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ABSTRACT Optical beam center position on an array of detectors is an important parameter that is
essential for estimating the angle-of-arrival of the incoming signal beam. In this paper, we have examined
the beam position estimation problem for photon-counting detector arrays, and to this end, we have
derived and analyzed the Cramér-Rao lower bounds on the mean-square error of unbiased estimators
of beam position. Furthermore, we have also derived the Cramér-Rao lower bounds of other system
parameters such as signal peak intensity, and dark current noise power, on the array. In this sense, we
have considered robust estimation of beam position in which none of the parameters are assumed to
be known beforehand. Additionally, we have derived the Cramér-Rao lower bounds of beam and noise
parameters for observations based on both pilot and data symbols of a pulse position modulation (PPM)
scheme. Finally, we have considered a two-step estimation problem in which the signal peak and dark
current noise intensities are estimated using a method of moments estimator, and the beam center position
is estimated with the help of a maximum likelihood estimator.

INDEX TERMS Angle-of-arrival, beam center position, Cramèr-Rao lower bound, dark current, maximum
likelihood estimator, method of moments estimator, photon-counting detector arrays, pulse position
modulation.

I. INTRODUCTION

FREE-SPACE optical (FSO) communications is an
important technology that will help us support high

data rates between satellites in deep-space communication
systems [1]. However, the problem of pointing, acquisition
and tracking is significant in FSO because of the narrow
beam widths associated with the optical signal. Acquisition
is the process whereby two terminals acquire each other’s
initial locations before the actual data communication begins.
However, after the acquisition is achieved, the system still
needs to maintain alignment between the transmitter and
receiver assemblies. This requirement to maintain alignment
arises due to the presence of physical factors such as atmo-
spheric turbulence, or the mechanical vibrations introduced

in transmitter/receiver assemblies by factors such as wind.
In case there is a misalignment, the link would experience
an outage due to a significant loss of received signal energy
at the receiver. Similarly, the narrow optical beam needs to
be tracked/aligned for mobile platforms in order to prevent
outage at the receiver.
In this paper, we have considered the optical beam position

estimation on a photon-counting detector array as part of
“fine beam tracking” component in a deep space optical
communication receiver. Photon-counting detector arrays are
typically used in deep space optical communications because
of their ability to detect very low levels of received light (a
few signal photons) [1]. For these arrays, any fluctuations in
the angle-of-arrival of the beam on the receive aperture leads
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to a shift of the center of the focused beam on the focal plane
array. Hence, the problem of estimating the angle-of-arrival
is reduced to estimating the beam center deviation on the
array. The deviation between the beam center and the array
center (a measure of misalignment) is measured with a beam
position estimation algorithm, and this misalignment may
be corrected by adjusting the receiver telescope, or/and with
secondary optics (fast steering mirror (FSM) assemblies), in
the receiver station.
In the current study, we have derived and analyzed the

Cramér-Rao lower bounds of beam position estimators for an
array of detectors. The estimation problem discussed in this
paper is robust since we also estimate the signal intensity as
well as noise power levels. In this regard, Cramér-Rao lower
bounds are derived for beam position, peak intensity and
noise intensity for various scenarios. Moreover, two types
of observations are considered in this estimation problem:
i) observations that are based on pilot symbols and ii) obser-
vations based on data symbols. Using energy of the signal
based on data symbols for our estimation problem leads to
a more bandwidth/energy efficient scheme. However, as we
will see later in this study, the estimation performance (in
terms of mean-square error) corresponding to data symbols
suffers more as compared to pilot symbols as the noise power
becomes larger.

II. LITERATURE REVIEW AND
CONTRIBUTIONS/ORGANIZATION OF THIS PAPER
A. BACKGROUND LITERATURE REVIEW
There is a significant number of studies carried out on
research in pointing, acquisition and tracking (PAT) systems
in FSO that treat the beam position estimation/tracking
problem purely from a hardware point-of-view. In this
respect, [2] provides a detailed overview of the current state-
of-the-art hardware solutions for optical beam tracking. In
this study, we have chosen to cover the literature review from
a signal processing perspective since such a perspective is
more relevant to the analysis in this paper. In the following
paragraph, we cover literature review on communications and
beam tracking with an array of photon counting detectors in
free-space optical communications.
The authors in [3] present the performance analysis of

centroid and maximum likelihood estimators of beam posi-
tion for a “continuous”1 array. Building up on the work
in [3], the authors in [4] propose beam position estimation
algorithms for a “discrete” array of detectors since discrete
arrays are the ones that are actually used in a practical set-
ting. The work in [5] extends the work in [4] by recasting
the random and time-varying beam position as a state space
variable. They introduced Bayesian filtering algorithms—
such as Kalman and particle filters—for tracking the beam

1. A (hypothetical) continuous array is obtained if the number of detectors
in the array goes to infinity for a fixed array area. In other words, the area per
detector approaches zero for a continuous array. In this case, we have perfect
information about the location of each photodetection in the continuous
array. Therefore, continuous arrays lead to an optimal mean-square error
performance.

position. Following up on the work [4] and [5], the authors
in [6] inspect the relationship between the probability of
error and the estimation of beam position on the detector
array, and using an argument based on Chernoff bounds,
they show that precise estimation of beam center on the
array is necessary in order to minimize the probability of
error. Additionally, the author in [7] presents a mathemat-
ical argument to show that for a fixed beam radius and
signal power, the probability of error in symbol detection
decreases monotonically as the number of detectors in the
array is increased. Furthermore, the authors in [8] analyze
the acquisition performance of an FSO system that employs
an array of detectors at the receiver, and they demonstrated
that the acquisition performance in terms of mean acqui-
sition time can be significantly enhanced by employing a
large number of detectors in the receiver array. In the same
vein, the study in [9] considers time synchronization schemes
based on an array of detectors, and this study showed that
the synchronization performance improves significantly by
using an array of detectors at the receiver.
For the sake of completeness, we also briefly discuss

the literature on pointing and tracking in FSO systems that
examine the tracking problem from the perspective of a sin-
gle detector. In this regard, the seminal work [10] develops
the pointing error statistics for a circularly shaped detector
and a Gaussian beam, and the outage capacity is optimized
as a function of beam radius. The authors in [11] inves-
tigate a slightly different optimization problem concerning
pointing: They consider the maximization of link availabil-
ity as a function of beam radius (for fixed signal power).
In addition to these papers, the interested reader may be
directed to [12]–[15] for a detailed study on the performance
of FSO systems when the optical channel suffers
degradation due to pointing errors for a single-detector
receiver.
Readers who might be interested in deep space optical

communications with photon-counting detector arrays are
referred to [16]–[20].

B. MODEL ASSUMPTIONS
One of the major assumptions in this study is that the array
area is chosen to be large enough so that the beam foot-
print is smaller than the footprint of the array. A practical
system design requires that such an assumption should hold
so that any outage in the received signal is precluded in
case the beam wanders due to angle-of-arrival fluctuations.
Furthermore, a large array area is also needed in order
to track the movement of the beam and align it—perhaps
through a FSM assembly—to the center of the array.
Additionally, we have made two more assumptions in

order to simplify the resulting analysis. First, we have
assumed that the photon counting detectors (operated in
the Geiger-mode) do not suffer from dead-time or block-
ing, and each incoming signal or noise photon is reported
by the detectors. Secondly, we have assumed that the effect
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of background radiation is minimal,2 and the only source of
noise is the dark current. This assumption is made in order
to simplify the argument since the dark current noise power
is assumed to be uniformly distributed over the array, but
a more complex model is required in order to mimic the
effect of background radiation (which is nonuniformly dis-
tributed on the array). In a future study, we would analyze
the effect of both the dead-time and background radiation on
the Crameŕ-Rao lower bounds of beam and noise parameter
estimation.
Secondly, all arrays are assumed to be of a square shape

and each detector in the array is also assumed to be of a
square shape as well. The square shape is chosen in order
to yield a more tractable mathematical analysis.
Finally, the focus of this study is on non-Bayesian esti-

mation techniques for beam position estimation. This is due
to the fact that unless we are certain about the parame-
ters of the prior random motion model of the beam on
the array, we are likely going to incur a significant loss
in performance if there is mismatch in the prior model and
real world parameters3 [21].

C. ORGANIZATION OF THIS PAPER
This paper is organized as follows. Section III defines
the beam profile and the Poisson model that governs the
occurrence of photodetections4 in the array of detectors.
Section IV-A motivates the study of Cramér-Rao bounds
of beam position, and Section IV-B argues the effect of the
Cramér-Rao bound on the outage probability of the system.
Section V discusses the derivation of the Cramér-Rao lower
bound of the beam parameter estimation problem when pilot
symbols are used as an observation. In Section VI, we derive
the Cramér-Rao bounds for observations based on data sym-
bols. Section VII considers the two-step estimation (method
of moments and maximum likelihood estimators) algorithm
to estimate beam parameters. The simulation results are
explained in Section VIII, and Section IX briefly discusses
the complexity of the two estimators. The conclusions of
this study are summarized in Section X.

III. SYSTEM MODEL
Photon-counting array receivers are typically used for long
link distances [1] in deep space optics. In this case, the size
or footprint of the received beam is much larger than the
aperture area5 since the beam diverges as it travels through

2. The assumption holds if the background radiation power can be
minimized using effective optical filters.

3. This is especially true if the parameters themselves—such as the
covariance matrices of the random motion model—are time-varying.

4. We use the term photodetections and photons alternatively in this
paper. A photodetection actually corresponds to an avalanche of electrons
triggered by either an incoming (signal or noise) photon or a thermal noise
electron.

5. The beam radius ρ at a distance z meters from the transmitter is given

by ρ(z) = ρ0

√
1 + ( λz

πρ2
0
)2, where ρ0 is the beam waist (in meters) and λ

is the wavelength in meters.

space [8]. At the receiver aperture, only a small fraction of
the total beam energy is captured and focused as a small
spot or airy pattern on detector array that is located at the
focal plane of the aperture lens.
The received optical signal on the receiver aperture gives

rise to photoelectrons or photodetections in each detector of
the array due to photoelectric effect. The emission of these
photoelectrons during the signal pulse interval helps us detect
transmitted symbols. The photon count Zm in the mth detec-
tor or cell of the array—during some specified observation
interval—is modeled as a (Poisson) discrete random vari-
able. Its probability mass function is characterized by the
following expression:

P({Zm = zm}) = exp

(
−
∫∫

Am

[
λs(x, y)+ λn

]
dx dy

)

×
(∫∫

Am

[
λs(x, y)+ λn

]
dx dy

)zm
zm!

,

m = 1, . . . ,M, (1)

where λs(x, y) is the scaled beam intensity6 profile on the
detector array, λn is the scaled (dark current) noise inten-
sity profile, Am is the region of the mth detector on the
detector array, Z1,Z2, . . . ,ZM are independent Poisson ran-
dom variables, and M is the total number of detectors in the
array.
As may have been discerned by the reader, the coordinate

(x, y) stands for any point inside the region of the detec-
tor array. Moreover, λn is constant factor with respect to
(x, y) that accounts for the dark current noise in the detector
array [22].
We assume that the airy pattern of the beam on the focal

plane array is well-approximated by a Gaussian function (see
Fig. 1). The received (scaled) signal intensity at the detector
array is given by the expression

λs(x, y) � I0
ρ2

exp

(
−(x− x0)

2 − (y− y0)
2

2ρ2

)
· 1A(x, y), (2)

where I0/ρ2 is the peak intensity measured in terms of
the average number of signal photons measured during an
observation interval. Furthermore, λn is also measured in
terms of the average number of noise photons generated dur-
ing the same observation interval. The quantity ρ is known
as the beam radius measured in millimeters, and (x0, y0) is
the center of the Gaussian beam on the detector array. The
function 1A(·) represents the indicator function over some
(measurable) set A, and A is the region of the detector array.

6. The actual signal intensity, λsi , and the actual noise intensity, λni , are
both measured in terms of Joules/mm2/s. However, they are multiplied by
the constant ηTs

hc/λ in order to obtain the intensity λs and λn for the photon
generation model in (1). The constant h is known as the Planck’s constant,
and its value is 6.62607004 × 10−34 m2kg/s. The constant c is the speed
of light in vacuum which is about 3×108 m/s, λ is the wavelength of light
in meters, η stands for the photoconversion efficiency, and Ts represents
signal pulse duration in seconds.
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FIGURE 1. This figure depicts contours of incident light intensity (intensity is
distributed as a Gaussian function) and the resulting photodetections for a 4 × 4
detector array. The red crosses represent the locations of signal photodetections, and
the black ones correspond to noise.

TABLE 1. List of mathematical symbols.

Furthermore, it is a general assumption in the following
sections that the center of the array has the coordinates
(0, 0). Additionally, the area of Am is denoted by A since
all detectors are assumed to have an equal area. The area
of the detector array is denoted by |A|. The length of one
side of the array is denoted by �(A). Please see Table 1 for
a complete list of all mathematical symbols.

IV. CRAMÉR-RAO LOWER BOUND
A. WHY COMPUTE THE CRAMÉR-RAO LOWER BOUND
FOR BEAM POSITION ESTIMATORS?
As we know, the Cramér-Rao Lower Bound acts as a lower
bound on the variance of any unbiased estimator. The moti-
vation to use this bound in this paper stems from the fact
that this bound help us obtain additional insights about the
system performance that are helpful from a system design
perspective.
For instance, depending on the size of a single detector in

the array, there is an optimal beam radius that will minimize

the Cramér-Rao bound (see Fig. 9 in revised manuscript) for
a given value of received signal-to-noise ratio. Additionally,
the difference in performance of slot-period and symbol-
period based observations of a data-aided tracking system
(based on Pulse Position Modulation) is highlighted by the
Cramér-Rao bounds (see Fig. 11, Fig. 12, Fig. 13 and Fig. 14
of revised manuscript). Thus, we are informed that for the
observation period, we should focus on a slot—instead of
a full symbol period—in order to minimize the estimation
error (especially at high-to-moderate received signal-to-noise
ratio). Last, but not the least, we also note from Fig. 12
that the difference in the Cramér-Rao bounds shrinks as
we increase the number of detectors in the array. Thus,
employing an array with too big a number of detectors will
only lead to a more computationally complex system without
a significant performance gain.

B. CRAMÉR-RAO LOWER BOUND AND OUTAGE
PROBABILITY
Let us first define that the outage occurs as soon as the
beam center coincides and moves past one of the edges of
the array while moving away from the array center.7 Let us
assume that an efficient8 estimator exists . Additionally, let
us assume that the error of this estimator is Gaussian, and
that the error in each of the two dimensions is independent
and identically distributed with a certain variance σ 2

0 . Let us
denote the Cramér-Rao bound by C. Then, the Cramér-Rao
bound in this case is C � 2σ 2

0 . Also, it follows, that the
deviation between the array center and the beam center is
given by a two-dimensional Gaussian random vector X0 with
covariance matrix σ 2

0 I, where I is a 2 × 2 identity matrix.
Before we analyze the outage, let us define how the track-

ing system works. The beam position is assumed to follow
a random walk on the array in two dimensions due to phys-
ical affects such as turbulence and mechanical vibrations.
We assume that the beam center’s initial position lies at the
origin, where the origin is defined to be the center of the
array. We assume that the beam position evolves in time
according to a Gauss-Markov process. The tracking block
senses (or estimates) the beam position every Ts units of
time, and aligns the beam center with the center of the
array. We assume that the deviation of the beam center from
the origin during time interval Ts is modeled by a two-
dimensional Gaussian random vector X1 with a covariance
matrix σ 2

1 I. We additionally assume that X0 and X1 are
mutually independent Gaussian random vectors.
Due to the error in estimation, the beam is not perfectly

aligned at the origin, but aligned with a two dimensional
error X0. Thus the outage occurs when the quantity R �
‖X0 + X1‖2 exceeds a certain threshold. We note that R
is a Rayleigh random variable with scale parameter σR �

7. Approximately, the outage occurs when the signal power falls below
half of the maximum received power.

8. An estimator is said to be efficient if it is unbiased and achieves the
Cramér-Rao bound.
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√
σ 2

0 + σ 2
1 . Then, an upper bound on the outage probability

can be derived as

Pout ≤ P

({
R ≥

√A
2

})
= exp

(
− A

8
(
σ 2

1 + σ 2
0

)
)

= exp

⎛
⎝− A

8
(
σ 2

1 + C
2

)
⎞
⎠, (3)

where A is the area of the square array, and
√A is the

length of one side of the array. We note that a smaller value
of Cramér-Rao bound C leads to a smaller (upper bound on)
outage probability through the expression (3).
We remind the reader here that the upper bound in (3) rep-

resents the ideal scenario since it corresponds to an efficient
estimator that achieves the bound. This is the best possible
outage probability scenario for any unbiased estimator of
beam position given the received SNR and other channel
parameters.

V. CRAMÈR-RAO LOWER BOUNDS FOR BEAM
PARAMETER ESTIMATION BASED ON PILOT SYMBOLS
In this section, we derive and analyze the Cramér-Rao lower
bounds for the beam parameter estimation problem based on
pilot symbols. The pilot symbol is transmitted as a known
pulse position modulation symbol. For instance, we may
transmit only the ‘0’ symbol (signal pulse only in the first
slot) of a K-PPM scheme. The observation interval in this
case is the first slot of every pilot symbol.
Let �

[
x0 y0 I0 λn

]
.9 The likelihood function is

given by

p(Z|) =
M∏
m=1

e−�m
�
zm
m

zm!
, (4)

where

�m �
∫∫

Am

(
I0
ρ2
e
− (x−x0)2+(y−y0)2

2ρ2 + λn

)
dx dy, (5)

and the random vector Z �
[
Z1 Z2 · · · ZM

]T . Let us
define the total incident power on the array �s �

∑M
m=1�m.

Then,

ln p(Z|) =
M∑
m=1

(Zm ln�m −�m − lnZm!)

=
M∑
m=1

(Zm ln�m − lnZm!)−�s. (6)

9. Here, we want to emphasize that the beam radius on the focal plane
array is a known quantity that depends on the focal properties of the aperture
lens, and hence does not need to be estimated as such.

A. ESTIMATION BASED ON PILOT SYMBOLS
In this section, we derive Cramér-Rao lower bounds based
on the observations corresponding to pilot symbols.
a) Cramèr-Rao Lower Bound of I0: As a first step in

computing the Cramér-Rao lower bound for any unbiased
estimator Î0, we compute the first partial derivative of (6):

∂ ln p(Z|)
∂I0

=
M∑
m=1

Zm
�m

∫∫
Am

1

ρ2
e
− (x−x0)2+(y−y0)2

2ρ2 dx dy. (7)

The second derivative of (6) with respect to I0 is

∂2 ln p(Z|)
∂I20

= −
M∑
m=1

Zm
�2
m

(∫∫
Am

1

ρ2
e
− (x−x0)2+(y−y0)2

2ρ2 dx dy

)2

.

(8)

Now, taking the expectation with respect to Zm and taking
the negative of the resulting quantity, we have that

−E
[
∂2 ln p(Z|)

∂I20

]
=

M∑
m=1

1

�m

(∫∫
Am

1

ρ2
e
− (x−x0)2+(y−y0)2

2ρ2 dxdy

)2

.

(9)

1) CRAMÈR-RAO LOWER BOUND OF λN

In this case, we assume that the dark current noise parameter
λn is estimated at the receiver while the transmitter is turned
off (no signal is present at the receiver). Therefore, in this
case, �m = λnA. Using the same line of argument as used in
the derivation of (9), it can be easily shown that the Cramèr-
Rao lower bound on the variance of any unbiased estimator
λ̂n for one noise-only slot is given by

− E

[
∂2 ln p(Z|)
∂λ2

n

]
=

M∑
m=1

A2

�m
. (10)

2) CRAMÈR-RAO LOWER BOUNDS OF (X0, Y0)

The Cramèr-Rao lower bound for x̂0 and ŷ0 is derived in
the Appendix. The final expressions are produced here as
follows:

Var
[
x̂0
] ≥

∑M
m=1

1
�m

(∫∫
Am

I0
ρ4 (y− y0)e

− (x−x0)2+(y−y0)2
2ρ2 dxdy

)2


(x0, y0, I0, ρ)
(11)

Var
[
ŷ0
] ≥

∑M
m=1

1
�m

(∫∫
Am

I0
ρ4 (x− x0)e

− (x−x0)2+(y−y0)2
2ρ2 dxdy

)2


(x0, y0, I0, ρ)
,

(12)

where 
(x0, y0, I0, ρ) is defined in (54).

3) CRAMÈR-RAO LOWER BOUNDS FOR JOINT
ESTIMATION OF I0 AND (X0, Y0)

In this section, we state the Cramér-Rao lower bounds for
the three-parameter estimation problem in which the three
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beam parameters are x0, y0 and I0.10 We denote the 3 × 3
Fisher Information Matrix by I(x0, y0, I0).

For the sake of compactness, let us define the following
quantities:

ψ(0)m �
∫∫

Am
e
− (x−x0)2+(y−y0)2

2ρ2 dx dy,

ψ(1)m �
∫∫

Am
e
− (x−x0)2+(y−y0)2

2ρ2 (y− y0) dx dy,

ψ(2)m �
∫∫

Am
e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0) dx dy.

Then,

Var
[
x̂0
] ≥

[
I−1(x0, y0, I0)

]
1,1

=
⎡
⎢⎣

M∑
m=1

(
ψ
(0)
m

)2

�mρ4

M∑
m=1

I20

(
ψ
(1)
m

)2

�mρ8
−

M∑
m=1

I0ψ
(0)
m ψ

(1)
m

�mρ6

⎤
⎥⎦

× |I(x0, y0, I0)|−1. (13)

Var
[
ŷ0
] ≥

[
I−1(x0, y0, I0)

]
2,2

=
⎡
⎢⎣

M∑
m=1

(
ψ
(0)
m

)2

�mρ4

M∑
m=1

I20

(
ψ
(2)
m

)2

�mρ8
−

M∑
m=1

I0ψ
(0)
m ψ

(2)
m

�mρ6

⎤
⎥⎦

× |I(x0, y0, I0)|−1. (14)

Var
[
Î0
]

≥
[
I−1(x0, y0, I0)

]
3,3

=
⎡
⎢⎣

M∑
m=1

I20

(
ψ
(2)
m

)2

�mρ8

M∑
m=1

I20

(
ψ
(1)
m

)2

�mρ8
−

M∑
m=1

I20ψ
(1)
m ψ

(2)
m

�mρ8

⎤
⎥⎦

× |I(x0, y0, I0)|−1. (15)

The determinant of the Fisher information matrix is given
by (16), As shown at the bottom of the page.

10. In order to lower the complexity of the estimation problem, we can
estimate λn independently of x0, y0 and I0. In this case, all we need to do
is to estimate the average number of noise photons by occasionally turning
the transmitter off.

B. CRAMÉR-RAO LOWER BOUNDS OF (X0, Y0):
ASYMPTOTIC CASE (M → ∞)
We know that each detector in the array counts or reports
the photodetections that occur inside its region in a given
observation interval for the purpose of beam position esti-
mation. However, the detector does not specify the exact
location of the photodetection inside its region. In the ideal
case when M → ∞ for fixed array area, the true location of
each photodetection can be reported by the infinitesimally
small detector. When M → ∞, we call this limiting array a
“continuous” array. This asymptotic case is of interest since
the probability of error/tracking performance of a practical
array can be reasonably approximated with the continu-
ous array when the number of detectors is large enough
(M ≥ 64) [4], [7]. Therefore, in this section, we look at the
Cramér-Rao lower bound of (x0, y0) for the M → ∞ case for
the low and high signal-to-noise-ratio regimes, and the con-
vergence rates of the Cramér-Rao lower bounds are derived
in terms of beam radius ρ.

In the following analysis, let us analyze the Cramér-Rao
lower bound of x̂0 only since the same analysis will hold
for ŷ0 due to the symmetric nature of the Gaussian beam.

1) ESTIMATION OF X0: HIGH SIGNAL-TO-NOISE RATIO

For high signal-to-noise ratio,

λnA <<
∫∫

Am

I0
ρ2
e
− (x−x0)2+(y−y0)2

2ρ2 dx dy.

Then,

�m ≈
∫∫

Am

I0
ρ2
e
− (x−x0)2+(y−y0)2

2ρ2 dx dy.

When M is large, �m ≈ I0
ρ2 e

− (xm−x0)2+(ym−y0)2
2ρ2 �M , where

(xm, ym) is the center of the mth small detector, and �M is its
infinitesimal area. Then, the numerator of (11) simplifies as

M∑
m=1

1

�m

(∫∫
Am

I0
ρ4 (y− y0)e

− (x−x0)2+(y−y0)2
2ρ2 dx dy

)2

≈
M∑
m=1

(
I0
ρ4 (ym − y0)e

− (xm−x0)2+(ym−y0)2
2ρ2 �M

)2

I0
ρ2 e

− (xm−x0)2+(ym−y0)2
2ρ2 �M

|I(x0, y0, I0)| = −
M∑
m=1

I0
ρ6�m

ψ(0)m ψ(1)m

(
M∑
m=1

I20
ρ8�m

(
ψ(2)m

)2 M∑
m=1

I0
ρ6�m

ψ(0)m ψ(1)m −
M∑
m=1

I0
ρ6�m

ψ(0)m ψ(2)m

M∑
m=1

I20
ρ8�m

ψ(2)m ψ(1)m

)

+
M∑
m=1

I0
ρ6�m

ψ(0)m ψ(2)m

(
M∑
m=1

I0
ρ6�m

ψ(0)m ψ(1)m

M∑
m=1

I20
ρ8�m

ψ(2)m ψ(1)m −
M∑
m=1

I0
ρ6�m

ψ(0)m ψ(2)m

M∑
m=1

I20
ρ8�m

(
ψ(1)m

)2
)

+
M∑
m=1

1

ρ4�m

(
ψ(0)m

)2

⎛
⎝ M∑
m=1

I20
ρ8�m

(
ψ(2)m

)2 M∑
m=1

I20
ρ8�m

(
ψ(1)m

)2 −
(

M∑
m=1

I20
ρ8�m

ψ(2)m ψ(1)m

)2⎞
⎠ (16)
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=
M∑
m=1

I0
ρ6 (ym − y0)

2e
− (xm−x0)2+(ym−y0)2

2ρ2 �M

≈ I02π

ρ4

M∑
m=1

∫∫
Am

1

2πρ2 (y− y0)
2e

− (x−x0)2+(y−y0)2
2ρ2 dx dy

= I02π

ρ4

∫∫
A

1

2πρ2 (y− y0)
2e

− (x−x0)2+(y−y0)2
2ρ2 dx dy

≈ I02π

ρ4
ρ2 = I02π

ρ2
, (17)

where, in the last approximation of (17) we have used the
fact that

∫∫
A

1

2πρ2 (y− y0)
2e

− (x−x0)2+(y−y0)2
2ρ2 dx dy

≈
∫∫ ∞

−∞
1

2πρ2 (y− y0)
2e

− (x−x0)2+(y−y0)2
2ρ2 dx dy = ρ2

since ρ << �(|A|).
The positive term in the denominator (see (54)) can be

simplified in a similar fashion. In the denominator, the square
root of the term with minus sign can be simplified as

M∑
m=1

(
1

�m

∫∫
Am

I0
ρ4 (y− y0)e

− (x−x0)2+(y−y0)2
2ρ2 dx dy

×
∫∫

Am

I0
ρ4 (x− x0)e

− (x−x0)2+(y−y0)2
2ρ2 dx dy

)

≈
M∑
m=1

⎛
⎜⎜⎝

I0
ρ4 (ym − y0)e

− (xm−x0)2+(ym−y0)2
2ρ2 �M

I0
ρ2 e

− (xm−x0)2+(ym−y0)2
2ρ2 �M

× I0
ρ4 (xm − x0)e

− (xm−x0)2+(ym−y0)2
2ρ2 �M

⎞
⎟⎟⎠

≈ I02π

ρ4

M∑
m=1

∫∫
Am

1

2πρ2 (y− y0)(x− x0)e
− (x−x0)2+(y−y0)2

2ρ2 dxdy

= I02π

ρ4

∫∫
A

1

2πρ2 (y− y0)(x− x0)e
− (x−x0)2+(y−y0)2

2ρ2 dx dy

≈ 0, (18)

where in the last approximation of (18), we have used the
fact that

∫∫
A

1

2πρ2 (y− y0)(x− x0)e
− (x−x0)2+(y−y0)2

2ρ2 dx dy

≈
∫∫ ∞

−∞
1

2πρ2 (y− y0)(x− x0)e
− (x−x0)2+(y−y0)2

2ρ2 dx dy

= E[X − E[X]]E[Y − E[Y]] = 0

where X and Y are independent Gaussian random vari-
ables with the same variance ρ2, but with different means:

E[X] = x0,E[Y] = y0. Therefore,

Var
[
x̂0
] ≥

I02π
ρ2

I02π
ρ2 × I02π

ρ2

= ρ2

I02π
. (19)

We note that the Cramér-Rao lower bound is minimized
by minimizing ρ (a more focused beam) for fixed signal
power. The Cramér-Rao lower bounds goes to zero at the rate
O(ρ2) as ρ → 0, where O represent the “big O” notation.
Moreover, the Cramér-Rao lower bounds goes to zero in
terms of I0 at the rate O(I−1

0 ).

2) ESTIMATION OF X0: LOW SIGNAL-TO-NOISE RATIO

In this case, let us assume that

λnA >>
∫∫

Am

I0
ρ2
e
− (x−x0)2+(y−y0)2

2ρ2 dx dy.

Then, �m ≈ λnA. In this case, the square root of the term
with the minus sign in the denominator (the denominator is
given by (54)) is

1

λnA

M∑
m=1

(∫∫
Am

I0
ρ4 (y− y0)e

− (x−x0)2+(y−y0)2
2ρ2 dx dy

×
∫∫

Am

I0
ρ4 (x− x0)e

− (x−x0)2+(y−y0)2
2ρ2 dx dy

)

M large−−−−→ 1

λn�M

M∑
m=1

I20
ρ8 (ym − y0)(xm − x0)e

− (xm−x0)2+(ym−y0)2
ρ2

× �2
M

≈ πρ2I20
ρ8λn

∫∫
A

1

2π ρ
2

2

(y− y0)(x− x0)e
− (x−x0)2+(y−y0)2

2ρ2/2 dx dy

≈ 0. (20)

Therefore, by further simplification,

Var
[
x̂0
] ≥

λnρ
8

I20
A

∑M
m=1

(∫∫
Am
(x− x0)e

− (x−x0)2+(y−y0)2
2ρ2 dx dy

)2

M→∞−−−−→
λnρ

8

I20

∫∫
A(x− x0)

2e
− (x−x0)2+(y−y0)2

ρ2 dx dy

= 2ρ4

π

(
I20
λn

) .

(21)

In this case, the Cramér-Rao lower bound goes to zero at
a rate O(ρ4) as ρ → 0. This is a faster rate of conver-
gence than O(ρ2) for the high signal-to-noise ratio case.
Additionally, Cramér-Rao lower bound converges to zero at
the rate O(I−2

0 ) in the low signal-to-noise ratio regime.

VI. CRAMÈR-RAO LOWER BOUNDS FOR BEAM
PARAMETER ESTIMATION BASED ON DATA SYMBOLS
Since pilot symbols incur a loss in energy and bandwidth,
there is a motivation to use data symbols for the estimation
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FIGURE 2. The airy pattern’s energy distribution on the array is modeled by a
circularly symmetric Gaussian in two dimensions.

FIGURE 3. This figure shows an 8-PPM scheme. The blue circles indicate signal
photons and the red circles indicate noise photons.

of beam parameters even though the use of data symbols
may result in some loss in estimation performance. In this
section, we derive the Cramér-Rao lower bounds of beam
parameters based on PPM data symbols. In this regard, we
may either use one PPM symbol period or a PPM slot (slot
containing the pulse) period as our observation interval. We
first look at the Cramér-Rao lower bounds related to the
symbol period based observation in the next section.

A. OBSERVATIONS BASED ON SYMBOL PERIOD
In this case, the noise power goes up K times where K is
the number of slots in PPM. Thus, the new λ′

n � Kλn, and
Zm ∼ Poisson(�′

m), where

�′
m �

∫∫
Am

(
I0
ρ2
e
− (x−x0)2+(y−y0)2

2ρ2 + λ′
n

)
dx dy. (22)

Thus, in this case,

p(Z|) �
M∏
m=1

e−�′
m
(
�′
m

)Zm
Zm!

. (23)

B. OBSERVATIONS BASED ON SLOT PERIOD: A
DECISION-AIDED SCHEME
The motivation behind choosing the slot period is to
maximize the signal-to-noise ratio in the sufficient statis-
tic. If the slot containing the signal is chosen, the resulting
signal-to-noise ratio is K times bigger than the signal-to-
noise ratio available in a symbol period. However, for the
slot period case, we depend on the correct decision of the
receiver to choose the “right” slot that contains the sig-
nal. If the receiver makes a mistake, we end up choosing a

“noise-only” slot and the resulting noise photons do not give
us any information about the beam parameters. Therefore,
if the receiver starts making too many errors, the estima-
tion performance will take a significant hit. Thus, in the slot
period case, the correct symbol decision is the key to a good
estimation performance, and we term the estimation based
on slot period alternatively as decision-aided estimation of
beam parameters.
Fig. 5 shows the block diagram of the decision-aided beam

position estimation scheme in which the output of the equal
gain combiner is fed into the beam position estimation block.
If the equal gain combiner declares some symbol j as the
transmitted (K-PPM) symbol for 0 ≤ j < K, the beam posi-
tion estimation block chooses the jth slot as its observation
interval.
For observation based on one slot, Zm ∼ Poisson(�m),

with probability Pc and Zm ∼ Poisson(λnA) with probability
(1−Pc). Thus, Zm is a doubly stochastic Poisson process, or
a Cox process, whose intensity varies randomly according
to the Bernoulli distribution as follows:

p(ξ) = Pcδ(ξ −�m)+ (1 − Pc)δ(ξ − λnA), (24)

where δ(·) is the Dirac delta function. Therefore, the
likelihood function becomes

p(Z|) � Pc

M∏
m=1

e−�m�
Zm
m

Zm!
+ (1 − Pc)

M∏
m=1

e−λnA(λnA)Zm
Zm!

.

(25)

The quantity Pc is the probability of a correct decision of the
equal gain combiner. It can be shown that for a maximum
a posteriori probability detector that operates on a K-PPM
symbol, we have that

Pc = (P({Zs > Zn}))K−1 = (P({(Zs − Zn) > 0}))K−1. (26)

In (26), Zs ∼ Poisson(�s) and Zn ∼ Poisson(λn|A|). The
random variable Z � Zs −Zn is a (discrete) Skellam random
variable whose distribution is

P({Z = z}) = e−(�s+λn|A|)
(
�s

λn|A|
)z/2

Iz
(

2
√
�sλn|A|

)
,

(27)

where Iz(·) is the modified Bessel function of the first kind
(not to be confused with peak intensity I0). Thus,

P({Z > 0}) =
∞∑
z=1

P({Z = z})

=
∞∑
z=1

e−(�s+λn|A|)
(
�s

λn|A|
)z/2

Iz
(

2
√
�sλn|A|

)
. (28)

Fig. 4 shows the probability of correct decision Pc for dif-
ferent values of beam radius ρ. A large beam radius results
in some loss of energy since some of the beam energy falls
off the edge of the array. This leads to a lower probability
of correct decision for larger beam radii.
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FIGURE 4. This figure shows the probability of correct decision of the equal gain
combiner as a function of noise parameter λn for different values of beam radius ρ for
a 4 × 4 detector array. The modulation scheme considered in this case is 8-PPM. The
received signal intensity is measured in terms of 10 signal photons received on
average, and the area of the array |A| = 4 mm2. The value of (x0,y0) = (0.4,0.4).

FIGURE 5. This figure shows the block diagram of the decision-aided beam position
estimation system. The output of the equal gain combiner is fed into the beam
position estimation block so that the “right” slot is chosen for estimation purpose.

Finally, since Pe = 1 − Pc, we have that

Pe = 1 −
⎛
⎝ ∞∑
z=1

e−(�s+λn|A|)
(

�s

λn|A|
)z/2

Iz
(

2
√
�sλn|A|

)⎞⎠
K−1

.

(29)

1) MONTE CARLO EXPECTATION

It is not straightforward to compute the probabilistic expec-
tations E[ ∂

2 ln p(Z|)
∂I20

], E[ ∂
2 ln p(Z|)
∂I0∂x0

], E[ ∂
2 ln p(Z|)
∂I0∂y0

], E[ ∂
2 ln p(Z|)
∂x2

0
],

E[ ∂
2 ln p(Z|)
∂y2

0
] and E[ ∂

2 ln p(Z|)
∂x0∂y0

] for the likelihood function

in (25). Thus, we resort to the Monte Carlo simulations
to compute these expectations. The simulations are carried
out as follows:

1) Sample 1 with probability Pc and 0 with probability
1 − Pc.

2) If 1, then sample Z1 from Poisson(�1), Z2 from
Poisson(�2), . . . ,ZM from Poisson(�M). Else, sample
Z1 from Poisson(λnA), Z2 from Poisson(λnA), . . . ,ZM
from Poisson(λnA).

3) Substitute the Zm’s obtained from Step 2 into each of
the second order partial derivatives: ∂

2 ln p(Z|)
∂I20

, ∂
2 ln p(Z|)
∂I0∂x0

,

∂2 ln p(Z|)
∂I0∂y0

, ∂2 ln p(Z|)
∂x2

0
, ∂2 ln p(Z|)

∂y2
0

and ∂2 ln p(Z|)
∂x0∂y0

, and store

the resulting values.
4) Repeat Step 1, Step 2 and Step 3 until the required

number of simulations is reached.
5) Compute the sample mean of the values obtained in

Step 3.

VII. TWO-STEP ESTIMATION OF BEAM PARAMETERS
In this section, we will look at a two-step estimation algo-
rithm that is used for estimating the beam parameters. The
two-step estimation algorithm is defined as follows:
1) In the first step, the peak intensity I0 and dark current

noise parameter λn are estimated using a method of
moments estimator.

2) The estimates Î0 and λ̂n obtained from Step 1 are
substituted into the loglikelihood function ln p(Z|),
and the estimate of (x0, y0) is obtained by maximiz-
ing the loglikelihood function (maximum likelihood
estimation).

Alternatively, all the four parameters (x0, y0, I0, λn) can be
estimated via the maximum likelihood estimator. However,
since no closed-form expressions for the maximum likeli-
hood estimator are available, we have to resort to numerical
optimization techniques (such as a genetic algorithm) in
order to find the peak of the loglikelihood function. This
incurs a much higher computational complexity if all the
four parameters are estimated with the maximum likelihood
estimator. The two-step estimation algorithm reduces the
complexity since two of the four parameters (I0 and λn)
can be estimated via the computationally efficient method
of moments estimator without any knowledge of (x0, y0),
and the numerical search for the maximum of loglikelihood
function is limited to just two dimensions in order to find
(x̂0, ŷ0).
Here, we want to point out that even though the centroid

estimator can also be used to estimate the beam position on
the array (and that the complexity of centroid is significantly
smaller), we have deliberately chosen to focus on the maxi-
mum likelihood estimator in this study. This is because of the
fact that the centroid estimator is heavily biased under condi-
tions of moderate to low signal-to-noise ratio [4], [23], and
the bias in maximum likelihood estimator is negligible even
for moderate signal-to-noise ratio [23]. Therefore, the com-
parison of the maximum likelihood estimator’s means-square
error with the Crameŕ-Rao lower bound is more meaningful
since the Crameŕ-Rao lower bound is a lower bound on the
variance (or mean-square error) of an unbiased estimator.
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A. METHOD OF MOMENTS ESTIMATOR OF I0 AND λN
1) PILOT SYMBOL CASE

The method of moments estimator of I0 for the pilot symbol
case is

Î0 = 1

2πN

(
N∑
i=1

M∑
m=1

Z(s)i,m

)
− λ̂n|A|

2π
, (30)

where Z(s)i,m is a Poisson random variable with mean �m. The
method of moments estimator of λn is

λ̂n = 1

|A|N
N∑
i=1

M∑
m=1

Z(n)i,m (31)

where Z(n)i,m is a Poisson random variable with mean λnA. It
can be easily shown that E[λ̂n] = λn, and

E
[
Î0
]

= 1

2πN

(
N∑
i=1

M∑
m=1

E
[
Z(s)i,m

])
− E

[
λ̂n

] |A|
2π

= 1

2π

M∑
m=1

∫∫
Am

I0
ρ2
e
− (x−x0)2+(y−y0)2

2ρ2 dx dy+ λnA− λn
|A|
2π

= 1

2π
(I02π + λn|A|)− λn|A|

2π
= I0. (32)

Thus, both Î0 and λ̂n are unbiased estimators of I0 and λn,
respectively. Additionally, it is straightforward to verify that

E

[(
λ̂n − λn

)2
]

= E
[
λ̂2
n

]
− λ2

n = λn

NMA
= λn

N|A| . (33)

The mean-square error between Î0 and I0 is

E

[(
Î0 − I0

)2
]

= Var
(
Î0 − I0

)
= Var

(
Î0
)

= 1

(2πN)2

N∑
i=1

M∑
m=1

Var
(
Z(s)i,m

)
+
(
AM

2π

)2

Var
(
λ̂n

)

= I0
2πN

+ λnAM

2π2N
= 1

2πN

(
I0 + λnAM

π

)
. (34)

2) DECISION-AIDED ESTIMATION (OBSERVATIONS
BASED ON SLOT PERIOD)

In this case, the generation of photon counts are governed
by a doubly stochastic Poisson process. Thus,

E
[
Î0
]

= 1

2πN

N∑
i=1

M∑
m=1

E[Zm] − E
[
λ̂n

]AM
2π

, (35)

where E[Zm|c] = �m = �
(s)
m + λnA and E[Zm|e] = λnA.

Therefore,

E[Zm] = �(s)m Pc + λnA. (36)

Therefore,

E
[
Î0
]

= 1

2πN

N∑
i=1

M∑
m=1

(
�(s)m Pc + λnA

)
− λnAM

2π

= PcI0. (37)

Moreover,

Var
[
Î0
]

= 1

(2πN)2

N∑
i=1

M∑
m=1

Var[Zm] + Var
[
λ̂n

](AM
2π

)2

= 1

(2πN)2

N∑
i=1

M∑
m=1

�(s)m (Pc + λnA)+ λnAM

N(2π)2

= PcI0
2πN

+ λnAM

2π2N
= 1

2πN

(
PcI0 + λnAM

π

)
. (38)

Finally, since Var
(
Î0 − I0

)
= Var

(
Î0
)
, we have that

E

[(
I0 − Î0

)2
]

= Var
[
I0 − Î0

]
+
(
E
[
I0 − Î0

])2

= Var
(
Î0
)

+ (I0 − I0Pc)
2

= 1

2πN

(
PcI0 + λnAM

π

)
+ I20(1 − Pc)

2.

(39)

B. MAXIMUM LIKELIHOOD ESTIMATION OF (X0, Y0)
For the pilot symbol scheme, the maximum likelihood esti-
mator of beam position (x0, y0) on the array is given
by [4]:
(
x̂0, ŷ0

)
� arg max

x0,y0

ln p(Z1, Z2, . . . ,ZM|x0, y0)

= arg max
x0,y0

M∑
m=1

(
Zm ln

(
Î02π

[
�

(
ym2 − y0

ρ

)
−�

(
ym1 − y0

ρ

)]

×
[
�

(
xm2 − x0

ρ

)
−�

(
xm1 − x0

ρ

)]
+ λ̂nA

))

(40)

−
(
Î02π

[
�

(
�(A)

2 − y0

ρ

)
−�

(
− �(A)

2 − y0

ρ

)]

×
[
�

(
�(A)

2 − x0

ρ

)
−�

(
− �(A)

2 − x0

ρ

)]
+ λ̂n|A|

)
,

(41)

where �(·) is the cumulative distribution function of a stan-
dard normal random variable, and Î0 and λ̂n are the method
of moments estimates of I0 and λn, respectively. The quan-
tity (xm2 , ym2) is the location of the north east corner of the
mth detector, and (xm1 , ym1) is the position of south west
corner.
For estimation based on data symbols, the maximum like-

lihood estimate is obtained by maximizing (23) (symbol
period) or by maximizing (25) (slot period). Regarding the
maximization of all loglikelihood functions, we utilize a
genetic algorithm to search the global maximum.
The mean-square error of the maximum likelihood estima-

tor is computed via Monte Carlo simulations. The average of
the squared errors is computed by repeating the experiment
many times and then computing the sample average of the
squared errors.
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VIII. SIMULATION RESULTS AND DISCUSSION
In this section, we interpret the simulations results that
we have obtained in this study. In these simulations, we
have considered the low photon rate regime. In this regard,
we have considered, on average, 10 signal photons for the
entire array during the observation interval, and (x0, y0) =
(0.4, 0.4) for all figures except for Fig. 10. The low photon
rate channels are of interest in deep space communications
where the received signal energy can be so low that we are
only able to detect a few signal photons per slot of a PPM
symbol [1], [4]. Additionally, the low rate of photons has
also to do with the “blocking” phenomenon of avalanche
photodetectors that are operated in Geiger mode as pho-
ton counters. Blocking occurs because the detection of the
first signal photon causes an avalanche of electrons, and this
avalanche has to be quenched by an avalanche recovery cir-
cuit and the bias has to be restored before the next photon
can be detected. Thus, the detector is “blocked” for a few
microseconds before it is ready to detect the next incoming
photon.
For all experiments, the area of the detector array

|A| = 4 mm2. This detector array extends from −1 mm
to 1 mm in each of the two dimensions, and the cen-
ter of the array coincides with the origin. Additionally,
we want to emphasize that the area of the array |A|
is fixed irrespective of the number of detectors M in
the array. Thus, a larger M implies a smaller area per
detector.
In terms of notation, we want to point out that the

expression CRLB(x0, y0) denotes the sum of individual
Cramér-Rao lower bounds: CRLB(x0) and CRLB(y0). This
is true since these two parameters can be treated indepen-
dently of each other due to circularly symmetric nature of
Gaussian beam.
Fig. 6 indicates the Cramér-Rao lower bound plots as a

three-parameter estimation problem as defined in (13), (14)
and (15), whereas Fig. 7 indicates the decay of the Cramér-
Rao bound as a function of the average number of signal
photons when the noise power is fixed. Fig. 8 depicts the
Cramér-Rao lower bound curves as a function of number
of pilot symbols used as observations in the estimation of
parameters.
Fig. 9 shows the Cramér-Rao lower bound plots as a

function of beam radius ρ (at the point (x0, y0) = (0.4, 0.4)).
We note that the Cramér-Rao lower bound of Î0 increases
monotonically with ρ. However, for the CRLB of (x̂0, ŷ0),
we see that there is an optimum value of ρ (lets call it ρ∗

M
for the M-cell array) at which the Cramér-Rao lower bound
is minimized. Additionally, ρ∗

N < ρ∗
M for N > M. Intuitively,

these observations are straightforward to explain. For a fixed
signal-to-noise ratio, if the beam footprint is small, but at
least covers one detector completely, then such a small beam
footprint will minimize the mean-square error. This is true
since all the power is focused into a small region on the array
where the number of noise photons (on average) is relatively
small, and this fact will help the estimator to estimate the

FIGURE 6. This figure shows the Cramèr-Rao lower bounds for different values of
detectors M in the array as a function of noise parameter λn for one pilot symbol. The
beam radius is 0.2 mm.

FIGURE 7. This figure shows the effect of the number of signal intensity (measure
in terms of an average number of signal photons) on the Cramér-Rao bound of the
beam position estimator. The value of noise parameter is λn = 0.1 and the beam
radius is 0.2 millimeters.

beam position more accurately as opposed to a more “spread
out” beam.
However, if the beam radius is much smaller than the

dimensions of a single detector, then the beam will only give
rise to photons in the detector in which it is located, and the
neighboring detectors will not register any signal photons.
Since we round off the locations of all photons—that occur
inside a given detector—to the center of that detector, any
movement of the “super thin” beam inside the given detector
cannot be tracked. Therefore, the Cramér-Rao lower bound
rises if ρ diminishes beyond a certain (optimum) value.

Fig. 10 show the effect of beam radius on the Cramér-Rao
lower bounds of (x̂0, ŷ0) and Î0 as a function of (x0, y0)
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FIGURE 8. This figure shows the Cramèr-Rao lower bounds as a function of the
number of pilot symbols N . The average noise power is λn = 1 photons/slot period for
the figure on top, and λn = 10 photons/slot period for the figure at the bottom. The
beam radius is 0.2 mm.

for 4 × 4 and 8 × 8 detector arrays when pilot symbols are
used for parameter estimation. In these figures, the beam
center (x0, y0) varies along a diagonal on the array, i.e.,
from point (−0.8,−0.8) to point (0.8, 0.8). For (x̂0, ŷ0),
we note that for small ρ, the Cramér-Rao lower bound is
highly sensitive to the location of the beam center (x0, y0).
For example, if we consider the case for ρ = 0.14 mm,
we note that the diameter of the beam 2ρ is much smaller
than the length of a single detector in this case (the length
of a single detector for a 4 × 4 array is �(Am) = 0.5 mm).
Thus. 2ρ << �(Am). First, we note that the points
(−0.75,−0.75), (−0.25,−0.25), (0.25, 0.25), (0.75, 0.75)
correspond to the centers of the detectors on the diagonal,
and the points (−0.5,−0.5), (0, 0), (0.5, 0.5) corresponds
to the edges of detectors. We additionally note that the
Cramér-Rao lower bound attains its peak value at the centers
of detectors and minimum values on the edges. This pattern
is explained by our earlier understanding (as argued during
elaboration of Fig. 9) that when the beam is very thin and
its center resides at the center of a particular detector, then
all the energy of the beam resides in that particular detector,
and a small movement of the beam cannot be detected by
the array. However, if the beam center of such a thin beam
lies on the edge of a detector, its slightest movement can
be tracked by detecting the change in the energy difference
of the two detectors that share the edge. For the case of
M = 64, �(Am) = 0.25 mm, and since 2ρ ≈ �(Am), we
observe that the fluctuation of the Cramér-Rao lower bound
as a function of (x0, y0) is almost negligible.

FIGURE 9. This figure shows the Cramèr-Rao lower bounds as a function of the
beam radius ρ. The average number of noise photons λn = 1 photon/slot period for
both the figures.

When the beam radius is larger such that 2ρ > �(Am),
then the energy of the beam is not confined to a single
detector regardless of where the beam center resides on the
array. In this case, any movement of the beam will be reg-
istered because of a change in the detected energy sensed
by the detectors. However, whether the beam diameter is
large or small, once the beam center gets too close to the
edge of the array, part of the beam energy will fall off
the edge of the array and the detector array will experi-
ence a net loss in received signal energy. This leads to a
higher Cramér-Rao lower bound at the edges of the detector
array. Additionally, even though the fluctuation in Cramér-
Rao lower bound is minimized for a higher beam radius,
the minimum value of the Cramér-Rao lower bound goes
up as compared to the smaller beam radius scenario. This is
because for a larger beam radius, the signal energy is spread
out to a larger number of detectors which leads to a smaller
signal-to-noise ratio per detector. This observation corrobo-
rates our previous assertion that the Cramér-Rao lower bound
decays as O(ρ2) and O(ρ4) for the high and low signal-to-
noise ratio, respectively, as ρ → 0 for the continuous array
(see (19), and (21)).
Regarding the Cramér-Rao lower bound of Î0, we observe

that the Cramér-Rao lower bound is not very sensitive to
the beam radius and the performance does not change sig-
nificantly over the chosen range of beam radii. Additionally,
the Cramér-Rao lower bound performance between the 4×4
detector and the 8 × 8 case is not significant.
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FIGURE 10. This figure shows the effect of beam radius on the Cramér-Rao lower bounds for 4 × 4 and 8 × 8 detector arrays. The value of noise parameter λn is 1 photon/slot
period.

Fig. 11 illustrates the Cramér-Rao lower bound compar-
isons for the observations based on pilot symbols versus data
symbols. We note that—as expected—the Cramér-Rao lower

bound based on pilot symbols outperforms the Cramér-Rao
lower bound based on data symbols (both for slot period
and symbol period). We also note that the Cramér-Rao lower

VOLUME 2, 2021 1077



BASHIR et al.: CRAMÉR–RAO BOUNDS FOR BEAM TRACKING WITH PHOTON COUNTING DETECTOR ARRAYS

FIGURE 11. This figure shows the Cramèr-Rao lower bounds for three types of
observations: pilot symbol, symbol period, and (signal) slot period. The beam radius
is 0.2 mm.

FIGURE 12. This figure shows the performance of the maximum likelihood
estimator of (x0,y0) which is carried out for three different observations: pilot symbol,
symbol period, and (signal) slot period. The beam radius is 0.2 mm. The performance
of the maximum likelihood estimator is compared to the Cramér-Rao lower bound for
the pilot symbol observations.

bound based on slot period performs better than the Cramér-
Rao lower bound related to symbol period. Fig. 12 shows
the performance comparison of the maximum likelihood
estimator of (x0, y0) for the pilot and data symbol based
observations, and we see a similar trend as the Cramér-Rao
lower bound curves in Fig. 11.
Fig. 13 and Fig. 14 depict the performance of the

method of moment estimator of λn and I0, respectively. The
performance of the method of moments estimator is com-
pared with the Cramér-Rao lower bound as well. We note
in Fig. 14 an interesting case where the mean-square error

FIGURE 13. This figure shows the performance of the method of moments
estimator of the noise parameter λn for a 4 × 4 array.

FIGURE 14. This figure shows the performance of the method of moments
estimator of I0 for the three different observations: pilot symbol, symbol period, and
(signal) slot period. The beam radius is 0.2 mm. The performance of the method of
moments estimator is compared with the Cramér-Rao lower bound of pilot symbol
scheme as well. The configuration of the array is 4 × 4.

of the method of moments estimator based on slot period
exceeds the mean-square error based on symbol period for
large λn.

IX. A COMPLEXITY ANALYSIS OF ESTIMATORS
It is easy to see from (30) and (31), that the computational
complexity of the method of moments estimator is O(M)
real additions if just one symbol is used for the purpose of
estimation.
Regarding the maximum likelihood estimator, firstly we

needO(M) real additions andO(M) real multiplies (see (41))
in order to compute the loglikelihood function. Thereafter,
a genetic algorithm is employed in order to find the global
maximum of the loglikelihood function. The complexity of
the real number genetic algorithm is discussed in detail [4].
We note from [4] that the complexity of the genetic algorithm
is a function of number of chromosomes, Nc, and the number
of generations,11 Ng. The values of Nc and Ng have to be
chosen according to the nature of the objective function—a
“spikier” function requires relatively large Ng and Nc for

11. The number of generations can be regarded as the number of iterations
required in order to converge to the true maximum/minimum of the objective
function.
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FIGURE 15. Table comparing complexities for different scenarios.

convergence to true maximum. Additionally, the larger the
number of dimensions of the objective function, the larger
the values of Nc and Ng in order to speed up convergence.

Therefore, we assume that Nc = O(AD
2 ) and Ng = O(AD

2 ),
where D is the number of parameters (or dimensions) that
we want to estimate with the maximum likelihood estimator.
Since the value of the loglikelihood function is computed

for each chromosome, the total complexity of computing the
likelihood function is approximately Nc × Ng × O(M) real
multiplications and real additions. In addition to this, we
have the complexity required for the comparison of fitness
of the chromosomes during each iteration of the algorithm.
Assuming that we use bubble sort, the we have to compute
approximately N2

c comparisons during each generation in
order to retain the chromosomes with the highest fitness.
Thus, a total complexity of N2

c Ng is also required in the
computation of the maximum likelihood estimator.
Therefore, the total complexity of the maximum likelihood

estimator turns out to be roughly Nc ×Ng ×O(M)+N2
c Ng,

which is O(AD
2 )O(AD

2 )O(M) + O(AD)O(AD
2 ), which is

equal to O(ADM) + O(A 3D
2 ). Thus, for instance, if the

maximum likelihood estimator is used in order to estimate
only the beam position, then D = 2, and the computational
complexity is roughly O(A2M)+ O(A3).
Fig. 15 shows the complexity for three scenarios: i) when

the maximum likelihood estimator is used to estimate (x0, y0)

and method of moments estimator is used to estimate I0
and λn (this is the two-step estimator); ii) when the maxi-
mum likelihood estimator is used to estimate (x0, y0, I0) and
method of moments estimator is used for λn; iii) and the
final scenario in which the maximum likelihood estimator is
used for the estimation of all four parameters (x0, y0, I0, λn).
In our simulations, we have set Nc = 50, and Ng = 400.

The interested reader is referred to [24] for more details on
genetic algorithms.

X. CONCLUSION AND FUTURE WORK
In this paper, we have analyzed the Cramér-Rao lower
bounds for the robust beam position estimation problem for
a deep space optical communication system that uses an
array of photon counting detectors at the receiver. In this
regard, we derived the Cramér-Rao lower bounds for obser-
vations based on pilot symbols as well as data symbols of
the pulse position modulation scheme. As expected, estima-
tion based on pilot symbols provide a superior mean-square
error performance. However, estimation with data symbols

does not require extra bandwidth and energy expenditure
in terms of pilot symbols. Additionally, for estimation of
beam parameters with data symbols, we discovered that the
performance of estimators based on slot period outperforms
the estimators based on a symbol period, especially for the
high signal-to-noise ratio case.
In future, we will analyze the Crameŕ-Rao lower

bounds for photon-counting detectors that suffer from dead-
time/blocking, and a more comprehensive noise model that
deals with location dependent background radiation as well.

APPENDIX
Taking the first partial derivative of the loglikelihood
function, we have that

∂ ln p(Z|x0, y0)

∂x0

=
M∑
m=1

(
Zm
�m

∫∫
Am

I0
ρ2
e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0)

ρ2
dx dy

−
∫∫

A
I0
ρ2
e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0)

ρ2
dx dy

)

≈
M∑
m=1

Zm
�m

∫∫
Am

I0
ρ4 (x− x0)e

− (x−x0)2+(y−y0)2
2ρ2 dx dy (42)

since
∫∫

A
I0
ρ2 e

− (x−x0)2+(y−y0)2
2ρ2 (x−x0)

ρ2 dx dy is approximately
zero because it can be approximated as
∫∫

A
I0
ρ2
e
− (x−x0)2+(y−y0)2

2ρ2 (x− x0)

ρ2
dx dy ≈ κ0(E[X] − x0)(43)

where κ0 is a constant, and E[X] = x0. This approximation
is valid when �(A) >> ρ and the beam resides well within
the boundaries of the array. Additionally,

∂2 ln p(Z|x0, y0)

∂x2
0

≈
M∑
m=1

− Zm
�2
m

(∫∫
Am

I0
ρ4 (x− x0)e

− (x−x0)2+(y−y0)2
2ρ2 dx dy

)2

−
M∑
m=1
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�m

∫∫
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I0
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e
− (x−x0)2+(y−y0)2

2ρ2 dx dy

+
M∑
m=1

Zm
�m

∫∫
Am

I0
ρ6 (x− x0)

2e
− (x−x0)2+(y−y0)2

2ρ2 dx dy.(44)

Now, the expectation is taken with respect to Zm:

−E

[
∂2 ln p(Z|x0, y0)

∂x2
0

]

=
M∑
m=1

1
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(∫∫
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I0
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2ρ2 dx dy
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−
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Similarly, it can be shown that
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[
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Furthermore,

∂2 ln p(Z|x0, y0)

∂x0∂y0

=
M∑
m=1

(
− Zm
�2
m

∫∫
Am

I0
ρ4 (y− y0)e

− (x−x0)2+(y−y0)2
2ρ2 dx dy

×
∫∫

Am

I0
ρ4 (x− x0)e

− (x−x0)2+(y−y0)2
2ρ2 dx dy

)

+
M∑
m=1

Zm
�m

∫∫
Am

I0
ρ6 (x− x0)(y− y0)

× e
− (x−x0)2+(y−y0)2

2ρ2 dx dy. (47)

Additionally,
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where,
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it can be approximated as
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]
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where E[X] = x0 and E[Y] = y0 for some constant κ1. This
approximation is valid if �(A) >> ρ and the beam resides
well within the boundaries of the array. Therefore,

−E

[
∂2 ln p(Z|x0, y0)

∂x0∂y0

]

=
M∑
m=1

(
1

�m

∫∫
Am

I0
ρ4 (y− y0)e

− (x−x0)2+(y−y0)2
2ρ2 dx dy

×
∫∫

Am

I0
ρ4 (x− x0)e

− (x−x0)2+(y−y0)2
2ρ2 dx dy

)

= −E

[
∂2 ln p(Z|x0, y0)

∂y0∂x0

]
. (50)

Moreover, the Fisher Information Matrix is

I(x0, y0) =
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(51)

and Var[x̂0] ≥ [I−1(x0, y0)]1,1, and Var[ŷ0] ≥
[I−1(x0, y0)]2,2. Finally,
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