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ABSTRACT Generalized frequency division multiplexing (GFDM), an enabler of beyond-5G wireless
networks, can be critically impaired due to radio frequency (RF) phase noise. However, joint channel
estimation and phase noise compensation for GFDM systems have not been addressed before. Hence,
we tackle this problem. To this end, we propose an iterative algorithm for joint channel and phase noise
estimation and two algorithms for joint data detection and phase noise compensation. These algorithms
use linear and non-linear least-squares (NLS) methods and employ block-type and comb-type pilots.
The complexity of these algorithms is also analyzed. Moreover, to reduce their complexity, interpolation
techniques are deployed to decrease the number of unknowns. We also analyze the signal-to-interference-
plus noise ratio (SINR) and sum-rate of GFDM contaminated with phase noise. Furthermore, the accuracy
of the channel and phase noise estimates is established via Cramér-Rao lower bounds (CRLBs). The
simulation results illustrate that the mean-squared error (MSE) performance of the proposed joint channel
and phase noise estimator reaches the CRLB. Moreover, the proposed joint data symbol detection and
phase noise compensation algorithms nearly eliminate the impacts of phase noise in GFDM systems.

INDEX TERMS GFDM, phase noise, non-linear least-squares (NLS), Cramér-Rao lower
bound (CRLB).

I. INTRODUCTION

FIFTH generation (5G) and beyond 5G wireless commu-
nication networks must handle peak data rates of at least

1 Tb/s, over-the-air latency of 10–100 μs, user-experienced
data rates of 1 Gb/s and the support of high user mobility
(≥ 1000 km/h) [1]–[3]. Although 4G wireless (Long Term
Evolution (LTE) and other standards) widely uses orthogo-
nal frequency division multiplexing (OFDM), its drawbacks
include high peak-to-average power ratios, bandwidth loss
associated with the cyclic prefix (CP), high out-of-band
(OOB) emissions emanating from rectangular filters, and
high synchronisation issues due to orthogonality mismatch.
Due to these issues, OFDM may not answer the challenges
for future wireless networks such as low power consumption
for machine-to-machine communication and low latency for
Tactile Internet and Internet-of-Things [4].
Hence, novel non-orthogonal multicarrier waveforms have

been developed to address the limitations of OFDM, and

these include filter bank multicarrier (FBMC) and general-
ized frequency division multiplexing (GFDM) [5]. FBMC
avoids the CP, which improves the spectral efficiency.
Moreover, it has low OOB emissions and is robust against
doubly-dispersive fading [6]. However, FBMC requires a
long-length filter, an issue for short-burst transmissions [7].
On the other hand, GFDM is a block-based multicarrier
waveform, where the data is divided into many subcarri-
ers and subsymbols, using circular pulse shaping for each
subcarrier. GFDM has advantages of low peak-to-average-
power ratios, low OOB emissions, flexible time-frequency
structure, and high spectral efficiency due to low CP
usage [8]. However, since it sacrifices orthogonality, imple-
mentation complexity can increase. Thus, several methods
have been developed to handle this problem [9], [10].
Therefore, GFDM may enable future wireless standards.
This potential has motivated extensive studies of GFDM for
cognitive radio networks [11]–[14], space-time codes [15],
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filter designs [16], [17], multiple-input and multiple-output
communications [18] Internet-of-Things [19], and optical
networks [20]. This list is not exhaustive.
However, non-orthogonal subcarriers of GFDM result in

inter-carrier interference (ICI) and inter-symbol interference
(ISI). These inherent interference levels are further exacer-
bated by radio frequency (RF) impairments such as phase
noise, carrier frequency offset (CFO), and in-phase and
quadrature (IQ) imbalance, which are critical [21]–[24]. In
particular, phase noise is an acute problem, which is mainly
caused by aging circuit components and the poor accuracy
of local oscillators. To be precise, phase noise is the phase
difference between the phase of the local oscillator and
phase of the carrier signal [22], [25]. Phase noise reduces
the signal-to-noise ratio (SNR), increases the bit error rate
(BER), and limits the data rate [24], [26]. In addition, it
destroys coherency between the channel estimate and the
actual channel gain. Thus, one solution is to eliminate phase
noise via hardware improvements. But that requires stringent
constraints on the fabrication of RF components, increasing
the cost [27]. Due to all these reasons, phase noise estimation
and compensation algorithms are essential for the accurate
channel estimation and data detection for GFDM.

A. RELATED WORKS
The impacts of phase noise on OFDM have been widely
investigated [23], [28], [29], and phase noise estimation and
compensation techniques have been developed. Thus, [30]
develops an least-squares (LS) filter for phase noise compen-
sation. In [26], [31], the phase noise process is parameterized
with a sinusoidal waveform to develop an LS estimator. In
contrast, linear-interpolation schemes [24], [27] improves
phase noise estimation accuracy. Moreover, the estima-
tor [32] uses a codebook, which is selected by minimizing the
Euclidean distance between the known pilot symbols and the
signal constellation. Additionally, the estimators in [33], [34]
exploit the phase noise spectrum’s geometrical structure.
However, the aforementioned OFDM works assume per-

fect channel state information at the receiver, an unreal-
istic assumption. Thus, channel estimation algorithms are
also necessary and have been widely investigated. For
instance, [35] investigates joint channel estimation and phase
noise suppression, [36] does so with a power series for phase
noise, or [37] does by using sequential Monte-Carlo and
the expectation-maximization approach. Similar estimators
that perform time-domain interpolation utilize data and pilot
symbols [22], [25]. Finally, [38] uses the expectation con-
ditional maximization method for joint channel, CFO and
phase noise estimation.
Furthermore, the problem of FBMC channel estimation

has been extensively studied [39]–[42]. For example, [39]
develops an LS estimator that uses pilots but [42] deploys
superimposed pilots. Moreover, phase noise impacts on
FBMC systems are studied [43], showing that phase noise
degrades the quality of channel estimation. Therefore, it

FIGURE 1. Timing of symbols within a GFDM packet.

develops an LS phase noise compensation algorithm that
uses pilots.
On the other hand, the impacts of phase noise, timing

offset, and CFO on the signal-to-interference ratio (SIR) of
GFDM systems are studied in [44]. Phase noise is shown
to exacerbate ICI and ISI terms and degrade the system’s
SIR performance. Moreover, GFDM full-duplex transceivers
and cognitive radio networks with phase noise, CFO and IQ
imbalances are studied in [13], [14], [21], [45]. Therefore,
phase noise estimation and compensation are necessary to
prevent the degradation of GFDM performance.
It is important to emphasize that while phase noise com-

pensation has been widely investigated for OFDM, this
is not the case for GFDM. For example, GFDM stud-
ies [11], [18], [46] address channel estimation only, without
considering phase noise. Likewise, [47]–[49] consider joint
channel and CFO estimation only. Similarly, [50]–[52]
compensate for IQ imbalance in GFDM. Finally, [53] com-
pensates for IQ imbalance and phase noise in multicarrier
systems, which encompasses GFDM as a special case. The
focus of [53] differs from our present paper. Thus, [53]
does not estimate joint channel and phase noise, derive
the Cramér-Rao lower bounds (CRLBs), nor analyze the
signal-to-interference-plus noise ratio (SINR) and sum-rate
of GFDM. To the best of our knowledge, joint channel esti-
mation and phase noise compensation for GFDM systems
have not been investigated before.

B. PROBLEM TACKLED HEREWITH AND
CONTRIBUTIONS
In this paper, we address the following problem: how can
joint channel estimation, phase noise compensation and
data detection be performed for GFDM efficiently? This
problem is essential and challenging for the reasons men-
tioned above. In particular, because of its non-orthogonal
subcarriers, GFDM is limited by inherent ICI and ISI terms,
which are boosted by phase noise. That is why phase noise
compensation for GFDM is essential. This fact motivates the
development of phase noise estimation and compensation
algorithms.
We consider a quasi-static frequency selective channel

constant during a GFDM packet and changes from packet
to packet [38]. Each packet has Nb + 1 GFDM symbols,
where Nb may be selected depending on the wireless chan-
nel’s coherence time. In contrast, phase noise varies from
one symbol to another, and thus symbol-wise estimation of
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phase noise is needed, a necessity for accurate data detec-
tion. In contrast, a single channel estimate can be used for
all symbols in a packet.
In the GFDM packet (Fig. 1), blue circles and red squares

indicate pilot and data symbols, respectively. The first sym-
bol is a GFDM pilot block, which is known at the receiver.
The remaining symbols are comb-type symbols in the pay-
load portion of the packet (data and pilot subcarriers). The
estimation process has two stages focusing on 1) channel
estimation, and 2) data detection. Both stages compensate
for phase noise. The first stage performs channel estimation.
The second stage uses these estimates to detect each sub-
sequent symbols’ data. Moreover, to reduce the complexity
of phase noise estimation, we extend the interpolation tech-
niques from [25], which were initially designed for OFDM
receivers, for GFDM systems.
Specifically, this paper makes the following contributions

regarding phase noise compensation for GFDM systems:

• We propose an efficient channel and phase noise esti-
mator based on the non-linear least-squares (NLS)
approach for the first stage. Moreover, for the sec-
ond stage, we propose two algorithms for joint data
detection and phase noise compensation: 1) iterative
linear LS algorithm, and 2) closed-form LS algorithm.
All algorithms utilize pilot symbols and deploy time
interpolation to reduce computational complexity.

• To quantify the impacts of phase noise, we derive the
effective SINR for three cases: 1) ideal compensation
of phase noise, 2) no compensation for phase noise,
and 3) compensation of phase noise with the proposed
algorithm. Furthermore, we analyze the GFDM sum-rate
for Case 3.

• To gauge the accuracy of our channel and phase noise
estimators, we derive their CRLBs. The CRLB is a
lower bound on the mean-squared error (MSE) of an
unbiased estimator [54]. A trade-off exists between the
accuracy and complexity of the estimators. Thus, we
also provide their complexity analysis.

• Finally, extensive numerical and theoretical results
are presented. These consider matched-filter (MF)
and zero-forcing (ZF) GFDM receivers and compare
their achievable sum-rates. Importantly, we show that
the proposed estimators significantly reduce GFDM
receivers’ sensitivity to phase noise impairments.

We should emphasize that all of the proposed algo-
rithms and performed analyses are formulated based on
low-complexity GFDM parameters, including transmitter and
receiver filters.
In [25], authors propose an iterative algorithm for joint

channel and phase noise estimation for OFDM based on the
linear LS approach. Since that algorithm does not estimate
channel and phase noise simultaneously, the estimation error
can be high. In contrast, we use the NLS approach, achieve
a low estimation error and reach the CRLB, which proves its
efficiency. Reference [25] also develops an iterative linear LS

FIGURE 2. GFDM block diagram with phase noise.

algorithm for data detection. Following the same approach,
we propose an iterative data detection algorithm. However,
we also offer a closed-form LS algorithm, which reduces
the complexity and improves the BER performance.
This paper is organized as follows. With the system model

(Section II), Section III develops the algorithms for chan-
nel and phase noise estimation and for data detection and
phase noise compensation. Section IV analyzes the effec-
tive SINR, sum-rate, CRLB and computational complexity.
In Section V, simulation results, theoretical results, and the
MSE and BER performances of the proposed algorithms
are compared and verified. Finally, Section VI presents the
conclusions.
Notations: Gaussian variable X ∼ N(μ, σ 2) has mean μ

and variance σ 2. The [n,m]-th element of A is A[n,m]. The
N-point DFT (discrete fourier transform) matrix is denoted
by FN , while IN and 0N are is the identity and all zero matrix
matrices of size N×N. The superscripts (·)∗, (·)T , (·)H and
(·)−1 indicate the complex conjugation, transpose, Hermitian
transpose and matrix inversion. Circular convolution between
two vectors x1 ∈ C

1×N and x2 ∈ C
1×N is defined as x1[n]�

x2[n] =∑N−1
k=0 x1[n]x2[n− k]. Moreover, A ◦B indicates the

Hadamard product [55] of matrices A and B. The diagonal
matrix formed by vector x is diag(x). Re{z} and Im{z}
denote the real and imaginary parts of z. Tr{A} is the trace
of A, and E{·} indicates the statistical expectation. The rows
of circulant matrix A are formed by circular right shifts of
the elements of vector a [56].

II. SYSTEM MODEL
Fig. 2 shows the GFDM block diagram with phase noise.
Each GFDM symbol has M time-slots and K subcarriers and
consists of N = MK independent and identically distributed
(i.i.d.) complex data symbols, d = [d0, . . . , dN−1]T ∈ C

N×1,
with zero mean and E{ddH} = σ 2

d IN . The data vector d can
be decomposed into K subvectors d = [dT0 , . . . ,dTK]T ∈
C
N×1, where dk = [dkM, . . . , dkM+M−1]T ∈ C

M×1, for
k = 0, 1, . . . ,K − 1, denotes the M complex data sym-
bols for the k-th subcarrier. In the GFDM modulator, after
upsampling data symbol dkM+m by a factor of K, the corre-
sponding output is circularly convoluted with the normalized
prototype filter g[n] and then up-converted to its correspond-
ing subcarrier frequency. Hence, the discrete GFDM signal
per symbol-time interval, x = [x[0], . . . , x[N−1]]T ∈ C

N×1,
may be expressed as [10]

x = FHN

K−1∑

k=0

P̃k�̃�̃FMdk, (1)
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where �̃ =
K

︷ ︸︸ ︷
[IM, . . . , IM] ∈ C

N×M is the repetition matrix,
�̃ ∈ C

N×N is the diagonal frequency-domain filtering
matrix that has

√
MFN(g[n]) as its diagonal elements, and

P̃k ∈ C
N×N is a permutation matrix to up-convert the k-

th subcarrier to its corresponding frequency. To reduce the
size of matrices in (1), the frequency response of proto-
type filter g[n] is typically designed to be zero everywhere
except for LM samples, where L is called the repetition fac-
tor [57]. This paper uses the mostly-considered choice of
L = 2 [10], [52], [57]. Thus, the GFDM signal (1) can be
simplified as [57]

x = FHN

K−1∑

k=0

Pk��FMdk, (2)

where � = [IM, IM]T ∈ C
2M×M , and

� =
[
�1 0M
0M �2

]

= diag(γ0, γ1, . . . , γ2M−1) ∈ C
2M×2M,

(3)

where {γ0, γ1, . . . , γ2M−1} indicates the frequency response
of the prototype filter. Moreover, Pk ∈ C

N×2M is a subcarrier
mapping, which is given by [52]

Pk =
⎡

⎣
0M · · · 0M IM︸︷︷︸

(k+1)-th

· · · 0M

0M · · · IM 0M · · · 0M

⎤

⎦

T

. (4)

Moreover, the GFDM signal (2) can be re-expressed as

x = �d, (5)

where � = FHNPdiag(W, ..,W) ∈ C
N×N is the GFDM

modulator matrix, W = ��FM ∈ C
2M×M , and P =

[P0, . . . ,PK−1] ∈ C
N×2N . To prevent the ISI caused by

the multipath channel, a cyclic prefix with length Lcp is
added. After digital-to-analog conversion, the signal is trans-
mitted through the quasi-static frequency selective channel.
The received baseband signal after the removal of cyclic
prefix may be expressed as [58]

y[n] = ejφ[n](h[n] � x[n])+ w[n], n = 0, 1, . . . ,N − 1,

(6)

where φ[n] is the random phase noise of the local oscillator,
h[n] is the equivalent discrete-time baseband channel impulse
response with length Lch, and w[n] is additive white Gaussian
noise with variance σ 2

w. The channel is modeled as a quasi-
static frequency-selective fading channel [52]. The channel
length is shorter than the cyclic prefix (Lch − 1 ≤ Lcp).

In addition, to model phase noise, the standard free-
running oscillator with a Brownian motion process [44] is
deployed, which is widely used for simulations and mathe-
matical analyses [21], [22], [44], [58]. Because the difference
between two samples of a Brownian motion is Gaussian dis-
tributed, φ[n] − φ[n + n0] ∼ N (0, 4πβn0Ts), where φ[n]

is Brownian motion with 3-dB bandwidth of β and the
autocorelation of φ[n] is [38], [44]

E

{
ejφ[n1]e−jφ[n2]

}
= e−2|n1−n2|πβTs , (7)

where Ts is sampling time. In practice, the variance of
phase noise 4πβTs is small, e.g., the estimated vari-
ance of a free running oscillator operating at 2.8 GHz is
10−4 rad2 [59], [60].
Following the above details, the output samples in

frequency domain can be derived by taking the DFT of
the received baseband signal y[n] (6) as

Y[l] = J[l] � (H[l]X[l])+Wn[l], l = 0, 1, . . . ,N − 1, (8)

where

• J[l] = 1
N

∑N−1
n=0 e

jφ[n]e−j 2π ln
N is the frequency response

of phase noise,
• H[l] = ∑Lch−1

n=0 h[n]e−j 2π ln
N is the channel frequency

response,
• X[l] = ∑N−1

n=0 x[n]e−j 2π ln
N is the transmitted GFDM

symbols in the frequency domain,
• Wn[l] =∑N−1

n=0 w[n]e−j 2π ln
N is the frequency response of

additive white Gaussian noise.

The channel coefficients H[l] are circularly symmetric
Gaussian variables with mean zero and variance σ 2

h =
E{|H[l]|2} [25], [52]. To reveal the impact of phase noise,
circular convolution (8) must be expanded. This expansion
yields the received signal (8) as

Y[l] = J[0]H[l]X[l]+
N−1∑

r=1

J[(l− r)N]H[r]X[r]+Wn[l],

(9)

where (l− r)N stands for ((l− r)modN). Equation (9) indi-
cates that phase noise causes two types of distortions: 1)
common phase error, J[0], and 2) ICI, which is the second
term of (9). By using matrix notation, (9) can be compactly
represented as

y = JHx+Wn, (10)

where

• y = [Y[0], . . . ,Y[N − 1]]T ∈ C
N×1 is received signal

vector,

• J =

⎡

⎢
⎢
⎢
⎣

J[0] J[N − 1] · · · J[1]
J[1] J[0] · · · J[2]

...
...

. . .
...

J[N − 1] J[N − 2] · · · J[0]

⎤

⎥
⎥
⎥
⎦
∈ C

N×N is

circulant phase noise matrix,
• H = diag([H[0], . . . ,H[N−1]]) ∈ C

N×N is the channel
frequency response matrix,

• x = Pdiag(W, . . . ,W)d = [X[0], . . . ,X[N − 1]]T ∈
C
N×1 is the GFDM data vector,

• Wn = [Wn[0], . . . ,Wn[N− 1]]T ∈ C
N×1 is the additive

white Gaussian noise vector.

If there is no phase noise, J becomes the identity matrix.
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III. JOINT CHANNEL ESTIMATION AND PHASE NOISE
COMPENSATION
To detect the data vector x in (10), channel matrix H and
phase noise matrix J are required. However, in practice, the
receiver does not know them and must estimate them. This
scenario is widely investigated (e.g., for OFDM systems
see [61]–[63] and references therein). Thus, we next pro-
pose three algorithms. Algorithm 1 uses one block-type pilot
GFDM symbol for joint channel and phase noise estimation
in the first stage of the estimation process. In the second
stage, Algorithm 2 or Algorithm 3 can be used for data
detection. They both utilize comb-type GFDM symbols to
for phase noise compensation and data detection. Note that
the channel estimate from Stage 1 is used in Stage 2; and
thus last two algorithms use the output from Algorithm 1.
This usage is possible because wireless channels are usu-
ally slowly varying compared to phase noise, which may
change significantly from one GFDM symbol to another.
Thus, previous phase noise estimates cannot detect the data
symbols in the payload portion of the packet and must be
estimated per symbol for accurate data detection. However,
the first stage’s channel estimate can be used during the
whole packet.

A. JOINT CHANNEL AND PHASE NOISE ESTIMATION
Herein, we propose Algorithm 1 for joint estimation of chan-
nel coefficients and phase noise. It deploys one block-type
pilot symbol, i.e., all N = MK subsymbols are known
at the receiver. The output (10) motivates the following
optimization problem for this estimation:

min
H,J
‖y− JHx‖2. (11)

This problem (11) can be solved via the LS approach [64].
That is, H and J are estimated by minimizing the squared
Euclidean distance between the observation vector y and the
reconstructed noiseless observation JHx [64]. LS problems
can be linear (standard) or non-linear, depending on whether
the cost function is a linear function of the unknown param-
eters or not [65]. While the linear case has a closed-from
solution, the non-linear case is solved through successive
iterative algorithms and by linearizing the non-linear cost
function [65]. Clearly, the problem at hand (11) is non-
linear function of the entries of H and J because of the
matrix product. This fact motivates an NLS estimator. To
this end, the proposed algorithm exploits two ideas:

1) To save computational complexity, we first reduce the
number of unknown channel and phase noise param-
eters, 2N − 1, by relating the frequency response of
channel to its time response and by interploating phase
noise.

2) We approximate the resulting NLS problem into linear
one. With this idea, we develop an iterative channel
and phase noise estimator.

Step 1: To this end, we rewrite the received signal in
frequency domain (10) as

y = J′H′x+Wn, (12)

where

H′ = J[0]H = diag
(
[H′[0], . . . ,H′[N − 1]]

) ∈ C
N×N

J′ = 1

J[0]
J =

⎡

⎢
⎢
⎢
⎣

J′[0] J′[N − 1] · · · J′[1]
J′[1] J′[0] · · · J′[2]

...
...

. . .
...

J′[N − 1] J′[N − 2] · · · J′[0]

⎤

⎥
⎥
⎥
⎦

∈ C
N×N, (13)

where H′[l] = J[0]H[l] l = 0, 1, . . . ,N − 1, J′[0] = 1
and J′[l] = J[l]/J[0], l = 1, . . . ,N − 1. Moreover, J′
is circulant matrix which is formed by elements of J̃ =
[J′[0], J′[1], . . . , J′[N − 1]]T ∈ C

N×1.
Note that there are N channel coefficients H′[l], l =

0, . . . ,N − 1, and N − 1 phase noise parameters J′[l], l =
1, . . . ,N − 1. Since the number of known pilots, N, is less
than the number of unknown parameters, 2N−1, this problem
is underdetermined and the solution is not unique. To avoid
this conundrum, we model the channel and phase noise with
fewer parameters to reduce the number of unknowns.

1) CHANNEL MODEL

Since the channel length, Lch, is much smaller than the
GFDM symbol size N, similar to [52], we can relate channel
frequency response H′[l], l = 0, . . . ,N − 1, to its time
response h′[n], n = 0, . . . ,Lch − 1, through

h̃ = Fhh̄, (14)

where

h̃ = [
H′[0], . . . ,H′[N − 1]

]T ∈ C
N×1

h̄ = [
h′[0], . . . , h′[Lch − 1]

]T ∈ C
Lch×1

Fh =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 · · · 1

1 e−j 2π
N · · · e−j

2π(L−1)
N

...
...

. . .
...

1 e−j
2π(N−1)

N · · · e−j
2π(N−1)(L−1)

N

⎤

⎥
⎥
⎥
⎥
⎦
∈ C

N×Lch ,

(15)

where h′[l] = J[0]h[l], l = 0, 1, . . . ,Lch − 1. Moreover, Fh
contains the first Lch columns of the DFT matrix FN . In this
way, we estimate h̄ instead of h̃, which reduces the number
of unknown parameters into Lch.

2) PHASE NOISE MODEL

To reduce the number of unknowns, phase noise is interpo-
lated. Thus, time domain phase noise components ejφ[n], n =
0, . . . ,N−1 can be interpolated from ejφ[q(N−1)/(Q−1)], q =
0, . . . ,Q− 1(Q < N) as [25]

p̃ ≈ ϒp̄, (16)
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where

p̃ =
[
ejφ[0], ejφ[1], . . . , ejφ[N−1]

]T ∈ C
N×1

p̄ =
[
ejφ[0], ejφ[(N−1)/(Q−1)], . . . , ejφ[N−1]

]T ∈ C
Q×1, (17)

and ϒ ∈ C
N×Q is called interpolation matrix. It helps to

approximate phase noise with fewer time samples. Thus,
instead of estimating J′[l], l = 0, . . . ,N − 1, we com-
pute approximate phase noise samples. With phase noise
component J[l] and interpolation scheme (16), we find

J̃ = 1

N
FN c̃ ≈ Fcc̄, (18)

where Fc = 1
NFNϒ ∈ C

N×Q, c̃ = 1
J[0] p̃, and

J̃ = [
J′[0], J′[1], . . . , J′[N − 1]

]T ∈ C
N×1

c̄ = 1

J[0]
p̄ = [c[0], . . . , c[Q− 1]]T ∈ C

Q×1. (19)

Therefore, c̄ can be estimated instead of J̃, which appears
the number of unknown parameters to be Q. However, since
J′[0] = 1, the number of parameters is in fact Q− 1.
Remark 1 (Interpolation Matrix ϒ): This matrix can be

determined in two ways. First, if power spectral density
(PSD) of phase noise is unknown, a non-optimal, interpola-
tion matrix ϒ can be constructed from linear interpolation
as [25]

ϒL[n1,m1]

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m1 − (n1−1)(Q−1)
N−1

(m1−1)(N−1)
Q−1 ≤ n1 − 1

≤ m1(N−1)
Q−1

(n1−1)(Q−1)
N−1 − (m1 − 2)

(m1−2)(N−1)
Q−1 ≤ n1 − 1

≤ (m1−1)(N−1)
Q−1

0, otherwise
(20)

where n1 = 1, 2, . . . ,N and m1 = 1, 2, . . . ,Q. Second,
if the PSD of phase noise is known, the optimal interpo-
lation matrix can be derived by minimizing the MSE of
interpolating p̃ from p̄ as

ϒO = argmin
ϒ

E‖p̃−ϒp̄‖2. (21)

Thus, the solution of (21) is the optimal interpolation
matrix, which is given by

ϒO = Rp̃,p̄R
−1
p̄ , (22)

where Rp̃,p̄ = E{p̃p̄H} and Rp̄ = E{p̄p̄H}, which based on
the autocorelation of φ[n] in (7) and phase noise expressions
in (17) can be derived as

Rp̃,p̄[n1,m1] = e−2|(n1−1)− (m1−1)(N−1)

Q−1 |πβTs

Rp̄[m1,m2] = e−2|(m1−m2)| N−1
Q−1 πβTs , (23)

where n1 = 1, 2, . . . ,N and m1,m2 = 1, 2, . . . ,Q. Thus, by
substituting (23) in (22), we get the optimal interpolation

matrix. Note that, it depends on the bandwidth, β, of phase
noise. To determine the bandwidth, the receiver requires the
PSD of phase noise. The PSD of the free-running oscilla-
tor typically is the Lorenzian spectrum [66], which can be
estimated from two single point PSD measurements [67].
Therefore, it is not unrealistic to assume that the receiver
knows β through prior measurements.

Consequently, the optimization problem in (11) is con-
verted to joint h̄ (14) and c̄ (18) estimation problem as

min
h̄,c̄

∥
∥y− J′H′x

∥
∥2 (24)

s.t. J′[0] = 1, (25)

where H′ is related to h̄ by (14) and J′ is related to c̄
by (18). Thus, by relating frequency response of channel
to its time response in (14) and also deploying interpola-
tion technique for approximating phase noise components
in (16), the number of unknowns parameters in (11) from
2N − 1 into Lch + Q − 1 in (24). However, the resulting
optimization problem (24) is non-linear with a non-convex
cost function [25], [52].
Step 2: To solve the estimation problem (24), we intro-

duce an NLS iterative estimator of h̄ and c̄. This algorithm
employs local linearization with a first-order approximation.
First, initialize c̄ by setting ĉ0 = [1, 1, . . . , 1]T ∈ C

Q×1.
Second, by substituting it in (18) and (13), and deriving the
J′0, the optimal h̄ of (24) is given by

ĥ0 =
(
FHh X

HJ′0
HJ′0XFh

)−1
FHh X

HJ′0
Hy, (26)

where X = diag(x). Let ĥi−1 and ĉi−1 be the parameter
estimates at the (i − 1)-th iteration. If �h̄ and �c̄ are the
estimation errors, the parameter estimates in the i-th iteration
are given by

ĥi = ĥi−1 +�h̄, ĉi = ĉi−1 +�c̄. (27)

Furthermore, we have

Ĥ′i = Ĥ′i−1 +�H′, Ĵ′i = Ĵ′i−1 +�J′, (28)

where estimation errors �H′ and �J′ are related to �h̄
and �c̄ via (14) and (18), respectively. By substituting (27)
and (28) in (24) and using (14) and (18), we rewrite the
optimization problem (24) to estimate �h̄ and �c̄ as

min
�h̄,�c̄

∥
∥y− (

J′i−1 +�J′
)(
H′i−1 +�H′

)
x
∥
∥2

≈ min
�h̄,�c̄

∥
∥
∥z− T′i−1Fc�c̄− Ĵ′i−1XFh�h̄

∥
∥
∥

2
(29)

s.t. G�c̄ = 0, (30)

where z = y − Ĵ′i−1Ĥ
′
i−1x ∈ C

N×1, T′i−1 ∈ C
N×N is the

circulant matrix formed by elements of Ĥ′i−1x, and G =
[G[0],G[1], . . . ,G[Q− 1]] ∈ C

1×Q is the first row of Fc =
1
NFNϒ matrix. Note that, this approximation ignores the
cross term between �h̄ and �c̄. Moreover, based on the
constraint in (30), we can remove �c̄[0] from parameter
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estimates by substituting F′c�c̄′ instead Fc�c̄ in (29). We
have

Fc�c̄ = F′c�c̄′, (31)

where

�c̄′ = [
�c′[1], . . . ,�c′[Q− 1]

]T ∈ C
Q−1×1

F′c = S2 − 1

G[0]
S1([G[1],G[2], . . . ,G[Q− 1]])

Fc = [S1|S2], S1 ∈ C
N×1, S2 ∈ C

N×Q−1. (32)

In this way, by applying (31), constraint (30) is satisfied
and optimization problem in (29) can be written as

min
�h̄,�c̄′

∥
∥
∥z− T′i−1F

′
c�c̄′ − Ĵ′i−1XFh�h̄

∥
∥
∥

2
. (33)

For solving (33), we decompose all the parameters that
should be estimated into their real and imaginary parts and
put them together in a vector � ∈ C

2(Lch+Q−1)×1 as

� =
[
Re

{
h̄
}T

, Im
{
h̄
}T

, Re
{
c̄′
}T

, Im
{
c̄′
}T

]T
. (34)

Thus, by deploying (34), we reformat the non-linear
optimization problem in (33) as a linear LS problem,
given by

min
�
‖z̄− ���‖2, (35)

where z̄ = [Re{z}T , Im{z}T ]T ∈ C
2N×1 and matrix � ∈

C
2N×2(Lch+Q−1) is derived in (72) (Appendix A). The LS

solution of (35) yields the optimal estimate of unknown
matrix �� in the i-th iteration as

�� =
(
�T�

)−1
�T z̄. (36)

Accordingly, from (36) and (34), �h̄ and �c̄′ are derived.
Then, by using (31), �c̄ is derived from �c̄′. Finally,
estimates of h̄ and c̄ will be updated by (27).

The proposed joint channel and phase noise estimation
method is summarized in Algorithm 1. It recursively works
until the objective function stops improving or until it reaches
the maximum number of iterations.
Note that in Step 4 of Algorithm 1, near optimal incre-

mental terms �h̄ and �c̄ are derived by (36) through
setting � in (34) as predetermined �̂i−1, which results in
‖z̄−���‖2

�=�̂i−1
≤ ‖z̄−���‖2

�=�̂i
[25], [52]. Thus, the

objective function decreases with the number of iterations
and converges to a local minimum. The convergence and
accuracy of this algorithm is experimentally investigated in
Section V. Moreover, the output of the algorithm, which
is the channel estimate, is utilized in Algorithm 2 for data
detection and phase noise estimation.

Algorithm 1 Joint Channel and Phase Noise Estimation

1: Set ĉ0 = [1, 1, . . . , 1]T and find the initial ĥ0 by using
(26)
2: Set the maximum number of iteration Imax and i = 1.
3: do while |�i − �i−1| ≤ ε, and i < Imax,
4: Derive �h̄ and �c̄ by finding ��o in (36).
5: Update the estimates on h̄ and c̄ by (27).
6: i← i+ 1
7: dend do
where �i = ‖y− J′iH′ix‖2

B. JOINT DATA SYMBOL AND PHASE NOISE
ESTIMATION
This algorithm uses comb-type GFDM symbols and uses the
first-stage channel estimate. It performs phase noise compen-
sation and data detection. Consider the vector d = dd + dp,
where dd ∈ C

N×1 and dp ∈ C
N×1 indicate data vector and

pilots sequence, respectively. Furthermore, we assume one
pilot subsymbol every �k subcarriers for pilot sequence dp
and we keep the rest of subsymbols zeros, which are the posi-
tion of data vector dd. Thus, the number of pilot subcarriers
is Kp =

⌊ K
�k

⌋
.

Let v = [v1, v2, . . . , vP]T ∈ C
P×1 shows the position of

pilot symbols in data vector d, where P = MKp indicates
the total number of pilot symbols. Then, we have dp =
[dv1, 0, 0, . . . , 0, dv2 , . . . , dvP−1 , 0, 0, . . . , 0, dvP ], and dd =
d−dp. Furthermore, similar to the first stage, interpolation is
employed to reduce the complexity of phase noise estimation.
Two algorithms are next developed for joint data and phase

noise estimation (stage 2). First, we follow a similar approach
as in [25] and propose an iterative algorithm to solve the joint
NLS estimation problem. This algorithm first detects GFDM
symbols, passes the output through the GFDM demodulator,
and finally outputs the transmitted complex data symbols.
Second, we propose a closed-form LS algorithm as well,
which includes the GFDM demodulator and directly detects
transmitted complex data symbols.

1) ALGORITHM 2

The data detection and phase noise estimation problem can
be formulated as

min
xd,c̄

∥
∥y− JH′

(
xp + xd

)∥
∥2

, (37)

where y is the observed signal, J is the circu-
lant matrix formed by the elements of Fcc̄ in (18),
xd = Pdiag(W, . . . ,W)dd ∈ C

N×1 and xp =
Pdiag(W, . . . ,W)dp ∈ C

N×1.
As with the original channel and phase noise estimation

problem (11), (37) is solved via the LS approach [64]. Thus,
xd and c̄ by minimizing the squared distance between the
observation vector y and the reconstructed noiseless observa-
tion JH′(xp+ xd). Note that (37) is a non-linear function of
unknown parameters of xd and c̄ with a non-convex cost
function. Therefore, it has no closed-form solution [65].
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Algorithm 2 Joint Data and Phase Noise Estimation

1: Set ĉ0 = [Ĵ[0], Ĵ[0], ..., Ĵ[0]]T ∈ C
Q×1

2: Set Imax and i = 1.
3: do while |
i − 
i−1| ≤ ε, and i < Imax
4: Compute optimal data x̂i−1 by (38).
5: Compute phase noise ĉi by (39).
6: i← i+ 1
7: end do
where 
i = ‖y− JiH′

(
xp + x̂d,i−1

)‖2.

Therefore, similar to the first stage, we propose an iterative
algorithm. It has two steps: 1) detecting the data symbol
by assuming that phase noise is known, 2) estimating the
phase noise with the detected data symbol. The algorithm
runs until the predefined maximum number of iterations is
reached, or the cost function reaches a plateau.
Step 1: Suppose that vector ĉi−1 (estimation of c̄ ) and

phase noise matrix Ĵi−1 are known in the (i−1)-th iteration.
By solving the linear LS problem, the optimal data symbol
is given by

x̂d,i−1 =
(
H′

)−1
(
ĴHi−1Ĵi−1

)−1
ĴHi−1

(
Y− Ĵi−1H′xp

)
. (38)

Step 2: By deploying estimated symbol in (38), we find
the optimal ĉi by solving a linear LS problem as

ĉi =
(
FHc T

′′H
i−1T

′′
i−1Fc

)−1
FHc T

′′H
i−1Y, (39)

where T′′i−1 ∈ C
N×N is the circulant matrix formed by

elements of H′(x̂d,i−1 + xp).
The iterative joint data and phase noise estimation is sum-

marized in Algorithm 2. Note that in order to correct the
scaling ambiguity in H′, we estimate the common phase
error J[0] by using LS method to minimize the cost function,
given by

min
J[0]

N−1∑

l=0

∣
∣Y[l]− J[0]H′[l]Xp[l]

∣
∣2, (40)

where X[l] is l-th element of vector xp. By solving the
minimization problem, the estimate of common phase error
is derived as

Ĵ[0] =
∑N−1

l=0 H′∗[l]X∗p [l]Y[l]
∑N−1

l=0 |H′[l]|2|Xp[l]|2 . (41)

The proposed algorithm outputs the GFDM symbol x̂, and
complex data symbols are demodulated as d̂ = Bx̂, where
B ∈ C

N×N is the demodulation matrix. The matrix depends
on the type of the receiver. In this paper, we consider two
common GFDM receivers; namely, MF and ZF [52]. The
matrices for these are BMF = diag(WH, . . . ,WH)PH and
BZF = (Pdiag(W, . . . ,W))−1.

Algorithm 3 Joint Data and Phase Noise Estimation

1: Compute phase noise unknowns ˆ̇p by (45).
2: Compute data symbols d̂ via ˆ̇p in (43).

2) ALGORITHM 3

With the transmit GFDM signal (5) and (10), the observed
signal with comb-type GFDM symbols may be expressed as

y = FNEFHNH
′FN�d+Wn, (42)

where � indicates GFDM modulator (5), d = dd + dp,
and E = diag(p̃) indicates the phase noise matrix in time
domain. In (42), we convert the multiplication of channel
and GFDM signal into time domain, and then multiply the
output with the phase noise matrix in time domain, and
finally convert the result to the frequency domain. After
passing the observed signal (42) through the phase noise
compensator and GFDM demodulator, transmitted complex
data symbols can be detected as

d̂ = Cṗ, (43)

where C = BFHN (H′)−1FN ŷϒ ∈ C
N×Q, where B ∈ C

N×N
is the GFDM demodulation matrix and ŷ = diag(FHNy) ∈
C
N×N is the observed signal in time domain. Moreover,

in (43), we approximate conjugate of phase noise p̃∗ by
using interpolation matrix ϒ as p̃∗ = ϒṗ, where ṗ ∈ C

Q×1

is the unknown vector. Let dvp = [dv1
p , dv2

p , . . . , dvPp ]T ∈ C
P×1

be pilot vector corresponding to pilot index set v. Therefore,
we can have

dvp = CPṗ, (44)

where CP ∈ C
P×Q matrix corresponds to pilot index set v,

which is derived from matrix C in (43). Since dvp and CP

are known, we can estimate the unknown vector ṗ by using
linear LS estimator as

ˆ̇p =
(
CH
PCP

)−1
CH
P d

v
p. (45)

By substituting the estimated ˆ̇p in (43), the transmitted
complex data symbols can be obtained. This closed-form
joint data and phase noise estimation is summarized in
Algorithm 3.

IV. PERFORMANCE ANALYSIS
This section investigates the impacts of phase noise on
the effective SINR and the sum-rate of GFDM. Moreover,
the CRLB is derived to evaluate the MSE performance
of Algorithm 1. Finally, the complexity of the proposed
algorithms is analyzed.

A. EFFECTIVE SINR DERIVATION
The effective SINR can quantify the impacts of phase
noise on GFDM performance. Thus, we derive this measure
for three different cases. These are 1) Ideal compensation
for phase noise, 2) No compensation of phase noise, and
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3) Phase noise compensation with Algorithm 1. As is cus-
tomary, data symbols, phase noise, the channel coefficients,
and the additive white Gaussian noise terms are assumed to
be independent random variables [52], [58].

1) CASE 1: IDEAL COMPENSATION OF PHASE NOISE

If both J and H matrices in (10) are perfectly known, the
receiver can perform ideal compensation. Although this case
is unrealizable, it yields an upper bound of the achievable
effective SINR, which serves as a performance benchmark
for any phase noise compensation algorithm. To derive this
bound, we note that the term JHx in (10) is the desired
component. Thus, based on E{Wn

HWn} = σ 2
w, the effective

SINR can be derived as

SINRideal = E
{
xHHHJHJHx

}

σ 2
w

= σ 2
h σ 2

d

Nσ 2
w

N−1∑

l1=0

(
|γl′1 |2 + |γM+l′1 |2

)
, (46)

where l′1 = (l1)M .
Proof: See proof of (46) in Appendix B.
As can be observed in the expression (46), the derived

effective SINR is independent of the 3-dB phase noise band-
width β, which makes sense since phase noise is ideally
compensated.

2) CASE 2: NO COMPENSATION OF PHASE NOISE

This case yields a lower bound of achievable effective
SINR, which gauges the phase-noise compensation algo-
rithm’s performance improvement. To this end, we next
derive the effective SINR. To do that, we rewrite the received
signal in (10) as

y = Hx+ (J[0]− 1)Hx+ (J− J[0]IN)Hx+Wn. (47)

Similar to the derivation in (46), by using the sig-
nal model (47) and after straightforward mathematical
manipulation, the effective SINR is given by

SINRNo

= E
{
xHHHHx

}

(
E
{|J[0]− 1|2}+∑N−1

l=1 σ 2
J,l

)
E
{
xHHHHx

}+ σ 2
w

= SINRideal

2(1− μ)SINRideal + 1
, (48)

where σ 2
J,l = E{|J[l]|2} and μ = Re{E{J[0]} (derived in (81),

Appendix C). Note that the constant μ depends on phase
noise bandwidth β. For example, if the bandwidth is zero
(β = 0), μ will also be zero, and the SINR of Case 2 will be
equal to that of the ideal case (SINRNo = SINRideal). Thus,
depending on the noise bandwidth, the SINR of Case 2 is
bounded as

SINRideal

2SINRideal + 1
< SINRNo ≤ SINRideal. (49)

3) CASE 3: PROPOSED ALGORITHMS

The effective SINR achieved with the proposed phase noise
compensation algorithm is derived. That SINR can be com-
pared with the upper and lower bounds from case 1 and
case 2, respectively. Thus, we can evaluate the effective-
ness of the proposed algorithm. To derive the effective
SINR, let Ĵ be the estimate of phase noise matrix J by
the proposed estimation algorithm. Thus, we can rewrite the
system model (10) as

y = ĴHx+
(
J− Ĵ

)
Hx+Wn, (50)

where J and Ĵ are circulant matrices formed by the elements
of j̃ = 1

NFN p̃ and j̃app = Fcp̄ in (18), respectively. Thus,
we can formulate the effective SINR as

SINRprop =
E

{
xHHH ĴH ĴHx

}

E

{

xHHH
(
J− Ĵ

)H(
J− Ĵ

)
Hx

}

+ σ 2
w

= ξ1SINRideal

(1+ ξ1 − 2Re{ξ2})SINRideal + 1
, (51)

where ξ1 = 1
NTr{ϒRp̄ϒ

H} and ξ2 = 1
NTr{Rp̃,p̄ϒ

H}.
Proof: See proof of (51) in Appendix D.
Note that Rp̄ and Rp̃,p̄ are derived in (23) and ϒL is

expressed in (20) for linear interpolation. Moreover, the
effective SINR (51) derived for optimal interpolation matrix
ϒO = Rp̃,p̄R

−1
p̄ in (22) can be simplified as

SINRprop,O = ξSINRideal

(1− ξ))SINRideal + 1
, (52)

where ξ = 1
NTr{Rp̃,p̄R

−1
p̄ RH

p̃,p̄}. If the length, Q, of inter-
polation vector equals the number of data symbols N, we
have p̃ = p̄ and thus Rp̃,p̄ = Rp̄. In this case, ξ = 1.
Moreover, p̄ is a subvector of p̃ and so Rp̄ is a subma-
trix of Rp̃,p̄. Therefore, it is true that Tr{Rp̃,p̄R

−1
p̄ RH

p̃,p̄} >

Tr{Rp̄R
−1
p̄ RH

p̄ } = Q. In this case, ξ >
Q
N . Depending on the

range of ξ , SINRprop,O may be bounded as

Q
NSINRideal

(
1− Q

N

)
SINRideal + 1

< SINRprop,O ≤ SINRideal. (53)

B. SUM-RATE ANALYSIS
To gauge the proposed estimation/compensation algorithms,
we analyze the sum rate of the GFDM system. The sum rate
should increase with the elimination of interference terms.
Thus, our analysis reveals if the proposed algorithms are
effective or not in terms of eliminating them. To this end, the
sum rate of GFDM over N data symbols can be formulated
as [57]

R =
K−1∑

k′=0

M−1∑

m′=0

log2
(
1+�k′M+m′

)
, (54)

where �k′M+m′ indicates the SINR for the m′-th data symbol
and the k′-th subcarrier. In order to derive the SINRs, the
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desired signal component of the demodulator output (50)
must be extracted. To do so, the signal model (50) is
expressed as

y = FNEappFHNHx+ FHN
(
E− Eapp

)
FNHx+Wn, (55)

where Eapp = diag(ϒp̄), E = diag(p̃). Note that (55) con-
verts the signal and channel multiplication in the frequency
domain into the time domain and then multiplies the result
with the phase noise matrix in the time domain converts it
to the frequency domain finally. This transformation enables
the derivation of the power of desired and interference com-
ponents. With the demodulation of the signal (55), the m′-th
data symbol on the k′-th subcarrier is detected as

d̂k′M+m′ = FHM,m′�
H�RPHk′y = d̄k′M+m′ + Id,k′M+m′

+ Iφ,k′M+m′ + wk′M+m′ , (56)

where FM,m′ indicates the m′ + 1-th column of matrix
FM and �R = diag(γ r0 , γ r1 , . . . , γ r2M−1) ∈ C

2M×2M , where
{γ r0 , γ r1 , . . . , γ r2M−1} indicate the frequency response of the
receiver prototype filter. In (56), d̄k′M+m′ indicates the desired
symbol, Id,k′M+m′ and Iφ,k′M+m′ represent interference terms
from other symbols and phase noise approximation, and
wk′M+m′ indicates the equivalent noise. By exploiting the
GFDM signal (2), the components of (56) can be derived as

d̄k′M+m′ = Uk′,m′FNEappFHNHCk′,m′dk′M+m′
Id,k′M+m′ = Rd,k′M+m′ − d̄k′M+m′
Rd,k′M+m′ = Uk′,m′FNEappFHNHx

Iφ,k′M+m′ = Uk′,m′FN
(
E− Eapp

)
FHNHx

wk′M+m′ = Uk′,m′Wn, (57)

where Uk′,m′ = FHM,m′�
H�RPHk′ and Ck′,m′ = Pk′��FM,m′ .

Consequently, the SINR, �k′M+m′ , for the m′-th data symbol
on the k′-th subcarrier can be written as

�k′M+m′ =
Psk′M+m′

PI
d

k′M+m′ + PI
φ

k′M+m′ + Pwk′M+m′
, (58)

where

Psk′M+m′ = E

{
d̄k′M+m′ d̄Hk′M+m′

}

PI
d

k′M+m′ = PR
d

k′M+m′ − Psk′M+m′
PR

d

k′M+m′ = E

{
Rd,k′M+m′RHd,k′M+m′

}

PI
φ

k′M+m′ = E

{
Iφ,k′M+m′ IHφ,k′M+m′

}

Pwk′M+m′ = E

{
wk′M+m′wHk′M+m′

}
. (59)

In Appendix E, we derive the powers of signal components
in (59).

C. CRAMÉR-RAO LOWER BOUND (CRLB)
CRLB is a lower bound on the covariance matrix of any unbi-
ased estimator of unknown parameters [54]. If an unbiased
estimator achieves this lower bound, the estimator is said
to be efficient. It thus achieves the smallest possible MSE

among all unbiased methods. Thus, the CRLB is widely
used to evaluate the quality of estimators. In the follow-
ing, CRLBs are derived for the channel and phase noise
estimates computed during the first block-type pilot of the
GFDM packet (Fig. 1). We assume that the N pilot sym-
bols are i.i.d. complex random variables with mean zero
and the identical variance. They are also independent of
data symbols, channel coefficients, phase noise, and additive
noise.
To derive the CRLBs, the received signal (12) is

expressed as

Y = S� + W̄, (60)

where

S� = J′appH′x, W̄ =Wn +
(
J′ − J′app

)
H′x, (61)

where J′ and J′app are circulant matrices formed by the

elements of J̃ = 1
NFN c̃ and QJapp = Fcc̄ in (18). Note that

J′−J′app indicates the approximation error in (16). Similar to
Appendix D, after straightforward derivations, the covariance
matrix of W̄ is equal to E{W̄NWH} = σ 2

w̄IN , where σ 2
w̄ can

be derived as

σ 2
w̄ = E

{

xHHH
(
J′ − J′app

)H(
J′ − J′app

)
Hx

}

+ σ 2
w

= E

{∥
∥
∥J̃−QJapp

∥
∥
∥

2
}

σ 2
h σ 2

d

N−1∑

l1=0

(
|γl′1 |2 + |γM+l′1 |2

)
+ σ 2

w

= σ 2
h σ 2

d

N

N−1∑

l1=0

(
|γl′1 |2 + |γM+l′1 |2

)

×
(

1+ 1

N
Tr

{
ϒRp̄ϒ

H
}
− 2Re

{
1

N
Tr

{
Rp̃,p̄ϒ

H
}})

+ σ 2
w, (62)

Since Rp̄ and Rp̃,p̄ in (23) depend on phase noise band-
width β, σ 2

w̄ is a function of β. According to the CRLB,
for any unbiased estimator �̂ of �, the covariance matrix,
R

�̂
= E{(�̂−�)(�̂−�)H}, should satisfy

R
�̂
≥ �−1

�̂
, (63)

where �
�̂
∈ C

2(Lch+Q−1)×2(Lch+Q−1) is the Fisher
information matrix, which is given by

�
�̂
= 2

σ 2
w̄

Re

{(
∂S�

∂�

)T(
∂S�

∂�

)∗}
. (64)

Note that (63) implies that R
�̂
−�−1

�̂
is positive semidef-

inite. However, ∂S�/∂� is derived in (89) element by
element (see Appendix F). Therefore, by substituting (89)
in Fisher information matrix (64), we have

E

{
|h′[n1]− ĥ′[n1]|2

}
≥ �−1

�̂
[n1 + 1, n1 + 1]

+ �−1
�̂

[n1 + Lch + 1, n1 + Lch + 1]

n1 = 0, 1, . . . ,Lch. (65)
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TABLE 1. Complexity growth of Algorithm 1.

TABLE 2. Complexity growth of Algorithm 2.

E

{
|c′[n2]− ĉ′[n2]|2

}
≥ �−1

�̂
[n2 + 2Lch, n2 + 2Lch]

+ �−1
�̂

[n2 + 2Lch + Q− 1, n2

+ 2Lch + Q− 1]

n2 = 1, . . . ,Q− 1. (66)

D. COMPUTATIONAL COMPLEXITY ANALYSIS
We analyze the number of real-valued multiplications
required for joint channel and phase noise estimation
in Algorithm 1 and joint data symbol and phase noise
compensation in Algorithm 2.
In Algorithm 1, the iteration process contains Step 4 and

Step 5. In Step 4, unknown matrix �� is optimally estimated
via (36). This operation requires three matrix multiplications
and one matrix inverse. Moreover, this step also constructs
� matrix based on the expressions derived in Appendix A.
Note that Step 5 avoids multiplications. Due to these reasons,
the complexity growth is summarized in Table 1. Since the
maximum value of Q is equal to N and also the channel
length, Lch, and the number of time-slots M is relatively
small, the computational complexity of our proposed NLS
joint channel and phase noise estimator is roughly in the
order of K3.

On the other hand, the iteration process of Algorithm 2
contains steps four and five. In the former one, the optimal
data symbol is derived by (38). This operation requires six
matrix multiplications and two matrix inverses. Moreover,
in the latter one, phase noise estimation is obtained by (39),
which requires six matrix multiplications and one matrix
inverse. The complexity growth of the steps in each iteration
is summarized in Table 2. Similar to Algorithm 1, since the
maximum value of Q is equal to N and the number of time-
slots M is relatively small, the computational complexity of
our estimator is roughly in the order of K3.

Finally, the proposed closed-form algorithm in
Section III-B2, Algorithm 3, requires nine matrix
multiplications and two matrix inversions, according
to (43) and (45). The complexity of Algorithm 3 is
O(N3 + 5N2Q + NQ2). Similar to Algorithm 2, since the
complexity is in order of N3, N = MK, and the number
of time-slots M is relatively small, the computational
complexity of this estimator is roughly in the order of K3.
Note that this complexity of Algorithm 3 is less than that
of Algorithm 2 because complexity per iteration is higher
in the latter.

TABLE 3. Simulation parameters.

FIGURE 3. Effective SINRs versus SNR for Case 1 (legend “Ideal comp.”), Case 2
(legend “No comp.”), and Case 3, legends “Li” and “Op” represent linear and optimal
interpolation.

V. SIMULATION RESULTS
This section measures the impacts of phase noise. First, the
derived sum-rate and effective SINR expressions are verified
via simulation results. Next, the MSE of the joint channel
and phase noise estimator (Algorithm 1) and the CRLB are
evaluated and compared. Finally, the BER of the joint data
and phase noise estimator (Algorithm 2) is examined.
The simulation parameters are listed in Table 3. Each sim-

ulation result is averaged over 1000 independent trials. Pilot
symbols are randomly generated complex 16-QAM (quadra-
ture amplitude modulation) symbols. However, we have not
tried to optimize the pilot symbols. Optimal pilot design for
the considered system is an important and interesting topic
and is left as future work.
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FIGURE 4. Sum-rate versus SNR for MF and ZF receivers.

In Fig. 3, we plot derived SINRs for Case 1 (46), Case
2 (48), and Case 3 (51) versus SINRideal in (46). For these
three cases, we consider both linear and optimal interpola-
tion. Moreover, the phase noise bandwidth is set as 100 Hz
or 1 kHz. Dashed lines show the theoretical results. The
observations can be summarized as follows:

• We observe that, the simulation results fully match with
the derived effective SINRs in (46), (48), (51).

• When the phase noise bandwidth increases, the effec-
tive SINRs of the last two cases decrease, e.g., without
phase noise compensation, and when the phase noise
increases from 100 Hz to 1 kHz at an SNR of 30 dB,
the SINR decreases by about 10 dB. In other words,
when phase noise increases, the power of interference
terms increases, reducing the SINR.

• Promisingly, the proposed algorithm significantly
improves effective SINR. Moreover, optimal inter-
polation achieves higher effective SINR than linear
interpolation. Furthermore, a larger interpolation vec-
tor Q increases the effective SINR in both cases, e.g.,
optimal interpolation with Q2 achieves an SINR more
or less that of ideal case for 100-Hz phase noise.

We next compare the derived sum-rates of the MF and
ZF receivers, with simulation results in Fig. 4. For a fair
comparison, the interpolation size must be carefully chosen.
But optimal interpolation with Q = 32 achieved a higher
effective SINR (Fig. 3). Thus, we assume the same here.
Fig. 4 shows that the derived results (dashed lines) and the
simulation results match perfectly. Furthermore, ZF outper-
forms MF vis-à-vis the sum-rate. The reason is that the
ZF receiver suppresses more interference terms than the MF
receiver does. Moreover, when the phase noise increases, the
sum-rate achieved by both ZF and MF receivers decreases,
which is due to phase noise causing increased interference.

To examine the performance of Algorithm 1, we plot the
MSE of channel and phase noise estimates in Fig. 5(a) and
Fig. 5(b), respectively. Both linear and optimal interpolation
are considered. Moreover, CRLB’s of these estimations con-
firms the accuracy of Algorithm 1. Note that the number of
iterations Imax is set at three, and phase noise bandwidth is
1 kHz.

The estimators developed thus far do not use statistics
of the signals and channel gains. However, to compare
the performance of Algorithm 1 with other estimators, we
develop an iterative linear minimum mean-squared error
(LMMSE) estimator. Unlike Algorithm 1, this estimator
requires the channel correlation matrix, phase noise corre-
lation matrix and the noise variance. In (24), at the i-th
iteration, phase noise ĉi−1 is assumed given. Therefore, the
LMMSE channel estimate is computed by

ĥi = σ 2
hF

H
h X

HJ′Hi
(
σ 2
wIN + σ 2

h J
′
i−1XFhF

H
h X

HJ′Hi−1

)−1
y,

(67)

where J′i−1 is phase noise circulant matrix formed by ele-
ments of Fcĉi−1. By using estimate ĥi, LMMSE phase noise
estimate is computed as

ĉi = Rp̄FHc T
′H
i

(
σ 2
wIN + T′iFcRp̄FHc T

′H
i

)−1
y, (68)

where T′i is the circulant matrix formed by elements of
Ĥ′ix, Ĥ′i = diag(Fhĥi), and Rp̄ is phase noise correlation
matrix in (23). Similar to Algorithm 1, the LMMSE esti-
mator recursively works until the objective function stops
improving or until it reaches the maximum number of iter-
ations. In Fig. 5(a), for LMMSE, optimal interpolation with
Q = 32 is considered and phase noise bandwidth is 1 kHz.

The observations of Fig. 5 can be summarized as follows:

• The MSE of the channel estimates closely match the
CRLB [Fig. 5(a)]. This match confirms that Algorithm
1 is an efficient unbiased estimator and its channel
estimates can be reliably deployed for data detection.

• In addition, in low SNRs, the biased LMMSE estimator
obtains lower MSE than the Algorithm 1. However,
Algorithm 1 outperforms the LMMSE estimator in high
SNRs.

• In Fig. 5(b), a gap exists between the MSE of phase
noise estimates and the CRLB in all cases, which is due
to the use of interpolation. However, this gap decreases
when the interpolation size increases. Furthermore, the
gap can be reduced by choosing optimal interpolation
rather than linear interpolation.

• Promisingly, the MSE of both channel and phase noise
estimates decreases for larger interpolation vectors, Q.
For example, when we use optimal interpolation, the
difference between the MSE of channel estimates for
Q1 and Q2 at an SNR of 30 dB is 3 dB. However, larger
Q increases the computational complexity. Therefore,
complexity and MSE performance exhibit a trade-off.
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FIGURE 5. MSE performance of Algorithm 1 with linear (“Li”) and optimal (“Op”) interpolations.

FIGURE 6. MSE of channel and phase noise estimates as a function of the phase noise bandwidth.

Moreover, to verify the impacts of phase noise on the
performance of the proposed NLS estimator in Algorithm 1,
MSE’s of estimated channel and phase noise versus
phase noise bandwidth β are illustrated in Fig. 6(a) and
Fig. 6(b), respectively. Optimal interpolation (Q = 32)
and also SNR values 20, 30 and 40 dB are consid-
ered. Furthermore, the number of iterations Imax is set
at three. The observations from Fig. 6 are summarized
as follows:
• From Fig. 6(a), close match between the MSE of chan-
nel estimates and CRLB is observed. This match shows

that the proposed algorithm is able to compensates for
the effect of different phase noise bandwidths.

• From Fig. 6(b), we observe that MSE of the phase
noise estimate and CRLB are fairly close. However, a
gap exists, which is due to the interpolation errors of
phase noise. This points to the trade off between the
MSE performance and computational complexity.

• Unsurprisingly, when phase noise bandwidth increases,
the MSE’s of both channel and phase noise estimation
increase. Moreover, for the large phase noise regime,
the MSE becomes more or less independent of the SNR,
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FIGURE 7. MSE of Algorithm 1 as a function of the number of iterations.

and the power of interference terms (due to phase noise)
increases and dominates the additive white noise terms.

To gauge the convergence rate of Algorithm 1, in Fig. 7,
we plot the MSE of channel estimates (Algorithm 1) versus
the number of iterations. The same SNR values as per Fig. 6
and 100 Hz and 1 kHz phase noise bandwidths, and optimal
interpolation (Q = 32) are considered. We observe that for
the 100-Hz phase noise, our algorithm converges after two
iterations for all SNRs, while just three iterations are needed
for the 1 kHz phase noise in high SNRs. These observations
suggest that the proposed estimator is fast and requires just
three iterations to ensure convergence.
Thus far, we have shown that the proposed joint NLS

channel and phase noise estimator obtains satisfactory chan-
nel estimates, which can then be deployed for data detection.
This is done in Algorithm 2. It uses comb-type GFDM sym-
bols with pilot subcarrier spacing �k = 4. We consider Case
1, with perfect channel and phase noise knowledge, (leg-
end Perfect Ch. & PN), Case 2, with perfect knowledge of
channel but no information about the phase noise, (legend
No comp.), Case 3 – Algorithm 2 in Section III-B1 (leg-
end Algorithm 2), and Case 3 – closed-form data detection
algorithm in Section III-B2 (legend Algorithm 3). Note that
Case 1 yields the BER lower bound of BER and thus serves
as a performance benchmark for the proposed algorithms.
On the other hand, Case 2 yields the BER upper bound
and is utilized to evaluate the improvement of the proposed
algorithms.
Moreover, Imax in Algorithm 2 is set at three and also

phase noise bandwidths values 100 Hz and 1 kHz and
optimal interpolation are considered. Furthermore, since
Fig. 4 illustrates that ZF receiver outperforms MF one in the
presence of phase noise, we examine it exclusively in this fig-
ure. Note that the ZF receiver can cancel more interference

FIGURE 8. BER versus SNR for Case 1, Case 2 and Case 3 – Algorithm 2 and Case 3
– Algorithm 3.

terms than the MF, which boosts the desired signal and
hence improves the BER. The observations of Fig. 8 can be
summarized as follows:

• When the phase noise bandwidth increases, the BER
increases in all cases. Undoubtedly, the increased phase
noise degrades the MSE’s of channel and phase noise
estimates (Fig. 6). Fortunately, this degradation is more
or less completely eliminated by both Algorithm 2 and
Algorithm 3. For example, for 100 Hz phase noise,
Algorithm 3 achieves a BER close to that of the perfect
channel and phase noise estimation scenario.

• Promisingly, Algorithm 2 and Algorithm 3 compen-
sate the phase noise effects and decrease the BER. In
comparison with Case 1 and Case 2, they significantly
improve the BER; e.g., for extreme phase noise (1 kHz)
and additive noise (SNR of 30 dB), Algorithm 2 reduces
the BER by 400% (compared to the no compensation
case).

• Furthermore, Algorithm 3 outperforms Algorithm 2
and significantly decreases the BER, e.g., for 1 kHz
phase noise and additive noise (SNR of 30 dB),
Algorithm 3 reduces the BER by 300% in com-
parison with Algorithm 2. Besides, Algorithm 3 is
closed-form; thus, its computational complexity is less
than Algorithm 2, which requires more iterations for
convergence.

• In Algorithm 3, the GFDM demodulation matrix B
is a part of the data detector in (43). For the con-
sidered ZF receiver, the GFDM demodulator becomes
BZF = (Pdiag(W, . . . ,W))−1, which contains GFDM
filter parameters. In contrast, Algorithm 2 is indepen-
dent of the GFDM demodulator, since first GFDM
symbols are detected and then are passed through the
demodulator. Therefore, the performance gap between
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FIGURE 9. BER versus SNR for Algorithm 3 with three roll-off factors.

two algorithms is because of including GFDM demod-
ulation in data detection in Algorithm 3 and handling
the GFDM interference together with phase noise.

Finally, to show the impacts of non-orthogonality of
GFDM on the system performance, in Fig. 9, we plot the
BER versus SNR with three values of roll-off factor rf for
GFDM prototype filter g[n]. We consider Algorithm 3, phase
noise bandwidth β = 1 kHz and other parameters as in
Fig. 8. Clearly, the increasing roll-off factor results in the
degradation of the BER. According to (43) in Algorithm 3,
data detection depends on the GFDM modulator and demod-
ulator matrices, which in turn are constructed based on the
prototype filter. Thus, when the filter roll-off factor increases,
the degree of non-orthogonality increases, which results in
more interference terms and degrades the performance of
data detection.

VI. CONCLUSION
This paper investigated phase noise compensation for GFDM
systems. First, it proposed an estimator for joint channel and
phase noise estimation, which utilizes the NLS approach
and a block pilot GFDM symbol. Second, it also offered
an iterative LS algorithm for data detection and phase noise
compensation. Furthermore, to reduce computational com-
plexity, a closed-form LS algorithm for data detection was
developed. The complexity of all algorithms is reduced
by deploying interpolation techniques and relating channel
frequency and time responses.
Moreover, the impacts of phase noise on GFDM are

quantified via the analysis of the SINR and sum-rate.
The proposed algorithms improve the effective SINR.
Additionally, the CRLBs for the channel and phase noise
estimates were derived; and, we found that their MSE reaches
the CRLB. Finally, the BER with the joint data detection
and phase noise compensation algorithms was evaluated.

Overall, it is possible to fully compensate for the impacts
of phase noise and thus reduce GFDM receivers’ sensitivity
to RF impairments. For future research, this work can be
extended in several directions. First, optimal pilot designs
that use the MSE or a similar measure can be developed.
Second, other RF impairments such as CFO and IQ imbal-
ance can be incorporated with our proposed algorithms, and
further afield, they may also be compensated for full-duplex
transceivers [14], [21], [69].

APPENDIX A
DERIVATION OF � IN (35)
To obtain the matrix � derivation in (35), we first rewrite
the cost function in (33) as
∥
∥
∥z− T′i−1F

′
c�c̄′ − Ĵ′i−1XFh�h̄

∥
∥
∥

2

=
∥
∥
∥Re{z} − Re

{
T′i−1F

′
c�c̄′

}− Re
{
Ĵ′i−1XFh�h̄

}∥
∥
∥

2

+
∥
∥
∥Im{z} − Im

{
T′i−1F

′
c�c̄′

}− Im
{
Ĵ′i−1XFh�h̄

}∥
∥
∥

2
.

(69)

By using (34), we can have
⎡

⎢
⎢
⎣

Re
{
Fh�h̄

}

Im
{
Fh�h̄

}

Re
{
F′c�c̄′

}

Im
{
F′c�c̄′

}

⎤

⎥
⎥
⎦ = �1�, (70)

where

�1 =

⎡

⎢
⎢
⎣

Re{Fh} − Im{Fh} 0 0
Im{Fh} Re{Fh} 0 0

0 0 Re
{
F′c

} − Im
{
F′c

}

0 0 Im
{
F′c

}
Re

{
F′c

}

⎤

⎥
⎥
⎦.

(71)

Now, according to (69) and (70), � can be derived as

� = �2�1, (72)

where

�2 =
⎡

⎣
Re

{
Ĵ′i−1X

}
− Im

{
Ĵ′i−1X

}
Re

{
T′i−1

} − Im
{
T′i−1

}

Im
{
Ĵ′i−1X

}
Re

{
Ĵ′i−1X

}
Im

{
T′i−1

}
Re

{
T′i−1

}

⎤

⎦.

(73)

APPENDIX B
SINR (46) WITH IDEAL COMPENSATION
First, based on (10) and E{ddH} = σ 2

d IN , we derive Rx =
E{xxH} as

Rx = Pdiag(W, ..,W)E
{
ddH

}
diag

(
WH, ..,WH

)
PH

= σ 2
d

K−1∑

k=0

PkWWHPk. (74)
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After straightforward manipulation, Rx can be derived as

Rx = σ 2
d

⎡

⎢
⎢
⎢
⎣

� ′ �2�1
H · · · �1�2

H

�1�2
H � ′ · · · 0M

...
...

. . .
...

�2�1
H 0M · · · � ′

⎤

⎥
⎥
⎥
⎦

, (75)

where � ′ = �1�1
H + �2�2

H , �1 = diag(γ0, . . . , γM−1)

and �2 = diag(γM, . . . , γ2M−1).
Second, we derive σ 2

J,l = E{J[l]J∗[l]} as

σ 2
J,l =

1

N2

N−1∑

n1=0

N−1∑

n2=0

e−2|n1−n2|πβTse−j
2π(n1−n2)l

N . (76)

It can be easily shown that
∑N−1

l=0 σ 2
J,l = 1

N . Now, we have

E

{
xHHHJHJHx

}
= Tr

{
E

{
JHxxHHHJH

}}

= Tr
{
J
(
Rx ◦ E

{
hhH

})
JH

}
, (77)

where h = [H[0], . . . ,H[N−1]] ∈ C
N×1. Since the channel

coefficients H[l] are circularly symetric Gaussian distributed
with mean zero and variance σ 2

h , E{hhH} = σ 2
h IN . Thus,

according to (75), we have

Rx ◦ E

{
hhH

}
= σ 2

h σ 2
d diag

(
� ′, . . . ,� ′

)

︸ ︷︷ ︸
K

. (78)

Now, by using (78), we can derive (77) as

Tr
{
J
(
Rx ◦ E

{
hhH

})
JH

}
= σ 2

h σ 2
dTr

{
diag

(
� ′, . . . ,� ′

)}

×
N−1∑

l=0

σ 2
J,l

= σ 2
h σ 2

d

N

N−1∑

l1=0

(
|γl′1 |2 + |γM+l′1 |2

)
,

(79)

where l′1 = (l1)M .

APPENDIX C
DERIVATION OF CONSTANT μ

We have

μ = Re{E{J[0]}} = 1

N
Re

{

E

{
N−1∑

n=0

ejφ[n]

}}

= 1

N

(
N−1∑

n=0

e−
1
2 E

{|φ[n]|2}
)

. (80)

Since [φ[n + 1] − φ[n]] ∼ N (0, 4πβTs), E{|φ[n]|2} =
(n+ 1)4πβTs, n = 0, 1, . . . ,N − 1. Thus, μ is derived as

μ = 1

N

(
N−1∑

n=0

e−2πβTs(n+1)

)

=
{

1 β = 0
1
N
e−2πβTs−e−2πβTs(N+1)

1−e−2πβTs β > 0.
(81)

APPENDIX D
SINR WITH THE PROPOSED ALGORITHM
Similar to Appendix B and based on the SINR formula-
tion (51) and using the SINR for ideal compensation in (46),
we find

SINRprop =
Tr

{
E

{
ĴĴH

}}
SINRideal

Tr

{

E

{(
J− Ĵ

)(
J− Ĵ

)H
}}

SINRideal + 1
N

=
E

{∥
∥
∥j̃app

∥
∥
∥

2
}

SINRideal

E

{∥
∥
∥j̃− j̃app

∥
∥
∥

2
}

SINRideal + 1
N

. (82)

Based on j̃app = Fcp̄ and Fc = 1
NFNϒ, we have

E

{∥
∥
∥j̃app

∥
∥
∥

2
}

= 1

N2
Tr

{
E

{
ϒp̄p̄HϒH

}}

= 1

N2
Tr

{
ϒRp̄ϒ

H
}
. (83)

Moreover, based on j̃ = 1
NFN p̃, we have

E

{∥
∥
∥j̃− j̃app

∥
∥
∥

2
}

= 1

N2
E

{
‖p̃−ϒp̄‖2

}

= 1

N2

(
Tr

{
E

{
p̃p̃H

}}
+ Tr

{
E

{
ϒp̄p̄HϒH

}}

− 2Re
{
Tr

{
E

{
p̃p̄HϒH

}}})

= 1

N
+ 1

N2
Tr

{
ϒRp̄ϒ

H
}

− 2Re

{
1

N2
Tr

{
Rp̃,p̄ϒ

H
}}

. (84)

By substituting (83) and (84) in (82), effective SINR for
proposed method in (51) is derived.

APPENDIX E
POWER OF SIGNAL COMPONENTS (??)
By using signal model in (57), we derive the power of desired
signal Psk′M+m′ = E{d̄k′M+m′ d̄Hk′M+m′ }, as

Psk′M+m′ = E

{
Uk′,m′FNEappFHNHCk′,m′dk′M+m′

dHk′M+m′C
H
k′,m′H

HFNEapp
HFHNU

H
k′,m′

}

= σ 2
dE

{
Uk′,m′FNEappFHN

{
Ck′,m′C

H
k′,m′ ◦ E{hhH}

}

FNEapp
HFHNU

H
k′,m′

}
= σ 2

h σ 2
dUk′,m′FN

{{
FHNdiag

{
Ck′,m′C

H
k′,m′

}
FN

}
◦ E{ϒp̄p̄HϒH}

}
FHNU

H
k′,m′

= σ 2
h σ 2

dUk′,m′FN
{{
FHNdiag

{
Ck′,m′C

H
k′,m′

}
FN

}
◦ {ϒRp̄ϒ

H}
}

FHNU
H
k′,m′ . (85)

Similar to (85) and after some manipulations, we can
derive power of interference term caused by other sym-
bols as PI

d

k′M+m′ = PR
d

k′M+m′ − Psk′M+m′ , where PR
d

k′M+m′ =
930 VOLUME 2, 2021



E{Rd,k′M+m′RHd,k′M+m′ } is equal to

PR
d

k′M+m′ = σ 2
h σ 2

dUk′,m′FN
{{

FHNdiag
(
� ′, . . . ,� ′

)
FN

}
◦
{
ϒRp̄ϒ

H
}}

FHNU
H
k′,m′ . (86)

Moreover, by deploying derivation in (84) and sig-
nal model in (57), we can daculate power of
interference term due to approximation error PI

φ

k′M+m′ =
E{Iφ,k′M+m′ IHφ,k′M+m′ } as

PI
φ

k′M+m′ = σ 2
h σ 2

dUk′,m′FN

×
{{

FHNdiag
(
� ′, . . . ,� ′

)
FN

}

◦
{
Rp̃ +ϒRp̄ϒ

H − 2Re
{
Rp̃,p̄ϒ

H
}}}

× FHNU
H
k′,m′ , (87)

where Rp̃ = E{p̃p̃H}. Finally, we can derive the power of
equivalent noise Pwk′M+m′ = E{wk′M+m′wHk′M+m′ } as

Pwk′M+m′ = σ 2
wUk′,m′U

H
k′,m′ . (88)

APPENDIX F
∂S�/∂� DERIVATION
Based on (14), we have S� = J′appXFhh̄. Moreover, based
on (18) and (31), we have S� = T′F′cc̄′, where T′ is a
circulant matrix formed by elements of H′x. According to
aforementioned expressions for S� and (34), ∂S�/∂� can
be derived in an element by element as

∂S�

∂Re{h′[n]} =
(
J′appXFh

)
an+1, n = 0, . . . ,Lch − 1

∂S�

∂Im{h′[n]} = j
(
J′appXFh

)
an+1, n = 0, . . . ,Lch − 1

∂S�

∂Re{c′[n]} =
(
T′F′c

)
en, n = 1, . . . ,Q− 1

∂S�

∂Im{c′[n]} = j
(
T′F′c

)
en, n = 1, . . . ,Q− 1, (89)

where an+1 is (n + 1)-th columns of ILch and en is (n)-th
columns of IQ−1.

REFERENCES
[1] Z. Zhang et al., “6G wireless networks: Vision, requirements, architec-

ture, and key technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3,
pp. 28–41, Sep. 2019.

[2] T. S. Rappaport et al., “Wireless communications and applications
above 100 GHz: Opportunities and challenges for 6G and beyond,”
IEEE Access, vol. 7, pp. 78729–78757, 2019.

[3] M. Ataeeshojai, R. C. Elliott, W. A. Krzymien, C. Tellambura, and
J. Melzer, “Energy-efficient resource allocation in single-RF load-
modulated massive MIMO HetNets,” IEEE Open J. Commun. Soc.,
vol. 1, pp. 1738–1764, 2020.

[4] A. Osseiran et al., “Scenarios for 5G mobile and wireless commu-
nications: The vision of the METIS project,” IEEE Commun. Mag.,
vol. 52, no. 5, pp. 26–35, May 2014.

[5] G. Wunder et al., “5GNOW: Non-orthogonal, asynchronous wave-
forms for future mobile applications,” IEEE Commun. Mag., vol. 52,
no. 2, pp. 97–105, Feb. 2014.

[6] B. Farhang-Boroujeny, “OFDM versus filter bank multicarrier,” IEEE
Signal Process. Mag., vol. 28, no. 3, pp. 92–112, May 2011.

[7] F. Schaich, T. Wild, and Y. Chen, “Waveform contenders for 5G—
Suitability for short packet and low latency transmissions,” in Proc.
IEEE Veh. Technol. Conf. (VTC Spring), 2014, pp. 1–5.

[8] N. Michailow et al., “Generalized frequency division multiplexing
for 5th generation cellular networks,” IEEE Trans. Commun., vol. 62,
no. 9, pp. 3045–3061, Sep. 2014.

[9] S. Tiwari and S. S. Das, “Low-complexity joint-MMSE GFDM
receiver,” IEEE Trans. Commun., vol. 66, no. 4, pp. 1661–1674,
Apr. 2018.

[10] P. Chen, B. Su, and Y. Huang, “Matrix characterization for GFDM:
Low complexity MMSE receivers and optimal filters,” IEEE Trans.
Signal Process., vol. 65, no. 18, pp. 4940–4955, Sep. 2017.

[11] Z. Na et al., “Turbo receiver channel estimation for GFDM-based
cognitive radio networks,” IEEE Access, vol. 6, pp. 9926–9935, 2018.

[12] A. Mohammadian, M. Baghani, and C. Tellambura, “Optimal power
allocation of GFDM secondary links with power amplifier nonlinearity
and ACI,” IEEE Wireless Commun. Lett., vol. 8, no. 1, pp. 93–96,
Feb. 2019.

[13] A. Mohammadian and C. Tellambura, “GFDM-modulated full-duplex
cognitive radio networks in the presence of RF impairments,” in Proc.
IEEE 30th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun.
(PIMRC), 2019, pp. 1–6.

[14] A. Mohammadian and C. Tellambura, “Cognitive GFDM full-duplex
radios with RF impairments and ACI constraints,” IEEE Open J.
Commun. Soc., vol. 1, pp. 732–749, 2020.

[15] Z. Wang, L. Mei, X. Sha, and V. C. M. Leung, “Minimum BER
power allocation for space-time coded generalized frequency division
multiplexing systems,” IEEE Wireless Commun. Lett., vol. 8, no. 3,
pp. 717–720, Jun. 2019.

[16] F. Li, K. Zheng, L. Zhao, H. Zhao, and Y. Li, “Design and performance
of a novel interference-free GFDM transceiver with dual-filter,” IEEE
Trans. Veh. Technol., vol. 68, no. 5, pp. 4695–4706, May 2019.

[17] K. Liu, W. Deng, and Y. Liu, “Theoretical analysis of the peak-to-
average power ratio and optimal pulse shaping filter design for GFDM
systems,” IEEE Trans. Signal Process., vol. 67, no. 13, pp. 3455–3470,
Jul. 2019.

[18] S. Ehsanfar, M. Matthe, M. Chafii, and G. P. Fettweis, “Pilot- and
CP-aided channel estimation in MIMO non-orthogonal multi-carriers,”
IEEE Trans. Wireless Commun., vol. 18, no. 1, pp. 650–664, Jan. 2019.

[19] Z. Na, J. Lv, F. Jiang, M. Xiong, and N. Zhao, “Joint subcarrier and
subsymbol allocation based simultaneous wireless information and
power transfer for multiuser GFDM in IoT,” IEEE Internet Things J.,
vol. 6, no. 4, pp. 5999–6006, Aug. 2016.

[20] F. Tian et al., “A novel concatenated coded modulation based on
GFDM for access optical networks,” IEEE Photon. J., vol. 10, no. 2,
Apr. 2018, Art. no. 7200808.

[21] A. Mohammadian, C. Tellambura, and M. Valkama, “Analysis of self-
interference cancellation under phase noise, CFO, and IQ imbalance in
GFDM full-duplex transceivers,” IEEE Trans. Veh. Technol., vol. 69,
no. 1, pp. 700–713, Jan. 2020.

[22] Q. Zou, A. Tarighat, and A. H. Sayed, “Joint compensation of IQ
imbalance and phase noise in OFDM wireless systems,” IEEE Trans.
Commun., vol. 57, no. 2, pp. 404–414, Feb. 2009.

[23] P. Mathecken, T. Riihonen, N. N. Tchamov, S. Werner, M. Valkama,
and R. Wichman, “Characterization of OFDM radio link under PLL-
based oscillator phase noise and multipath fading channel,” IEEE
Trans. Commun., vol. 60, no. 6, pp. 1479–1485, Jun. 2012.

[24] N. N. Tchamov, J. Rinne, A. Hazmi, M. Valkama, V. Syrjälä, and
M. Renfors, “Enhanced algorithm for digital mitigation of ICI due
to phase noise in OFDM receivers,” IEEE Wireless Commun. Lett.,
vol. 2, no. 1, pp. 6–9, Feb. 2013.

[25] Q. Zou, A. Tarighat, and A. H. Sayed, “Compensation of phase noise
in OFDM wireless systems,” IEEE Trans. Signal Process., vol. 55,
no. 11, pp. 5407–5424, Nov. 2007.

[26] G. Liu and W. Zhu, “Compensation of phase noise in OFDM systems
using an ICI reduction scheme,” IEEE Trans. Broadcast., vol. 50,
no. 4, pp. 399–407, Dec. 2004.

[27] V. Syrjälä, M. Valkama, N. N. Tchamov, and J. Rinne, “Phase
noise modelling and mitigation techniques in OFDM communications
systems,” in Proc. Wireless Telecommun. Symp., Apr. 2009, pp. 1–7.

[28] E. Costa and S. Pupolin, “M-QAM-OFDM system performance in
the presence of a nonlinear amplifier and phase noise,” IEEE Trans.
Commun., vol. 50, no. 3, pp. 462–472, Mar. 2002.

VOLUME 2, 2021 931



MOHAMMADIAN AND TELLAMBURA: JOINT CHANNEL AND PHASE NOISE ESTIMATION AND DATA DETECTION FOR GFDM

[29] P. Mathecken, T. Riihonen, S. Werner, and R. Wichman, “Performance
analysis of OFDM with Wiener phase noise and frequency selective
fading channel,” IEEE Trans. Commun., vol. 59, no. 5, pp. 1321–1331,
May 2011.

[30] M. R. Gholami, S. Nader-Esfahani, and A. A. Eftekhar, “A new
method of phase noise compensation in OFDM,” in Proc. IEEE Int.
Conf. Commun. (ICC), vol. 5, May 2003, pp. 3443–3446.

[31] R. A. Casas, S. L. Biracree, and A. E. Youtz, “Time domain phase
noise correction for OFDM signals,” IEEE Trans. Broadcast., vol. 48,
no. 3, pp. 230–236, Sep. 2002.

[32] S. Negusse, P. Zetterberg, and P. Händel, “Phase-noise mitigation in
OFDM by best match trajectories,” IEEE Trans. Commun., vol. 63,
no. 5, pp. 1712–1725, May 2015.

[33] P. Mathecken, T. Riihonen, S. Werner, and R. Wichman, “Phase noise
estimation in OFDM: Utilizing its associated spectral geometry,” IEEE
Trans. Signal Process., vol. 64, no. 8, pp. 1999–2012, Apr. 2016.

[34] P. Mathecken, T. Riihonen, S. Werner, and R. Wichman, “Constrained
phase noise estimation in OFDM using scattered pilots without
decision feedback,” IEEE Trans. Signal Process., vol. 65, no. 9,
pp. 2348–2362, May 2017.

[35] J.-H. Lee, J.-S. Yang, S.-C. Kim, and Y.-W. Park, “Joint channel
estimation and phase noise suppression for OFDM systems,” in Proc.
IEEE 61st Veh. Technol. Conf., vol. 1, May 2005, pp. 467–470.

[36] F. Munier, T. Eriksson, and A. Svensson, “An ICI reduction scheme for
OFDM system with phase noise over fading channels,” IEEE Trans.
Commun., vol. 56, no. 7, pp. 1119–1126, Jul. 2008.

[37] R. Carvajal, J. C. Aguero, B. I. Godoy, and G. C. Goodwin, “EM-
based maximum-likelihood channel estimation in multicarrier systems
with phase distortion,” IEEE Trans. Veh. Technol., vol. 62, no. 1,
pp. 152–160, Jan. 2013.

[38] O. H. Salim, A. A. Nasir, H. Mehrpouyan, W. Xiang, S. Durrani, and
R. A. Kennedy, “Channel, phase noise, and frequency offset in OFDM
systems: Joint estimation, data detection, and hybrid Cramar–Rao
lower bound,” IEEE Trans. Commun., vol. 62, no. 9, pp. 3311–3325,
Sep. 2014.

[39] W. Liu, S. Schwarz, M. Rupp, D. Chen, and T. Jiang, “Preamble-based
channel estimation for OQAM/FBMC systems with delay diversity,”
IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7169–7180,
Nov. 2020.

[40] V. K. Singh, M. F. Flanagan, and B. Cardiff, “Generalized least squares
based channel estimation for FBMC-OQAM,” IEEE Access, vol. 7,
pp. 129411–129420, 2019.

[41] D. Ren, J. Li, G. Zhang, G. Lu, and J. Ge, “Multi-tap channel estima-
tion for preamble-based FBMC/OQAM systems,” IEEE Access, vol. 8,
pp. 176232–176240, 2020.

[42] J. C. Estrada-Jimenez, K. Chen-Hu, M. J. F. Garcia, and A. Garcia
Armada, “Power allocation and capacity analysis for FBMC-OQAM
with superimposed training,” IEEE Access, vol. 7, pp. 46968–46976,
2019.

[43] L. D. Le and H. H. Nguyen, “Phase noise compensation for CFBMC–
OQAM systems under imperfect channel estimation,” IEEE Access,
vol. 8, pp. 47247–47263, 2020.

[44] B. Lim and Y.-C. Ko, “SIR analysis of OFDM and GFDM wave-
forms with timing offset, CFO, and phase noise,” IEEE Trans. Wireless
Commun., vol. 16, no. 10, pp. 6979–6990, Oct. 2017.

[45] A. Mohammadian and C. Tellambura, “Full-duplex GFDM radio
transceivers in the presence of phase noise, CFO and IQ imbalance,”
in Proc. IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–6.

[46] J. Jeong, Y. Park, S. Weon, J. Kim, S. Choi, and D. Hong,
“Eigendecomposition-based GFDM for interference-free data trans-
mission and pilot insertion for channel estimation,” IEEE Trans.
Wireless Commun., vol. 17, no. 10, pp. 6931–6943, Oct. 2018.

[47] H. Shayanfar, H. Saeedi-Sourck, and A. Farhang, “CFO and chan-
nel estimation techniques for GFDM,” in Proc. IEEE Int. Microw.
Workshop Series 5G Hardw. Syst. Technol. (IMWS-5G), 2018, pp. 1–3.

[48] H. Shayanfar, H. Saeedi-Sourck, and A. Farhang, “Low-complexity
search method for CFO estimation in GFDM,” Electron. Lett., vol. 55,
no. 6, pp. 355–357, 2019.

[49] Y. Liu, X. Zhu, E. G. Lim, Y. Jiang, and Y. Huang, “Robust semi-
blind estimation of channel and CFO for GFDM systems,” in Proc.
IEEE Int. Conf. Commun. (ICC), 2019, pp. 1–7.

[50] N. Tang, S. He, H. Wang, Y. Huang, and L. Yang, “Training sequence
design for channel estimation and IQ imbalance compensation in
GFDM systems,” in Proc. 9th Int. Conf. Wireless Commun. Signal
Process. (WCSP), 2017, pp. 1–6.

[51] H. Cheng, Y. Xia, Y. Huang, L. Yang, and D. P. Mandic, “A normalized
complex LMS based blind I/Q imbalance compensator for GFDM
receivers and its full second-order performance analysis,” IEEE Trans.
Signal Process., vol. 66, no. 17, pp. 4701–4712, Sep. 2018.

[52] H. Cheng et al., “Joint channel estimation and Tx/Rx I/Q imbalance
compensation for GFDM systems,” IEEE Trans. Wireless Commun.,
vol. 18, no. 2, pp. 1304–1317, Feb. 2019.

[53] L. D. Le and H. H. Nguyen, “Compensation of phase noise
and IQ imbalance in multi-carrier systems,” IEEE Access, vol. 8,
pp. 191263–191277, 2020.

[54] S. M. Kay, Fundamentals of Statistical Signal Processing. Upper
Saddle River, NJ, USA: Prentice-Hall, 1993.

[55] R. Bellman, Introduction to Matrix Analysis. Philadelphia, PA, USA:
SIAM, 1997.

[56] R. M. Gray, Toeplitz and Circulant Matrices: A Review. New York,
NY, USA: Now, 2006.

[57] S. Han, Y. Sung, and Y. H. Lee, “Filter design for general-
ized frequency-division multiplexing,” IEEE Trans. Signal Process.,
vol. 65, no. 7, pp. 1644–1659, Apr. 2017.

[58] V. Syrjälä, M. Valkama, L. Anttila, T. Riihonen, and D. Korpi,
“Analysis of oscillator phase-noise effects on self-interference cancel-
lation in full-duplex OFDM radio transceivers,” IEEE Trans. Wireless
Commun., vol. 13, no. 6, pp. 2977–2990, Jun. 2014.

[59] H. Mehrpouyan, A. A. Nasir, S. D. Blostein, T. Eriksson,
G. K. Karagiannidis, and T. Svensson, “Joint estimation of channel
and oscillator phase noise in MIMO systems,” IEEE Trans. Signal
Process., vol. 60, no. 9, pp. 4790–4807, Sep. 2012.

[60] A. Hajimiri, S. Limotyrakis, and T. H. Lee, “Jitter and phase noise
in ring oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 6,
pp. 790–804, Jun. 1999.

[61] T. Cui, C. Tellambura, and Y. Wu, “Low-complexity pilot-aided chan-
nel estimation for OFDM systems over doubly-selective channels,” in
Proc. IEEE Int. Conf. Commun. (ICC), vol. 3, 2005, pp. 1980–1984.

[62] G. Wang, F. Gao, Y. Wu, and C. Tellambura, “Joint CFO and channel
estimation for OFDM-based two-way relay networks,” IEEE Trans.
Wireless Commun., vol. 10, no. 2, pp. 456–465, Feb. 2011.

[63] T. Cui and C. Tellambura, “Semiblind channel estimation and data
detection for OFDM systems with optimal pilot design,” IEEE Trans.
Commun., vol. 55, no. 5, pp. 1053–1062, May 2007.

[64] B. C. Levy, Principles of Signal Detection and Parameter Estimation.
New York, NY, USA: Springer, 2008.

[65] T. Strutz, Data Fitting and Uncertainty: A Practical Introduction to
Weighted Least Squares and Beyond. Heidelberg, Germany: Springer
Vieweg, 2016.

[66] D. Ham and A. Hajimiri, “Virtual damping and Einstein relation in
oscillators,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 407–418,
Mar. 2003.

[67] A. Demir, “Phase noise and timing jitter in oscillators with colored-
noise sources,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.,
vol. 49, no. 12, pp. 1782–1791, Dec. 2002.

[68] Z. Xiao, Y. Li, L. Bai, and J. Choi, “Achievable sum rates of half- and
full-duplex bidirectional OFDM communication links,” IEEE Trans.
Veh. Technol., vol. 66, no. 2, pp. 1351–1364, Feb. 2017.

[69] M. Mohammadi, H. A. Suraweera, Y. Cao, I. Krikidis, and
C. Tellambura, “Full-duplex radio for uplink/downlink wireless access
with spatially random nodes,” IEEE Trans. Commun., vol. 63, no. 12,
pp. 5250–5266, Dec. 2015.

AMIRHOSSEIN MOHAMMADIAN (Graduate
Student Member, IEEE) received the B.Sc. and
M.Sc. degrees in electrical engineering from the
Amirkabir University of Technology, Tehran,
Iran, in 2014 and 2017, respectively. He is
currently pursuing the Ph.D. degree in electrical
engineering with the University of Alberta,
Edmonton, AB, Canada.

His current research interests include wire-
less communication, full-duplex transmission,
cognitive radio networks, dirty RF, and MIMO

structure. He was a recipient of the Recruitment Doctor of Philosophy
Scholarship and the University of Alberta Graduate Fellowships in 2017
and 2019. He was also a recipient of Alberta Innovates Graduate Student
Data-Enabled Innovation Scholarship in 2020.

932 VOLUME 2, 2021



CHINTHA TELLAMBURA (Fellow, IEEE) received
the B.Sc. degree in electronics and telecom-
munications from the University of Moratuwa,
Sri Lanka, the M.Sc. degree in electronics
from the Kings College, University of London,
and the Ph.D. degree in electrical engineering from
the University of Victoria, Canada.

He was with Monash University, Australia,
from 1997 to 2002. Since 2002, he has been
with the Department of Electrical and Computer
Engineering, University of Alberta, where he is

currently a Full Professor. He has authored or coauthored over 560 journal
and conference papers, with an H-index of 72 (Google Scholar). He has
supervised or co-supervised 66 M.Sc., Ph.D., and PDF trainees. His current
research interests include cognitive radio, heterogeneous cellular networks,
fifth-generation wireless networks, and machine learning algorithms. He
received the Best Paper Awards from the IEEE International Conference
on Communications in 2012 and 2017. He is the Winner of the presti-
gious McCalla Professorship and the Killam Annual Professorship from the
University of Alberta. He served as an Editor for the IEEE TRANSACTIONS

ON COMMUNICATIONS from 1999 to 2012 and IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS from 2001 to 2007. He was an Area Editor
of Wireless Communications Systems and Theory from 2007 to 2012. He
was elected as a Fellow of The Canadian Academy of Engineering in 2017.

VOLUME 2, 2021 933



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


