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ABSTRACT Cell-free massive MIMO systems consist of many distributed access points with simple
components that jointly serve the users. In millimeter wave bands, only a limited set of predetermined
beams can be supported. In a network that consolidates these technologies, downlink analog beam selection
stands as a challenging task for the network sum-rate maximization. Low-cost digital filters can improve
the network sum-rate further. In this work, we propose low-cost joint designs of analog beam selection and
digital filters. The proposed joint designs achieve significantly higher sum-rates than the disjoint design
benchmark. Supervised machine learning (ML) algorithms can efficiently approximate the input-output
mapping functions of the beam selection decisions of the joint designs with low computational complexities.
Since the training of ML algorithms is performed off-line, we propose a well-constructed joint design
that combines multiple initializations, iterations, and selection features, as well as beam conflict control,
i.e., the same beam cannot be used for multiple users. The numerical results indicate that ML algorithms
can retain 99-100% of the original sum-rate results achieved by the proposed well-constructed designs.

INDEXTERMS Cell-free, millimeter wave, hybrid architecture, analog beamforming, digital beamforming,

beam training.

. INTRODUCTION

ELL-FREE massive MIMO (mMIMO) networks thrive

on the idea of jointly and coherently serving a pro-
portionally small number of users by a large number of
simple multi-antenna access points (APs). Compared to cel-
lular mMIMO networks, cell-free networks can provide a
more uniform service performance for the users in the
network since the antennas are distributed. For example,
the 95%-likely per-user spectral and energy efficiencies of
cell-free networks are five and ten times higher than cellular
networks, respectively [1].

Millimeter wave (mm-wave) communications can achieve
multi-Gbps data rates by exploiting underutilized wide
bandwidths in the mm-wave spectrum. Therefore, the consol-
idation of mm-wave communications and cell-free networks
is a promising direction for the next generation wireless

networks [2]. In particular, the macro-diversity achieved by
having many distributed APs compensate for the spotty cov-
erage that otherwise limits the practical use of mm-wave
spectrum. The hardware complexity of the AP is critical
to reduce the costs of deployment and power consumption
of APs that are deployed in large numbers in the cell-free
network. Thus, low complexity hybrid analog and digital
beamforming designs need to be adopted.

In this work, we propose low-cost joint design algo-
rithms for analog beam selection and digital beamforming in
the downlink transmission of a mm-wave cell-free mMIMO
system consisting of multiple antenna APs and single antenna
users. We assume APs are equipped with uniform linear
arrays (ULAs) and the number of radio frequency (RF)
chains at an AP is equal to the number of transmitted
streams. The analog beam selection process does not rely
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on an external aid, e.g., location information of the users,
but only on the sum-rate metrics of the users. Furthermore,
we incorporate multiple initializations, iterations, and selec-
tion features, as well as beam conflict control (BCC), i.e.,
a selected beam for a user cannot be reselected for another
user. We refer to a joint design with multiple features as
a well-constructed design. The proposed joint design solu-
tions achieve significant network sum-rate gains compared
to the naive disjoint design of analog beam selection, which
is based on the direct link (DL) power metrics of the users,
and digital precoder. The disjoint approach first completes
the analog beam selection and then completes the digi-
tal precoder design. On the other hand, the proposed joint
approach iteratively updates the beam selections and digital
precoder designs until convergence.

Finally, for analog beam selection, we propose machine
learning (ML) algorithms that are trained off-line by the
proposed well-constructed designs. Online beam selection
by an ML algorithm which is succeeded by digital precoder
designs are one-time-only, i.e., no for-loops, and this approach
can mirror our proposed well-constructed designs. The
proposed ML based approach can achieve 99-100% of the
original sum-rate results achieved by the well-constructed
designs.

Il. RELATED WORKS AND CONTRIBUTIONS
Beamforming designs with digital precoders for microwave
communications in cell-free networks are investigated
in [3], [4]. ZF, minimum mean squared error (MMSE),
maximum-ratio transmitter/combiner (MRT/MRC) digital fil-
ters can be preferred in the baseband processing of mm-wave
networks [5]-[7] for their low computational complexities.

In mm-wave networks, proper selections of beams are
achieved by transmitting the candidate beams and measur-
ing their performances by a network metric. This process is
known as beam training. The conventional beam training is
time and power inefficient since it sweeps all beam directions
exhaustively. The hierarchical codebook approach lowers the
search complexity by implementing a tree-structured code-
book design [8]. Nevertheless, the complexity of hierarchical
search is still high [9].

In [10], [11] compressive sensing is implemented to
lower the beam selection complexity. By exploiting the
spatial sparsity of mm-wave channels, beam selection is
achieved implicitly in the reduced-dimensional beamspace
CSI domain. In [12], the computational complexity is
reduced by combining probabilistic framework based sim-
ulated annealing and the 2-D numerical method based
Rosenbrock search procedure. In [13], a new antenna array
that can adjust the gain and phase of each antenna is used
to support multi-stream transmission with fewer number of
RF chains. In [14], two partial beam training strategies are
proposed with reduced computational complexities. In [15],
the computational complexity is reduced by a two-stage
beam training procedure. In [16], location assistance is
proposed to eliminate the need for beam sweeping at the cost

of increased power consumption due to continuous global
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positioning system (GPS) connectivity. In [17], a multi-user
scalable and channel variation robust beam searching method
is proposed. In [18], a branch-and-bound based beam search-
ing algorithm is proposed for a hybrid design with a subarray
architecture.

Ideally, the beam searching complexity should be linear
in the network parameters, i.e., the number of APs, users,
and the number of antennas at APs, to achieve scalability
with the network size. In this work, given a beamform-
ing codebook, we propose two beam searching algorithms,
namely semilinear and linear search algorithms. The search
complexity of the former is exponential with respect to the
number of users but linear with the number of APs whereas
the search complexity of the latter is linear both with the
number of APs and users.

The assignment of the same beam to multiple users results
in beam conflict in mm-wave networks. Beam conflict causes
effective channels to have low-ranks which can significantly
reduce the sum-rate of the network [14]. In this work, we
propose BCC to entirely eliminate the beam conflict in the
network. In cell-free networks, BCC is more challenging
since an assigned beam to a user can be decided to be used
by another AP for the same user as well. On the contrary,
for instance, in interference networks, where a transmitter
sends a different stream to each user, a different beam is
assigned between each AP and a user. Thus, the assigned
beam can be immediately removed from the common code-
book of the network. As a solution to this challenge in
cell-free networks, in this work, we propose to keep a code-
book log for each user which is updated and announced
in the network after each beam assignment. BCC imple-
mentation can also reduce the simulation duration due to
the reduced number of beam combinations. In this work,
we also propose BCC initializations, i.e., random initializa-
tions that satisfy BCC, for the algorithms without the BCC
implementation.

Another major challenge in cell-free networks is that an
AP needs to equip as many RF chains as the number of
users since APs jointly serve all users. However, there can
be opportunities in the varying channel conditions to shut off
RF chains to gain significant power savings at low sum-rate
losses. In this work, we also propose to adaptively shut off
the RF chains that leads to 30% power gain at the cost of
5% sum-rate loss on average.

As the network size grows, even low complexity beam
selection algorithms can be too costly. Next, we propose
fast and efficient supervised ML algorithms which can be
trained by the proposed well-constructed algorithms. In par-
ticular, three ML algorithms motivate us, the support vector
machine (SVM), multi-layer perceptron (MLP), and ran-
dom forest (RFt) algorithms. BCC introduces patterns on
the outputs of the mapping functions in the beam selection
problems. Hence, the labels that are input to ML algorithms
become highly correlated. Classifier chains are proven to
be effective in exploiting the correlations in multi-label ML
problems [19]. Our numerical results indicate that the RFt

algorithm with the classifier chains can retain 99% of the
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original sum-rate results that are achieved by the beam selec-
tion algorithms. This is a sharp contrast to 63% achieved
without the classifier chains.

Since the training of ML algorithms is carried out off-line,
in this work, a well-constructed joint analog beam selection
and digital beamforming algorithm is proposed. In particu-
lar, we propose a joint design with multiple initializations
and iterations. Furthermore, due to BCC, the assignments of
beams to the users in the earlier search segments impinge
the assignments in the later search segments. In addition to
multiple initializations and iterations, we integrate a selec-
tion feature to the proposed joint design as well. Numerical
results indicate that the linear search algorithm with the
selection feature can achieve higher sum-rate at a lower
complexity even than the semilinear algorithm that has no
selection feature.

The rest of the paper is organized as follows. In Section III,
we introduce the system model of mm-wave cell-free
mMIMO networks. In Section IV, the problem formulation
of joint design is introduced. In Section V, the proposed
low complexity beam searching algorithms are introduced,
and the challenge of BCC in cell-free networks is addressed
and a solution is proposed. In Section VI, the solution to
multi-output classification problem under BCC is provided
and ML implementation is outlined. In Section VII, the
numerical results of joint design and ML algorithms are
presented, and finally, the paper is concluded in Section VIIL.

Notations: Throughout the paper, (O and ()~! denote
the conjugate transpose and the inverse operations of a
matrix, respectively. ||.||2 denotes the L, vector norm opera-
tor. CA/(0, x) denotes the complex Gaussian distribution with
zero mean and variance x. E{.} and |.| are the expectation
and absolute value operators, respectively. Finally, ! denotes
the factorial operator.

lll. SYSTEM MODEL

We consider the downlink transmission of a mm-wave
cell-free mMIMO system consisting of L APs and K users.
Each AP has M antennas, while each user has a single
antenna. In contrast to cell-free systems built for sub-6
GHz systems, the number AP antennas can be very large in
mm-wave systems. The channel between AP [ and user k is
hy; € CM, and it is assumed to be frequency-flat. The system
and AP models are shown in Fig. 1.

A. RECEIVED SIGNAL

Consider a hybrid beamforming case where M, is the num-
ber of radio frequency chains at an AP and, in general,
M > Myt > K. The radio frequency (analog) and baseband
(digital) precoders at AP I, VI € £L £ {1, ..., L} are given by
U; € CM*Mit and V) = [vy; ... vgi] € CMixK | respectively.
We assume M = K so the system can generate a differ-
ent signal for each user. The precoding vector uy € CcM,
i.e., the kM column of U, is chosen from a unitary code-
book with B predefined beams U = {u;,...,u,, ..., up}.
The APs collaboratively transmit the unit-power data signals
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FIGURE 1. cCell-free and AP models.

sk, Yk e K2 {1,..., K} to the users. The received signal at
user k during the data transmission phase is given by

L K
PT H~
Ykz,/?Zthluilsk‘f‘nk’ ey

=1 i=1

where @; = Ujvy and g ~ CN(0, 0.2) is the noise at user k,
pt > 0 is the transmit power of an AP. Equal power alloca-
tion is assumed at the APs. The sum-rate performances can
be improved by another fixed but unequal power allocation
solution [20]. Since the main goal of this paper is centered
around joint design solutions with low complexity and effec-
tive beam searching and ML algorithms, the extension in this
direction is omitted for the sake of simplicity.

The received signal (1) can be rewritten as

Yk = Dy + I + ny, (2a)
where
L
Dy = /’% ;hgﬁklsk and (2b)
(2c)

Pt
“Vx Z Z s,
: ]_
J#k
are the desired and interference signals, respectively.
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B. CHANNEL MODEL

The channels are characterized by using the extended
Saleh-Valenzuela geometric channel model with P scatterers
per user [21], [22]. The channel vector is defined by

ME B
hy =,/= > —~La(o)). (3)
d p=14/ oy

where ﬁfl is the channel gain with a random but fixed com-
plex value, a(@,’(’l) is the array response vector for a given
angle of departure (AoD), 95, € [—m, ) is the AoD for the
path p, and oe‘,fl is the path loss given by

of\(dB) = 201log (47f./c) + 10nlog,o(d) + Xy,  (4)

where c, f;, n, d, and X, denote the speed of light (m/s), the
carrier frequency (Hz), the path loss exponent, the distance
(m), and the shadow fading following a normal distribution
with mean O and standard deviation o (dB).

Assuming each AP is equipped with ULA, the element
y, y=1,...,M of the array response vector for AP [ is

given by
)= \/I SO 1j2(d/2) sin(6)) (5)
M

IV. PROBLEM FORMULATION

In this section, the joint design of beam selection and digital
precoder design problem in cell-free networks under BCC
formulated. The beam selection metric affects the complex-
ity of the searching algorithm. In this section, two beam
selection metric options are introduced as well.

a(6y

A. JOINT DESIGN
The rate of user k is given as

Ri = log, (1 + SINRy), (6a)
where
E{IDy|?
SINR; = M
E{IIi*} + o
Z Zﬁkl‘
- K L 2 (60)
B2 ‘Zl:] hZ“jl‘ + o7
J#k
is the signal-to-interference-plus-noise-ratio (SINR) of
user k.

The joint design problem of beam selection and digital
precoder under BCC for sum-rate maximization is given as

ar%ulz;ax r{I\lzf,)}( Z Ry (7a)
s.t. uy € g, Vk e KC,Vie L, (7b)

Wy £ Wy, VKV, j E ke K, VI, Vm e L, (7¢)

IUvull3 = 1,Vk € K, Vi € L. (7d)
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The first constraint (7b) implies that the analog precoders are
chosen from a given codebook. The second constraint (7c)
asserts BCC on the solution, i.e., the same beam cannot be
assigned to multiple users. Note that in cell-free networks, all
APs collaboratively transmit the same data signal to a user.
Therefore, as seen in (7c), APs are allowed to choose the
same beam to the same user. Finally, the last constraint (7d)
asserts that the digital precoder does not provide a power
gain.

B. SELECTION METRICS

A beam selection algorithm that is based on the maximum
received signal power at each user can be achieved distribu-
tively with a low computational complexity and with low
signalling overhead. The selection metric as the received
signal power between AP [ and user k is given by

Ef 1D} = 22 it ®)

However, the sum-rate reflects the trade-off between
strong signal and weak interference which is the essence
of sum-rate maximization problem given in (7) [23], [24].
ML algorithms provide the needed succor for the increased
costs due to using the sum-rate as the beam selection met-
ric. In other words, since the training of ML algorithms is
performed off-line, the increased costs can be tolerated.

V. PROPOSED JOINT DESIGN ALGORITHMS

The beam selection problem is distinctively challenging. In
a cell-free network, there is only one large cell where there
are far more APs than users, and all APs serve all users. An
exhaustive algorithm centrally selects the optimal beams by
evaluating the sum-rates achieved by all stream combinations
between all APs and users, and then by choosing the beam
combination that results in the maximum sum-rate. The com-
plexity of an exhaustive algorithm is BXL. Assuming the time
slot of beam transmission is normalized to 1, the delay of
a beam selection algorithm is equal to its complexity. For
instance, an exhaustive algorithm awaits B time slots to
evaluate all beam combinations and centrally select the best
beam combination. Therefore, as the cell-free network size
grows, an exhaustive algorithm becomes intractable in its
computational complexity and initial access delay.

In this section, we propose two low complexity, thus
low delay, beam selection algorithms, which are coined as
semilinear and linear search algorithms. The search processes
are iterated segment by segment as illustrated in Fig. 2.
While all possible beam combinations are being searched
in a segment, beams in other segments are held fixed. In
the semilinear algorithm, a segment is formed between an
AP and all users. In other words, compared to the cen-
tralized algorithm where the search segment is the whole
network, the searching process is segmented into APs. To
reduce the complexity further, in the linear search algorithm,
the searching process is segmented into APs as well. Hence,
the complexities of semilinear and linear search algorithms
become linear in only L, and in both L and K, respectively.
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FIGURE 2. The search segments of semi-centralized, semilinear and linear search
algorithms. The search segment of centralized, i.e., exhaustive, algorithm covers the
whole network.

A. SEMILINEAR AND SEMICENTRALIZED SEARCHES

In the semilinear search algorithm, the selection process is
proceeded between each AP and all users. After the trans-
missions of BX possible beam combinations from an AP
to all users, the beam combination that achieves the max-
imum sum-rate is selected. Then, the algorithm proceeds
with the selection of the best beam combination from the
next AP to all users. The selection of beams from an AP
to all users is carried out by fixing the beams from all
other APs VI', I' € {1, ..., L}\{l} in the network. The com-
plexity of this algorithm is L(BX), which is linear in the
number of APs.

On the other hand, in the semi-centralized search algo-
rithm, the selection process is proceeded between all APs
and a user. After the transmissions of BY possible beam
combinations from all APs to user k, the beam combination
that achieves the maximum rate at user k is selected. Then,
the algorithm proceeds with the selection of the best beam
combination for the next user. The selection of beams from
all APs to user k is carried out by fixing the beams to other
users VK', k' € {1, ..., K}\{k} in the network. The complex-
ity of this algorithm is K(BL), which is linear in the number
of users.

For the joint design problem (7), semilinear is advan-
tageous over the semi-centralized search algorithm from
two aspects. First of all, as mentioned earlier, in cell-free
networks, L > K. Hence, a search algorithm which is
linear in L is preferable. Secondly, when B < L, the
semi-centralized algorithm can run out of available beams for
other users k" after the first search segment in case each AP
wishes to transmit a different beam to user k. Note that, due
to BCC, for both semilinear and semi-centralized algorithms
B > K must be satisfied.

Next, a linear search algorithm is proposed to achieve a
more fundamental complexity reduction.

VOLUME 2, 2021

B. LINEAR SEARCH

In the linear search algorithm, a pair of one AP and one
user forms a search segment. The selection process is pro-
ceeded pair by pair. The selection of beam from AP [ to
user k is carried out by fixing all other the beams in the
network. In particular, the beams between AP [ to users Vk/,
and the beams between APs VI, ' € {1,...,L}\{l} and
users Vk are fixed. The complexity of this algorithm is LKB,
which is linear in the number of APs, users, and antennas at
each AP.

C. BEAM CONFLICT CONTROL

Searching processes at the segments of the proposed search-
ing algorithms can be executed in parallel or series. The
latter option improves the search quality, but it introduces a
delay. However, due to BCC, parallel search can introduce
even more delays and it can make the search process even
more complex as follows. The beam selection results of the
parallel search segments need to be immediately announced
in the network. The segments that receive the announce-
ments before the start of the search process can update
the codebook log for each user Uy, i.e., remove a code-
word from the codebook of user k, Uy, if that codeword
is assigned to another user k’. If the searching process has
already started, then the result of the process can be waited.
If the result leads a codeword assignment that is already
assigned to another user, then the search process needs to
be restarted after updating Uy. Hence, whether synchronous
or asynchronous parallel search process is applied, the delay
of parallel process can be even more than the serial process
under BCC.

Note that BCC is different in cell-free networks than in
other networks where the same user is not coherently served
by the APs, i.e., APs transmit different data signals to the
same user. In other networks, between each AP and a user,
a different analog beam should be used. In this case, once
a beam is selected, it can be removed from the common
codebook U. In cell-free networks, all APs want to coher-
ently transmit to each user. Therefore, between all APs and
a user, the same analog beam can be used if APs choose
to, but the same beam cannot be used for another user. In
this case, once a beam is selected, it should not be removed
from the codebook in case another AP wants to use it for
the same user. This means that a codebook log for each user
U must be updated and announced after each decision in
the network. This makes BCC a more challenging task in
cell-free networks.

However, under BCC, the number of beam combinations
is reduced from LBX to LB! /(B — K)! for the linear search
algorithm. Hence, without BCC, it is more costly to try
all combinations as B and K increase. As demonstrated
numerically in Section VII, the algorithms with and with-
out BCC, and the algorithms with BCC initialization result
in interesting trade-offs between the network sum-rate and
simulation duration.
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D. DIGITAL PRECODERS
In this work, we utilize ZF digital precoders in the baseband
process of APs. At AP [, ZF precoder is given as

-1
VA& — gl (HIH;” ) : (9a)
where
hll-IlUl
H=| -- (9b)
hf(IZUz

is the effective channel from AP [ to all users.

The MMSE precoder can be preferred in the lower signal-
to-noise ratio (SNR) regime where it can achieve higher
sum-rate results than the ZF precoder. Furthermore, when
BCC is not used, H; can be a low-rank matrix. Thus, MMSE
precoder can be used instead of ZF precoder since it can
support the low-rank issue to some extent. However, BCC
is worthwhile since the sum-rate results without BCC are
lower as demonstrated by numerical results in Section VII.
The MMSE precoder at AP [ is given as

VMMSE _ i (’%HIH,H +071x) g (10)
where I is the identity matrix of size K x K.

The digital precoders in (9) and (10) require local base-
band CSI, i.e., the effective channel vectors from AP [ to
all users, heff = hflU,, Vk € K. Here, ()7 e CM, where
()7 is the transpose operator. Note that the channel hy; € CY
cannot be directly estimated due to the constraint in the num-
ber of RF chains, M < M, in general [25]. Different analog
beamforming vectors result in different effective channels.
Therefore, as widely proposed in the literature and stan-
dards, after the beam selections are concluded, the effective
channels are estimated to design the digital precoders in the
final stages of the hybrid designs [5]-[7], [14], [23]. We
refer this approach as a disjoint design. On the other hand,
as detailed in the next section, our proposed joint designs
require the effective channel estimation and digital precoder
design at AP [ each time AP / tests a beam. Similar to
multiple initializations, iterations, and selection features, the
mentioned requirement can be impractical in fast varying
channel conditions. However, as detailed in Section VI and
numerically demonstrated in Section VII, ML algorithms
can overcome these impractical challenges. By training the
ML algorithms off-line with our proposed well-constructed
designs to do the beam selection, online execution of the
ML algorithms for the beam selection followed by a dig-
ital precoder design mimics the proposed well-constructed
designs and can achieve nearly the same sum-rate results at
significantly lower computational complexities.

E. PSEUDOCODES

The pseudocodes of the proposed semilinear and linear
search algorithms are given in Algorithms 1-3. The common
lines of the proposed algorithms are given in Algorithm 1. At
step 9 of Algorithm 1, either the semilinear or linear search
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Algorithm 1 Pseudocodes of the Proposed Semilinear-1I-
Rate and Linear-1I-Rate Algorithms

I REAN =0 o
2: for i = 1 : Initializations do
3: Random initializations of analog precoders ugl eU, Vk,vi

u, # ug,j, V1, Vj, Yk, VK, k # k' (with BCC)
4 ug=ul), Vk VI
5: UMb (for the semilinear search algorithm)
6: U =U, Yk (for the linear search algorithm)
7: for s = 1 : Iterations do
8

for/=1:Ldo
9: Choose semilinear or linear search algorithm
10: end for
I Ram
12: if Rsugnt> Rgum then
13: Ulp =U7, VI (for the semilinear search algorithm)
14: uZ}m = uZl’ Vk, VI (for the linear search algorithm)
15: RIAX — R im
16: end if
17: end for
18: end for

Algorithm 2 The Proposed semilinear Search Algorithm
I: forc=1:Cdo
2 U; = ggomb
3 V;

4 Rsum(¢)

5: end for
6
7
8
9

: [ ~, ¢*] = maxvec[Rgum (1) . .. Rsum(c) . . . Reum (C)]
L UF = Ucomb
l =c*
: Update U°™mP (with BCC)
: Update C (with BCC)

Algorithm 3 The Proposed Linear Search Algorithm

for k=1:K do
for b=1: By do

1:

2

3 Uy =,

4: A7

5 Rsum (b)

6: end for

7 [ ~, b*] = maxvec[Rsum(1) ... Reum () . . . Reum (B ]
8: uy; = Uy

9: Up <~ Up\ up VK, k' # k (with BCC)
10:  Update By, YK/, k' # k (with BCC)

11: end for

in Algorithm 2 or 3 is chosen, respectively. In Algorithm 4,
the pseudocode of the proposed algorithm for the prioritiza-
tion of search segments is given. For brevity, based on the
proposed joint design of beam selection and digital precoder,
the algorithms that apply multiple initializations and itera-
tions are denoted by II in Algorithm 1 and the algorithm
that applies the selection method as well is denoted by IIS
in Algorithm 4. Algorithms that use the DL power in (8) and
the sum-rate as the beam selection metrics are noted by DL
and rate, respectively. The pseudocodes of algorithms that

VOLUME 2, 2021



‘IEEES IEEE Open Journal of the
Comdoc communications Society

Algorithm 4 Pseudocode of the Proposed Linear-IIS-Rate

Algorithm
I: RMX =
2: for i = 1 : Initializations do
3: Random initializations of analog precoders ugl eU, Yk, Vi
u, # u,?,j, Y1, Vj, Yk, VK, k # k' (with BCC)
4: U, =U, vk
5: Lyec=1:L
6: forj=1:L do
7: uy =/ ugl, Vk, Vi
8: RO =0
9: for s = 1 : Iterations do
10: for [ € Lyec do
11: Apply linear search algorithm
12: end for
13: Same lines 11-16 in Algorithm 1
14: end forl
15: if R > Rgﬁ%‘ then
16: uzft = uzft s Yk, Vi
17: ROaX — Rgiax
18: end if
19: Lyec = circshift(Lyec)
20: end for
21: end for

use DL metric are same as in Algorithms 1-4 after replac-
ing the sum-rate metrics, Ryym = Zf: 1 Ri with the sum-DL
metrics, DLgym 2 Y1 SN | E{|Dul?}.

The proposed algorithms are well-constructed to train ML
algorithms in the sense that they are consolidated from joint
design of analog and digital beam precoders (lines 2-3 for
the semilinear search in Algorithm 2 and lines 3-4 for the
linear search in Algorithm 3), multiple random initializations
of analog precoders (the for-loops at step 2 in Algorithms 1
and 4), multiple iterations of the joint design (the for-loops
at steps 7 and 9 in Algorithms 1 and 4, respectively), and
finally, the selection of the prioritized search segment to
assign the beams first than the other segments (the for-loop
at step 6 in Algorithm 4).

As explained earlier, a codebook log is updated and
announced at each user for BCC implementation in the
cell-free network. As seen at steps 6 and 4 of Algorithms 1
and 4, respectively, the codebook log at each user Uj
is initialized by copying the codebook U. On the other
hand, for the semilinear search algorithm, a single codebook
log, U™ is tracked for simplicity as seen at step 5 of
Algorithm 1. U™ js the matrix set of beam combinations
under BCC

gcomb A Hgiomb’”.’U_Ccomb,.“’g%omb}’ (11)
where initially, C=BB-1)...B—K+1) and
Ueomb ¢ CMxK s given as

Qﬁomb = [uic(l) . ll,'C(K)]. (12)

Here, i.(k) is the ¢ beam index combination for user k
such that i.(k) # i.(K'),Vk, VK, k £k .
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In Algorithm 2, the for-loop at step 1 of the semilinear
search algorithm tests the combinations from AP [/ to all
users. At step 2, U_CC"mb is the ¢ combination for the
precoding matrix with the available codeword combinations
at the columns to be tested as given in the equations (11)
and (12). At step the 6, maxvec operator returns the index of
the maximum vector element. When the index combination
that yields the maximum sum-rate is obtained at step 6, i.e.,
E?mb, U™ js updated at step 8 as follows

yeomb o geomb \ geom e | (k) = io(K'), Yk, VK k £ K.
(13)

Assume K = 2, B = 3, and no beam assignment is realized
yet. Then the total number of beam combinations to be tested
under BCC is 6, i.e., C = 6. Hence, the matrix set of beam
combinations is initially given as

ueomt = {[w], [uyus], [uyu, ], [wous], [uzy, . [usu, ]}

Assume ¢* = 4, hence Qﬁ?mb = [u,u3]. At step 8, the matrix
set of beam combinations is updated as follows

U™ = {[wyus], [w,u,], [wus]}.

Finally, at step 9, C = 3 update is performed.

For the linear search algorithm, similar steps are executed
except that in a search segment, the beam combinations
between an AP and a user are tested each time as seen in
the for-loops at steps 1 and 2 of Algorithm 3. At step 2 of
Algorithm 3, By, Vk € K, are initially equal to B. However,
due to BCC, as codebooks are removed from users’ codebook
logs, the number of possible beam selections for user k is
updated at step 10. At step 9, the selected codeword {uj;} is
removed from the codebook logs of all others users k', Uy,
for BCC. Hence, when the codeword combinations for the
other users k' are being tested next time, the already assigned
beam for user k does not exist in Uy, V&', k' # k as an option
to be tested. Although the BCC implementations are achieved
in a single line at steps 8 and 9 of Algorithms 2 and 3,
respectively, their coding implementations are significantly
challenging [26].

At step 7 of Algorithm 4, the analog precoders are reset
back to the random initializations that were determined at
step 3. The order of searching process is determined by
the Lyec vector that is initialized at step 5 and updated at
step 19 with a circular shift. For instance, during the first
iteration of the for-loop at step 6, the search segment-1, i.e.,
AP 1, does the assignment first since Lyec = [1,2,...,L].
Whereas, during the second iteration of the for-loop, the
search segment-2, i.e., AP 2, does the assignment first, since
Lyec = [2,..., L, 1]. When the loop at step 6 is finalized,
the priority is given to the search segment /, i.e., AP [, with
the highest sum-rate. To improve the sum-rate further at
an increased cost, each segment can have a priority order.
For simplicity, in this work, only one search segment is
prioritized, e.g., if the search segment-2 is prioritized then

1653



YETIS et al.: JOINT ANALOG BEAM SELECTION AND DIGITAL BEAMFORMING IN MM-WAVE CELL-FREE MASSIVE MIMO SYSTEMS

Algorithm 5 Pseudocode of the Benchmark Disjoint Linear-
DL Algorithm

1: Random initializations of analog precoders u% eU, vk, vi
u% # ug,j, VI, Vj, Yk, VK, k # k' (with BCC)
U =U, Yk
Ly =Y, Yk, VI
for /=1:Ldo
for k=1:K do
for b=1: By do

U =4,

DLsum(b)
9: end for
10: [~, b*)=maxvec[DLsum(1) ... DLgum(b) . . . DLgum (By)]
11: up; = Uy
12: Uy <~ U\ wpe , YK K’ # k (with BCC)
13: Update By, VK', k' # k (with BCC)
14: end for
15: end for
16: V;, Vi

A

the search segments 3, ..., L, and, finally, 1 are executed in
the written order.

As supported by the extensive numerical analyses in
Section VII, the sum-rates and complexities of the proposed
algorithms are given as follows: linear-IIS-rate (Algorithm 4)
> semilinear-II-rate (Algorithms 1 and 2) > linear-II-rate
(Algorithms 1 and 3) > linear-II-DL. (Algorithms 1 and 3
with DL metrics instead).

At an increased cost, a semilinear search option can be
added to the step 11 in Algorithm 3 as well, i.e., a semilinear-
[IS-rate algorithm. It can be clearly interpolated from the
numerical results in Section VII that the semilinear-IIS-rate
can achieve the highest sum-rate with an increased simulation
duration. The selection feature can be more advantageous
in asymmetric networks, i.e., the channels between APs
and users are not uniformly distributed, than in symmetric
networks. However, the user fairness needs to be carefully
addressed [27].

To the best of our knowledge, in the literature and stan-
dards including IEEE 802.11ad and IEEE 802.15.3c, the
beam training solutions do not consider the joint design
of analog beam selection and digital precoder. Hence, our
proposed solutions are benchmarked with the disjoint design
given in Algorithm 5. As seen at step 16, the digital pre-
coders are designed after the selections of analog beams are
finalized. In contrast, in our proposed solutions, the digital
precoders are designed at each iteration of the analog beam
search process as seen at steps 3 and 4 of Algorithms 2
and 3, respectively.

Finally, the algorithms without BCC implementation can
be obtained by inactivating the steps 8 and 9 in Algorithms 2
and 3, respectively, and also by inactivating the condition
that the random initializations must satisfy BCC in the ini-
tialization steps 3, 3, and 1 of Algorithms 1, 4, and 5,
respectively.

1654

VI. SUPERVISED MACHINE LEARNING ALGORITHMS
Among supervised ML algorithms, SVM, MLP, and RFt
are prevalent algorithms. These algorithms are powerful,
flexible, and swift with regards to their good accuracies,
many hyperparameters, and light computational complexi-
ties, respectively.

In this section, we discuss multi-output classification and
the effect of BCC on it, and provide Scikit implementation
details.

A. MULTI-OUTPUT CLASSIFICATION
Single-output classification methods select one class at a
time. On the other hand, multi-output classification meth-
ods select multiple classes at once. In the literature, the
latter method is also referred as multi-label multi-class
classification method, or shortly, multi-label classification
method.

Between an AP and all users, there are BX beam options,
i.e., the number of classes is BX. The final decision vector
at AP [ in base-B notation can be given as

by = [buby ... by ... bx—ubki],

where b;; € {0,1,...,B—1}. For instance, consider a
network with B=3 and K =2. There are BK=9
classes. In base-2 notation, these classes are labeled
as 00,01,02,...,22. Hence, beam selection becomes a
K = 2-label B = 3-class classification problem.

The naive approach to solve multi-output classification
problems is to build a decision model for each output.
Hence, the problem is divided into K single-output clas-
sification problems. In the literature, the naive approach of
treating each output independently from other outputs and
solving a classification problem for each output is known
as binary relevance. The disadvantage of this approach is
that the correlations between the outputs, i.e., users, are
neglected.

To accommodate the correlation between the labels, clas-
sifiers can be chained. In this approach, the first classifier
is trained by the training data only and the label decisions
of the first classifier are noted. Then, for the second clas-
sifier, the training data and the label decision of the first
classifier are used as inputs. This is iterated until the last
classifier, i.e., the last output is trained based on the training
data and also, the label decisions of the previous classifiers.
Clearly, classifier chains can exploit the correlation between
the labels to some extent.

As outlined in [19], [28], binary relevance, classifier
chains, and label power-set are known as problem transfor-
mation methods. Problem transformation methods transform
the multi-label problem into several single-label prob-
lems and apply a single-label algorithm. On the other
hand, algorithm adaptation methods, such as multi-label
k-nearest neighbor (ML-kNN), AdaBoost, and RFt, extend
the single-label solutions to multi-label solutions. Random
forests can perform multi-label classification [29]. In other
words, it can classify all outputs at once. At each leaf, all

(14)
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outputs are stored rather than only a single output. Then,
the impurity metric, e.g., Gini, at a split is evaluated by
averaging the impurities of the outputs at that split [30,
1.10.3 Multi-output problems]. Since the splits are optimized
by considering all outputs, RFt can exploit the correlation
between the outputs to some extent as well. In addition, a
single model is generated by considering all labels. This sig-
nificantly reduces the computational complexity compared to
the naive approach of generating a model for each of the
outputs as mentioned earlier.

Due to BCC, the decision vectors b; (14) at the APs
become correlated. In other words, the classification outputs
of the solution to the problem (7) follows a pattern. For
instance, when B = K, the decision vectors at APs are equal,
b, =by, VI, VI', [ #1'. In this case, the overall decision
output follows a fully repetitive pattern

b=1[bi...bl=1[b1...bg...bx...b1...bg...bx]l, (15)

where the subindex [ is omitted since the decisions at user
k are equal at all APs.

As illustrated by extensive numerical results in
Section VII, RFt with the classifier chains can effectively
exploit the correlated outputs occurred due to BCC. Since the
outputs follow a full pattern when B = K, RFt with the clas-
sifier chains can achieve the original, i.e., 100%, sum-rate
that is achieved by the beam selection algorithms. When
B > K, it is observed that RFt with the classifier chains can
achieve 99% of the original sum-rate in contrast to 63%
when the classifier chains are not utilized with RFt.

BCC has a significant affect on the minimum number
of beam search options depending on the network archi-
tecture. As seen in (15), the minimum number of beams
in a cell-free network, Bmin, is K. In contrast, for an
interference network, Bmin = LK. Hence, BCC can be ben-
eficial in cell-free networks to reduce the beam search time.
Moreover, if a DFT codebook is used, where M = B, the
minimum number of transmit antennas is also significantly
low.

Finally, as mentioned earlier, BCC creates highly corre-
lated outputs in cell-free networks compared to the other
networks such as interference networks. Assume a network
with L = 2, K = 4. For cell-free and interference networks,
Bmin = 4 and Bnin = 8, respectively. Then, the overall
decision outputs for cell-free and interference networks are
given as

ber=[01230123]
bn=1[01234567],

(16a)
(16b)

respectively. As clearly seen in (16), the output labels of
interference network are completely random. Whereas the
output labels of cell-free network follow a full repetitive
pattern, hence, they are significantly correlated. As demon-
strated in Section VII, RFt with classifier chains is the key
approach to exploit the correlated outputs to retain 99-100%
of the original sum-rate results achieved by the proposed
well-constructed designs.
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FIGURE 3. Off-line training and online testing of ML algorithms.

B. IMPLICIT JOINT DESIGN WITH MULTIPLE FEATURES
Off-line training and online testing of ML algorithms are
achieved as follows. For each of the training and testing
instances, 2LK path loss and AoD values between the APs
and users are input as feature vectors. For off-line training,
LK beam indexes between APs and users are used as output
labels. The beam indexes can be determined by any of the
joint design algorithms proposed in Section V. Then, ML
algorithms efficiently approximate the input-output mapping
functions of the beam selection algorithms by using the fea-
ture vectors and output labels. For online ML testing, the
trained ML algorithms are executed to determine the output
labels, i.e., the beam indexes, by using the approximate map-
ping functions. At this stage, as detailed in Section V-D, the
effective channels are estimated so that a digital precoder, (9)
or (10) is designed in the last step. The approach of beam
selection by an ML algorithm and then designing a dig-
ital precoder is implicitly a well-constructed design since
the ML algorithm is trained by a well-constructed design.
As illustrated in Figure 3, both off-line training and online
testing of ML algorithms are executed one-time, i.e., there
are no for-loops. Moreover, the need of our proposed joint
designs for frequent effective channel estimations, as detailed
in Section V-D, are resolved by ML algorithms. For simplic-
ity, in Figure 3(a), one channel training instance is displayed,
hence the input-output table has a single row.

C. SCIKIT IMPLEMENTATION

For the implementations of SVM, MLP, and RFt algo-
rithms, Scikit library [30] is used. These algorithms can
be queried in [30] by the following method names:
LinearSVC and SVC (both belong to the sklearn.svm mod-
ule), MLPClassifier (belongs to the sklearn.neural_network
module), and RandomForestClassifier (belongs to the
sklearn.ensemble module). To access other classification
methods under these modules, the module names can be
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TABLE 1. Some abbreviations and notations used in the figures.

(Corresponding figures)
LxKyMz A network with L = = APs, K = y users,

and M = z antennas

Algorithm with number of initializations and iterations
are set to « and y, respectively

The simulation durations in

(minutes:seconds) and (hours:minutes), respectively

init = x, iter = y

(mm:ss) and (hh:mm)

(Figs. 4 and 5)

A-B-C

A: Semilinear / linear /
disjoint linear

Semilinear search algorithm (Section V-A) /
linear search algorithm (Section V-B) / Naive disjoint
linear design. All other algorithms are joint designs.

B: I/ 1IS Multiple initializations and iterations /
multiple initializations, iterations, and selection
C: Rate / DL Selection based on the rate metric - equation (6) /
based on the direct link metric - equation (8)
(Fig. 6)

w/ or w/o BCC Algorithm with or without beam conflict control

process presented in Section V-C

w/ BCC init Algorithm with only beam conflict control
initializations, i.e., no beam conflict control process

(Fig. 7)

A-B-C

A: Linear, B: II
C: Naive / Smart

Explained earlier in the table
The number of RF chains are naively fixed to a number /
are adaptively set to a number based on a threshold value

queried as well, e.g., sklearn.ensemble can be searched in
the top-right box [30].

As detailed earlier, multi-output classification problems
can be solved by the naive binary relevance or the efficient
classifier chain approach. These approaches can be queried
by the wrappers MultiOutputClassifier and ClassifierChain,
respectively, in [30].

For hyperparameter optimization, GridSearchCV from
Dask-ML library [31] is used for speeding the grid search
method. In addition to Dask-ML library, there are many other
alternative open source projects available online.

For the interested reader, the complete codes of the
proposed beam selection algorithms are shared online [26].

VII. NUMERICAL RESULTS

In this section, we present the sum-rate and simulation run
time results for the proposed beam selection and ML algo-
rithms. For all simulations, the channel center frequency
and bandwidth are 28 GHz and 850 MHz, respectively,
the path loss exponent is 2, the log-normal shadowing is
4 dB, the AP transmit power is 43 dBm, power spectral
density of the white Gaussian noise is —174 dBm/Hz, and
finally, the distances between APs and users vary uniformly
between 95-105 m. The channel gains ﬂfl are drawn i.i.d.
from CAN(0, 1) distribution, and the number of paths, P, is
assumed to be 1.

DFT codebook can be adopted as a hardware friendly
orthogonal beamforming solution. The element with the
row and column indexes (x,y), x,y =1,..., M of the DFT
codebook matrix is given by

1 2rE=De=1)
- M
D(x, y) N ,
where j = ~/—1. Note that the codeword b, i.e., u, in the
codebook U which is defined in Section III-A, is the pth
column of D in (17).

a7
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FIGURE 4. Sum-rates and simulation durations of the beam selection algorithms
with different numbers of initializations and iterations for the L3K2M8 network.

In Section VII-B, the numerical results of ML algorithms
with classifier chains are presented. In all cases tested, there
is a sharp contrast in performance, as mentioned earlier, when
classifier chains are not and are used, i.e., 63% and 99%,
respectively. Since including without classifier chain results
in the figures can negatively impact the readability of the
figures while not bringing beneficial information, they are
not presented. The input features for ML algorithms are the
sets of path losses and AoD. To avoid bias in the training
phase, features are normalized before ML algorithms are
executed.

For all simulations, a desktop computer with Intel i7-8700
CPU, 3.20 GHz, 16 GB RAM, with 6 cores and 12 logical
processors is used. For the beam selection and ML simu-
lations, MATLAB and Python with Scikit library are used,
respectively. For the grid search tasks in ML algorithms,
Dask-ML library is used.

In Table 1, some abbreviations and notations used in the
figures presented in the following sections are briefed.

A. BEAM SELECTION RESULTS

In Fig. 4, the sum-rate results and the simulation run times
of the beam selection algorithms proposed in Section V are
presented for different number of initializations and itera-
tions. In the network, it is assumed there are L =3 APs,
K =2 users, and M = 8 antennas at each AP which can be
denoted by LLKKMM, i.e., the network parameter notations
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FIGURE 5. Sum-rates and simulation durations of beam selection algorithms with
different numbers of initializations and iterations for the L3K2M16 network.

are followed by their numerical values. The number of Monte
Carlo (MC) runs, i.e., the number of channel realizations, to
obtain the numerical results is 5x 103 (5k).

Clearly, as the beam selection algorithm becomes
well-constructed from a disjoint design to the complete
proposed solution in Algorithm 1, the sum-rate results
improve. However, as seen in Fig. 4(b), the improvement is
marginal against the cost of increased simulation durations.
As the numbers of initializations and iterations increase, the
linear-II-rate algorithm achieves almost the same results as
the linear-IIS-rate algorithm with a tolerable increase in the
simulation duration. Whereas the sum-rate gap to the disjoint
linear-DL algorithm increases and the linear-II-DL algorithm
still lags behind significantly.

In Fig. 5, the same beam selection algorithms are tested
in the L3K2M16 network for again 5k MC runs. As the
network size grows, the high complexity of semilinear algo-
rithm starts to take effect and its simulation duration becomes
the longest among all selection algorithms. linear-IIS-rate
without multiple initializations and iterations achieves a
remarkable sum-rate result with a tolerable increase in the
simulation duration. This result stresses the influence of the
first search segment, i.e., AP, to do the beam selection on
the sum-rate.

In Fig. 6, the effects of BCC on the sum-rate and
simulation duration are demonstrated over varying number
of initializations, iterations and antennas. For all results,
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linear-II-rate beam selection algorithm is used. Algorithms
with and without the BCC implementation are denoted by w/
BCC and w/o BCC, respectively. For the algorithms without
the BCC implementation, we also propose random initial-
izations that satisfy BCC, i.e., BCC initializations. These
algorithms are denoted by w/ BCC Init. In particular, for
the w/ BCC Init algorithms, BCC condition for random ini-
tialization is active in step 3 of Algorithm 1 but the BCC
implementation in step 9 of Algorithm 3 is inactive. As
detailed next, our numerical results indicate that the three
options, i.e., the algorithms with and without the BCC imple-
mentation, and with the BCC initializations, offer trade-offs
between the sum-rates and simulation durations.

When there is no BCC implementation, the effective chan-
nel in (9b) can be low-rank and can have a high, i.e.,
poor, channel condition number. As seen in Fig. 6(a), ZF
with the BCC implementation achieves a higher sum-rate
than ZF without the BCC implementation until a point,
i.e., init = 2, iter = 2, M = 8. BCC implementation reduces
the number of beam combinations. Thus, BCC implemen-
tation is significantly effective in reducing the simulation
duration as seen in Fig. 6(b). However, BCC implementa-
tion also reduces the search space so that the point that
achieves a higher sum-rate can be excluded in the search
process. In Fig. 6(a), from left to right along the x-axis,
the search space increases since the numbers of random
initializations and antennas are increasing. Hence, the advan-
tage of larger search space becomes dominant over the
advantages of higher channel rank and lower channel condi-
tion number. MMSE without the BCC implementation can
achieve a higher sum-rate than MMSE with the BCC imple-
mentation due to the increased search space and increased
robustness of MMSE against the low-rank and high chan-
nel condition number of the effective channel. In all cases,
with the BCC implementation option reduces the simula-
tion duration compared to without the BCC implementation
option. The reduction is more distinct when multiple random
initializations are used.

For the algorithms without the BCC implementation,
BCC initialization can increase the sum-rate and decrease
the simulation duration in general. In essence, this option
benefits from the improved rank and channel condition
number due to the BCC initialization, and also from
increased search space although BCC implementation is
not applied during the search processes. For both ZF
and MMSE filters, BCC initialization achieves the highest
sum-rates. For init = 1, iter = 1, M = 8, BCC initialization
significantly improves the sum-rates of the ZF and MMSE
filters, respectively, compared to ZF and MMSE without the
BCC implementation. The simulation duration of ZF with
BCC initialization is lower compared to ZF without BCC.
However, for the MMSE filter, BCC initialization slightly
increases the simulation duration compared to MMSE with-
out BCC. For the MMSE filter, it is observed that although
BCC initialization increases the rank, it also increases
the channel condition number. Increased channel condition

1657



YETIS et al.: JOINT ANALOG BEAM SELECTION AND DIGITAL BEAMFORMING IN MM-WAVE CELL-FREE MASSIVE MIMO SYSTEMS

I
=

w
=

M ZF w/o BCC
M ZF w/ BCC init
ZF w/ BCC
B MMSE w/o BCC
B MMSE w/ BCC init

Sum-rate (b/s/Hz)
Noow
QR

N
s

Ll h IJ

MMSE w/ BCC
init = 1 iter=1 init= 2 iter=2 init= 1 iter=1 init= 2 iter=2
Number of initializations, iterations, and antennas
(a) Sum-rates.

28:48
B 25:12
£ W ZF w/o BCC

21:36
% W ZF w/ BCC init
£ 18:00
£ ZF w/ BCC
E 14:24 B MMSE w/o BCC
=]
éw"‘g I . . B MMISE w/ BCC init
= 07:12
[ MMSE w/ BCC

b=

03:36
init= 1|ter 1 init= 2 \ter 2 init= 1 \ter 1 init= ther 2

Number of |n|t|a||zat|ons, iterations, and antennas

(b) Simulation durations.
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deterministically).

number causes numerical instability thus the simulation
duration is increased.

In Fig. 7, the sum-rates are evaluated for varying chan-
nel conditions. For all results, linear-II-rate with a single
initialization and iteration beam selection algorithm is used.
As the channel conditions get poor, the marginal benefit of
serving all users can be low considering the sum-rate gain
versus the power cost. In poor channel conditions, shut-
ting off some RF chains can lower the power consumption
at a low sum-rate loss. For the naive approach in Fig. 7,
denoted by linear-II-rate-naive, the number of RF chains are
reduced to a fixed number, Mt = 2. On the other hand, for
the smart approach, denoted by linear-II-rate-smart, the num-
ber of RF chains are smartly reduced based on a threshold
value determined by the path loss value in (4). In particular,
the threshold is set to the mean minus 1/4 power of variance
of the path losses between AP [/ and all users. Users with the
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path losses below this threshold are served, and the others
are not, thus the corresponding RF chains of those users
are shut off. The blue bars in Fig. 7 indicate the case when
all RF chains are in use, i.e., My = 4. The left-most set of
results are obtained when channel conditions are fixed to the
certain values given in the beginning of this section. The 2"
and the following set of results from left are obtained when
log-normal shadowing, distance, and path loss exponent vary
with uniform distribution between 4-6 dB, 100-200 m, and
2-4, respectively. The bold red and green numbers inside
the bars are the sum-rate loss and power saving percentages
when compared to the blue bars. The power savings for the
naive cases are always 50%, i.e., My is set to 2 instead
of 4. The results clearly indicate that by smartly shutting
off the RF chains, significant power savings can be gained
at a cost of small sum-rate losses. Similar to the selection
feature explained earlier, smartly reducing the chains can
be more advantageous in asymmetric networks while raising
the fairness issue in the network.

As also demonstrated in Fig. 7, the benchmarks of the
considered algorithms in our work are indifferent to vary-
ing channel conditions. Over varying channel conditions, the
sum-rate losses of smart and naive approaches vary around
5% and 20% in average, respectively, and the power sav-
ing of smart approach varies around 30% in average. Only
the benchmarks of the selection and smartly reduced chains
features are expected to be different in asymmetric versus
symmetric channels as mentioned earlier.

Our proposed solutions can substantially benefit from
larger network sizes as detailed next. In Fig. 8, the sum-
rates are evaluated for large network sizes. For the results, the
path loss exponent, log-normal shadowing, and the distances
between APs and users vary uniformly between 2-8, 4-10 dB,
and 10-200 m, respectively. Due to the large network sizes,
MC run is set to 100. For linear-II-rate, single initialization
and iteration are used. As the network size grows, same con-
clusions presented earlier in this section can be drawn while
the numerical gaps, i.e., benchmarks, between the results
increase. As seen in Fig. 8, the advantage of joint design
becomes significant over the naive disjoint design as the
network size grows. As the network size grows, more com-
plex algorithms are likely to benefit more than the simpler
algorithms by using the rich degrees of freedom in larger
networks.

The complexity of the linear search algorithm for the
largest network size presented earlier in Fig. 6, i.e., L4K4MS,
is only 128. On the other hand, the complexities of the
networks L25K20M32 and L30K25M64 in Fig. 8 are 16k
and 48k, respectively. Even for small network sizes, the
semilinear algorithm presented in Section V-A becomes
impractical. For the networks L4K3M16 and L4K4MS,
the complexity of the semilinear algorithm is nearly 16k.
Interested reader can refer to the spreadsheet in [26] for
the complexities of varying network sizes. As detailed in
Section V, the complexity evaluations are based on the
searching principles without the extra features. If the multiple
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Sel., and the rest are trained by the linear-lI-DL, linear-lIS-rate, and linear-ll-rate
algorithms. Unless noted, init = 2, iter = 2 parameters are set.

initializations, iterations, and the selection features (IIS) are
included in an algorithm, its complexity value is multiplied
by initxiterxL.

Next, we benchmark the sum-rates and run times of ML
algorithms.

B. MACHINE LEARNING RESULTS

In Fig. 9, the sum-rate results of ML algorithms for the
L3K2MS network are presented. For the training and testing
phases, 30k and 10k instances are executed, which give a
75% to 25% ratio of all data, respectively. The training and
test data are independently generated. Nevertheless, all ML
algorithms are passed through 5-fold cross-validation (CV),
and also, through hyperparameter optimization stages.

To train and test the ML algorithms, based on the numeri-
cal results presented earlier, the linear-II-rate algorithm with
2 initializations and iterations (i.e., init = 2, iter = 2) is
chosen since it can achieve sum-rates close the best results
presented earlier within short simulation durations. This
choice is primarily based on saving time for the increased
durations of training and testing of ML algorithms and note
that the benchmarking of ML algorithms is independent of
beam selection algorithms.

For the training of the linear SVM (LSVM), Gaussian
(GSVM), MLP, and RFt algorithms, linear-II-rate beam
selection algorithm is used. Except RFt with init = 1 and
iter = 1, the numbers of initializations and iterations are set
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FIGURE 10. The performance plots of accuracy percentage versus number of
training data and number of estimators, i.e., trees, for the RFt classification algorithm
in the L3K2M8 network. RFt is trained by the linear-ll-rate algorithm.

to 2. For the training of RFt&DL and RFt&Sel., linear-II-
DL and linear-IIS-rate beam selection algorithms are used,
respectively.

In Fig. 9, the dashed line on top is the sum-rate obtained
by the proposed linear-IIS-rate beam selection algorithm, i.e.,
the maximum original sum-rate that can be achieved by the
ML algorithms. Clearly, upon with the utilization of the RFt
algorithm, sum-rates between 96-99% of the original results
can be achieved.

As noted earlier, MATLAB and Python languages are used
for the beam selection and ML algorithms. Nevertheless,
we can conclude that RFt can achieve remarkable sum-rate
results within tolerable durations compared to conventional
beam selection algorithms as follows. The total simula-
tion durations of training and testing phases for RFt, MLP,
GSVM, and LSVM algorithms are about 01:30, 01:00, 15:00,
and 00:05 (mm:ss), respectively. Hence, we can conclude that
the RFt algorithm has the best accuracy with a reasonable
speed. The simulation duration for the dashed line in Fig. 9
which is produced via the linear-1IS-rate beam selection algo-
rithm is about 12:00. Indeed, even more well-constructed
algorithms that have longer durations than the linear-IIS-
rate algorithm are admissible to achieve higher sum-rates
since the beam selection algorithms are executed off-line to
generate the data that train the ML algorithms, and the simu-
lation durations of the ML algorithms are unaffected by the
training beam selection algorithms. The results in Figs. 8
and 9 clearly advocate that the more well-constructed algo-
rithm is used for ML training, the more advantage over naive
disjoint design can be achieved in large network sizes.

The classification accuracies of all ML algorithms can be
improved by increasing the number training data as seen
in Fig. 10, where the accuracy percentage of RFt is shown
to increase as the training data is increased from 30k to
39k. Increasing the number of estimators, i.e., trees, in the
case of RFt can also significantly improve the classification
accuracy of the algorithm. Higher classification accuracies
of ML algorithms result in higher sum-rates in return.

Among the ML algorithms, the highest accuracy is
achieved by RFt&DL which is 96%. Other RFt algorithms
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that use sum-rate as the beam selection metric achieves about
55% accuracy. The accuracies of MLP, GSVM, and SVM
are about 45%, 25%, and 20%, respectively. The reason for
high accuracy of RFt&DL is that the input features for the
ML algorithms are the sets of path losses and AoD. Thus,
the DL power, as the beam selection metric matches better
to these input features. Although the accuracy of RFt&DL
is high, linear-II-DL beam selection algorithm has a lower
sum-rate, as seen in Figs. 4(a) and 5(a), compared to the other
selection algorithms that use sum-rate as the beam selection
metric. Thus, with 55% accuracy, RFt algorithms with the
sum-rate beam selection metric can achieve higher sum-rate
results as seen in Fig. 9. Our numerical results indicate that
RFt algorithms with the sum-rate beam selection metric can
recognize alternative beam combinations that achieve high
sum-rate results although the selected beam combination by
the RFt algorithm may not match to the beam combination
that is originally chosen by the beam selection algorithm.
When M = K, RFt algorithm can retain the original sum-rate
by 100% although its accuracy is still unremarkable because,
again, the RFt algorithm can identify alternative beam combi-
nations different than the combinations chosen originally by
the beam selection algorithm so that RFt algorithm can still
achieve high sum-rate results. In fact, if the exhaustive search
algorithm, i.e., centralized algorithm, can be used instead,
then the RFt algorithm with a 55% accuracy rate may not
retain 99% of the original sum-rate achieved by the exhaus-
tive algorithm since the beam combination selections by the
exhaustive search algorithm are optimum. However, as men-
tioned earlier, the exhaustive search algorithm is impractical
due to its high complexity.

As demonstrated in Fig. 11, the proposed joint designs
and ML algorithms can be effective in multi-path mm-wave
channels which typically have one strong line-of-sight (LoS)
path and a few reflected paths. A K-factor of 10 dB implies
that the LoS path is nearly 10 dB stronger than the combined
power of all reflected paths. Hence, analog beamforming can
be effective by aligning the beam with the strong LoS path
and ignoring the remaining paths. Similarly, ML algorithms
can be effective when the remaining paths are ignored. By
ignoring the remaining paths, firstly, the length of input
feature vector is reduced by P, e.g., instead of using LKP
path losses and AoDs, LK of them are used as input fea-
tures. Secondly, the data imbalance problem is avoided, for
instance, when the absolute channel gains |,8£l| and path
losses are used as input features. In Fig. 11, the sum-rate
and accuracy percentage results of linear-II-rate (init = 1,
iter = 1, and MMSE digital precoder) and RFt (200 esti-
mators) algorithms are presented for the L3K2M8 network
where P =3 is assumed. For the RFt algorithm, the fea-
tures regarding the strong LoS paths are considered. For both
K-factor values 10 and 6 dBs, the RFt algorithm achieves
almost the same sum-rate results as the linear-II-rate algo-
rithm although only the features of strong LoS paths are
considered. This implies that the RFt algorithm can effec-
tively identify the alternative solutions as explained earlier in
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FIGURE 11. Sum-rates and accuracy percentages over varying K-factor values for
the RFt and linear-ll-rate algorithms in the multi-path (P = 3) L3K2M8 network.

Fig. 9. On the other hand, the accuracy performance of RFt is
challenged at low K-factor values. Thus, more MC runs and
input features are needed for the training and testing phases
of ML algorithms. For the results in Fig. 11, the training
and test instances are again set to 30k and 10k, respec-
tively. But, the absolute channel gains |,3£,| of the strong LoS
paths are included in the feature vectors in addition to the
path losses and AoDs for improving the accuracy percent-
ages. Nevertheless, compared to the accuracy percentages
presented in Fig. 10 where P = 1 is assumed, the achieved
accuracy percentages are lower in Fig. 11. This implies that
the number MC runs need to be tuned based on the K-factor
value to achieve the target accuracy percentages. In short, as
demonstrated in this section, for ML algorithms, tuning the
number of MC runs and number of input feature types (e.g.,
absolute channel gains, path losses, and AoDs) depending
on the K-factor value while considering only the strong LoS
paths can be an effective solution. The proposed linear-II-
rate algorithm can be effectively implemented in multi-path
channels as demonstrated in Fig. 11. However, there can be
situations where the reflected paths can impact the analog
beamforming design. These situations can be addressed in a
future work.

VIll. CONCLUSION

In this work, we propose joint design algorithms of analog
beam selection (based on the sum-rate metric) and digital
precoders. The joint designs are well-equipped with multiple
initializations, iterations, and selection features as well as
with the BCC implementation. Hence, the network sum-rate
gains are much higher compared to the naive disjoint design
of analog beam selection (based on the DL power met-
ric) and digital precoders. We show that BCC initialized
algorithms without the BCC implementation can achieve the
best network sum-rates compared to the algorithms with and
without the BCC implementation, and also, BCC initializa-
tion can reduce the simulation durations. Finally, in poor
channel conditions, RF chains can be selectively shut off
to save significant power consumptions at the cost of low
network sum-rate losses. Next, we propose supervised ML
algorithms that are trained by the beam selection decisions
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obtained from the well-constructed algorithms. The numer-
ical results obtained via the RFt algorithm are promising
since it can retrain 99-100% of the original sum-rate results
achieved by the proposed joint design algorithms.

Selectively shutting off the RF chains can only save power
consumptions. As a future endeavor, further savings, e.g.,
chip area, can be achieved by serving more users than the
number of RF chains.
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