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ABSTRACT The autoencoder concept has fostered the reinterpretation and the design of modern
communication systems. It consists of an encoder, a channel and a decoder block that modify their
internal neural structure in an end-to-end learning fashion. However, the current approach to train an
autoencoder relies on the use of the cross-entropy loss function. This approach can be prone to overfitting
issues and often fails to learn an optimal system and signal representation (code). In addition, less is known
about the autoencoder ability to design channel capacity-approaching codes, i.e., codes that maximize the
input-output mutual information under a certain power constraint. The task being even more formidable
for an unknown channel for which the capacity is unknown and therefore it has to be learnt. In this
paper, we address the challenge of designing capacity-approaching codes by incorporating the presence
of the communication channel into a novel loss function for the autoencoder training. In particular, we
exploit the mutual information between the transmitted and received signals as a regularization term
in the cross-entropy loss function, with the aim of controlling the amount of information stored. By
jointly maximizing the mutual information and minimizing the cross-entropy, we propose a theoretical
approach that a) computes an estimate of the channel capacity and b) constructs an optimal coded signal
approaching it. Theoretical considerations are made on the choice of the cost function and the ability of
the proposed architecture to mitigate the overfitting problem. Simulation results offer an initial evidence
of the potentiality of the proposed method.

INDEX TERMS Digital communications, physical layer, statistical learning, autoencoders, coding theory,
mutual information, channel capacity, explainable machine learning.

I. INTRODUCTION

COMMUNICATION systems have reached a high degree
of performance, meeting demanding requirements in

numerous application fields due to the ability to cope with
real-world effects exploiting various accomplished physical
system models. Reliable transmission in a communication
medium has been investigated in the milestone work of
Shannon [1] who suggested to represent the communication
system as a chain of fundamental blocks, i.d., the transmitter,
the channel and the receiver. Each block is mathematically
modelled in a bottom-up fashion, so that the full system
results mathematically tractable.
On the contrary, machine learning (ML) algorithms take

advantage of the ability to work with and develop top-down
models. In particular, deep learning (DL) has recently expe-
rienced a strong growth thanks to a larger availability of

labeled data and increased computational power of process-
ing units. Several fields have borrowed techniques from ML
resulting in significant contributions and research progress.
However, only in recent years, researchers have started adopt-
ing ML tools in the communication domain with promising
results [2]–[4]. In particular, the communication chain has
been reinterpreted as an autoencoder-based system [2], a
deep neural network (NN) which takes as input a sequence
of bits s, produces a coded signal, feeds it into a chan-
nel layer and tries to reconstruct the initial sequence from
the channel output samples. The intermediate channel layer
implicitly separates a prior neural block, the encoder, from
the posterior one, the decoder. The encoder maps bits into
symbols to be transmitted, ideally placing them into a coded
signal that changes during the training process in order to
mitigate the effects of the channel and noise. The decoder,
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instead, performs a classification task and predicts the input
message ŝ from the received signal samples. The autoen-
coder can be trained end-to-end such that the block-error rate
(BLER) of the full system is minimized. This idea pioneered
a number of related works aimed at showing the potentiality
of deep learning methods applied to wireless communica-
tions [4]–[7]. In [4], communication over-the-air has been
proved possible without the need of any conventional sig-
nal processing block, achieving competitive bit error rates
w.r.t. to classical approaches. Turbo autoencoders [5] reached
state-of-the-art performance with capacity-approaching codes
at a low signal to noise ratio (SNR). These methods rely on
the a-priori channel knowledge (most of the time a Gaussian
noise intermediate layer is assumed) and they fail to scale
when the channel is unknown. To model the intermediate
layers representing the channel, one approach is to use gen-
erative adversarial networks (GANs) [8]. GANs are a pair of
networks in competition with each other: a generator model
G that captures the data distribution and a discriminator
model D that distinguishes if a sample is a true sample com-
ing from real channel samples rather than a fake one coming
from samples generated by G. In this way, the generator
implicitly learns the channel distribution pY(y|x), resulting
in a differentiable network which can be jointly trained in the
autoencoder model [9]–[11]. A recent work in [6] consid-
ered an AWGN channel with additive radar interference and
demonstrated the autoencoders ability to produce optimal
constellations in regions where no optimal solutions were
available, outperforming standard configurations.
None of the aforementioned methods explicitly considered

the information rate in the cost function. In this direction, the
work in [12] included the information rate in the formulation
and leveraged autoencoders to jointly perform geometric and
probabilistic signal constellation shaping. Labeling schemes
for the learned constellations have been discussed in [13],
where the authors introduced the bit-wise autoencoder. If the
channel model is not available, the encoder can be indepen-
dently trained to learn and maximize the mutual information
between the input and output channel samples, as presented
in [14]. But therein the decoder is independently designed
from the encoder and it does not necessarily grant error-free
decoding. Indeed, the decoding stage may not have enough
capacity to learn the demapping scheme nor converge dur-
ing training, especially for large networks. Therefore, the
encoder and decoder learning process shall be done jointly. In
addition, the cost function used to train the autoencoder shall
be appropriately chosen. With this goal in mind, let us firstly
look into the historical developments and progresses made
in the ML field, strictly related to the challenge considered
in this paper.
The autoencoder was firstly introduced as a non-linear

principle component analysis method, exploiting neural
networks [15]. Indeed, the original network contained an
internal bottleneck layer which forced the autoencoder to
develop a compact and efficient representation of the input
data, in an unsupervised manner. Several extensions have

been further investigated, such as the denoising autoencoder
(DAE) [16], trained to reconstruct corrupted input data, the
contractive autoencoder (CAE) [17], which attempts to find
a simple encoding and decoding function, and the k-sparse
autoencoder [18] in which only k intermediate nodes are
kept active. Autoencoders find application also in generative
models as described in [19]. However, all of them are par-
ticular forms of regularized autoencoders. Regularization is
often introduced as a penalty term in the cost function and
it discourages complex and extremely detailed models that
would poorly generalize on unseen data. In this context, the
information bottleneck Lagrangian [20] was used as a reg-
ularization term to study the sufficiency (fidelity) and mini-
mality (complexity) of the internal representation [21], [22].
So far, in the context of communication systems design,
regularization in the loss function has not been introduced
yet. In addition, the decoding task is usually performed as a
classification task. In ML applications, classification is usu-
ally carried out by exploiting a final softmax layer together
with the categorical cross-entropy loss function. The softmax
layer provides a probabilistic interpretation of each possible
bits sequence so that the cross-entropy measures the dissim-
ilarity between the reference and the predicted sequence of
bits distribution, p(s) and q(ŝ), respectively. Nevertheless,
training a classifier via cross-entropy suffers from the fol-
lowing problems: firstly, it does not guarantee any optimal
latent representation. Secondly, it is prone to overfitting
issues, especially in the case of large networks, thus, long
codes design. Lastly, in the particular case of autoencoders
for communications, the fundamental trade-off between the
rate of transmission and reliability, namely, the channel
capacity C, is not explicitly considered in the learning
phase.
These observations made us rethinking the problem by

formulating the two following questions.
a) Given a power constraint, is it possible to design

capacity-approaching codes exploiting the principle of
autoencoders?

b) Given a power constraint, is it possible to estimate
channel capacity with the use of an autoencoder?

The two questions are inter-related and the answer of the first
one provides an answer to the second one in a constructive
way, since if such a code is obtained, then the distribution
of the input signal that maximizes the mutual information
is also determined, and consequentially the channel capacity
can also be obtained.
Inspired by the information bottleneck method [20] and

by the notion of channel capacity, a novel loss function for
autoencoders in communications is proposed in this paper.
The amount of information stored in the latent representa-
tion is controlled by a regularization term estimated using
the recently introduced mutual information neural estima-
tor (MINE) [23], enabling the theoretical design of nearly
optimal codes. To the best of our knowledge, it is the
first time that the influence of the channel appears in the
end-to-end learning phase in terms of mutual information.
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More specifically, the contributions of the paper are the
following.

• A new loss function is proposed. It enables a new signal
constellation shaping method.

• Channel coding is obtained by jointly minimizing the
cross-entropy between the input and decoded message,
and maximizing the mutual information between the
transmitted and received signals.

• A regularization term β controls the amount of
information stored in the symbols for a fixed mes-
sage alphabet dimension M and a fixed rate R < C,
playing as a trade-off parameter between error-free
decoding ability and maximal information transfer via
coding. The NN architecture is referred to as rate-driven
autoencoder.

• In addition, the label smoothing regularization tech-
nique is used during the autoencoder learning process.
An entropy description of the predicted messages is
discussed and illustrated.

• By including the mutual information, we propose a
new theoretical iterative scheme to built capacity-
approaching codes of length n and rate R and conse-
quently estimate channel capacity. This yields a scheme
referred to as capacity-driven autoencoder.

• With the notion of explainable ML in mind, the rationale
for the proposed metric and methodology is discussed
in more fundamental terms following a) the concept
of confidence penalty, b) the information bottleneck
method [20] and c) by discussing the cross-entropy
decomposition.

The remainder of the paper is organized as follows: In
Section II, we briefly review the autoencoder principle and
starting from the channel capacity concept, we intuitively
motivate the presence of the mutual information in a new
loss function. Section III discusses the mathematical founda-
tion behind the new regularization term. In Section IV, we
exploit the mutual information block previously introduced
in a theoretical framework that iteratively designs capacity-
approaching codes and learns the channel capacity. Section V
presents an initial validation of the proposed methodology
through numerical results. Finally, Section VI reports the
conclusions.
Notation: X denotes a multivariate random variable of

dimension d, while x ∈ X denotes its realization. Vectors y
and matrices Y are represented using lower case bold and
upper case bold letters, respectively. pY(y|x) and pXY(x, y)
represent the conditional and joint probability density func-
tions, while pX(x)pY(y) is the product of the two marginals.
H(X) denotes the entropy of the random variable X, while
I(X;Y) denotes the mutual information between the random
variables X and Y . Lastly, DKL(p||q) is the Kullback-Leibler
divergence of p from q.

II. RATE-DRIVEN AUTOENCODER
In this section, we introduce an autoencoder architecture to
design a coding scheme that reaches a certain rate under a

certain power constraint and code length. Then, we present
the motivations behind the need of a new design metric
that accounts for the mutual information in the classical
cross-entropy loss function.

A. END-TO-END AUTOENCODER-BASED
COMMUNICATIONS
The communication chain can be divided into three fun-
damental blocks: the transmitter, the channel, and the
receiver. The transmitter attempts to communicate a message
s ∈ M = {1, 2, . . . ,M}. To do so, it transmits n complex
baseband symbols x ∈ C

n at a rate R = (log2 M)/n (bits per
channel use) over the channel, under a power constraint. In
general, the channel modifies x into a distorted and noisy
version y. The receiver takes as input y and produces an esti-
mate ŝ of the original message s. From an analytic point of
view, the transmitter applies a transformation f : M → C

n,
x = f (s) where f is referred to as the encoder. The channel is
described in probabilistic terms by the conditional transition
probability density function pY(y|x). The receiver, instead,
applies an inverse transformation g : C

n → M, ŝ = g(y)
where g is referred to as the decoder. Such communication
scheme can be interpreted as an autoencoder which learns
internal robust representations x of the messages s in order
to reconstruct s from the perturbed channel output samples
y [2].

The autoencoder is a deep NN trained end-to-end using
stochastic gradient descent (SGD). The encoder block
f (s; θE) maps s into x and consists of an embedding layer
followed by a feedforward NN with parameters θE and a
normalization layer to fulfill a given power constraint. The
channel is identified with a set of layers; a canonical example
is the AWGN channel, a Gaussian noise layer which gen-
erates yi = xi + wi with wi ∼ CN (0, σ 2), i = 1, . . . , n. The
decoder block g(y; θD) maps the received channel samples
y into the estimate ŝ by building the empirical probabil-
ity mass function pŜ|Y(ŝ|y; θD). It consists of a feedforward
NN, with parameters θD, followed by a softmax layer which
outputs a probability vector of dimension M that assigns a
probability to each of the possible M messages. The encoder
and decoder parameters (θE, θD) are jointly optimized dur-
ing the training process with the objective to minimize the
categorical cross-entropy loss function

L(θE, θD) = E(x,y)∼pXY (x,y)

[
− log

(
pŜ|Y

(
ŝ|y; θD

))]
, (1)

where y explicitly depends on the encoding block x =
f (s; θE), and thus, on the parameters θE, while the
decoder g(y; θD) calculates the probability mass function
pŜ|Y(ŝ|y; θD). The performance of the autoencoder-based
system is typically measured in terms of bit error rate (BER)
or block error rate (BLER)

Pe = P
[
ŝ �= s

]
. (2)

The autoencoder ability to learn joint coding and mod-
ulation schemes [2], [4] for any type of channel (even for

1368 VOLUME 2, 2021



those without a known model) and for any type of non-linear
effects (e.g., from amplifiers and clipping) [7] demonstrates
the potentiality and flexibility of the approach.
However, the cross-entropy loss function does not guar-

antee any optimality in the code design and it is often prone
to overfitting issues [22], [24]. In addition and most impor-
tantly, optimal system performance is measured in terms
of achievable rates, thus, in terms of mutual information
I(X;Y) between the transmitted x and the received signals
y, defined as

I(X;Y) = E(x,y)∼pXY (x,y)

[
log

pXY(x, y)

pX(x)pY(y)

]
, (3)

or alternatively in terms of Kullback-Leibler divergence

I(X;Y) = DKL(pXY ||pX · pY). (4)

In communications, the trade-off between the rate of
transmission and reliability is expressed in terms of chan-
nel capacity. For a memory-less channel, the capacity is
defined as

C = max
pX(x)

I(X;Y), (5)

where pX(x) is the input signal probability density function.
Finding the channel capacity C is at least as complicated as
evaluating the mutual information. As a direct consequence,
building capacity-approaching codes is a formidable task.
Given a certain power constraint and rate R, the

autoencoder-based system, that is trained to minimize the
cross-entropy loss function, is able, if large enough, to
automatically build nearly zero-error codes. Nevertheless,
there exists a code at the same rate that exhibits better
performance and may even exist a higher rate error-free
code (asymptotically). Therefore, the autoencoder does not
provide a capacity-achieving code. In other words, con-
ventional autoencoding approaches, through cross-entropy
minimization, allow to obtain excellent decoding schemes.
Nevertheless, no guarantee to find an optimal encoding
scheme is given, especially in deep NNs where problems
such as vanishing and exploding gradients occur [25]. Hence,
the starting point to design capacity-approaching codes is to
redefine the loss function used by the autoencoder. In detail,
we propose to include the mutual information quantity as
a regularization term. The proposed loss function reads as
follows

L̂(θE, θD) = E(x,y)∼pXY (x,y)

[
− log

(
pŜ|Y

(
ŝ|y; θD

))]

− βI(X;Y). (6)

The loss function in (6) forces the autoencoder to jointly
modify the network parameters (θE, θD). The decoder recon-
structs the original message s with lowest possible error
probability Pe, while the encoder finds the optimal input
signal distribution pX(x) which maximizes I(X;Y), for a
given rate R and code length n and for a certain power con-
straint. We will denote such type of trained autoencoder as
rate-driven autoencoder. It should be noted that such a NN

architecture does not necessarily provide an optimal code
capacity-wise, since we set a target rate which does not cor-
respond to channel capacity. To solve this second objective,
in Section IV we will describe a theoretical methodology
leading to a new scheme that we name capacity-driven
autoencoder.
To compute the mutual information I(X;Y), we can exploit

recent results such as MINE [23], as discussed below.

B. MUTUAL INFORMATION ESTIMATION
The mutual information between two random variables, X
and Y , is a fundamental quantity in statistics and information
theory. It measures the amount of information obtained about
X by observing Y . The difficulty in computing I(X;Y)

resides in its dependence on the joint probability density
function pXY(x, y), which is usually unknown. Common
approaches to estimate the mutual information rely on
binning, density and kernel estimation [26], k-nearest neigh-
bours [27], f -divergence functionals [28], and variational
lower bounds [29].
Recently, the MINE estimator [23] proposed a NN-based

method to estimate the mutual information (see (4)). MINE
is based on the Donsker-Varadhan dual representation [30]
of the Kullback-Leibler divergence, in particular

DKL(p||q) = sup
T:�→R

Ex∼p(x)[T(x)] − log
(
Ex∼q(x)

[
eT(x)

])
,

(7)

where the supremum is taken over all functions T such
that the expectations are finite. Indeed, by parameterizing a
family of functions Tθ : X × Y → R with a deep NN with
parameters θ ∈ �, the following bound [23] holds

I(X;Y) ≥ Iθ (X;Y), (8)

where Iθ (X;Y) is the neural information measure [23]
defined as

Iθ (X;Y) = sup
θ∈�

E(x,y)∼pXY (x,y)
[
Tθ (x, y)

]

− log
(
E(x,y)∼pX(x)pY (y)

[
eTθ (x,y)

])
. (9)

The neural information Iθ (X;Y) in (9) can be maximized
using back-propagation and gradient ascent, leading to a
tighter bound in (8). To avoid biased gradients, the authors
in [23] suggested to replace the expectation in the denom-
inator (coming from the derivative of the logarithm) with
an exponential moving average. The consistency property of
MINE guarantees the convergence of the estimator to the
true mutual information value.
Estimating the mutual information I(X;Y) is not enough

to build capacity-approaching codes for a generic channel.
A maximization over all possible input distribution pX(x) is
also required. Therefore, to learn an optimal scheme, at each
iteration the encoder needs both the cross-entropy gradient
for the decoding phase and the mutual information gradient,
from MINE, for the optimal input signal distribution. The
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FIGURE 1. Rate-driven autoencoder with the mutual information estimator block.
The channel samples and the decoded message are used during the training process.
The former allows to built an optimal encoding scheme exploiting the mutual
information block, the latter, instead, allows to measure the decoding error through
the cross-entropy loss function.

proposed loss function in (6) (see also Fig. 1) shows such
double role. In this way, the autoencoder trained with the new
loss function intrinsically designs codes for which the mutual
information I(X;Y) is known and maximal by construction,
under the aforementioned constraints of power, rate R and
code-length n.

The rationale behind the proposed method is formally
discussed in the next section.

III. MUTUAL INFORMATION REGULARIZATION
The autoencoder is a classifier network since the decod-
ing block performs a classification task while attempting to
recover the sequence of transmitted bits. The training of large
autoencoder networks may suffer from known NN degrada-
tion issues such as overfitting and vanishing gradients. In the
following, we discuss in detail both problems motivating why
the addition of the mutual information regularization term to
the cross-entropy loss function, as in (6), and the adoption
of the label smoothing technique, offer better performance.
Indeed, the cross-entropy can be minimized even for random
labels as shown in [31], leading to several overfitting issues.
To combat overconfident predictions, the mutual information
term plays the role of both an entropy penalty and an
information bottleneck regularizer. Furthermore, its gradi-
ent directly influences the encoder parameter, mitigating the
vanishing gradient problem.

A. OVERFITTING MITIGATION
The objective of the autoencoder is twofold: the encoder
searches for a latent representation of the transmitted sig-
nal that is robust to channel and noise distortions while
the decoder learns how to successfully recover the distorted
transmitted signal. The latter, in particular, attempts to find
a signal representation that provides robust performance
in a more general domain than the one given by the
observed/training dataset. This is rendered possible by the
stochastic description of the channel. Nevertheless, fitting
the empirical distribution often leads to overfitting, an unde-
sired effect that appears when the network places most of the
probability mass on a subset of the possible output classes.
In other words, the decoder block produces a peaky leptokur-
tic conditional output distribution pŜ|Y(ŝ|y; θD) which may

improve the training loss at the expenses of the generaliza-
tion ability of the network. To avoid leptokurtic distributions,
a strategy relies on entropy regularization, which penalizes
confident output distributions by encouraging more entropic
ones. In [32], the authors introduced the confidence penalty
regularization term as an entropy term in the supervised
learning setting:

H
(
pŜ|Y

(
ŝ|y; θD

)) =
∑
i

pŜ|Y
(
ŝi|y; θD

)
log

(
pŜ|Y

(
ŝi|y; θD

))
,

(10)

where y and ŝ are the input and output of the classifier,
respectively. However, in the autoencoder set up, y is the
output of the channel layer and is dependent itself to the
training process. Indeed, the overfitting issue may occur
while producing a peaky latent space distribution that does
not maximize the entropy of X and consequently, taking
in consideration the channel layers, of Y . To combat such
leptokurtic behavior in the encoding distribution while con-
sidering the channel dependence in the output, we propose
to penalize it by exploiting the mutual information between
the transmitted and received signals:

I(X;Y) = H(X) + H(Y) − H(X,Y), (11)

where H(X,Y) is the joint entropy measure. The objective of
this penalty regularization term is to promote more entropic
signal input-output distributions while reducing the joint
entropy, thus, placing the joint probability mass in peaky
clusters.
The mutual information penalty regularizer directly influ-

ences the encoder network parameters during the learning
phase. However, as mentioned before while discussing the
confidence penalty in (10), peakiness may appear also in the
target output distribution pŜ|Y(ŝ|y; θD). To further improve
the decoder generalization, we propose also to adopt the label
smoothing technique [33], a type of entropy regularizer par-
ticularly effective when dealing with hard target distributions
such as the one-hot vectors of the autoencoder scheme. The
idea of label smoothing is to replace the target output distri-
bution (also referred to as label distribution) pŜ|Y(ŝ|y) = δŜ,S
with a mixture of the original ground-truth and the chosen
distribution u(ŝ):

p̂Ŝ|Y
(
ŝ|y) = (1 − ε)δŜ,S + εu

(
ŝ
)
, (12)

where in this paper u(ŝ) is chosen to be as the uniform
distribution u(ŝ) = 1/M, and ε is a positive number. Label
smoothing forces more entropic output messages Ŝ distri-
butions, improving the decoder generalization ability. The
cross-entropy loss function using label smoothing reads as
follows

L̂(θE, θD) = E(s,y)∼p̂Ŝ|Y(ŝ|y)·pY (y|x)
[
− log

(
pŜ|Y

(
ŝ|y; θD

))]
.

(13)

In Section V-B, we demonstrate how the combination
of both the mutual information regularizer and the label
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smoothing technique leads to more entropic predicted output
distributions.
Another important benefit of the proposed mutual

information penalty term consists in the mitigation of the
vanishing gradient problem.

B. VANISHING GRADIENT MITIGATION
It is well known that adding layers with certain activation
functions to the NN may result in small gradients of the
loss function, inhibiting an effective update of the param-
eters of the first layers. In the case of large autoencoder
networks, the encoder block may suffer from such van-
ishing gradient problem, especially if the decoder block is
itself a deep NN and the channel block is modeled by a
multi-layer channel generator obtained via a GAN based
training scheme [9]. Indeed, the generator in a GAN frame-
work is typically a deep network that implicitly estimates
the conditional channel distribution pY(y|x). For this rea-
son, the back-propagated gradient responsible for the update
of the encoder parameters θE may be negligible when only
cross-entropy is used as training cost function. Hence, a reg-
ularizer whose gradient influences directly the parameters of
the encoder block can better guide the network in identify-
ing the latent space. In particular, if the regularization term
is the mutual information, then the encoder also attempts
to find the optimal channel input distribution, tackling the
achievement of channel capacity, which is exactly the aim
of optimal communication schemes.
In detail, given the loss function in (6)

L̂(θE, θD) = L(θE, θD) − βIθE (X;Y), (14)

and given a probabilistic channel generative model y =
h(x; θh), at each training iteration the gradient back-
propagated from the decoder network g(y; θD) to the encoder
network f (s; θE) can be computed as

∇θE L̂(θE, θD) = ∇θEL(θE, θD) − β∇θE IθE (X;Y) (15)

and using the chain rule

∇θE L̂(θE, θD) = ∂L
∂g

· ∂g

∂h
· ∂h

∂f
· ∇θE f (s; θE)

− β
∂I

∂h
· ∂h

∂f
· ∇θE f (s; θE)

− β
∂I

∂f
· ∇θE f (s; θE). (16)

From the relations in (16), it is clear that the regularization
term with strength β can in principle generate a more ener-
getic gradient. Indeed, the first term in the RHS comes from
the cross-entropy gradient and it depends on the decoder
(∂g/∂h), while the second and third terms in the RHS con-
tain the gradient of the mutual information regularizer and
do not depend on the decoder.

C. INFORMATION BOTTLENECK METHOD
In [22], the authors proved how a deep NN can just
memorize the dataset (in its weights) to minimize the cross-
entropy, yielding to poor generalization. Hence, the authors
proposed an information bottleneck (IB) regularization term
to prevent overfitting, similarly to the IB Lagrangian, orig-
inally presented in [20]. Indeed, the IB method optimally
compresses the input random variable by eliminating the
irrelevant features which do not contribute to the prediction
of the output random variable.
From an autoencoder-based communication systems point

of view, let S → X → Y be a prediction Markov chain,
where S represents the message to be sent, X the compressed
symbols and Y the received symbols. The IB method solves

L(p(x|s)) = I(S;X) − βI(X;Y), (17)

where the positive Lagrange multiplier β plays as a trade-off
parameter between the complexity of the encoding scheme
(rate) and the amount of relevant information preserved in it.
The communication chain adds an extra Markov chain

constraint Y → Ŝ, where Ŝ represents the decoded message.
Therefore, in order to deal with the full autoencoder chain,
we decide to substitute the first term of the RHS in (17)
with the cross-entropy loss function, as presented in (6).
However, the Lagrange multiplier (or regularization param-
eter in ML terms) operates now as a trade-off parameter
between the complexity to reconstruct the original message
and the amount of information preserved in its compressed
version.

D. CROSS-ENTROPY DECOMPOSITION
To further motivate the choice for the new loss function
with the mutual information as the regularization term, let
us consider the following decomposition of the cross-entropy
loss function.
Lemma 1 (See [12]): Let s ∈ M be the transmitted

message and let (x, y) be samples drawn from the joint dis-
tribution pXY(x, y). If x = f (s; θE) is an invertible function
representing the encoder and if pŜ|Y(ŝ|y; θD) = g(y; θD) is
the decoder block, then the cross-entropy function L(θE, θD)

admits the following decomposition

L(θE, θD) = H(S) − IθE (X;Y) +
+ Ey∼pY (y)

[
DKL

(
pX|Y(x|y)||pŜ|Y(x|y; θD)

)]
.

(18)

A complete proof of Lemma 1, slightly different from the
one in [12], is reported in the Appendix.
The cross-entropy decomposition in Lemma 1 can be read

in the following way: the first two terms are responsible for
the conditional entropy of the received symbols. In the par-
ticular case of a uniform source, only the mutual information
between the transmitted and received symbols is controlled
by the encoding function during the training process. On
the contrary, the last term measures the error in computing
the divergence between the true posterior distribution and the
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Algorithm 1 Capacity Learning With Capacity-Driven
Autoencoders
1: Inputs:

L SNR increasing values, ε threshold.
2: Initialize:

R0 = k0/n0 initial rate, i = 0, j = 0.
3: for l = 1 to L do
4: Train AE(0)(k0, n0);
5: Compute I(0)

θM
(X;Y);

6: while 
 > ε do
7: ki+1 = (Ri · nj) + 1;
8: Ri+1 = ki+1/nj;
9: Train AE(i+1)(ki+1, nj);
10: if Ri+1 is not achievable then
11: nj+1 = nj + 1;
12: j = j+ 1;
13: else
14: Compute I(i+1)

θM
(X;Y);

15: Evaluate 
 =
∣∣∣∣
I(i+1)
θM

(X;Y)−I(i)θM
(X;Y)

I(i)θM
(X;Y)

∣∣∣∣;

16: i = i+ 1;
17: Cl = I(i)θM

(X;Y) estimated capacity.

decoder-approximated one. As discussed before, the network
could minimize the cross-entropy just by minimizing the KL-
divergence, concentrating itself only on the label information
(decoding) rather than on the symbol distribution (coding).
To avoid this, we propose (6) where the parameter β helps
in balancing the two different contributions as follows

L(θE, θM, θD) = H(S) − IθE (X;Y) − βIθE,θM (X;Y) +
+ Ey∼pY (y)

[
DKL

(
pX|Y (x|y)||pŜ|Y(x|y; θD)

)]
.

(19)

Moreover, if the mutual information estimator is consis-
tent, (19) is equal to

L(θE, θD) = H(S) − (β + 1)IθE (X;Y) +
+ Ey∼pY (y)

[
DKL

(
pX|Y(x|y)||pŜ|Y(x|y; θD)

)]
.

(20)

It is immediate to notice that for β < −1, the network
gets in conflict since it would try to minimize both
the mutual information and the KL-divergence. Therefore,
optimal values for β lie on the semi-line β > −1.

IV. CAPACITY-DRIVEN AUTOENCODER
Interestingly, the mutual information block can be exploited
to obtain an estimate of the channel capacity. The
autoencoder-based system is subject to a power constraint
coming from the transmitter hardware and it generally works
at a fixed rate R and channel uses n. For R and n fixed, the
scheme discussed in Fig. 1 optimally designs the coded sig-
nal distribution and provides an estimate IθM (X;Y) of the

mutual information I(X;Y) which approaches R. However,
a question remains still open: is the achieved rate with the
designed code actually channel capacity?
To find the channel capacity C and determine the optimal

signal distribution pX(x), a broader search on the coding rate
needs to be conducted, relaxing both the constraints on R
and n. The flexibility on R and n requires to use different
autoencoders. In the following, we denote with AE(k, n) a
rate-driven autoencoder-based system that transmits n com-
plex symbols at a rate R = k/n, where k = log2(M) and M is
the number of possible messages. The proposed methodology
can be segmented in two phases:

1) Training of a rate-driven autoencoder AE(k, n) for a
fixed coding rate R and channel uses n, enabled via
the loss function in (6);

2) Adaptation of the coding rate R to build capacity
approaching codes x ∼ pX(x) and consequently find
the channel capacity C.

We remark that the capacity C is the maximum data rate R
that can be conveyed through the channel at an arbitrarily
small error probability. Therefore, the proposed algorithm
makes an initial guess rate R0 and smoothly increases it by
playing on both k and n.

The basic idea is to iteratively train at the
i-th iteration a pair of rate-driven autoencoders
AE(i)(ki, nj),AE(i+1)(ki+1, nj) and evaluate both the
mutual informations IiθM (X;Y), I(i+1)

θM
(X;Y), at a fixed

power constraint. The first autoencoder works at a rate
Ri = ki/nj, while the second one at Ri+1 = ki+1/nj, with
Ri+1 > Ri. If the ratio

∣∣∣∣
I(i+1)
θM

(X;Y) − I(i)θM
(X;Y)

I(i)θM
(X;Y)

∣∣∣∣ < ε, (21)

where ε is an input positive parameter, the code is reaching
the capacity limit for the fixed power. If the rate Ri+1 is
not achievable (it does not exist a nearly error-free decoding
scheme), a longer code nj+1 is required. The algorithm in
Tab. 1 describes the pseudocode that implements the channel
capacity estimation and capacity-approaching code using as
a building block the rate-driven autoencoder.

A. IMPORTANT REMARKS
The proposed capacity-driven autoencoder offers a construc-
tive learning methodology to design a coding scheme that
approaches capacity and to know what such a capacity is,
even for channels that are unknown or for which a closed
form expression for capacity does not exist. Indeed, train-
ing involves numerical procedures which may introduce
some challenges. Firstly, the autoencoder is a NN and it
is well known that its performance depends on the training
procedure, architecture design and hyper-parameters tuning.
Secondly, the MINE block converges to the true mutual
information mostly for a low number of samples. In prac-
tice, when n is larger than 4, the estimation often produces
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unreliable results, therefore, a further investigation on sta-
ble numerical estimators via NNs needs to be conducted.
Lastly, the autoencoder fails to scale with high code dimen-
sion. Indeed, for large values of n, the network could get
stuck in local minima or, in the worst scenario, could not
provide nearly zero-error codes due to limited resources or
not large enough networks. The proposed approach tran-
scends such limitations, although they have to be taken into
account in the implementation phase. In addition, the work
follows the direction of explainable machine learning, in
which the learning process is motivated by an information-
theoretic approach. Possible improvements are in defining an
even tighter bound in (8) and in adopting different network
structures (convolutional or recurrent NNs).
It should be noted that the approach works also for non

linear channels where optimal codes have to be designed
under an average power constraint and not for a given oper-
ating SNR which is appropriate for linear channels with
additive noise.

V. NUMERICAL RESULTS
In this section, we present results obtained with the rate-
driven autoencoders. They demonstrate an improvement in
the decoding schemes (measured in terms of BLER) and
show the achieved rates with respect to capacity in channels
for which a closed form capacity formulation is known,
such as the AWGN channel, and unknown, such as additive
uniform noise and Rayleigh fading ones.
The following schemes consider an average power con-

straint at the transmitter side E[|x|2] = 1, implemented
through a batch-normalization layer. Training of the end-
to-end autoencoder is performed w.r.t. to the loss function
in (6), implemented via a double minimization process since
also the MINE block needs to be trained:

min
θE,θD

min
θM

E(x,y)∼pXY (x,y)

[
− log

(
pŜ|Y

(
ŝ|y; θD

))]
− βIθM (X;Y).

(22)

Furthermore, the training procedure was conducted with
the same number of iterations for different values of the reg-
ularization parameter β, at a fixed value of Eb/N0 = 7 dB.
Unless otherwise specified, we included label smoothing
with ε = 0.2 during the autoencoders training process. We
used Keras with TensorFlow [34] as backend to implement
the proposed rate-driven autoencoder. The code has been
tested on a Windows-based operating system provided with
Python 3.6, TensorFlow 1.13.1, Intel core i7-3820 CPU. To
allow reproducible results and for clarity, the code is rendered
publicly available.1

A. CODING-DECODING CAPABILITY
As first experiment, we consider a rate-driven autoencoder
AE(4, 2) with rate R = 2. The advantage of using a mutual
information estimator block during the end-to-end training

1. https://github.com/tonellolab/capacity-approaching-autoencoders

FIGURE 2. BLER of the rate-driven autoencoder AE(4, 2) for different values of the
regularization β and label smoothing parameter ε, for an average power constraint,
k = 4 and n = 2.

phase is expected to be more pronounced from n > 1. To
demonstrate the effective influence on the performance of the
mutual information term controlled by β in (22), we inves-
tigate 4 different representative values of the regularization
parameter for both cases with and without label smoothing.
Fig. 2 illustrates the obtained BLER after the same number
of training iterations when the regularization term is added in
the cost function. We notice that the lowest BLER is achieved
for β = 0.2, therefore as expected, the mutual information
contributes in finding better encoding schemes. Despite the
small gain, the result highlights that better BLER can be
obtained using the same number of iterations. As shown
in (20), negative values of β tend to force the network to
just memorize the dataset, while large positive values create
an unbalance. We remark that β = 0 and ε = 0 corresponds
to the classic autoencoder approach proposed in [2]. Fig. 2
also illustrates a slightly worse BLER when trained with
label smoothing. However, we highlight the fact that label
smoothing renders the network more robust to overfitting
which does not necessarily reflect into higher accuracy of
the model [35]. To identify optimal values of β, a possible
approach can try to find the value of β for which the two
gradients (cross-entropy and mutual information) are equal
in magnitude. In the following, we assume β = 0.2.

To assess the methodology even with higher dimension M
of the input alphabet, we illustrate the optimal constellation
schemes when the number of possible messages is M = 16
and M = 32. Moreover, two cases are studied, when we
transmit one complex symbol (n = 1) and two dependent
complex symbols (n = 2) over the channel. Fig. 3a and
Fig. 3b show the learned hexagonal spiral grid constella-
tions when only one symbol is transmitted for an alphabet
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FIGURE 3. Constellation designed by the encoder during the end-to-end training
with β = 0.2 and ε = 0.2 and parameters (k, n): a) (4, 1), b) (5, 1), c) 2 dimensional
t-SNE of AE(4, 2) and d) 2 dimensional t-SNE of AE(5, 2).

dimension of M = 16 and M = 32. Fig. 3c and Fig. 3d
show, instead, an optimal projection of the coded signals in
a 2D space through the learned two-dimensional t-distributed
stochastic neighbor embedding (t-SNE) [36]. We notice that
the two pairs of constellations are similar, and therefore,
even for codes of length n = 2, the mutual information
pushes the autoencoder to learn the optimal signal constel-
lation. As mentioned in the remarks section, the advantage
is expected to be more pronounced the larger n is. However,
there is a practical limitation to obtain constructive results
for higher values of n since current mutual information esti-
mators, including MINE, are not stable. This can be solved
with novel NN architectures and training algorithms, which
is one of the challenges the ML community is currently
facing.

B. ENTROPY REGULARIZATION
In this section, we evaluate the advantage given by the mutual
information and label smoothing regularization techniques
over the solely cross-entropy training method. We analyze
the ability to generalize its applicability and the ability to mit-
igate the overfitting problem of the trained autoencoder. In
particular, we propose to study the distribution of the softmax
output layer in the simple 4-QAM autoencoder AE(2, 1). The
softmax output layer attempts to predict the output distri-
bution pŜ|Y(ŝ|y; θD) and therefore provides insights about
the generalization status of the network, where a smoother
platikurtik output distribution is often synonym of general-
ization beyond the observed data [32] while a peaky output
distribution usually stands for poor generalization.
For visualization purposes, we report the analysis of the

maximal output distribution qY(y) = maxŜ pŜ|Y(ŝ|y). We

FIGURE 4. Distribution of the maximal value of the softmax layer of AE(2, 1) for
three different scenarios: only cross-entropy training, cross-entropy with label
smoothing, cross-entropy with mutual information and label smoothing.

consider, as an example, the behavior of the probability den-
sity function q for a value of Eb/N0 = 7 dB in three different
training scenarios: only cross-entropy (ε = 0, β = 0), cross-
entropy with label smoothing (ε = 0.2, β = 0), cross-entropy
with mutual information and label smoothing regularizers
(ε = 0.2, β = 0.2). From Fig. 4, we can observe that label
smoothing forces a less confident prediction compared to the
common cross-entropy. Interestingly, the entropic effect of
the mutual information regularizer, which acts primarily on
the encoder block, is present also at the autoencoder output
distribution even for a simple autoencoding scheme as the 4-
QAM. Indeed, for 100 bins, the estimated entropy of qY(y)
without mutual information regularization is around 3.66
Nat, while the entropy of the output with mutual information
is around 3.72 Nat.

We also report the entropy of qY(y) varying the energy
per bit to noise ratio Eb/N0 for both cases with and with-
out mutual information regularization. In both cases, label
smoothing for a more stable estimation is used. The network
should be capable to predict correct outputs outside the train-
ing region, thus, a high entropy is desired. As depicted in
Fig. 5, the entropy of the maximal output when regular-
ized with both mutual information and label smoothing is
greater than the entropy of the maximal output when only
label smoothing is used, for positive values of Eb/N0. This
is coherent with the intuition provided in Section III-A, i.e.,
the mutual information term helps in preventing overfitting.
An unexpected result comes from the evolution of the esti-
mated entropy varying the energy per bit to noise ratio:
the entropy appears to have a local maximum around 0 dB
when the noise power is comparable to the signal’s one.
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FIGURE 5. Estimated entropy of qY (y) for different values of the energy per bit to
noise ratio in the 4-QAM Gaussian autoencoder AE(2, 1).

Therein, the network is essentially uniformly guessing the
predicted message, without any confidence. When the noise
power decreases, the network confidently places probability
masses following the density in Fig. 4. However, for values of
Eb/N0 > 10 dB, the entropies of the predictions qY(y) start
increasing again, and the autoencoder trained with mutual
information regularization maintains a better generalization
ability. The point of minimal entropy can be thought as a
transition point from continuous (in amplitude) received sig-
nals, towards discrete valued signals. These results stimulate
further analysis of entropy trends in future research work.

C. CAPACITY-APPROACHING CODES OVER DIFFERENT
CHANNELS
The mutual information block inside the autoencoder can be
exploited to design capacity-approaching codes, as discussed
in Section IV. To show the potentiality of the method, we
analyze the achieved rate, e.g., the mutual information, in
three different scenarios. The first one considers the transmis-
sion over an AWGN channel, for which we know the exact
closed form capacity. The second and third ones, instead,
consider the transmission over an additive uniform noise
channel and over a Rayleigh fading channel, for which we
do not know the capacity in closed form. However, we expect
the estimated mutual information to be a tight lower bound
for the real channel capacity, especially at low SNRs.

1) AWGN CHANNEL

Let us consider a discrete memory-less channel with input-
output relation given by (assuming complex signals)

Yi = Xi + Ni, (23)

FIGURE 6. Estimated mutual information achieved with β = 0.2 and ε = 0.2 for
different dimension of the alphabet M with code length n = 1 over an AWGN channel.

where the noise samples Ni ∼ CN (0, σ 2) are i.i.d. and inde-
pendent of Xi. It is well known that with a power constraint
on the input signal E[|Xi|2] ≤ P, the channel capacity is
achieved by Xi ∼ CN (0,P) and is equal to

C = log2(1 + SNR) [bits/channel use]. (24)

The rate-driven autoencoder attempts to maximize the
mutual information during the training progress by modify-
ing, at each iteration, the input distribution pX(x). Thus, given
the input parameters, it produces optimal codes for which
the estimation of the mutual information is provided by
MINE. Fig. 6 illustrates the achieved and estimated mutual
information when β = 0.2 and ε = 0.2 for different val-
ues of the alphabet cardinality M. A comparison is finally
made with established M-QAM schemes. We remark that
for discrete-input signals with distribution pX(x), the mutual
information is given by

I(X;Y) =
∑
x

pX(x) · EpY (y|x)
[

log
pY(y|x)
pY(y)

]
, (25)

and in particular with uniformly distributed symbols (only
geometric shaping), pX(x) = 1/M. It is found that the autoen-
coder constructively provides a good estimate of mutual
information. In addition, for the case M = 32, the con-
ventional QAM signal constellation is not optimal, since the
autoencoder AE(5, 1) performs geometric signal shaping and
finds a constellation that can offer higher information rate as
it is visible in the range 13−16 dB. Lastly, if we code over
two channel uses, i.e., n = 2, an improvement in mutual
information can be attained. This is shown in Fig. 10 where
a comparison between channels affected by AWGN, uniform
noise and Rayleigh fading is reported.
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FIGURE 7. Estimated mutual information achieved with β = 0.2 and ε = 0.2 for
different dimension of the alphabet M with code n = 1 over an additive uniform noise
channel.

FIGURE 8. Constellation designed by the encoder during the end-to-end training
with β = 0.2 and ε = 0.2, uniform noise layer and parameters (k, n): a) (4, 1), b) pairs
of transmitted coded symbols AE(4, 2), c) 2 dimensional t-SNE of AE(4, 2).

2) ADDITIVE UNIFORM NOISE CHANNEL

No closed form capacity expression is known when the noise
N has uniform distribution N ∼ U(−


2 , 

2 ) under an average

power constraint. However, Shannon proved that the AWGN
capacity is the lowest among all additive noise channels of
the form (23). Consistently, as depicted in Fig. 7, it is rather
interesting to notice that the estimated mutual information
for the uniform noise channel is higher than the AWGN
capacity for low SNRs until it saturates to the coding rate
R. Moreover, differently from the AWGN coding signal set,
Fig. 10b also considers the complex signals generated by
the encoder over two channel uses. As expected, the mutual
information achieved by the code produced with the autoen-
coder AE(4, 2) is higher than with AE(2, 1), consistently
with the idea that n > 1 introduces a temporal dependence
in the code allowing to improve the decoding phase. In addi-
tion, Fig. 8a illustrates the constellation produced by the
rate-driven autoencoders AE(4, 1) in the uniform noise case.
Fig. 8b shows how the transmitted coded symbols (trans-
mitted complex coefficients) vary for different channel uses

FIGURE 9. Estimated mutual information achieved with β = 0.2 and ε = 0.2 for
different dimension of the alphabet M with code length n = 1 over a Rayleigh channel.

while Fig. 8c, instead, displays the learned two-dimensional
t-SNE constellation of the code produced by the AE(4, 2).

3) RAYLEIGH FADING CHANNEL

As final experiment, we introduce fading in the communi-
cation channel, in particular we consider a Rayleigh fading
channel of the form

Yi = hiXi + Ni, (26)

where Ni ∼ CN (0, σ 2) and hi is a random variable whose
amplitude α belongs to the Rayleigh distribution pR(r) and
is independent of the signal and noise. The ergodic capacity
is given by

C = Eα∼pR(r)

[
log2(1 + α2 · SNR)

]
. (27)

Fig. 9 shows the estimated mutual information attained by
the autoencoder over a Rayleigh channel with several alpha-
bet dimensions M and compares it with the conventional
M-QAM schemes. In all the cases, the achieved mutual
information is upper bounded by the ergodic Rayleigh capac-
ity. Similarly to the uniform case, it is curious to notice that
the achieved information rate with the rate-driven autoen-
coder is in some cases higher than the one obtained with the
M-QAM schemes. In particular, with M = 32 the AE(5, 1)
exceeds by 0.5 bit/channel uses at SNR = 15 dB the 32-
QAM scheme. Lastly, Fig. 10c highlights the advantage
of coding over two channel uses, especially in the range
5 − 15 dB.

VI. CONCLUSION
This paper has firstly discussed the autoencoder-based com-
munication system, highlighting the limits of the current
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FIGURE 10. Estimated mutual information achieved with β = 0.2, ε = 0.2 and rate
R = 2 with code length n = 1, 2 over a) AWGN channel, b) Additive uniform noise
channel, c) Rayleigh channel.

cross-entropy loss function used for the training process. A
regularization term that accounts for the mutual information
between the transmitted and the received signals has been
introduced to design optimal coding-decoding schemes for
fixed rate R, code-length n and given power constraint. The
rationale behind the mutual information choice has been
motivated exploiting the entropy regularization approach,
the information bottleneck principle and the fundamental
concept of channel capacity. In addition, an adaptation of
the coding rate R allowed us to build a capacity learn-
ing algorithm enabled by the novel loss function in a
scheme named capacity-driven autoencoder. Remarkably, the
presented methodology does not make use of any theoretical
a-priori knowledge of the communication channel and there-
fore opens the door to several future studies on intractable
channel models, an example of which is the power line
communication channel.

APPENDIX
We report a proof of the Lemma 1. Lemma 1 was stated
in [12], but herein the proof is complete and slightly
different.
Lemma 1 (See [12]): Let s ∈ M be the transmitted

message and let (x, y) be samples drawn from the joint dis-
tribution pXY(x, y). If x = f (s; θE) is an invertible function
representing the encoder and if pŜ|Y(ŝ|y; θD) = g(y; θD) is
the decoder block, then the cross-entropy function L(θE, θD)

admits the following decomposition

L(θE, θD) = H(S) − IθE (X;Y) +
+ Ey∼pY (y)

[
DKL

(
pX|Y(x|y)||pŜ|Y(x|y; θD)

)]
.

Proof: The cross-entropy loss function can be rewritten as
follows

L(θE, θD) = E(x,y)∼pXY (x,y)

[
− log

(
pŜ|Y

(
ŝ|y; θD

))]

= −
∑
x,y

pXY(x, y) log
(
pŜ|Y

(
ŝ|y; θD

))

= −
∑
x,y

pXY(x, y) log(pX(x)) +

+
∑
x,y

pXY(x, y) log

(
pX(x)

pŜ|Y
(
ŝ|y; θD

)
)

Using the encoder hypothesis, the first term in the last expres-
sion corresponds to the source entropy H(S). Therefore,

L(θE, θD) = H(S) +
∑
x,y

pXY(x, y) log

(
pX(x) · pY(y)
pXY(x, y)

)
+

+
∑
x,y

pXY(x, y) log

(
pXY(x, y)

pŜ|Y
(
ŝ|y; θD

) · pY(y)

)

= H(S) − I(X;Y) +
+

∑
x,y

pXY(x, y) log

(
pX|Y(x|y)

pŜ|Y
(
ŝ|y; θD

)
)

= H(S) − IθE (X;Y) +
+ Ey

[
DKL

(
pX|Y(x|y)||pŜ|Y(x|y; θD)

)]
.
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