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ABSTRACT The fifth-generation wireless system framework provides the option to evaluate the
performance of in-band full-duplex (IBFD) operation through flexible duplexing. The resulting self-
interference, however, must be mitigated within a fraction of a symbol duration for successful
communication. This paper introduces the use of neural network machine learning to accelerate the
tuning of multi-tap adaptive RF cancellers. Additionally, the optimal network configurations, input data
structures and training dataset densities that optimize the performance of this technique are presented.
The tuning results of a prototype system using a two-tap canceller were measured over 20 and 100 MHz
bandwidths centered at 2.5 GHz, and demonstrated averages of 40 dB cancellation and 6 tuning iterations.
These results are compared to a survey of previously-reported adaptive cancellers, and illustrate that this
novel application of machine learning to RF canceller tuning provides the fastest convergence speed to
date, which can enable IBFD operation in dynamic interference environments.

INDEX TERMS 5G mobile communication, in-band full-duplex, machine learning, RF cancellation, self-
interference cancellation.

I. INTRODUCTION

WHILE the current fifth-generation new radio (5G NR)
wireless system requirements outline the use of both

frequency-division duplex (FDD) and time-division duplex
(TDD) modes, flexible duplexing has also been built into
the specifications. This concept initiated as a way to evolve
fourth-generation (4G) Long-Term Evolution (LTE) systems
by merging the best aspects of FDD and TDD to enhance
network efficiency [1]. In TDD mode, this flexibility relates
to dynamically assigning the number of symbols within
a timeslot for uplink (transmit for handset) and downlink
(receive for handset) within a given frequency, and helps
support asymmetric data traffic. This, however, can result in
closely-spaced frequency channels being assigned to transmit
and receive at the same time, which generates system-
level interference [2]. This interference has previously been
managed through the use of power control algorithms [3] and
device muting [4], both of which are suboptimal approaches.

When independently employing multiple frequency carri-
ers, this flexible duplexing concept can generate scenarios
where signals are transmitted and received at the same time
within a channel allocation. This creates a unique subset
of flexible duplex, which is similar to in-band full-duplex
(IBFD), and can allow for network efficiency improve-
ments through interference mitigation at the device level [5].
In order to support this IBFD mode, however, the result-
ing self-interference (SI) must be sufficiently suppressed
within a fraction of the symbol timing using techniques
in the propagation, analog and/or digital domains [6], [7].
In addition to studying this possible marriage for 5G NR
networks, the benefits of both flexible duplex and IBFD
strategies have been independently compared to traditional
approaches in [8]. While the flexible duplexing concept has
been researched in IBFD systems utilizing an electrical bal-
anced duplexer (EBD) [9] and cross-polarized antennas [10]
for SI mitigation, an adaptive analog-RF canceller can also
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be employed for this purpose, assuming it can be tuned
sufficiently quickly.
Many previously-designed RF cancellers have been shown

to successfully mitigate SI, but their tuning mechanisms
would not be adequate to support the IBFD option within
the flexible duplex operation of 5G NR networks. These
multi-tap adaptation approaches include manual control [11]
as well as standard gradient descent methods with both fixed
learning rates [12], [13] and adaptive functions [14], [15].
Additionally, some cancellers have utilized special channel-
probing waveforms [16] and received signal strength indica-
tor information (RSSI) [17] for tuning. Others have employed
dithered linear search (DLS) approaches [18] and least mean
squares (LMS) algorithms [19]–[21]. While all of these RF
cancellers provided sufficient cancellation performance using
these various tuning techniques, many were not able to con-
verge to their optimal settings in an efficient manner, which
could be drastically accelerated through the use of machine
learning and neural networks.
While machine learning has been applied to a wide

array of fields, it has only recently been incorporated into
IBFD systems. Multipath-rich channels have been modeled
for the purposes of band-allocation prediction in cogni-
tive radio deployments [22], and much focus has been
placed on neural networks reducing computational com-
plexity in nonlinear digital cancellation schemes [23], [24].
The latter has also been extended to a software-defined
radio (SDR) platform [25] that has expanded to the use
of deep neural networks [26]. Furthermore, studies have
been conducted on the effects of real and complex data
samples for digital cancellation [27] as well as the hard-
ware resources required for these approaches in comparison
to traditional polynomial-based nonlinear cancellation [28].
Additionally, neural networks have been investigated for both
reference-based digital cancellation and beamforming oper-
ations within an IBFD phased array [29]. Overall, [23]–[29]
are similar to each other in that they have only investi-
gated the potential of applying machine learning methods
to digital-based SI mitigation, and have not explored their
application to techniques in the analog domain. Compared
to these digital approaches, analog-RF cancellation provides
the benefit of reducing SI before the receiver front-end, but
presents the additional challenges of accounting for finite
tuning resolution and hardware variations with time and
temperature [30].
This paper moves beyond the application of machine

learning to purely-digital techniques in IBFD systems,
and presents the first research illustrating how analog-
RF cancellers can significantly reduce their convergence
time by incorporating neural networks into their tuning
approaches. After training the network on practical cancel-
lation sequences, the resulting tuning function is able to
make predictions that configure the canceller near its optimal
settings. This novel incorporation of machine learning to
standard tuning approaches helps the canceller significantly
reduce convergence time compared to other techniques, and

allows it to support the IBFD mode and flexible duplex tim-
ing aspects of 5G NR. The tuning evaluation results were
collected on a two-tap canceller prototype that was adapted
to a multipath SI channel using only the information from
the existing system without any additional hardware or probe
waveforms.
This work greatly expands on our initial investigation of

analog cancellation and machine learning in [31] by pre-
senting the theoretical framework of the neural network,
simulation results of various network inputs and structures to
determine the optimal configuration, and the first set of statis-
tical measurements that validate the cancellation performance
and tuning acceleration. Additionally, we uniquely examine
the training sequence sample space in terms of the number of
complex data points mapping the SI channel to understand
its effect on performance. Finally, we include an expansion
of this method from 20 to 100 MHz channel bandwidths,
and present a novel comparison of the evaluation results
to previously-reported cancellers, indicating that this new
tuning approach provides the fastest convergence speed to
date. Overall, this is the first-known research to combine
machine learning and analog cancellation for IBFD systems,
and should help provide a practical path forward to mitigate
dynamic SI on short timescales.
The remaining part of the paper is organized as follows:

Section II will discuss the description of the system that
includes both the flexible duplex concept and SI cancella-
tion concerns, while Section III will focus on the various
aspects of the neural network machine learning, including
network formulation, training and simulation. The measure-
ment results and the performance survey will be presented
in Section IV, and conclusions will be derived in Section V.

II. SYSTEM DESCRIPTION
A. FLEXIBLE DUPLEX
Many legacy wireless networks have been designed to cover
large areas with static access points and symmetric commu-
nications that utilized spectrally-inefficient FDD for channel
access [5]. Recently, the trend has been towards deploying
significantly smaller cells that utilize TDD to support asym-
metric data traffic for user equipment, such as large file
downloads and high-definition video streaming applications
that are common on mobile devices.
The frequency-time diagram of Fig. 1 illustrates how flex-

ible duplexing operates within this TDD mode of 5G NR,
where each timeslot has 14 symbols that can be assigned to
be either uplink (U) or downlink (D). The top part of the
figure shows how carrier aggregation (CA) can be utilized
to provide higher data capacity using multiple frequency
bands, shown as f3 and f4. The top half also illustrates how
traditional duplexing operates, where both carriers need to
select the same U/D configuration for each individual symbol
(guard periods have been removed for clarity). While there is
some flexibility in U/D time ratio, network efficiency can be
enhanced by utilizing the flexible duplex approach depicted
in the bottom part of Fig. 1. In this case, carriers f1 and
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FIGURE 1. Frequency-time diagram showing four carrier frequencies (f1−4) and 14
time symbols that can be assigned to uplink (U) or downlink (D) for either traditional
or flexible duplex.

f2 have been aggregated without any restrictions on their
U/D configurations, which offers the possibility of IBFD
operation, as mentioned and shown with one carrier trans-
mitting and the other receiving (changing every symbol is
not required, but merely illustrates the most extreme tuning
case).
In order to implement this flexible IBFD mode, each

transceiver can utilize an adaptive RF canceller to remove
the SI that results from the adjacent carrier, which is not at
the same frequency, but still within the channel bandwidth.

B. SI CANCELLATION
Fig. 2(a) demonstrates how an adaptive canceller that is
comprised of two vector modulator (VM) taps can be
employed to mitigate the SI coupling channel within a
generic transceiver. This interference channel is comprised
of both direct path SI as well as dynamic SI that is dependent
on the surroundings, and has a composite impulse response
that can be modeled as

hSI(t) = α0δ(t − τ0) ∗ hφ0(t) +
K∑

k=1

αkδ(t − τk) ∗ hφk(t),

(1)

where the first term represents the direct path coupling and
the second term captures the dynamic SI. The former is dic-
tated by the specific antenna structure, such that α0 captures
the attenuation coefficient of the signal that is delayed by τ0
and convolved with a phase shift response, hφ0(t). The latter
multipath signals, however, experience changes based on the
environment around the IBFD node that similarly alter their
attenuation, phase and time delay responses, as indicated for
a total of K reflections.

These key attenuation, phase shift and delay variables
can be straightforwardly visualized in the frequency-domain
representation of (1), such that

HSI(jω) = α0e
−jφ0e−jωτ0 +

K∑

k=1

αke
−jφk e−jωτk , (2)

where φ denotes the phase shift in radians for ω ≥ 0.

FIGURE 2. (a) Dual-antenna IBFD system diagram, highlighting the SI coupling
channel and adaptive RF canceller with two taps using vector modulators (VMs). (b)
VM architecture and internal phase states controlled by tunable weights, wI and wQ ,
for a generic canceller with M taps.

Since the SI responses represented in (1) and (2) contain
delays that are dependent on both the antenna and surround-
ing environment, an RF canceller must provide similar delays
to counteract these signals. This is typically accomplished
through the use of multiple canceller taps that internally
delay the transmit signal to match τk for the various SI paths.
Furthermore, these taps must provide a means to dynami-
cally change their attenuation and phase to compensate for
the unknown SI response characteristics that are location-
specific. With these requirements in mind, we utilized a
two-tap VM-based canceller architecture for our research, as
shown in Fig. 2(a). This diagram illustrates how the canceller
signal is coupled off of the transmit output after the power
amplifier (PA), which allows for all of the transmit noise
and nonlinear distortions to also be captured and cancelled.
Additionally, it can be seen that the modified canceller out-
put signal is coupled back into the receiver input before the
low-noise amplifier (LNA), which helps minimize receiver
saturation and nonlinearities.
The components utilized within the VM are represented

in the upper part of Fig. 2(b), where an input signal experi-
ences a series of fixed phase shifts to create the four vectors
(I+, I−, Q+, Q−) that are indicated in the bottom part of
the figure. Subsequently, the following switches select either
the positive or the negative vector for both the in-phase (I)
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and quadrature (Q) channels before they are independently
weighted using variable attenuators and then recombined at
the output [32]. The combination of this vector selection and
weighting allows the VM to generate arbitrary attenuation
and phase changes of the input signal, which make it ideal
for incorporation into an RF canceller.
For a multi-tap canceller architecture, the complex impulse

response can be modeled as

hc(t) =
M∑

m=1

βm
(
wI,m + jwQ,m

)
δ(t − τm), (3)

where βm is the attenuation coefficient that captures the fixed
insertion loss for each tap, wI and wQ are the m-tap tunable
weights that can vary between −1 and 1, and τm is the
corresponding tap time delay. M represents the total number
of canceller taps, and should be two or greater to address
the multiple components of SI, as described in (1). The
frequency response of this VM canceller can be formulated
using (3), such that

Hc(jω) =
M∑

m=1

βm

(
wI,me

−jωτm + wQ,me
j(π−ωτm)

)
. (4)

Equation (4) can now be compared to (2) to better under-
stand that the purpose of the RF canceller is to adapt its
response to closely match that of the phase-inverted SI
channel so that when combined at the receiver, the signals
sum to zero. This is accomplished by tuning the canceller
weights, wI and wQ, for each tap to precise amounts that are
dependent on the IBFD node surroundings. As M increases,
the canceller gains the ability to adapt to a more diverse
set of SI channels; however, the number of independent
weights also increases, which makes efficient canceller tun-
ing a significant challenge. As previously mentioned, the
speed requirement on this tuning must be sufficiently high to
enable flexible duplexing operation, and can be met through
the use of the neural network machine learning approach
discussed in the following section.

III. NEURAL NETWORK MACHINE LEARNING
A. TUNING CONSIDERATIONS
The main challenge of tuning any adaptive RF canceller
to mitigate SI is that the magnitude and phase of the SI
varies over time. This is a result of changes in either the
assigned frequency band or the dynamic multipath environ-
ment around the wireless node. When a change is detected
by the receiver (typically when the SI level rises above a
given threshold), the canceller must adapt the weights for
each tap to compensate and suppress the SI. This involves
finding the optimal wI and wQ for each tap as given in
(3) and (4), which can be a time-consuming process for a
significant change in the interference level.
This level represents the error between the SI channel and

canceller responses described in (2) and (4), respectively.
When considering the errors for all the possible canceller
weight configurations, a multi-dimensional error surface can

FIGURE 3. Example cancellation error surface that is a function of a single tuning
weight for a realistic non-convex scenario.

be generated. The resulting cancellation-error surfaces are
non-convex and present nearly-flat gradients, local minima
and precise optimal locations, all of which can be demand-
ing on adaptive tuning algorithms, potentially limiting their
performance and effectively increasing their tuning time.
These canceller-tuning challenges are highlighted in

Fig. 3, which represents a simplified one-dimensional surface
for a single tuning weight. When the canceller is enabled
for an unknown SI channel, it selects initial weight settings
that are non-optimal (such as point A). An adaptive tun-
ing algorithm must then accelerate its learning rate to avoid
local minima (such as point B) before reducing its step size
when interesting features (such as point C) are encountered
before finally locating the global minimum (such as point
D). This tuning can be efficiently accomplished using adap-
tive algorithms that learn from the error surface and provide
canceller weight updates according to according to

wn+1 = wn −
⎛

⎝E(w)

ET
+ 1

n
(
|∇E(w)|2 + ε

)

⎞

⎠ · ∇E(w), (5)

where w is the weight vector that contains wI and wQ for
both VMs, E(w) is the error on the surface that is a func-
tion of the tap weights, ET is a target error value, n is the
iteration number, ∇E(w) is the gradient of the error, and ε

avoids division by zero (on the order of 1e−9). While this
advanced algorithm has successfully been demonstrated to
traverse non-convex error surfaces and accelerate the con-
vergence speed, it still requires many tuning iterations that
consume significant portions of a time symbol, thus ren-
dering it insufficient for flexible duplex operation [15]. The
robustness and speed enhancement provided by (5), however,
can be augmented with machine learning to provide further
improvements, as discussed in the next subsection.

B. NETWORK CONFIGURATION
As previously mentioned, the canceller tuning process can be
accelerated using machine learning, and more specifically,
a feedforward artificial neural network (NN). As seen in
Fig. 4(a), a generic NN consists of inputs p, and outputs
o, that can be of different lengths: Q and R, respectively.
Between these sets of inputs and outputs exists a network
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FIGURE 4. (a) Generic neural network diagram with inputs p, outputs o, hiddens
layers L and hidden nodes per layer N . (b) Detailed neuron diagram indicating the
input weighting v, bias constant b and activation function for node n on layer l.

of nodes, or neurons, that are “hidden” from the user and
are used to create interconnects that model nonlinear system
behavior for complex datasets. The accuracy of these models
depends on both the number of hidden layers, L, and hidden
nodes per layer, N, which can vary from layer to layer, but
were assumed to be the same for all layers in this work, as
is most common.
Within the network, each node is connected in a forward-

propagating fashion, as indicated by the arrows. What is not
shown in Fig. 4(a) is that each node’s input (every arrow)
is assigned some weighting value so that new inputs can
propagate through the network to produce relevant outputs.
This fact is illustrated in the detailed neuron diagram of
Fig. 4(b) for a given node n on layer l. The inputs to this
node are the outputs from all N nodes on the previous layer,
denoted yl−1

1 through yl−1
N . These inputs are multiplied by the

corresponding node weights, vn,1 through vn,N , and summed
to form

xln =
N∑

i=1

vln,i y
l−1
i , (6)

where xln represents the total combined input into node n on
layer l [33]. The node’s output can then be formulated as

yln = fl
(
xln + bln

)
, (7)

where f (·) represents the node’s activation function, and bln
is the node’s bias constant. Equation (6) can be inserted

into (7), and rewritten in matrix form as

yl = f l
(
Vl yl−1 + bl

)
, (8)

which is valid for l = 1, 2, . . . ,L. It should be noted that y0

is simply the network input vector, p, and yL corresponds to
the network output vector, o.
The neuron activation functions are inspired by their

practical counterparts in biological NNs, and can be either
linear or nonlinear equations that determine the node’s out-
put response based on its inputs. Linear functions, such as
f (z) = c ·z, can scale the input by a constant value c, and are
often used in the last network layer, L, to scale the outputs
to a desired range.
Nonlinear activation functions, on the other hand, give

the network the ability to provide multi-dimensional map-
ping with a minimal number of network nodes. While many
nonlinear equations have been utilized within NNs, the
logistic-sigmoid function is among the most popular, and
is given by

f (z) = 1

1 + e−z
, (9)

which has a smooth gradient that prevents large output
changes for small input variations, and provides a natural
normalization since the outputs are bounded between 0 and 1.
The specific NN architecture for this canceller tuning

approach utilized sigmoid activation functions at every node,
except for the last network layer, which contained a linear
function that scaled the final outputs to the appropriate ranges
for the specific canceller hardware controls and experiments
described in Section IV. These final NN outputs, o, contained
four values (R = 4), and consisted of wI and wQ for both
VMs. The NN inputs, p, as well as the number of hidden
layers, L, and hidden nodes per layer, N, were varied through
the simulations described in Section III-D to determine the
optimal network configuration.

C. NETWORK TRAINING
The network weights captured in (6) are computed one time
using an input dataset that maps to a set of known-good target
outputs, and is referred to as training the NN. These training
sequences are comprised of sample inputs, p, and desired out-
puts, d, for a total of S pairs, such that {(p1,d1),(p2,d2), . . . ,
(pS,dS)}. As shown in Fig. 4(a), the input training vector
pS is the same length, Q, as the number of network inputs,
and similarly, the output training vector dS is of length R.
This allows the individual training error at output r when
applying sequence s to the input to be calculated by

es,r = ds,r − os,r, (10)

where d is the desired output vector, and o is the actual
output vector [34]. These individual errors can be combined
to provide a sum square error (SSE) that can be used to
evaluate the network training for all sequences and outputs,
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FIGURE 5. Complex sample points of composite SI channel where cancellation
measurements were made to train and test the neural network for sample grids with
(a) 50x50 = 2500 points, (b) 25x25 = 625 points and (c) 10x10 = 100 points.

such that

E(p, v) = 1

2

S∑

s=1

R∑

r=1

e2
s,r = 1

2
eTe, (11)

where v represents a vector containing all of the network
weights, and e is the error vector that has the form

e = [
e1,1, e1,2, . . . , e1,R, . . . , eS,1, eS,2, . . . , eS,R

]T
, (12)

where (·)T is the transpose operator.

The training data for this IBFD application was generated
using a channel emulator that deliberately covered the com-
plete SI magnitude and phase space for a coupling channel
with both direct and multipath signals present. Fig. 5(a) illus-
trates how a grid of 50 by 50 sample points were translated
into I and Q values for the composite SI channel with a total
of 2500 sequences, S. As shown, this dataset was segmented
into specific points that were used for training, validation
and testing. Cancellation measurements were made at each
of these points using the adaptive tuning algorithm of (5),
where 80 percent of the points were allocated to calculate
the NN weights. Additionally, Fig. 5(b) depicts a 625-point
sample space that was generated from a 25 by 25 point
grid, and Fig. 5(c) illustrates the 100 samples that resulted
from a sparse 10 by 10 grid. While sampling the SI channel
with fewer points could increase the NN output errors, a
smaller number of training sequences, S, would reduce the
time required to construct the training dataset. Our investi-
gations into the required sample space density are provided
in the following subsection.
These training errors and the resulting composite vector

of (12) can then be utilized within the Levenberg-Marquardt
backpropagation algorithm to calculate all of the node
weights according to

vk+1 = vk −
(
JTk Jk + μI

)−1
JTk ek, (13)

where v is again a vector containing all of the network
weights, μ is the scalable learning rate, I is the identity
matrix, and k is the algorithm iteration number [35], [36].
This network calculation method utilizes the Jacobian
matrix, J, that contains the first-order partial derivatives of
the network errors, as given by

J =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂e1,1
∂v1

∂e1,1
∂v2

· · · ∂e1,1
∂vL·N

∂e1,2
∂v1

∂e1,2
∂v2

· · · ∂e1,2
∂vL·N

...
...

. . .
...

∂e1,R
∂v1

∂e1,R
∂v2

· · · ∂e1,R
∂vL·N

...
...

. . .
...

∂es,1
∂v1

∂es,1
∂v2

· · · ∂es,1
∂vL·N

∂es,2
∂v1

∂es,2
∂v2

· · · ∂es,2
∂vL·N

...
...

. . .
...

∂eS,R
∂v1

∂eS,R
∂v2

· · · ∂eS,R
∂vL·N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

where L · N represents the total number of NN weights.
Overall, this Levenberg-Marquardt algorithm provides a sta-
ble approach to compute the large number of NN node
weights, v, in a fast and efficient manner [37].

Other than the training data shown in Fig. 5, 10 percent of
the dataset was reserved for validation, which helped avoid
overfitting the data by stopping the v-weight iterations after
generalization stopped improving. Finally, the last compo-
nent of the SI dataset consisted of 10 percent of the points
being reserved for testing purposes only, which provided an
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FIGURE 6. Simulated network error percentage (colorbar) for various configurations using 2500-training samples with different inputs: (a) full SI magnitude and phase
responses, (b) the mean SI magnitude and phase responses, (c) the full SI real and imaginary responses, and (d) the mean SI real and imaginary responses (colorbar scale
shown in (a) is the same for all plots).

FIGURE 7. Simulated network error percentage (colorbar) for various configurations using 625-training samples with different inputs: (a) full SI magnitude and phase
responses, (b) the mean SI magnitude and phase responses, (c) the full SI real and imaginary responses, and (d) the mean SI real and imaginary responses (colorbar scale
shown in (a) is the same for all plots).

FIGURE 8. Simulated network error percentage (colorbar) for various configurations using 100-training samples with different inputs: (a) full SI magnitude and phase
responses, (b) the mean SI magnitude and phase responses, (c) the full SI real and imaginary responses, and (d) the mean SI real and imaginary responses (colorbar scale
shown in (a) is the same for all plots).

independent measure of network performance during forma-
tion, and were also used to evaluate the effectiveness of this
concept in Section IV.

D. NETWORK SIMULATION
As mentioned in the previous subsections, we investigated
the number of layers and number of nodes per layer that
would minimize the total errors of (11) for the NN. This
was done by solving (13) to compute all of the NN weights
for these various configurations using the cancellation data
measured for the three sample spaces illustrated in Fig. 5.
The effectiveness of the NN simulations was evaluated by
checking the residual errors for both the full training set (80

percent of the sample space) as well as the reserved test
points only (10 percent of the sample space).
While all of these cases computed the same four VM

outputs desired, we researched the effect of the input
data structure on the network performance. The input was
constructed in four different ways: the full SI magnitude
and phase responses, the mean SI magnitude and phase
responses, the full SI real and imaginary responses, and the
mean SI real and imaginary responses. Respectively, these
took the forms of

p = [|HSI | ∠HSI]T , (15)

p =
[
|HSI | ∠HSI

]T
, (16)
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p = [�HSI �HSI]T , (17)

p = [�HSI �HSI
]T

, (18)

which consisted of 402 points for (15) and (17) (the
frequency domain response sampled every 0.1 MHz for a
20 MHz bandwidth), and only 2 points for (16) and (18)
(simply the mean values of (15) and (17), respectively).
Fig. 6 through 8 illustrate the residual NN error percent-

ages on a color scale for NNs with a number of hidden
layers that was varied from 1 to 20 (horizontal axis) with
between 1 and 20 hidden nodes per layer (vertical axis).
For example, the bottom left corners of these plots repre-
sent the most basic NNs with only one layer and one node
(1 total neuron), while the top right corners represent NNs
with 20 layers and 20 nodes per layer (400 total neurons).
The results in Figs. 6, 7, and 8 represent NNs that were
trained using the 2500, 625 and 100 sample points depicted
in Fig. 5, respectively. For each of these figures, the sub-
plots (a) through (d) correspond to the four input formats
previously discussed as well as represented in (15) through
(18), respectively.
The results plotted in all of these figures indicate that

the NNs perform poorly when constructed with many layers
but few nodes per layer (the bottom right corner of the
plots). This intuitively makes sense since the networks do
not have many node weights to effectively map node inputs
to outputs before feeding them on to the next layer. While
this collection of simulation results also illustrates that the
network input type, (15)-(18), does not strongly influence
the error, the number of complex sample points of the SI
channel significantly impacts the network performance. As
such, the lowest network tuning errors were achieved for
the largest training set of 2500 samples, as depicted across
Fig. 6.
As shown in Fig. 6(a), the minimum errors for the 2500

training samples occurred with the full SI magnitude and
phase response inputs, and yielded 3.3 percent for a NN
configuration with an L of 6 and N of 19. For the 625 length
sequences, the minimum error was 4.8 percent for the full
SI real and imaginary inputs, as illustrated in Fig. 7(c) for
an L of 5 and an N of 11. Similarly, the lowest error for
the 100 training points occurred using the full SI real and
imaginary inputs, and was found to be 7.4 percent, as shown
in Fig. 8(c) for an L of 10 and an N of 17.
The complete set of minimum testing errors and their

associated optimal structures (in terms of hidden layers and
nodes per layer) for all of the network simulation cases are
summarized in Table 1. Additionally, this table depicts the
average NN error that could be expected for a suboptimal
selection of the structure, which provides a sense of what
would occur when the configuration sweeps of Figs. 6–8
are not conducted. While the error metrics represented in
this table do not show a strong correlation with the network
input type for the various numbers of training samples, lower
errors are generally seen for the cases that utilize the full set
of input data points over frequency as opposed to their mean

TABLE 1. Network simulation performance summary.

values. Finally, the indicative benefits of training the NN with
denser sample spaces will become even more apparent in the
following section, where testing was conducted on complex
SI responses that were not part of the training sequences, as
would be expected in practical IBFD nodes.

IV. RESULTS
Ideally, the residual errors discussed in the preceding section
would be zero, but a combination of limited total neurons
in these NN as well as the consistency of the training
data introduce practical limitations. As captured in (10),
these errors create undesired offsets in the NN outputs,
the canceller weights. This effectively moves the canceller
away from the global minimum (point D in Fig. 3), and
necessitates additional minor weight tuning to relocate the
optimal settings.
The overall quality of the NN outputs and associated addi-

tional tuning was evaluated through measurement of an IBFD
node employing a two-tap VM adaptive canceller, as illus-
trated in Fig. 2(a). As depicted in the connection diagram
of Fig. 9(a), a N5222A network analyzer from Keysight
Technologies was utilized as the system’s transmitter and
receiver, and was responsible for feeding the receive data
into a control laptop. For each test case, this computer
formatted the data into one of the desired network input
structures, described in (15) through (18), and then calcu-
lated the desired canceller weight outputs from the NN in
MATLAB. This output generation was a straightforward pro-
cess since the different NNs were already trained using (13),
and the optimal configurations were stored for use with new
measured inputs.
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FIGURE 9. (a) Laboratory connection diagram and (b) setup photo that was used for
the neural network tuning evaluation, illustrating the two-tap RF canceller, a control
laptop, an FPGA, network analyzer and channel emulator.

Fig. 9(a) also illustrates how an FPGA was used to buffer
the canceller weights before updating the analog attenuators
on the VMs by writing to the on-board digital-to-analog
converters (DACs). Additionally, the SI coupling channel was
generated using a channel emulator that created both direct
and multipath SI signals simultaneously, and was capable of
varying the composite SI to any complex value, as depicted
in Fig. 5. The initial channel setup resembled a base station
node with a strong reflection approximately 0.3 m away. All
the measurements in the next subsection were conducted
over a 20 MHz bandwidth centered at 2.5 GHz, and a photo
of this hardware setup is shown in Fig. 9(b).

A. STATISTICAL EVALUATION
The cancellation capability and configuration speed of this
novel tuning approach were evaluated using all of the differ-
ent test point locations for each of the complex SI sample
spaces shown in Fig. 5. It should be noted that test points
− and not data points used for training − were chosen
because these would present a more difficult input to the
NN since these points were not used to create the network.
Investigating the performance differences of the 2500-, 625-
and 100-point sequences provides a better understanding of
the tradeoffs associated with training dataset size.

FIGURE 10. Measured (a) cancellation performance and (b) tuning iterations for the
adaptive RF canceller tuning approach utilizing a neural network trained with 2500
samples.

FIGURE 11. Measured (a) cancellation performance and (b) tuning iterations for the
adaptive RF canceller tuning approach utilizing a neural network trained with 625
samples.

For each test location, the prototype node started by mea-
suring the channel response that contained the composite SI,
and then utilized the previously-trained NN configurations
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FIGURE 12. Measured (a) cancellation performance and (b) tuning iterations for the
adaptive RF canceller tuning approach utilizing a neural network trained with 100
samples.

that yielded the lowest errors to estimate the initial VM
weights, as discussed in the previous section (the three
datasets used three different NN configurations). The result-
ing histograms and statistics for the cancellation performance
and associated number of required tuning iterations are
shown in Figs. 10 through 12 for the 2500-, 625- and 100-
point training sequences, respectively. As mentioned, these
results capture the NN performance at the test locations
that were reserved in 10 percent of each dataset, and thus
produced 250, 63 and 10 measurements, respectively.
While these plots indicate that all three training sets are

capable of providing similar cancellation results (roughly
40 dB of cancellation), the number of necessary tuning iter-
ations varies significantly as a function of the sample space
density. The canceller weights converged to their optimal set-
tings in an average of 5.9 iterations for the NN that utilized
the 2500-point training sequence. The weight adjustments
required 16.5 iterations on average, however, when the NN
was trained with the sparser 100 sample points. Intuitively,
this makes sense since training the NN with a dense sample
space provides it with the ability to more accurately predict
the desired outputs for unique SI responses. For IBFD appli-
cations that do not require the stringent settling times of
flexible duplex operation, the NN with 625-point training can
provide a tradeoff between the required dataset length and
convergence time, which was measured to be 10 iterations,
on average.

FIGURE 13. Average cancellation performance changes versus time, measured
over 20 MHz centered at 2.5 GHz, for neural networks (NNs) trained with different
sample densities, and compared to a standard gradient descent (SGD) method.

The influence of the training dataset density for these tun-
ing time and cancellation results are plotted in Fig. 13 for
representative performances at a single test location. These
measurements are also compared to a standard gradient
descent (SGD) tuning approach to illustrate the time accel-
eration provided by the use of the NN technique proposed.
While all of the curves approach a final cancellation around
40 dB, both their initial performance and required iterations
vary drastically. For both of the denser training sample spaces
(2500 and 625 points), the cancellation started above 0 dB,
which indicates that the NN outputs accurately predicted
weights that were near the optimal settings for the canceller
(such as point C in Fig. 3). For both the 100-sample NN
and the SGD method, however, the initial cancellation was
less than 0 dB, which required many additional iterations of
the adaptive algorithm before locating the optimal canceller
weights. This plot also highlights that NNs trained with
denser sample spaces converge in fewer tuning iterations,
as previous discussed. Overall, these results indicate that
using a NN to tune adaptive RF cancellers can significantly
accelerate their speed compared to traditional approaches.
The tuning speedup provided by this NN approach is

critical when the SI changes rapidly and the node has to
mitigate different SI before the start of every new symbol,
such as in the flexible duplex example of Fig. 1. Fig. 14
illustrates the tuning results of this realistic scenario using
a constant transmit output and a SI channel power that
changes between symbols within a flexible duplex times-
lot for the 2500-sample NN implementation. These channel
powers were measured over a 20 MHz bandwidth centered
at 2.5 GHz, and included the analyzer noise floor for refer-
ence. All 14 symbols of a timeslot for a subcarrier spacing of
60 kHz are shown to illustrate the concept, which highlights
how the NN-tuning approach is necessary to provide tuning
times that are less than 10 μs and consume only a small frac-
tion of the symbol duration. This timing estimate assumed
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FIGURE 14. Example flexible duplex tuning scenario with average channel and noise power plotted relative to the transmit output, as well as highlighting the neural
network-based canceller tuning times during the 14 symbol durations of a 5G NR timeslot.

a modest 200 MSPS analog-to-digital converter (ADC) and
200 data samples for each tuning measurement.

B. EXPANDED APPLICATIONS
While the previous subsection demonstrated the effectiveness
of the NN-based tuning approach using a two-tap canceller
and a 20 MHz bandwidth, this concept can straightforwardly
be expanded to cancellers with more taps and wider instanta-
neous bandwidths. In some cases, NN configurations trained
using sample data collected over 20 MHz bandwidths can be
utilized to accurately predict the canceller weights for wider
bandwidth targets. Fig. 15 plots the measured cancellation
performance in the frequency domain for one such scenario.
A 20 MHz bandwidth is highlighted to illustrate the desired
cancellation region for the initial NN output, which produced
an average cancellation of 41.3 dB after 5 tuning iterations.
Without retraining or reconfiguring the network, the same
starting canceller weights were used to tune to a 100 MHz
bandwidth as indicated in the plot with a lower residual over
the 2.45 to 2.55 GHz band. For this case, a cancellation aver-
age of 39.8 dB was achieved over the 100 MHz band in 8
iterations, and approached the instrument noise floor near the
center of the band. While this represents only one example
of the NN-tuning technique supporting an alternate applica-
tion, similar performance can be expected by incorporating
additional canceller taps and training datasets targeting wider
bandwidths into the initial NN design.

C. PERFORMANCE SURVEY
Based on the results discussed in the previous subsections,
this novel NN-based tuning approach can provide substantial
cancellation performance in as few as 5.9 μs, on average.
This offers a significant improvement over other adaptive
RF canceller approaches that have reported tuning times of

FIGURE 15. Magnitude of channel response, canceller residual signals for 20 and
100 MHz target bandwidths, and instrument noise for both bandwidths centered at
2.5 GHz.

10000 μs [12], 1000 μs [16], [17], 500 μs [18], approx-
imately 250 μs [19], [20], 50 μs [13], 28 μs [15], and
20 μs [21]. While these prototypes were designed with
various numbers of canceller taps, their common goal was
to deliver cancellation over sufficiently wide channel band-
widths. With that said, a simple figure of merit (FOM) can
be created, such that

FOM = CANC · IBW, (19)

where CANC represents the cancellation performance
achieved and IBW is the instantaneous bandwidth in MHz
over which the cancellation was measured.
This FOM is plotted for the results discussed here and

other previously-reported analog-RF cancellers in Fig. 16
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FIGURE 16. Measured FOM (cancellation-bandwidth product) versus tuning time on
a logarithmic scale, comparing this work and the other approaches referenced.

(reference numbers included). This graph captures the
cancellation-bandwidth performance and tuning time land-
scape for state-of-the-art designs, where the ideal combina-
tion resides in the top-left corner of the figure (i.e., a high
cancellation-bandwidth product with minimal tuning time).
The average cancellation and tuning time performance for
the 2500-, 625- and 100-point NN training results are rep-
resented by the five-pointed star symbols plotted from left
to right, respectively (all measured over a 20 MHz band-
width). Additionally, the application of this NN-approach to
the 100 MHz bandwidth discussed in the previous subsection
is illustrated with a six-pointed star. Not only do these results
represent the fastest tuning speeds reported, they also indi-
cate that NNs can drastically accelerate canceller tuning and
provide the speed required to enable IBFD operation within
the flexible duplex aspect of 5G NR wireless networks.

V. CONCLUSION
The flexible duplex option within the 5G NR specifica-
tion can enable IBFD operation when combined with carrier
aggregation in TDD mode. In order to mitigate the resulting
SI, a node can utilize an adaptive RF canceller, but it must
tune within a fraction of a symbol duration. To address this
need, we uniquely applied machine learning − specifically,
a feedforward neural network − to accurately estimate the
canceller weights and drastically accelerate the tuning speed.
This novel concept was investigated for various network con-
figurations in terms of both layer and node counts as well as
the optimal input data structure and training sample density.
The resulting cancellation performance was measured to be
approximately 40 dB over a 20 MHz bandwidth centered
at 2.5 GHz, and converged in an average of 6 iterations
(or 6 μs), which represents the fastest reported approach.
Our future efforts will include expanding the NN flexibility
and prediction capability as well as incorporating this tun-
ing approach into a complete IBFD node for system-level
evaluation.
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