Further, we generate some errors with truncated normal dis-
tribution which we add to the angle feature input in the
DNN in order to evaluate the performance of our system in
the presence of errors. The reason why we do so is that,
in practice, there might be some errors when generating the
data. If our system retains good performance, it means that
our system is robust enough to measurement errors. The
upper bound and lower bound of truncated normal distribu-
tion range from ±10, ±7, ±5, and ±2 (degree). According
to the experience, the threshold for the mmWave beam signal
is ±7◦. We expect our system to retain a high AOA/AOD
prediction accuracy for a degree of error below ±7◦.

C. UE TRAJECTORY PREDICTION DESIGN
The dynamic window approach (DWA) proposed in [40] is
used here for the reactive collision avoidance for the UE.
DWA is executed with a fixed frequency, and only a set of
velocities can be applied to the UE due to its acceleration and
velocity limits. Among the set of velocities, a reward function
is proposed to select the best velocities to follow [41]. The
approach is directly from the motion dynamics of the UE.
The motion can be obtained as follows

x(tn) = x(t0)+
∫ tn

t0
v(t) · cos θ(t)dt, (9)

y(tn) = y(t0)+
∫ tn

t0
v(t) · sin θ(t)dt, (10)

where x(t) and y(t) are the UE’s coordinate at time t in the
cartesian coordinate system, while the UE’s orientation is
dictated by θ(t) and t0 is the initial time while tn can be
any time when the UE is moving.
The motion of the UE is constrained in a way that the

translational velocity v always leads in the steering direction
θ of the UE, which is called a non-holonomic constraint [42].
In the DWA, the search for commands controlling the UE is
carried out directly in the space of velocities. The dynamics
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of the UE are incorporated into the method by reducing the
search space to those velocities that are reachable under the
dynamic constraints. Due to these constraints, only velocities
which are safe with respect to the obstacles are considered.
Then by substituting the corresponding initial kinematic and
dynamic configuration v(t0), θ(t0), and ω(t0) into (9) and
(10), we obtain

x(tn) = x(t0)+
∫ tn

t0

(
v(t0)+

∫ t

t0

(
v̇
(
t̂
)
dt̂

))

· cos

(
θ(t0)+

∫ t

t0

(
ω(t0)+

∫ (̂t)

t0
ω̇

(
t̃
)
dt̃

)
dt̃

)
dt. (11)

Equation (11) is now in the form that the trajectory of
the UE depends exclusively on its initial dynamic config-
uration at time t0 and its accelerations. However, in our
case, the angular velocity θ is discrete, and θ is in a set
θ ∈ {θ1, θ2, θ3, θ4},∀ 0 ≤ θ ≤ π . The values are evenly
spaced by a θstep, which will create a different number of
directions for a single UE. To take into account the limited
accelerations exertable by the UE, the overall search space
is reduced to the DWA. It contains only the velocities that
can be reached within the next time interval. In this case, t
is the time interval during which accelerations v̇ and ω̇ will
be applied, considering (va, ωa) as the actual velocity of a
given UE, the dynamic window Vd is defined as

Vd = (v, ω)|v ∈ [va − v̇ · t, va + v̇ · t]
∧ω ∈ [ωa − ω̇ · t, ωa + ω̇ · t], (12)

The dynamic window is centered around the actual velocity
and the extensions of it depend on the accelerations that
can be exerted. The alignment of the UE with the target
direction is measured by target heading (v, ω). It is given
by 180 − θ , where θ is the angle of the target relative to the
UE’s heading direction, as shown in Fig. 5.
In order to make the UE trajectory prediction scenario

closer to the simulation environment, we zoom in the sim-
ulation area shown in Fig. 3 and create a new scenario for
trajectory prediction, as shown in Fig. 6.
We assume that a UE (red cross), with the limited radius,

randomly appears at the location indicated by a yellow cross
within the area of interest and that the UE has a destination
point indicated with a blue cross. For every step, the UE
detects the obstacles (black points) in eight different direc-
tions and it calculates the distance between itself and the
nearest obstacle or destination point. The UE finally stops
at the destination point when the distance is smaller than
its radius. Before the UE stops, the DWA will predict the
possible directions on every step of the UE, which is shown
as a green line. When the UE arrives at its destination, its
path in the areas of interest is shown as a red line. The
coordinate on the predicted path will be recorded as the
location information. The whole procedure is based on col-
lision avoidance. We set the destination of the UE in our
scenario, which the UE tries to reach while avoiding the
blockages on its path, such as buildings and trees.

FIGURE 5. Target direction within DWA.

FIGURE 6. UE trajectory prediction.

In this procedure, we generate a total of 30 location
information with a random starting point of the UE and we
inverse the value of location information in the coordinate in
the scale of the campus simulation environment. The AOA
and AOD prediction with UE trajectory prediction is our sec-
ond simulation scenario. Based on trained DNN, we replace
the actual UE location information generated from the cam-
pus simulation environment with the predicted UE location
information and we input it into the trained DNN in order to
predict the AOA/AOD. After that, we do another simulation
to evaluate the performance of our method when the angle
information are with some errors. Similar to the simulation in
Section IV-B, we generate some errors with truncated normal
distribution, in which the upper limit and lower limit range
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TABLE 2. Parameters in simulation environment.

from ±10, ±5, and ±2 degree. We add the errors on the pre-
dicted location information, which we input into the same
trained DNN to evaluate the performance of our method.
Note that ±10 meters are large errors for the prediction. On
the other hand, ±5, and ±2 are allowable errors for trajec-
tory prediction. Although there are such errors, our system
still can make most of UE position access to the BS. This
simulation shows the robustness of our system to prediction
errors. With this simulation, the error tolerance of our system
is proven. Detailed results are presented in the next section.

V. RESULTS AND DISCUSSION
We conduct experiments to evaluate the performance of the
AOA/AOD estimation with deep learning. We first predict the
AOA and AOD with the trained DNN using some of given
UE locations. After that, we assume the UE locations are
unknown, with the AOA and AOD angles in azimuth and ele-
vation being estimated based on the UE trajectory prediction
proposed in Section IV-C. We evaluate the performance of
the predication algorithm in the presence of errors show-
ing its robustness. Secondly, we compare the performance
of our proposed method with another typical ML method –
CNN, in terms of accuracy in the prediction of EAOA and
EAOD. The parameters of the simulation settings are shown
in Table 2.

A. AOA AND AOD PREDICTION WITH PERFECT TESTING
DATA
We start with the AOA and AOD prediction by training
the DNN. In this work, the features used to train the DNN
consists of received power, location information, and clusters
by K-means. The training performance is shown in Fig. 7,
where the loss function is given by the mean square error
(MSE), which is defined as:

MSE = 1

n

n∑

i=1

e2
i , (13)

where ei is the training error by the i-th sample and n is the
total number of samples.
As it can be seen, the loss curve converges after 300

epochs and the testing loss curve fluctuates slightly. The
reason is that when the UE position changes, there is few
changes on AOA and AOD. However, both training loss
and testing loss maintain a very low level (0.02), which is
acceptable for DNN training.

FIGURE 7. Performance of training DNN to predict AOA/AOD.

FIGURE 8. PDF of AOA/AOD predicted error.

Based on the trained DNN, we input features from the test
dataset to predict AOA and AOD, which consists of com-
plete new unseen samples for the trained DNN. We calculate
the absolute error between the predicted and real values and
show the results of the probability density functions (PDF)
of prediction errors. From Fig. 8, the AOA prediction abso-
lute error (blue line) keeps in around ±2◦. We define if
the error is over 7◦, it will be out of connection from BS.
Then we calculate the number of positions in testing dataset,
which are out of connection from BS. There are 40 out of
7034 positions out of connection with BS (the percentage
is about (0.5%)). Further, for AOD prediction absolute error
(red line), we can see that the error percentge is around
7/7034 (0.1%). However, despite these minor variations, the
proposed DNN method is able to achieve accurate predictions
for both AOA and AOD with an error below 7◦.

B. PREDICTION PERFORMANCE WITH IMPERFECT
TESTING DATA
Next, we explore the performance of the proposed DNN
with imperfect testing dataset, which is more related to the
practical scenario. We do this by adding errors into features,
specifically AOA and AOD of the test dataset for AOA and
AOD prediction. The errors follow a truncated normal distri-
bution and the upper and lower bounds are ±10◦, ±7◦, and
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FIGURE 9. Training loss comparison between CNN and DNN.

FIGURE 10. PDF of AOA/AOD predicted error with trajectory prediction.

±2◦. In our experience, if the AOA and AOD prediction
errors are over ±10◦, the UE will be out of connection
with the BS. When the bound is between ±10◦ and ±7◦,
the UE has connection with BS but poor signal quality.
The signal quality will be better with the error reducing.
When the bound is between ±7◦ and ±2◦, the UE will have
the prosperity communication experience with the BS. The
performance of the proposed algorithm under imperfect test-
ing dataset is shown in Table 3, in addition to the case with
no errors. From Table 3, it can be seen that our system can
still maintain a very low prediction error when the added
errors are smaller than the threshold. This clearly shows
the robustness of our system and the advantage of utilizing
machine learning, more specifically DNN, than other meth-
ods. We add some errors into the dataset to make it more
particular. The results show that the predication algorithm
can maintain the accuracy when the added errors are smaller
than ±7◦.
Further, in order to make a comparison with other method,

we also evaluate the performance of a CNN-based prediction
of AOA and AOD. The results are shown in Fig. 9. As it
can be seen, the loss generated by the CNN is much higher
than that of the DNN and even by increasing the number of
epochs, it can be seen that it does not improve. The reason

TABLE 3. Prediction performance in the present of errors.

for this is that architecture of the CNN is not good for
this problem and CNN is more suitable for receiving and
processing pixel data. However, our dataset is consisted of
numeral numbers.

C. AOA/AOD PREDICTION WITH UE TRAJECTORY
PREDICTION
In this simulation, we generate UE locations predicted by
DWA for 30 times with a random starting point, as stated in
Section IV-C. We input the location information as the only
feature into the trained DNN for AOA and AOD prediction.
From Fig. 10, AOA and AOD prediction error with tra-
jectory prediction are located around ±2◦, which maintain
closed level with AOA and AOD predicted error. As men-
tioned in Section IV-C, the dynamic window approach is a
reactive collision avoidance algorithm. The BS could locate
the UE position and be aware of the surrounding environ-
ment, such as buildings, streets, and road. In this case, based
on collision avoidance principle of the UE, the dynamic
window approach can predict the UE’s route from its start-
ing point to its destination. Therefore, the BS generates the
location information of the predicted UE route. And based
on the location information as the input of the DNN, the
trained DNN can predict the AOA/AOD of the UE on each
position of its route. From this experiment, it shows that
our system has the ability to predict the UEs’ AOA and
AOD with totally unknown locations. The reason why the
performance results of AOA/AOD prediction with UE trajec-
tory prediction are better than the performance of only DNN
based method shown in Fig. 8 is that when we input only
location information generated by DWA, the trained DNN
can be more easily focused. The reason behind is that when
training the DNN, the weight of location information account
for the majority. Thus, the accuracy of the prediction results
rises. On the contrary, when we predict AOA and AOD via
DNN without DWA (the performance is shown in Fig. 8), in
addition to the location information, the inputs in the neu-
ral network also include received power and the number of
clusters from raw data obtained by K-means. In this case,
other factors may affect the result more even through the
location information is accurate. Therefore, the prediction
results of Fig. 10 is slightly better than that of Fig. 8.

D. COMPUTATION COMPLEXITY
The comparison of computation complexity between tradi-
tional method such as exhaustive search and our method
is made in this section. The exhaustive search browses all
possible AOA/AOD and chooses the best result. However,
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when we compared the predicted outcome of AOA/AOD
with the particular value to generate the prediction error, the
particular value is already the best received power, which is
as same as the exhaustive search result for each position in
the simulation area. We consider the online deployment part
of our method and searching part of the exhaustive search
method. More specifically, only the prediction procedure for
each position of our method is under consideration rather
that training part and for exhaustive search the channel esti-
mation procedure is ignored. The equation we adapted to
calculate the computation complexity of DNN is:

F =
n∑

i=2

ηi × ηi−1 +
n∑

i=1

ηi, (14)

where η is the number of nodes in each layers and i is the
layer. In this case, according to Table 1 (it can be found
in the Appendix of this letter), we have one input layer
with 1028 nodes, four hidden layers with 512, 256, 128,
128, and 64 nodes, and one output layer with 4 nodes. We
assume that the number of additions and multiplications in
the DNN have the same computation burden in our case.
Therefore, the computation complexity of our method is the
computation between each layers and the computation of
activation function (Relu in our method) in each node, which
is 6.99×105. For the exhaustive search, for each position, we
have to consider both azimuth and elevation angle. When we
calculate the prediction error, the precision is one degree.
Therefore, we have 360 different angles to be considered
for both azimuth and elevation. In this case, based on the
simplest Bubble Sort computation complexity calculation,
the computation complexity for exhaustive search is 1.67 ×
109, which is around 42,000 times larger than our method.

VI. CONCLUSION
A deep learning enabled method to prediction the AOA
and AOD in NLOS channel for mmWave communication
is proposed in this paper. Firstly, we build the simulation
model with NLOS scenario and channel model of AOA/AOD
to generate the dataset for DNN training. We train the neural
network with some channel features, such as received power,
location. Results indicate that the absolute error, calculated
between the real and the predicted are quite low, validat-
ing the effectiveness of the proposed solution. Further, we
add some error with truncated normal distribution in the
beam angle to evaluate the robustness of our system. When
the error is below a given threshold of 7◦, our system still
has good performance. Finally, we predict the UE trajectory
with DWA and generate location input. Further, input it into
the trained DNN to evaluate the performance of trajectory
prediction. The error in this case is close to the original
location information from data generation.
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