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ABSTRACT Two key challenges in underlay dynamic spectrum access (DSA) are how to establish an
interference limit from the primary network (PN) and how cognitive radios (CRs) in the secondary network
(SN) become aware of the interference they create on the PN, especially when there is no exchange of
information between the two networks. These challenges are addressed in this paper by presenting a
fully autonomous and distributed underlay DSA scheme where each CR operates based on predicting its
transmission effect on the PN. The scheme is based on a cognitive engine with an artificial neural network
that predicts, without exchanging information between the networks, the full adaptive modulation and
channel coding configuration for the primary link that is received with highest power by a transmitting
CR. By managing the effect of the SN on the PN, the presented technique maintains the relative average
throughput change in the PN within a prescribed maximum value, while also finding transmit settings
for the CRs that result in throughput as large as allowed by the PN interference limit. Simulation results
show that the ability of the cognitive engine in estimating the effect of a CR transmission on the full
adaptive modulation and coding (AMC) mode leads to a very fine resolution underlay transmit power
control. This ability also provides higher transmission opportunities for the CRs, compared to a scheme
that can only estimate the modulation scheme used at the PN link.

INDEX TERMS Cognitive radio, underlay dynamic spectrum access, NARX neural network, adaptive
modulation and coding.

I. INTRODUCTION

THE COGNITIVE radio (CR) paradigm is seen as a
key solution to the radio spectrum scarcity problem

stemming from the inefficient static spectrum allocation poli-
cies [1] and the ever growing wireless data traffic. A CR is a
wireless device with the ability to autonomously gain aware-
ness of its surrounding wireless network environment and to
learn how to adapt its operating parameters to best meet
the end-user goals [2]. As a result, CRs have frequently
been considered as an enabling technology for dynamic
spectrum access (DSA). Through DSA, a network of CRs,
called the secondary network (SN), operates by sharing the
radio spectrum with a primary network (PN) which is the
incumbent owner of the spectrum band in use. Of the three

main DSA approaches (overlay, underlay, and interweave
DSA [3]), this paper focuses on underlay DSA. In under-
lay DSA, CRs in the SN (also called “secondary users”
- SUs) transmit over the same spectrum band being used
by the PN by limiting their transmit power level so that the
interference they create on the PN remains below a tolerable
threshold [4].
In order to deploy an interweave DSA scheme, the main

challenges that need to be addressed are the identification
of “spectrum holes,” the estimation of their duration, and
the coordination between terminals on common available
channels. Over the years, several works have contributed
approaches that address these challenges over ever more
challenging scenarios, [5], [6], [7], [8], [9]. However, in
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this work we focus on underlay DSA, where there is not
such a robust timeline of progress in addressing the main
realization challenges as for interweave DSA. In order to
deploy an underlay DSA scheme in a setup where there
is no exchange of information between the PN and the
SN, the two key challenges that need to be resolved are:
(1) how to establish the interference threshold for the PN
links, and (2) how the SUs autonomously become aware
of the interference they create on the PN. These two chal-
lenges remain largely unsolved, especially when following
the aforementioned practical operating setup where there is
no exchange of information between primary and secondary
networks. The main contribution of this paper is to address
these two challenges in underlay DSA.
For underlay DSA, in the past, in order for the SN to

assess its effect on the PN and protect the PN transmis-
sions, researchers have proposed different techniques that
usually assume that the secondary transmitter (SUTX) knows
the gain of the primary channel (that between the primary
transmitter, PUTX , and the primary receiver, PURX) and/or
the cross-channel gain from the SUTX to the PURX , [10],
[11], [12], [13], [14], [15], [16], [17], [18]. The common
theme between these works is that they make use of the
information that is sent over a feedback channel in the PN.
Since feedback channels are part of most wireless commu-
nication standards [19], [20], they have often been used,
under the assumption that SUs can access them, to not only
estimate the primary channel gain, but also assess the effect
of the SN on PN transmissions. Examples of a CR obtain-
ing information about the primary link from a PN feedback
channel are found in [11], [12], [13], [14], [18] for the case
of the rate/power control feedback channel, in [15] and [16]
for the ARQ feedback channel, and in [17] for the feed-
back of the channel state information (CSI). In general, by
relying on listening to feedback channels from the PN all
works mentioned above share a setup where primary and sec-
ondary networks are not completely separated and exchange
information with each other. In fact, the access of a con-
trol channel from another network calls into question as to
whether there are really two separate network or, as we
would argue, a single network with two different types of
nodes.
With a different approach, the works in [21] and [22]

proposed solutions to obtain the cross-channel gain without
listening to the PN feedback channels. The typical process
in these works consists of the SU observing a change in
the primary’s waveform power and/or modulation order that
results from the transmission of a probe message from the
SU [16], or the SU acting as a relay by sending the amplified
version of the signal received from the PU [17]. However,
in these works a CR transmitter can not estimate the cross-
channel gain, and later assess the effect of SN on PN, unless
it observes a change in primary signal power and/or modu-
lation order. Moreover, these works did not considered the
combined effect from scenarios with multiple links in the

PN and the SN, as they focused on a setup with one link in
each network.
In contrast to these works, the technique to be presented

here is not limited by the need to observe a change in transmit
power or modulation order and is able to directly estimate the
effect of an SN transmission on the PN much more accurately
by estimating not only the modulation order but, in addition,
also estimating the channel coding rate in a PN link.Moreover,
the work herein is on scenarios consisting of multiple links in
the PN and SN. In addition, our presented technique meets a
key requirement by not relying on any information exchange
between the primary and secondary networks.
Our proposed technique takes advantage of the use at the

PN of adaptive modulation and coding (AMC), a technique
where the modulation scheme and channel coding rate (a
pair of parameters known as the AMC mode) are adapted
based on the quality of the transmission link. The use of
AMC has been part of all high performance wireless com-
munications standards developed over the past two decades
and, thus, expected to be used by a typical PN [23], [24],
[25]. Since the AMC mode in use depends on the link’s
SINR, by estimating the AMC mode used in a primary
link, it becomes possible for a CR to learn the signal-to-
interference-plus-noise ratio (SINR) experienced at that link
and the corresponding throughput, from which the effect of
CR transmission on the PU link can be assessed. Specifically,
we propose an underlay DSA technique that configures the
transmit power for a SU based on estimating the throughput
at a PN link corresponding to the AMC mode that would
be chosen based on the interference created by the SU’s
transmission.
At the same time, leveraging the use of adaptive modula-

tion in the PN will allow us not only to assess the effects of
the SN on the PN (this is, the first challenge for realization
of underlay DSA), but will also allow us to establish the PN
interference threshold (the second challenge for realization
of underlay DSA). As shown in [26], the use of adaptive
modulation allows for the background noise to increase up to
a certain level before the average throughput in a network
starts to decrease. In the context of underlay DSA where
the PN does not exchange any information with the SN, the
interference imposed on the PN by an underlay-transmitting
CR can be seen as a background noise for the PN, that
can be increased up to a level which does not affect the
average throughput in the primary network. Therefore, a CR
can become aware about the interference that is creating on
the primary link and decide on its transmit power by infer-
ring the change in throughput at the primary link (details in
Section IV).
Our technique addresses the two challenges in underlay

DSA based on a cognitive engine (CE) at the SUs that is
equipped with a non-linear autoregressive exogenous neural
network (NARX-NN) that estimates the throughput on a PN
link (equivalently, the full AMC mode given by modulation
order and channel coding rate). The proposed CE uses as

720 VOLUME 2, 2021



input an estimate of the modulation scheme being used at
the PN link. As such, to the best of our knowledge, our
presented cognitive engine is the first to be capable of esti-
mating the channel coding rate setting for an AMC mode, a
capability well beyond the estimation of just the modulation
scheme (which is a mature area of signal processing or
machine learning technology). While modulation classifica-
tion, the technique to estimate the modulation scheme used
in a radio waveform, is applied in our DSA technique to
derive an input for the cognitive engine, we deem it to
be a well-researched technology and is not the subject of
our work. Instead, we leverage the already large volume of
existing research. In this regard, the work in [27] studied
modulation classification based on second and higher order
time variant periodic cumulant function of the sensed sig-
nal for which it is required a prior knowledge of the signal
parameters. Authors in [28] used the same framework to
perform signal pre-processing, along with utilizing artificial
neural networks to address the issues associated with classi-
fication when the signal parameters are unknown. The work
in [29] proposed a fully automated modulation classification
scheme which employs two stages of signal processing to
classify the modulation of an incoming signal.
Therefore, for an scenario of underlay DSA where

networks do not tap into feedback or control channels from
another network, the main contributions of this paper are the
following:
1) Answering the question of how to establish the PN

interference threshold in underlay DSA (the first key
challenge) by asserting that for a PN using AMC
the interference from the SN is indistinguishable from
background noise and, thus, the threshold is the level
of interference power when the AMC in the PN begins
to be unable to maintain the average throughput seen
in the PN when there is no SN.

2) Present a technique based on the use of a neural
network, transmission of probe messages from the SN,
and leveraging the use of AMC at the PN, where a CR
in the SN is able to estimate the channel coding rate
and modulation order (full AMC mode) that would be
set at the link in the PN that it receives with highest
power.

3) Leverage the previous contribution to introduce a tech-
nique that allows a transmitting SU to autonomously
learn with a fine resolution the interference it would
create on the PN, addressing the second key challenge
in underlay DSA. This contribution, together with the
first one, realizes a fully autonomous and distributed
underlay DSA scheme. This scheme features a finer
control knob for a more accurate power allocation at
the SN with less harmful effect on PN transmissions as
compared to techniques that rely only on the estimation
of modulation order (from applying signal processing
on the transmission waveform).

The above contributions are corroborated in simulations
that will show that the presented technique is able to maintain

FIGURE 1. Considered network model composed of Np primary transceivers and
Ns cognitive radio users.

the relative change in PN average throughput within a
prescribed fine-grained target maximum value (as an indi-
cator of maximum allowed interference in the PN), while at
the same time finding transmit settings for the SUs that will
result in as large throughput in the SN as could be allowed
by the PN interference limit. As such, while succeeding in
its main goal of autonomously and distributively determin-
ing the transmit power of the SUs such that the interference
they create remains below the PN allowed interference limit,
our proposed technique is also able to manage the tradeoff
between the effect of the SN on the PN and the achievable
throughput at the SN. Specifically, simulation results will
show that for the proposed system with a target PN maximum
relative average throughput change of 2%, the achieved rela-
tive change is less than 3%, while at the same time achieving
useful average throughput values in the SN between 180 and
50 kbps. In addition, it will be seen that the implementation
of a variation of the proposed scheme that reduces three
times the overhead from transmitting probe messages still
exhibits the ability to finely control the effect on the primary
network throughput, although, as is to expect, compared to
the case of sending all probe messages it increases the PN
relative average throughput change by at most 1%, only at
the very low PN load of 0.16.
The rest of this paper is organized as follows. Section II

presents the overall system setup. The rationale on how AMC
can be leveraged to address the main two challenges associ-
ated with underlay DSA is outlined in Section III. Section IV
describes our proposed distributed underlay DSA technique.
Simulation results are presented in Section V, followed by
conclusions in Section VI.

II. SYSTEM SETUP
We consider a primary network with NP active primary
links coexisting with NS active secondary links, with both
networks transmitting over the same frequency band. The
system model is shown in Fig. 1, where G(ps)

ij denoted as
cross-channel gain is the path gain from jth. transmitting SU
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to the receiver in ith. primary link, G(ss)
ij is the path gain

from the transmitter in the jth. secondary link to the receiver
in the ith. secondary link, G(sp)

ij is the path gain from the
transmitter in jth. primary link to the receiver in ith. SU link,
G(pp)
ii is the path gain from the ith. primary transmitter to

its corresponding receiver, and G(ss)
ii is the path gain from

the ith. secondary transmitter to its corresponding receiver.
While, G̃(ps)

ij is the path gain from the transmitter in jth.
secondary link to the transmitter in ith. primary link. The
model for all channel gains is discussed in Section IV-B.
In this section we focus on describing the operation of the

PN, which is incumbent to the considered radio spectrum
band. Section IV will present the underlay DSA scheme
implemented in the SN. We assume that the PUs receive
service from NPBS transmitting base stations (BSs), and we
call the ratio NP/NPBS as the primary network load. Each PU
is assigned to the base station that presents the best channel
gain. In addition, AMC is used in all transmissions (primary
and secondary networks). This means that a transmitter has
information about its link quality, in terms of SINR, and
based on this assessment chooses, from a set of options,
the modulation scheme and channel coding rate that results
in highest throughput while at the same time meeting a
maximum bit error rate (BER) limit.
Let P(p)

i denotes the transmit power in the ith. active pri-
mary link (i = 1, 2, . . . ,NP). Then, in the absence of the
SN, the SINR in the ith. primary link (which is used to
decide on the AMC mode) can be written as,

γ
(p)
i =

G(pp)
ii P(p)

i
∑

j �=iG
(pp)
ij P(p)

j + σ 2
p

, i = 1, 2, . . . ,NP. (1)

where σ 2
p is the background noise power.

In addition to AMC, without loss of generality, we adopt
for the primary network the variable transmit power alloca-
tion algorithm proposed in [26]. This is an iterative power
control algorithm that converges to a global optimum solu-
tion that maximizes the product of SINRs across all active
links. In the algorithm, the transmit power at the ith. primary
link is updated as,

P(p)
i ←−

⎛

⎝
∑

j �=i

G(pp)
ji

∑
m�=j G

(pp)
jm P(p)

m + σ 2
p

⎞

⎠

−1

. (2)

III. LEVERAGING ADAPTIVE MODULATION AND CODING
IN UNDERLAY DSA
Before presenting our proposed underlay DSA technique, in
this Section we outline the main ideas on how AMC can
be leveraged to address the two main challenges associated
with underlay DSA: 1) How to establish the interference
threshold in the PN and 2) how SUs can autonomously
become aware of the interference they create on the PN. As
previously noted, AMC (or, as also called, link adaptation)
has been used during the past two decades in practically all
high-performance wireless communications standards and,

FIGURE 2. Throughput for each CQI and maximum throughput adaptive selection
per RB for the AMC scheme of an LTE system under a Pedestrian B channel.

as such, is assumed to be used in both the primary and sec-
ondary networks in this work. In this section we summarize
some of the main features of AMC that are relevant to our
fully autonomous and distributed underlay DSA scheme. For
clarity of presentation, in what follows, at times we will refer
to the PU link that is received with highest power at an SU
as the “nearest” PU link (although in a minority of cases,
and due to the properties of the wireless channel, the PU
link that is nearest in geographical terms may not be the one
that is received with highest power). We will emphasize this
lax wording by writing the word “nearest” between quotes.
It is assumed that, while the PN has granted permission
to the SN to operate in its spectrum band using underlay
DSA, during regular operation conditions the PUs are not
expected to track how many SUs are active, to the extent
that the PUs are oblivious to the existence of the SUs and
treat the interference from transmitting CRs as additional
noise at their receiver.
Fig. 2, obtained using the MATLAB LTE Link Level

Simulator from TU-Wien [30], shows the throughput ver-
sus signal-to-noise ratio (SNR) performance for the LTE
system under a Pedestrian B channel that will serve with-
out loss of generality as the assumed AMC setup for the
rest of this work (further setup details for the simulation
results shown in Fig. 2 are discussed in Section IV-B and
Section V). In LTE, AMC consists of 15 different modes
(each for a different “Channel Quality Indicator - CQI) based
on three possible modulation schemes which will be called
‘type 0’ for QPSK (used for the smaller SNR regime), ‘type
1’ for 16QAM (used at intermediate SNRs), and ‘type 2’ for
64QAM (used for the larger SNRs). In AMC, alongside the
modulation order, channel coding rate is also adapted [31],
[32]. Because of this, an AMC mode is formed by a choice
of both a modulation order and a channel coding rate. Fig. 2
shows the throughput of one LTE resource block1 achieved
for each AMC mode (each curve is labeled with the cor-
responding CQI value and AMC mode settings, formed by

1. We will use the 180 kHz of bandwidth associated with one LTE
resource block as representing the spectrum band that is shared by the PN
and SN. However, this does not imply that either the PN or SN are LTE
networks.
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FIGURE 3. Throughput vs. noise power in the primary network.

the modulation type and channel coding rate) and the overall
performance curve of the AMC scheme, where the modula-
tion type and code rate are chosen to maximize throughput
but with a constraint on the block error rate (BLER) not to
exceed 10%. During transmission, the transmitter chooses
the AMC mode with maximum throughput at the estimated
SNR of the link.
As was discussed in [26], the use of AMC in conjunction

with transmit power control allows the background noise
to increase up to a maximum value without significantly
affecting the network average throughput. In the context
of underlay DSA, this maximum noise value can be inter-
preted as the maximum value for the combined powers of
background noise and interference from the SN. To see this
important point in detail, consider Fig. 3, which we obtained
as an expanded version of [26, Fig. 5], now for different
network loads (NP/NPBS) when using the LTE AMC setup
just described and the power control algorithm from [26].
The figure shows the average throughput achieved in the
PN by itself (the presence of an SN is not included in this
result) as the background noise power increases. On the
top, the figure shows the property associated with the use
of adaptive modulation that for all network loads the aver-
age throughput remains approximately constant until noise
power becomes sufficiently significant. This is not a trivial
observation as networks with a higher load are operating in
a regime more influenced by the interference rather than the
noise, but it is clear from the results that adaptive modu-
lation manages to maintain a balance between interference
and noise-dominated operation. The bottom of Fig. 3 shows
as a function of noise power, the change in throughput rela-
tive to the throughput at the lowest noise power. The result
exposes the remarkable property that the interference that
would be imposed by the SN, which can be considered by
a PN that is unaware of the presence of another network as
part of the background noise, will not significantly affect the
average throughput in the primary network as long as the
combined SN interference, the interference by other primary
links and actual background noise remains below a threshold

approximately equal to −80 dBm (although this number
somewhat depends on the network load). Moreover, relative
throughput change starts to decrease at approximately the
same value of noise power for all network loads (around
−90 dBm). This is a consequence of the link adaptation
performed through AMC. Moreover, throughput relatively
decreases faster with smaller network loads. We believe that
this is because at smaller network loads, interference across
the network is lower and a larger ratio of transmissions use
the less resilient higher rate modulation types.
While AMC entails the adaptation of both modulation

order and channel coding rate, it can be seen in Fig. 2 that
the modulation order provides a coarse adaptation and that
the channel coding rate enables a finer adaptation within
each of the choices for modulation order. Moreover, an
important difference between modulation order and chan-
nel coding rate adaptations is that while it is possible for
a passive “listener” of the AMC transmission to infer the
modulation order through the use of modulation classifica-
tion signal processing, it is not possible to infer the channel
coding rate (or equivalently the full AMC mode). On the
other hand, as can be seen in Fig. 2, when the noise power
increases (or equivalently the SN interference increases) the
effect of AMC operation will be to change the AMC mode
to one associated with a smaller CQI. At the same time, the
modulation scheme with the smallest order is used for the
smallest operating SINRs (because the transmission of less
bits per symbol is more resilient to interference and noise).
As the interference from secondary transmissions increases,
primary links that are already using, in the absence of sec-
ondary transmissions, the lowest modulation order scheme
will not switch to other modulation schemes because there
is no other modulation scheme with fewer bits per symbols
to switch to. This means that transmissions from an SU that
otherwise would generate a change in modulation scheme
would not result in any change when the “nearest” primary
link is already transmitting with the modulation scheme with
smallest bits per symbol. As a result, estimation of the mod-
ulation order provides for the SU transmitter with a control
nob to infer the effect of SN transmission on the PN but with
severe limitations due to the coarse information provided by
the estimated modulation order. However, as seen in Fig. 2,
although the increase in interference to the PU (and particu-
larly increase in SU transmit power) may not lead to change
in modulation order, it indeed results in the change in chan-
nel coding rate. Thus, the estimation of the channel coding
rate (and equivalently the full AMC mode) is necessary in
order to be able to finely estimate the effect of SU transmis-
sions. Indeed, there exists a large body of research in the
area of modulation classification with some representative
works briefly discussed in Section I (e.g., [27], [28], [29]).
Consequently, the techniques that existed before our work
have been limited to use only the coarse information derived
from the modulation order (e.g., [21], [22]) or to rely on the
sharing of information between the PN and the SN through
the SUs accessing the control feedback channel in the PN
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to learn the finer information associated with the channel
coding rate used in a primary link (e.g., [16]). As will be
seen, our proposed technique is able to overcome the limi-
tation of inferring the channel coding rate without exchange
of information between the PN and the SN and, as such, be
able to use the fine-grained information provided by channel
coding rate without the SN tapping into any control channel
of the PN.
In the following we develop for a transmitting CR a model

to estimate the interference limit from the PN. Regarding
Fig. 3 it was stated that the property associated with the
use of adaptive modulation allows the background noise to
increase up to a maximum value without significantly affect-
ing the network average throughput; and that the maximum
noise value can be interpreted as the maximum value for the
combined powers of background noise and interference from
the SN. For the purpose of underlay DSA, it is convenient
to model the PN average throughput shown in the bottom of
this figure as equal to the average throughput achieved with-
out the presence of the SN minus an average throughput loss
that is a function of an equivalent interference from the SN
as experienced across the PN. This is, if T0(σ

2
p ) is the PN

average throughput without the SN (explicitly expressed to
be dependant on the background noise power σ 2

p as seen in
the top plot of Fig. 3), we model the PN average throughput
Tp as Tp = T0(σ

2
p )− Tl(I), where Tl is the throughput loss

and I is the equivalent interference from the SN as experi-
enced across the PN. Next, the throughput loss is modeled
according to the SNR gap approximation for the Shannon’s
channel capacity formula, [33], yielding

Tp = T0 − B log2(1+ � 10I/10), (3)

where B is the PN system bandwidth, I is the equivalent
interference generated by the SN on the PN (measured in
dBm), and � is the SNR gap that accounts for the use
of practical coding and transmission mechanisms (we have
also embedded into � a factor of 0.001 stemming from
the conversion of units of I from dBm). Being the relative
average throughput change in the PN T% = (Tp − T0)/T0,
from (3) we have,

T% = −1

ζ
log2(1+ � 10I/10), (4)

where ζ = T0/B is the PN spectral efficiency that is achieved
without the SN’s effect. Figure 4 compares the relative aver-
age throughput change from Fig. 3 and its approximation (4)
for loads equal to 0.16 and 0.48 only (for clarity of the
figure). The approximation uses for the spectral efficiency
calculation the same system bandwidth B as in the results in
Fig. 3 (180 kHz) and, of course, the values T0 from Fig. 3 at
noise power equal to −140 dBm. Fig. 4 validates our model
given by (3) and (4) by showing a good approximation for
the relative average throughput change (the approximation
shows less accuracy when the relative average throughput
change grows beyond 40% which is of no concern because
these are values of relative average throughput change too

FIGURE 4. Relative average throughput change and approximation (4).

large to be used in the practical operation of underlay DSA).
More importantly, Fig. 4 includes a second abscissa to high-
light the meaning of the equivalent interference in the context
of underlay DSA where the PN uses AMC. As mentioned
earlier, the curves in Fig. 3 show for a network that uses
AMC the change in average throughput as the background
noise power increases. In the context of underlay DSA, the
absence of information exchange between the PN and the
SN implies that, in principle, the PN is oblivious of the pres-
ence or not of the SN. Therefore, the PN would experience
the interference from the SN as an increase in the back-
ground noise, which is what we identify as the equivalent
interference I. Therefore, the magnitude T0 by definition,
becomes the PN average throughput when the equivalent
interference is I = 0. The role of the equivalent interference
on the PN is illustrated in Fig. 4 with the second abscissa,
showing the increasing equivalent interference with the same
value as the background noise. In this way, for example, if
the actual background noise is −140 dBm, an equivalent
interference of I = 30 dBm is performance-wise perceived
by the PN as a total background noise of -110 dBm.
The goal of the proposed underlay DSA mechanism at

the SN is to find the transmit power at the SUs that results
in an equivalent interference, denoted as interference limit
I0, that is as large as possible (to increase throughput at the
SN) while the relative average throughput change in the PN
remains below a limit that we will denote as ε. From (4),
this maximum equivalent interference, measured in dBm and
denoted as interference limit, can be expressed as a function
I0(ε) of the limit ε as,

I0 = 10 ∗ log

(
2−εζ − 1

�

)

. (5)

Using this expression, we have calculated, for example with
ε = −0.05, values of maximum equivalent interference equal
to 51.3 dBm and 61.1 dBm for load equal to 0.16 and
0.48, respectively (for a background noise of -140 dBm).
The expression in (5) provides an answer to one of the
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two main challenges in underlay DSA: the establishment of
the interference threshold from the PN. However, the sec-
ond challenge remains: how the SUs autonomously become
aware of the interference they create on the PN, relative to
the limit I0. This challenge is compounded by our setup with
multiple links in the PN and the SN, and where the SUs can
only use information they sense individually (the modulation
scheme used at the “nearest” primary link), which leads to
most of the many parameters that would be needed for an
analytical solution being not accessible to the SUs. To solve
this challenge we propose to follow a “black-box modeling”
approach, where the CR implicitly or explicitly learns this
information without the support of a pre-defined analyti-
cal model. For this, we propose the use of artificial neural
networks because of their state-of-the-art status within tech-
niques capable of learning the relation between the equivalent
interference and the SUs’ transmissions (that is implic-
itly represented within the training data) through black-box
modeling. Indeed, artificial neural network are known as
universal function approximator capable through training to
learn the interrelation between the system variables without
the need for a-priori knowledge of the underlying model.
Leveraging these characteristics of artificial neural networks
in our proposed technique allows for the SUs to address both
challenges in underlay DSA by assessing their transmission
effect on the PN without the need to calculate intermediate
magnitudes (e.g., the cross-channel gain(s) as seen in [21])
and, from this knowledge, identifying the transmit power
setting that meets the PN interference limit.

IV. AUTONOMOUS AND DISTRIBUTED UNDERLAY DSA
FOR COGNITIVE RADIO NETWORKS
We now present the main contribution of this paper: a fully
autonomous and distributed underlay DSA technique for a
secondary CR network. The operation of the SN is fully
autonomous and ad-hoc. This means that SUs do not rely
on any exchange of information with the PN and with other
SUs (other than between transmitter-receiver pairs) and that
the transmission control algorithm in the SN is distributed.
While there is no information exchange between primary and
secondary networks, it is assumed that the SN has knowledge
of what is the radio access protocol used for the PN oper-
ation (through standards or publicly available information).
Because of this, the SN has knowledge of the underlying tim-
ing operation in the primary network at a broad level (e.g.,
when frame transmission starts, etc.) so that CRs are able to
sense and transmit at appropriate times. Detailed (symbol-
level) knowledge of timing at the CRs is not required or
assumed.
As stated, fully autonomous operation implies that the

primary and secondary networks operate as being unaware
of the other (except for the mild timing assumption), con-
sidering the other network transmissions as out-of-network
interference akin to background noise. Then, when adding
an underlay SN, the SINR at the receiver of the ith. PN link

now becomes,

γ
(p)
i =

G(pp)
ii P(p)

i
∑NP

j �=iG
(pp)
ij P(p)

j +
∑NS

j=1G
(ps)
ij P(s)

j + σ 2
p

, (6)

where P(s)
j is the transmit power from the jth. transmitting

SU and G(ps)
ij is the path gain from a transmitting SU j to a

PU i. Likewise, it is assumed that transmissions on the SN
also make use of AMC, which is configured based on the
corresponding link SINR. For this, the SINR, γ

(s)
i , at the

receiver of the ith. SN link is:

γ
(s)
i =

G(ss)
ii P(s)

i
∑NS

j �=iG
(ss)
ij P(s)

j +
∑NP

j=1G
(sp)
ij P(p)

j + σ 2
s

, (7)

The underlay DSA operation is implemented in a cogni-
tive engine at each SU. Fig. 5 illustrates the block diagram of
an SU with its cognitive engine, as well as other processing
steps. The function of the cognitive engine will be to predict
for different transmit settings the throughput T̂ (equivalently
the CQI or full AMC mode) of the “nearest” PN link and use
this information to set power control and AMC parameters
for a transmitting SU. Under our imposed practical condi-
tion of no exchange of information between the primary and
secondary networks, a CR can only estimate the modulation
order (after performing modulation classification signal pro-
cessing on the PN transmissions) and cannot know the coding
rate in use by accessing feedback or control channels in the
PN. Moreover, practical limitations further dictate that the
modulation classification can only be performed on the one
primary transmission that it is being received with strongest
power, making the other transmissions be interference. It is
assumed that the estimation of modulation type does not rely
on the SU accessing any information from the PN feedback
channel and is error free using any of the methods exist-
ing in the literature (in Fig. 5 we assumed that modulation
classification is done using the technique in e.g., [29]).
To accomplish its function, the cognitive engine at an SU

follows the following procedure: First the SUs avoid trans-
mission while the PN initially adjusts its power and AMC
parameters using the iterative power control algorithm (2).
During this initial listening stage, the SUs listen to the PN
transmissions and infer the modulation order used by their
“nearest” primary link. At this stage, each transmitting SU
use any of the existing modulation classification techniques
to obtain an estimate of the modulation order used by their
corresponding “nearest” primary link when the SN is not
transmitting. Next, each SU proceeds to send a series of
short probe messages configured with different pre-defined
transmit powers. Following the transmission of each probe
message, the SU listen to the PN transmissions and infer
the modulation order used by their “nearest” primary link in
response to the probe message. After transmitting all probe
messages, each transmitting SU forms two sequences: (1) a
sequence �u1 with the first entry equal to zero followed by the
sequence of transmitted power of each probe message, and
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FIGURE 5. Block diagram of an SU with a cognitive engine based on the NARX neural network.

(2) a sequence �u2 with the first entry equal to the modulation
order of “nearest” primary link during the initial listening
stage (before transmission of probe messages) followed by
the sequence of modulation order in the “nearest” primary
link corresponding to each of the probe messages.
As shown in Fig. 5, the two sequences �u1 and �u2 are fed

to the cognitive engine. At the cognitive engine, a first stage
is tasked with providing the sequence of corresponding esti-

mated throughput values at the “nearest” primary link, �̂T .
Since estimating the throughput is equivalent to estimating
the CQI and the corresponding full AMC mode (channel
coding rate and modulation order), the cognitive engine is
able to provide an estimate of the “nearest” primary link
SINR with a finer resolution than what could be derived
from the modulation classification alone that is present at
its input. Note that this sequence of estimated throughput
values includes the one with no transmissions from the SN.
The SU can use the sequence of estimated throughput values
to infer what would be the effect of its transmission on the
nearest primary link by comparing the change in throughput
value against that without the SN transmission. As seen in
Fig. 5, the SU uses this information to find its own transmis-
sion parameters such that the relative change in throughput
of its “nearest” primary link remains below the predeter-
mined limit. Importantly, in our underlay DSA operation,
the cognitive engine takes advantage of its ability to obtain
the finer resolution full AMC mode inference (not just mod-
ulation order) on the “nearest” primary link, instead of the
coarser inference on modulation order that could be achieved
with a modulation classification operation only. Additionally,
those SUs that estimate that their “nearest” primary link is
transmitting in the lowest rate AMC mode when the SN is
not transmitting (because of already experiencing a very low
SINR, likely leaving no room for added interference from
the SN) are prevented from transmitting. This guarantees
that the reduction in the average rate of the primary link
experiencing the poorest channel quality (CQI equal to 1) is
minimized.
As discussed at the end of the previous Section, the many

challenges associated with the task performed in the first
stage of the cognitive engine (estimation of the full AMC
mode from the sequences of transmit power for the probe
messages and corresponding modulation order) leads to the
use of a Black-box modeling approach. In the proposed
underlay DSA technique, a cognitive engine at each SN

transmitter leverages the use of artificial neural network
to learn the functional model of the interaction between
the secondary and primary networks. Often, analytical mod-
els have been used to characterize the performance of the
SN. For example, in [34] the BER performance of different
modulation orders have been characterized using analytical
models. However, such analytical approaches are restricted
to specific setups (e.g., a single link at the PN and the SN).
Following an analytical approach for our more general setup,
with multiple links in the PN and the SN, and our goal of
predicting the full AMC mode (modulation order and chan-
nel coding rate) at a PN link, would required for the SUs
knowledge of multiple variables that cannot be known with-
out exchange of information between the PN and SN (which
would contradict a key condition in the setup). As an alter-
native approach to analytical models, black-box modeling
uses example inputs and corresponding outputs to build a
predictor to estimate output values for unforeseen inputs and
variations of the system configurations.
Neural Networks (NNs) have become increasingly popular

as general purpose function approximators and, specifically,
for dynamic system modeling [35]. Neural networks have
been successfully applied to a number of black-box modeling
and time series prediction tasks. Due to the inherent capabil-
ity of neural networks to model nonlinear systems and their
higher robustness to noise, they frequently outperform stan-
dard linear techniques when the time series are noisy and
the dynamical system that generated the time series is non-
linear [36]. There is a growing number of works that have
applied neural networks for various communication tasks
such as channel decoding, estimating the features of the user
channels and predicting the anomalies for wireless sensor
networks [37], [38], [39]. For CRs, the feed forward neural
network has been used in predicting the spectrum occupancy
status [40] and designing a medium access control (MAC)
protocol [41].
Due to the adaptation of SU’s transmission to the PN

interference threshold, an underlay network can be seen as an
example of a dynamic system, and also the throughput in the
PU can be seen as a time series with a temporal dependency.
As a result, we have considered a neural network-based cog-
nitive engine to specifically predict the throughput in a PU
link and characterize the behavior of such dynamic system.
In the case of one-step-ahead time series prediction tasks,
only the estimation of the next sample value of a time series
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is required. Therefore, the input contains only actual sample
points of the time series, without feeding back the output as a
new input to the model. While considering multi-step-ahead
or long-term prediction, the neural network’s output should
be fed back to the model as a new input for a finite number
of time steps [42]. In this case, the components of this input
to the neural network, previously composed of actual sam-
ples of the time series, are gradually replaced by previously
predicted values. As a result, the multi-step-ahead prediction
task is converted to a dynamic modeling task. In this case,
the neural network model behaves as an autonomous system
and tries to recursively emulate the dynamic behavior of
the system that generated the nonlinear time series [43].
Compared to the one-step-ahead prediction, multi-step-ahead
prediction and dynamic modeling are much more complex
to deal with. However, neural networks models and in par-
ticular recurrent neural architectures play an important role
in dealing with these complex tasks [44]. Elman introduced
in [45] a class of recurrent neural models called simple recur-
rent networks (SRNs) which are essentially feedforward in
the signal-flow structure with a few local and/or global feed-
back loops. A time delay neural network (TDNN), which is
an adapted version of a feedforward multilayer perceptron
(MLP)-like networks with an input tapped-delay line, can be
used to process time series [44].
In the case of long-term predictions, a feedforward TDNN

model will eventually behave similarly to the SRN archi-
tecture, since a global loop is needed to feed back the
current estimated value into the model’s input. Temporal
gradient-based variants of the backpropagation algorithm are
usually used to train the aforementioned recurrent neural
networks [46]. However, training using gradient-based learn-
ing algorithms can be quite difficult in the case of systems
with a long time temporal dependencies between their input-
output signals [47]. In [48], [49], the authors claimed that
such training is more effective in a class of simple recur-
rent network models called Nonlinear Autoregressive with
eXogenous input (NARX). To prove their hypothesis these
works have used two signals in abstract form, without tar-
geting any particular application. The work in [50] tested
the performance of NARX neural network on time series
prediction using comparative experiments with real and arti-
ficial chaotic time series from diverse domains with different
memory orders. The authors claimed that NARX recurrent
neural networks have the potential to capture the dynam-
ics of nonlinear dynamic systems. Authors in [51] also
used the well-known chaotic laser and real-world variable
bit rate video traffic time series to empirically evaluate
the performance of NARX neural networks in long-term
prediction tasks. This class of neural networks were proven
to be powerful in pattern recognition and classification appli-
cations as well [52], [53]. However, none of the works
mentioned above have explored the usage of NARX neural
networks in wireless communications domain (in the context

FIGURE 6. NARX neural network architecture.

of cognitive radio). In this paper, we employ a NARX neu-
ral network for the first time in a wireless communications
setting by choosing it to implement the cognition task at the
first stage of the cognitive engine in each SU.

A. ARCHITECTURE
With a topology as shown in Fig. 6 for the case of one
hidden layer network, the NARX neural network output can
be mathematically represented as, [54],

y(n+ 1) = f
(
y(n), y(n− 1), . . . , y(n− dy);

u1(n), u1(n− 1), . . . , u1(n− du1);
u2(n), u2(n− 1), . . . , u2(n− du2)

)
, (8)

where u1(n), u2(n) and y(n) denote, respectively, the two
inputs and one output of the model at discrete time step n,
and du1 ≥ 1, du2 ≥ 1 and dy ≥ 1, du1 ≥ dy , du2 ≥ dy are the
inputs and output discrete delays, respectively. For its use in
the cognitive engine, we configure the NARX neural network
to have as inputs the sequence �u1 of transmitted power of
each probe message (with first element equal to zero), and
the sequence �u2 of modulation order in the “nearest” primary
link corresponding to each of the probe messages (including
the case of no SU transmission as first element). This implies
that du1 = du2 . The output of the NARX neural network cog-
nitive engine is the predicted throughput T̂(n) at the primary
link “nearest” to the transmitting CR (which corresponds to
a choice of AMC mode). The nonlinear mapping f (·) in (8)
can be approximated, for example, by a standard multilayer
neural network. If the non-linear mapping can be learned
accurately by a neural network of moderate size (measured
in terms of number of layers and number of artificial neurons
in each layer), the resource allocation based on the output
of the NARX neural network can be done in real time, since
passing the input through the neural network only requires
a small number of simple operations.
In Fig. 6 each circle represents an “artificial neuron”,

an elementary operation unit in the NARX neural network
model. According to the input variables u1(n) and u2(n),
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FIGURE 7. View of computing operations at NARX neural network during operation.

the output of i-th hidden layer neuron at time step n is
obtained as:

Hi(n) = φ1

⎛

⎝

du1∑

r=1

wiru1(n− r)+
du2∑

k=1

wiku2(n− k)+

dy∑

l=1

wily(n− l)+ a
⎞

⎠, (9)

where wir is the connection weight between the input neuron
u1(n − r) and i-th hidden neuron; wik is the connection
weight between the input neuron u2(n− k) and i-th hidden
neuron; wil is the connection weight between the i-th hidden
neuron and output feedback neuron y(n − l); a is the bias
of the hidden layer (not explicitly shown in Fig. 6) and
φ1(·) is called the “activation function” for the hidden layer.
Combining the hidden layer output, the final prediction can
be given as follows:

ŷ(n) = φ2

( nh∑

i=1

wiHi(n)+ b
)

, (10)

where wi is the connection weight between the i-th hidden
neuron and predicted output; nh is the number of neurons in
the hidden layer; b is the bias of the predicted output; and
φ2(·) is the output layer activation function. In our implemen-
tation of the NARX neural network, the activation function
φ1(·) for the hidden layer is a sigmoid function while the
activation function φ2(·) used for the output layer is linear
(the input layer is not truly formed by artificial neurons but
rather it is conventionally included as a representation of the
connections of inputs into the neural network).
Figure 7 shows the NARX neural network but now

emphasizing the elementary computing operations that are
performed during operation. Table 1 shows the number of

TABLE 1. Computational complexity of NARX-NN architecture.

these elementary operations that the cognitive engine needs
to execute during one cycle of decision making (power allo-
cation at one SU). In the table, the number of additions can
be derived from direct inspection of Fig. 7 (including the
addition of a bias at each neuron) and the number of multi-
plication arises from the multiplication of the input to each
neuron by a weighting factor. Also, we have assumed that
the nonlinear activation functions φ1 is implemented through
a table lookup (a common technique to implement non-linear
function at low level of implementation). While more spe-
cific discussion will follow later in this same section, note
that the implemented NARX neural network contrasts with
many typical contemporary neural network implementations
(e.g., AlexNet, [55]), which are based on tens of millions
of parameters and input size in the order of thousands and,
consequently, see a relatively quite high computational com-
plexity during operation. The implemented NARX neural
network has associated a number of parameters and inputs
in the order of tens and, therefore, a low computational
complexity. This is, of course, a combination of our neu-
ral network architectural choice but, also, the nature of the
problem addressed with the neural network.

B. NARX NEURAL NETWORK TRAINING
The data set used to train the cognitive engine is an important
element in designs based on black-box modeling as the one
proposed here. It is from this training data that the cognitive
engine learns a representation of the environment where it
will operate and from which it will estimate throughput at
the “nearest” primary link. In this work, we trained the cog-
nitive engine with a data set that contains multiple examples
representing an environment, with its statistical variability,
that represents a common practical wireless scenario. Yet, it
is noteworthy to keep in mind that an appeal of the black-box
modeling approach is that the cognitive engine can learn to
operate in another environments, or even in multiple concur-
rent environment, as long as it is trained using a data set that
contains examples representative of the intended operating
conditions.
Training data for the neural network cognitive engine was

collected from a simulation carefully designed to reflect
highly realistic scenarios. The simulation is built around
a system comprising a primary and a secondary network
that coexist over an area we have deemed the “playground.”
The PN determines the “playground” geometry, consisting
of a five-by-five grid of BSs with neighboring base sta-
tions separated by a distance of 200 m. To avoid unrealistic
edge effects in the playground, the grid wrapped around
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all of its edges. Our strategy to implement an AMC real-
ization that reflects realistic performance was to adopt a
well-established technology deployed in the field with the
backing of simulation tools that are detailed and realistic
to the level of qualifying to support the standardization
work associated with the deployed technology. Following this
strategy, we choose the AMC subsystem from the LTE tech-
nology, [56], backed by the link level simulator developed
by TU-Wien, [30]. We used in the simulation a 2x2 MIMO
configuration. In the simulation, the spectrum band that is
shared by the PN and the SN through our underlay DSA
technique was implemented as a single LTE resource block
corresponding to a bandwidth of 180 kHz. Note that refer-
ences in this work to LTE technology and use of some of
LTE subsystems/features (particularly the AMC subsystem
and corresponding the shared spectrum band with an LTE
resource block) are guided by the goal of implementing a
realistic simulation. However, this should not be interpreted
as indicative that either the PN or the SN are LTE networks,
nor does it imply that the proposed solution is restricted to
an LTE network, not even a cellular network architecture.
Following the implementation of the PN “playground”

as a five-by-five grid, the total number of BSs in the PN
is NPBS = 25. However, of all NPBS BSs, only NP are
active (have an established PN link involved in an active
communication) at any time. Because all base stations use
the same channel to communicate with their respectively
assigned PU receivers the PN network load is, as previously
indicated, NP/NPBS. The location of the NP PU receivers
is determined at random using a uniform distribution with
the limitation that no base station could have more than one
receiver assigned to it (therefore, this random placement of
PU receivers also determines which BSs in the grid are
active). Also, the receivers were connected to the base sta-
tion from which they received the strongest signal. Transmit
powers in the primary network were limited to the range
between -20 and 40 dBm. The transmit power assignment
for the ith. active primary link (i = 1, 2, . . . ,NP) follows
the same algorithm as in (2). Each primary transmission
considers the other network transmissions as out of network
interference akin to background noise.
The considered SN operating through underlay DSA con-

sisted of NS = 4 transmit-receive pairs of CRs, with the
transmitters placed at random (also with a uniform dis-
tribution) on the PN playground. The SN receivers were
placed at random (also with a uniform distribution) around
their respectively assigned transmitter within a distance not
exceeding 50 m. In the simulation setup we intended to
reflect a situation where the PN had somewhat more capabil-
ities (achieving larger throughput and communication range)
than the SN because of being the incumbent to the spectrum
band under consideration. Therefore, we assumed that the
SUs were smaller devices with transmit power in the range
of -30 to 20 dBm. Twenty equally spaced power levels in
this range are considered as the set of allowed settings for
transmission. Transmissions in both networks make use of

AMC. It is also assumed that the SN has knowledge of the
underlying timing operation in the primary network to the
extent of allowing CRs to sense and transmit at appropriate
times.
In the system, channels gains are assumed to follow

a quasi-static (block) fading model. Moreover, all links
assumed a path loss model for urban area given by L =
128.1+37.6 log d+10+S (in dBs), where d is the distance
between transmitter and receiver in km, S is the shadowing
loss (modeled as a zero-mean Gaussian random variable with
6 dB standard deviation) and the penetration loss is fixed
at 10 dB, [57]. Note that it is the shadowing loss the one
responsible for the possibility that a receiver may receive
with larger power a transmission originated further away
than a second transmission and, because of this, the reason
why we use the term of “nearest” transmitter to indicate, in
fact, the one received with largest power. Our assumed small
scale fading follows a Pedestrian B model from [58]. This is
a model that reflects time-varying channel conditions corre-
sponding to the velocities of a person walking. Assuming 1.5
m/s as a typical pedestrian velocity (close to the 5.5 km/h
usual for a person’s walk), the channel coherence time is
100 ms for a carrier frequency of 2 GHz. Noting that all
transmissions adopt AMC to adapt their transmission to the
quality of their respective link, our assumption of a block
fading channel holds with ample margin for an AMC control
loop operating with rates around 1 kHz as is commonplace
to see nowadays (e.g., LTE). Moreover, the coherence time
of 100 ms provides ample margin of time to complete the
execution of one decision-making cycle (power allocation)
by the cognitive engine. In fact, since one decision-making
cycle can be completed in approximately 20 ms, our assump-
tions hold for velocities of up to almost 30 km/h, and up to
approximately 90 km/h for a scheme to be discussed in the
next Section that reduces three times the number of probe
messages. The noise power level was set at -130 dBm.
To generate training data, we configured the power and

AMC control in the SUs so they maintained the ability to use
the estimated modulation order of the “nearest” primary link
but without the cognitive engine shown in Fig. 5. Instead,
they implemented a distributed power control algorithm mod-
ified to incorporate the modulation order of the “nearest”
primary link. A number of algorithms had been proposed for
distributed power control in ad-hoc wireless networks. One
of the first ones, and the precursor to many related variants,
is the Foschini-Miljanic algorithm, [59], which implements
an iterative distributed power control process so as to meet a
target SINR. For the task at hand, we adopted this iterative
power allocation algorithm for the alternative SN that gener-
ated the data set to train the NARX neural network cognitive
engine at each SU. Specifically, power is calculated for
a secondary link i at each iteration m using the update
formula,

Psi [m+ 1] =
(

βi

γ si [m]

)

Psi [m], (11)
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where Psi is the transmit power, βi is the target SINR and
γ si [m] is the actual SINR measured in the mth. iteration
which can be calculated through (7). The fact that this algo-
rithm associates power control with a target SINR in our case
is a useful feature because the target SINR, when met, also
determines the modulation order to be used as follows [26],

T(s)
i = log2(1+ k γ

(s)
i ), i = 1, 2, . . . ,NS. (12)

Consequently, we can think that instead of having a set of
possible [modulation, channel code] pairs, now we have a set
of target SINRs to choose from. Let B = {b1, b2, . . . , bK}
be this set, where target SINRs bi’s are assumed to be sorted
in ascending order. Of course, reducing the target SINR will
result in decreasing the transmit power. As a consequence,
the algorithm provides the mechanisms to both adapt trans-
mit power and AMC settings in a distributed way. Moreover,
for fair comparison to the system with the proposed NARX
neural network cognitive engine, and to maintain the same
operating principles, the transmit power from SUs also needs
to be constrained by the goal to not degrade the SINR of the
“nearest” primary network link to the extent of reducing the
modulation order (not having the NARX neural network, this
SN used to generate training data cannot operate based on
the use of throughput inferred for the “nearest” primary link
and can only make use of the modulation order estimated
from the modulation classification process). Modifying the
Foschini-Miljanic algorithm by reducing the target SINR
allows to manage this constraint by resulting in a reduction
in the SU transmit power. As such, we adopted for the control
of CR transmissions in the SN used for training data genera-
tion this modified version of the Foschini-Miljanic algorithm,
where the SU target SINR is progressively reduced until
there is no change in the modulation order of the “nearest”
primary link. We note here that while it is certainly pos-
sible to use one of the many existing enhancements to the
Foschini-Miljanic algorithm, we chose to use the original
version without improvements because its provides a base-
line performance measure and because this power control
algorithm or a variation of it are not the contribution of
our work. Of course, the PUs in this system maintained the
power allocation algorithm proposed in [26], as explained
in Section II, which provided the training data target values
of throughput in each PN link.
One additional detail considered for the SN used to gen-

erate training data provided for a different operation in the
case when a “nearest” primary link is already transmitting
using the smallest modulation order when there is no trans-
missions from the SN. Note that in AMC the modulation
order transmitting the smallest number of bits per symbol
(type 0) is used for the smallest operating SINRs (because
it is more resilient to interference and noise). When the
interference from the SN increases, the primary links that
were already using the smallest possible modulation orders
when there were no secondary transmissions will not switch
to other modulation orders because there is simply no other
modulation order with fewer bits per symbols to switch to.

This means that transmissions from an SU that otherwise
would generate a change in modulation order would not
result in any change when the “nearest” primary link is
already transmitting with the modulation order with smallest
bits per symbol. Moreover, primary links using this modu-
lation order, do so because their SINR is at the lower range
of the operating SINRs, which implies that they are at a
link state that likely may not leave much room for added
interference from SUs. Because of these reasons, and in
the interest of prioritizing the protection of primary links
against excessive SN interference, we configured the alter-
native SN so that a CR will not transmit if it senses that its
“nearest” primary link is using the lowest modulation order
when the SN is not transmitting (as explained in Section IV,
our proposed technique implements a mechanisms with the
same spirit but based on checking for the smallest CQI at
the “nearest” primary link when the SN is not transmitting,
instead of smallest modulation order).
Collected using the simulator described above, data sets

used for training consisted of 10000 data samples for each of
the primary network load values of 0.16, 0.32, 0.48 and 0.64.
Each of the 10000 data samples in a data set constitutes a
completely different randomly-determined realization of the
receiving PU location, active BSs in the PN, SUs location and
channel gain values, leading to data sets that encode a very
vast array of possible practical spectrum sharing scenarios
between the PN and the SN. To manage (prevent) overfitting
of data during training, a subset of the data set (7000 samples
or 70% of the data set) was used to train the neural network
and the rest for validation (10%) and test (20%) in order to
present the CRs with new, never-seen-before scenarios.
From the training process itself we determined the val-

ues of the proposed NARX neural network weights and
biases. The initial values for weights and biases were selected
randomly and then were updated according to the Levenberg-
Marquardt optimization method. This method involves a
back-propagation algorithm to compute the gradients of the
prediction error corresponding to the artificial neurons [60].
It is known that in the case of function approximation prob-
lems, for the neural networks containing up to a few hundred
weights, the Levenberg-Marquardt algorithm will have the
fastest convergence [50]. Since the main task here is to
approximate the nonlinear function f (.) which maps the input
variables to the continuous output variable T , we frame this
task as a regression predictive modeling. For regression tasks,
the mean squared error (MSE) is the most widely used met-
ric to measure the prediction error, [61]. Therefore, MSE
was chosen as the prediction error metric:

MSE = 1

N

N∑

i=1

(ei)
2 = 1

N

N∑

i=1

(Ti − T̂i)2, (13)

where N is the size of training data set, Ti and T̂i are target
and predicted values, respectively. The validation set was
used to fine-tune the model hyperparameters (e.g., hidden
layer size, number of tap delays, etc.), and the test set was
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FIGURE 8. Throughput prediction performance of the NARX neural network. Best
validation performance is 0.10825 at epoch 2.

used to compare the prediction performed by the trained
neural network with the actual expected performance in order
to encounter new, never-seen-before scenarios.
As part of the validation process, and in order to find

the number of hidden neurons and depth of the tap-delay
lines in the NARX neural network, we also performed a
thorough set of experiments with different configurations.
In [48] the authors investigated the relation between the
order of the memory embedded in the NARX neural network
and the performance when learning temporal dependen-
cies in time series. They examined the performance of
NARX networks with different memory orders (from 1 to
6) across different order of time dependency in signals, and
demonstrated that NARX neural networks showed signifi-
cant improvement when learning long-term dependencies as
the order of the embedded memories is increased. Following
the results in [48], we tried different delay (memory order)
selected from the set {1, 2, 3, . . . , 10}, and for each selection
of delay we changed number of neurons in the hidden layer
from 5 to 100 in increments of 5 while observing the loss
function on the validation data set.
Fig. 8 illustrates the performance of the NARX neural

network during training, validation and testing for a pri-
mary network load equal to 0.64. As is to expect, Fig. 8
shows the training error continuing to decrease with more
training epochs, but the validation and test errors starting to
increase after reaching a minimum with two training epochs.
Therefore, two epochs marks the inflection point in the bias
vs. variance tradeoff when the training process achieves the
best MSE during validation and the training regime is starting
to transition to overfitting. At this inflection point, marked
with a vertical green dashed line in Fig. 8, the training should
be stopped. Fig. 8 shows the MSE for the best performing
structure that resulted in the least training error at two train-
ing epochs, which was found to be with nh = 50 hidden
neurons and dy = 7 time delay steps.
For nh = 50 hidden neurons and dy = 7 time delay steps

configuration, and using the formulas in Table 1, we can see
that the execution of one decision-making cycle (power allo-
cation) by the cognitive engine entails 2550 additions, 2550
multiplications and 50 table lookup operations. However, as
will be seen in the next Section, we will consider an imple-
mentation of the proposed underlay DSA where the number

of probe messages is reduced three-fold, in which case the
number of computing operations is reduced to 1250 addi-
tions, 1250 multiplications and 50 table lookup operations.
In all cases, with current existing technology these opera-
tions can be computed within a very small fraction of the
time required to complete one decision-making cycle.
Going back to Fig. 2 helps to gain an intuition into

the NARX neural network cognitive engine operation. The
NARX neural network receives as one input the possible
SU’s transmit power levels organized in sequence and, as
another input, the corresponding modulation order sensed
from the “nearest” primary link. During training, the NARX
neural network learns to predict the throughput values at
the “nearest” primary link that correspond to the two input
sequences. Considering (6), we can think that the sequence
of transmit power values that is input to the NARX neural
network will yield a range of interference values, which will
correspond to a “segment” of SINR values in the abscissa
of Fig. 2. The position of this segment within the range of
SINR values depends on the many factors reflected in (6)
(e.g., primary channel gain, interference from other SUs,
etc.) but the NARX neural network has a sense of where the
segment is thanks to the reference provided by the sequence
of modulation orders at the input (e.g., if for the setup in
Fig. 2, the sequence of modulation schemes are QPSK and
16QAM, the SINR segment is around 10 dB). During train-
ing, the NARX neural network is presented with multiple
different such segments from different wireless environment
scenarios, eventually learning the throughput vs. SINR AMC
performance curve. During operation of the NARX neural
network (the testing phase in machine learning terms), sens-
ing the sequence of modulation schemes that results from the
sequence of probe messages with different power settings
allows the NARX neural network to localize the segment
of SINR values for the “nearest” primary link (in effect,
finding the network scenario presented during training that
best matches the existing wireless environment) and, con-
sequently, predicts the corresponding throughput from the
AMC performance curve.

V. SIMULATION RESULTS
The performance of the presented technique was eval-
uated through 150 Monte Carlo simulation runs. These
simulations were run on the same simulator described in
Section IV-B, now with the addition of our proposed under-
lay DSA scheme. As such all the setup and models described
in Section IV-B applied with no changes to performance
evaluation runs.
Figs. 9–12 study the throughput performance in the pri-

mary and secondary networks for our presented technique
and contrast them against other schemes. Results are shown
for the four different primary network loads equal to 0.16,
0.32, 0.48, and 0.64. As indicated in Section IV, for the
presented technique we considered two approaches for the
SUs to choose transmit settings. The first approach, labeled
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in the figures as ‘PN+SN- NN Cog. Eng.- Modulation’, fea-
tures our proposed cognitive engine with the capability for
full AMC mode estimation at the “nearest” primary link, but
it makes a limited use of this capability by making the SU
choose the maximum transmit power value that is estimated
to keep unchanged the modulation order (but not necessarily
the channel coding rate) at its “nearest” primary link. The
second approach makes full use of the cognitive engine’s
throughput (full AMC mode) estimation capabilities at the
“nearest” primary link, by making the SU choose the max-
imum transmit power value that is estimated to not change
the “nearest” primary link throughput beyond a maximum
relative change value. This second approach is itself divided
into a case where one probe message is sent for each possi-
ble power setting (for a total of twenty probe messages) and
a second case that explores a reduction in the overhead from
transmitting probe messages which transmits just seven mes-
sages and uses interpolation to complete the information for
the rest of available transmit power settings. To show how
our technique is able to leverage the estimation of the full
AMC mode and provide each SU with a fine control over
the interference it imposes to the “nearest” primary trans-
mission link, we obtained results for three different limits on
relative average throughput change in the PN: 2%, 5% and
10%. In the figures, we labeled the results when sending all
probe messages as ‘PN+SN- NN Cog. Eng- 2%- All probe
msgs.’ for a limit on relative average throughput change in
the PN of 2%, ‘PN+SN- NN Cog. Eng- 5%- All probe msgs.’
for a limit on relative average throughput change in the PN
of 5%, and ‘PN+SN- NN Cog. Eng- 10%- All probe msgs.’
for a limit on relative average throughput change in the PN
of 10%. Similarly, for the case when sending seven probe
messages, the labels for 2%, 5% and 10% limit on rela-
tive average throughput change in the PN are respectively
‘PN+SN- NN Cog. Eng- 2%- Seven probe msgs.’, ‘PN+SN-
NN Cog. Eng- 5%- Seven probe msgs.’ and ‘PN+SN- NN
Cog. Eng- 10%- Seven probe msgs.’.
The performance of these instances of our proposed under-

lay DSA technique is compared in the figures against other
schemes. The first such contrasting benchmark scheme,
labeled in the figures as ‘PN+SN- Adapted Foschini-
Miljanic’, is the same system used to collect training data
and described in Section IV-B. Recall that this scheme lacks
the NARX neural network cognitive engine’s capability to
predict the full AMC mode at the “nearest” primary link.
Also note that this benchmark SN constitutes an implemen-
tation of the central principles of [21] while also managing
practical considerations not addressed therein (e.g., multiple
links in the SN and PN, distributed, ad-hoc operation of
the SN, etc.), and, as such, serves the purpose of provid-
ing an indication of the performance improvements of our
proposed technique versus prior works. As additional bench-
marks, we also considered two schemes that select transmit
power for the SUs based on an exhaustive search across all
possible setting permutations. In contradiction with our goal
to avoid any exchange of information between the primary

FIGURE 9. Average throughput in the primary network.

and secondary networks, these two schemes also incorpo-
rate the ability to perfectly know the CQI on the primary
links as if the SN had access to the control feedback chan-
nels in the PN. The first exhaustive search scheme, labeled
‘PN+SN- Exh. search-Max PU throughput’, finds across all
possible SUs transmit power permutations, the setting that
results in no change in modulation order at any primary link
and maximum average throughput in the PN. The second
exhaustive search scheme, labeled ‘PN+SN- Exh. search-
Min PU throughput’, favors the average throughput at the
SN by finding across all possible SUs transmit power per-
mutations, the setting that results in no change in modulation
order at any primary link and minimum average throughput
in the PN. Clearly, the two exhaustive search curves present
extreme performance results based on ideal setups. Finally,
Fig. 9 includes a curve, ‘PN without SN’, which shows the
average throughput achieved by the PN when the SN is not
present.
Fig. 9 shows the average throughput achieved for the

PN as a function of the PN load, NP/NPBS, while Fig. 10
shows the change in this throughput relative to the ‘PN
without SN’ case. It can be seen in both figures that the
use of the proposed NARX neural network cognitive engine
results in SUs transmit settings that reduces the average
throughput in the PN much less than the case when the
modified Foschini-Miljanic algorithm is used in the SU.
Moreover, in the figures, the ‘PN+SN- Exh. search-Min
PU throughput’ curve illustrates the extent to which the
average throughput in the PN can be affected without chang-
ing the modulation order at the “nearest” primary links
(as much as 17%). This indicates that considering only
the modulation order provides an initial means for imple-
menting a fully autonomous underlay DSA but with the
limitations associated with the coarse indication of the pri-
mary links SINR given only by the modulation order. The
‘PN+SN- Adapted Foschini-Miljanic’ and the ‘PN+SN- NN
Cog. Eng.- Modulation’ schemes, which both suffer from the
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limitation of relying on considering modulation order only,
show better performance because the SU transmit power
is chosen in a more conservative way in terms of reduc-
ing effects to the primary network, instead of conducting
an exhaustive search for the setting that results in mini-
mum average throughput in the PU. Nevertheless, because
of relying on modulation order inference only, the ‘PN+SN-
Adapted Foschini-Miljanic’ and the ‘PN+SN- NN Cog.
Eng.- Modulation’ schemes result in relative reduction in
the PN average throughput by as much as 13.5% and 9.5%,
respectively. The best performance in terms of controlling
the effect of SN transmissions on the PN is achieved with our
proposed scheme using the inference of the primary links’
full AMC mode (in actuality, the throughput) provided by
the NARX neural network cognitive engine. This is seen
through the results obtained for the two cases (transmitting
either all or seven probe messages) designed on the premise
of limiting the maximum relative change in average through-
put at the “nearest” primary link, for which we show results
for 2%, 5% and 10% relative change limit. Moreover, these
schemes include the means to control as desired the level
of SN effect on the PN (by setting the limit maximum rel-
ative change). In fact, the ‘PN+SN- NN Cog. Eng- 2%-
All probe messages’ along with ‘PN+SN- NN Cog. Eng-
2%- Seven probe messages’ curves exemplify the very fine
level of control that is possible to achieve with the proposed
approach.
Fig. 10 shows that the very fine level of control seen with

our proposed scheme is achieved at all primary network
loads, except at the lowest value of 0.16, when the relative
change in average PN throughput exceeds the 2% limit by
only 1% when sending all probe messages and by 1.5%
when sending seven probe messages. For the rest of the
cases, only in the case of 5% limit, sending seven probe
messages, and at the lowest primary network load, the rel-
ative change in PN average throughput is exceeded by just
0.5%. These differences are attributed to errors in estimating
the throughput at the PN, which are discussed more in detail
later in this Section. Also, the differences are only seen at
the smallest PN network load of 0.16 because of the larger
sensitivity of the relative change in PN average throughput
with lower PN load as was previously highlighted for Fig. 3.
Fig. 10 also shows that the scheme where a fraction of probe
messages is used yields significant reduction in the trans-
mission overhead of probe messages (roughly a threefold
reduction) without much sacrifice in performance (maximum
3.5% instead of 2% actual achieved relative change in PN
throughput compared to 3% maximum change with all the
probe messages, and maximum 5.5% instead of 5% actual
achieved relative change in PN throughput compared to 5%
maximum change with all the probe messages). Finally, the
curve ‘PN+SN- Exh. search-Max PU throughput’ coincides
with the ‘PN without SN’ curve as the exhaustive search
solution that maximizes average PN throughput is essen-
tially the one with no transmissions in the SN (with one
caveat to be discussed in Fig. 12).

FIGURE 10. Relative throughput change in the primary network.

FIGURE 11. Analysis of equivalent interference generated by the SN on the PN.

Figure 11 presents results from Fig. 10 integrated into the
bottom plot of Fig. 3. To avoid a cluttered plot, we restrict
Fig. 11 to the case of PN load equal to 0.16 because, as
we have seen, this is the only situation where the equivalent
interference generated by the SN results in relative average
throughput change at the PN (T%) that slightly exceeds the
preset limit in a few cases. Same as in Fig. 3, Fig. 11 shows
T% as a function of increasing background noise power
(when there is no active SN), or as function of the equivalent
interference generated by the SN. Overlaid to these results,
Fig. 11 shows three horizontal dashed lines, each represent-
ing the three limits on T%: ε = −0.02, ε = −0.05, and
ε = −0.1. The intersections of these lines with the curve
for T% indicate the ideal operating point for each setting for
ε. The abscissa of these intersection points indicate the max-
imum equivalent interference I0(ε) that has been modeled
earlier as per (5). As can be seen, I0(−0.02) = 40 dBm,
I0(−0.05) = 42.7 dBm, and I0(−0.02) = 47.1 dBm. This
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small range of values for I0(ε) underscore the need for a
fine control on the equivalent interference as provided by
the proposed technique. Moreover, these results reveal an
important consideration when choosing ε. Besides the obvi-
ous that larger ε implies a larger effect of the SN on the PN,
Fig. 11 shows that a small value of ε (e.g., ε = −0.02) cor-
responds to an operating point at the edge of low sensitivity
to deviations in the equivalent interference, where a small
excess in equivalent interference results in an small extra
relative average throughput change in the PN. In contrast,
larger value of ε (e.g., ε = −0.10) correspond to an operat-
ing point of high sensitivity to deviations in the equivalent
interference, where a small excess in equivalent interference
results in a large extra relative average throughput change in
the PN. Because of this, when operating with larger values
of ε (if this is somehow acceptable for the PN) it is critical
for the equivalent interference generated by the SN to be less
than or at most equal to I0(ε) (while there is more flexibility
in this regard when operating with small values of ε).
Moreover, Fig. 11 depicts with vertical lines the operating

points attained by the process followed by the cognitive
engines in the SUs. As can be seen, the proposed underlay
DSA technique manages to set transmit powers at the SN
that results in equivalent interference close to the maximum
I0(ε). In the cases that have been noted when the limit
is slightly exceeded (ε = −0.02 and ε = −0.05 for the
case of seven probe messages), the equivalent interference
is exceeded by a very small amount (1.4 dBm at then most),
underscoring the very fine control allowed by the proposed
technique. In the cases of the large ε = −0.1, the proposed
technique follows the needed conservative approach explain
in the previous paragraph and sets transmit power levels
that yield equivalent interference values below the maximum
I0(ε). Overall, the vertical lines shown in Fig. 11 illustrate
the success of the proposed technique in addressing the two
challenges associated with underlay DSA: identifying the
interference limit for the PN and allowing the SN to operate
with equivalent interference levels generated on the PN close
to this limit (without exceeding it) by enabling the SU to
become aware of the interference they generate. Finally, it
is worth noting that the operation of the SN at equivalent
interference limits close to the maximum I0(ε) indicates that
our proposed algorithm is able to find transmit settings for
the SUs that will result in as large SN throughput as could
be allowed by the PN interference limit.
Fig. 12 shows the average throughput achieved in the SN

as a function of the PN load. Naturally, the more a scheme
affects the PN throughput, the larger the SN throughput it
could achieve. As such, it can be seen that our approach
based on a limit maximum PN relative throughout change
not only provides the means to control how much the PN
is affected by the SN, but also it allows to control how
large the average throughput at the SN is desired to be (at
the expense of the PN). Even so, the realization with the
more restrictive setting for the SN (the one with a maximum
PN relative throughput change of 2%) still achieves useful

FIGURE 12. Average throughput in the secondary network.

average throughput values between 180 and 50 kbps for a
channel with 180 kHz bandwidth (in case of transmitting
seven probe messages the average throughput at the SN is
slightly larger which is consistent with the results in Fig. 10).
Also, note that at low PN loads, the ‘PN+SN- Exh. search-
Max PU throughput’ system shows throughput values that
imply transmission in the SN. This does not contradict our
earlier statement that this result essentially coincides with
the ‘PN without SN’ case. Instead, the transmissions in the
SN that are seen in this case correspond to infrequent setups
where the SUs are located so far away from the few active
primary links (consider that this effect occurs only at very
low PN loads) that they can transmit with very low power
with no practical effect on the PN.
Fig. 13 depicts the cumulative distribution function (CDF)

of the throughput in the SN for different primary network
loads. This figure presents a perspective that explains an
added advantage of the NARX neural network solution
compared to the modified Foschini-Miljanic algorithm-based
solution. The figure shows that in the case of the SN that
uses the modified Foschini-Miljanic algorithm, around 15%
of the time the SUs will be unable to transmit (through-
put is zero) when the PN load equals 0.16 and this number
increases to around 30% as the PN load increases. This is
because the SN that uses the Foschini-Miljanic algorithm is
only able to infer the modulation scheme used in the primary
link and not the channel coding rate, which leads to SUs
not being able to have a finer assessment of their effect on
the PN when the “nearest” primary link is using a modula-
tion ‘type 0’. As a result, and as discussed earlier, in order
to protect the PN, those SUs using the modified Foschini-
Miljanic scheme for which the “nearest” primary link use
modulation ‘type 0’ are blocked from transmitting. In con-
trast, the proposed technique using NARX neural network,
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FIGURE 13. Cumulative distribution function (CDF) of the throughput in the
secondary network.

FIGURE 14. CQI estimation performance of the NARX neural network.

‘PN+SN-NN Cog.Eng.- Modulation’, is able to estimate the
finer AMC configuration of coding rate setting, making this
protection and the blocking of SUs unnecessary (except when
the “nearest” link is using the AMC mode for a lowest
rate, which corresponds to CQI=1). Consequently, as seen
in Fig. 13, the proposed technique increases the transmis-
sion opportunities in the SN by the same percentage of time
that the SUs are blocked in the case of using the modified
Foschini-Miljanic algorithm-based solution.
As just seen, a key advantage of the proposed technique

follows from the remarkable ability of the NARX neural
network in the SU cognitive engine to estimate the channel
coding rate used in a primary link. Therefore, we evalu-
ated the accuracy performance of the NARX neural network
in estimating the CQI in a primary link (which is equiva-
lent to the full AMC mode consisting of modulation order
and channel coding rate). Fig. 14 shows as a function of

the primary network load the relative frequency (i.e., the
empirical probability distribution) of the absolute error when
predicting the CQI for the case of transmitting all probe mes-
sages. In this case, errors in the prediction are quantified by
measuring the absolute value of the difference between the
actual and the predicted CQI. This figure shows that as the
network load increases, the probability of an accurate esti-
mation (prediction absolute error equal to zero) increases and
reaches more than 80% for a load equal to 0.48. The Figure
shows that, overall, the probability of significant errors when
predicting CQI is quite small but, nevertheless, we speculate
this to be a factor in the (still small) reduction in PN aver-
age throughput and in the small difference at low PN loads
between the target maximum relative change in average PN
throughput and the actual achieved relative change in PN
throughput for our schemes based on target maximum PN
relative throughput change.

VI. CONCLUSION
In this paper we have presented a fully autonomous and dis-
tributed underlay DSA technique capable of addressing the
two main challenges of how to establish an interference limit
from the PN and how CRs in the SN become aware of the
interference they create on the PN. The presented technique
is based on a NARX neural network cognitive engine that
uses a sequence of probe messages and the sensed modula-
tion order in the primary link “nearest” to an SU to predict
the effect of its transmission on that “nearest” PN link. It
does this by predicting the throughput or, equivalently, both
the channel coding rate and the modulation order, at the
“nearest” primary link. Based on this, in the presented tech-
nique the SUs choose the maximum transmit power that is
estimated to not change their respective “nearest” primary
link throughput beyond a chosen maximum relative change
value. Simulation results show that the proposed technique is
able to accurately predict both the channel coding rate used
and the modulation scheme in a primary link without the
need to exchange information between the PN and the SN,
and that the proposed technique succeeds in its main goal
of determining the transmit power of the SUs such that their
created interference remains below the maximum threshold
that the primary network can sustain (with minimal effect
on the average throughput). Also, our proposed algorithm is
able to find transmit settings for the SUs that will result in
as large throughput in the SN as could be allowed by the PN
interference limit. Specifically, for a target PN maximum rel-
ative average throughput change of 2%, the proposed scheme
is able to maintain the PN relative throughput change less
than 3% when sending all probe messages, and less than
3.5% when reducing three times the number of transmitted
probe messages, while simultaneously achieving useful aver-
age throughput values in the SN between 180 and 50 kbps
for a channel with 180 kHz bandwidth. For future work we
plan to investigate approaches to further reduce the number
of probe messages.

VOLUME 2, 2021 735



SHAH-MOHAMMADI et al.: NEURAL NETWORK COGNITIVE ENGINE FOR AUTONOMOUS AND DISTRIBUTED UNDERLAY DSA

REFERENCES

[1] “Spectrum policy task force,” Federal Commun. Comm., Washington,
DC, USA, Rep. ET Docket no. 02-135, 2002.

[2] S. Haykin, “Cognitive radio: Brain-empowered wireless communica-
tions,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201–220,
Feb. 2005.

[3] M. Song, C. Xin, Y. Zhao, and X. Cheng, “Dynamic spectrum access:
From cognitive radio to network radio,” IEEE Wireless Commun.,
vol. 19, no. 1, pp. 23–29, Feb. 2012.

[4] A. Goldsmith, S. A. Jafar, I. Maric, and S. Srinivasa, “Breaking
spectrum gridlock with cognitive radios: An information theoretic
perspective,” Proc. IEEE, vol. 97, no. 5, pp. 894–914, May 2009.

[5] E. Hossain, D. Niyato, and Z. Han, Dynamic Spectrum Access
and Management in Cognitive Radio Networks. Cambridge, U.K.:
Cambridge Univ. Press, 2009.

[6] W. Wang and A. Kwasinski, “Feedback-based cooperative primary
channel activity estimation for dynamic spectrum access,” in Proc.
3rd Int. Symp. Appl. Sci. Biomed. Commun. Technol. (ISABEL), 2010,
pp. 1–5.

[7] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for
cognitive radio applications,” IEEE Commun. Surveys Tuts., vol. 11,
no. 1, pp. 116–130, 1st Quart., 2009.

[8] S. Benazzouza, M. Ridouani, F. Salahdine, and A. Hayar, “A survey
on compressive spectrum sensing for cognitive radio networks,” in
Proc. IEEE Int. Smart Cities Conf. (ISC2), 2019, pp. 535–541.

[9] X. Liu, M. Jia, X. Zhang, and W. Lu, “A novel multichannel Internet
of Things based on dynamic spectrum sharing in 5G communication,”
IEEE Internet Things J., vol. 6, no. 4, pp. 5962–5970, Aug. 2019.

[10] H. Hu and Q. Zhu, “Dynamic spectrum access in underlay cognitive
radio system with SINR constraints,” in Proc. 5th Int. Conf. Wireless
Commun. Netw. Mobile Comput., 2009, pp. 1–4.

[11] X. Kang, R. Zhang, Y.-C. Liang, and H. K. Garg, “Optimal power
allocation strategies for fading cognitive radio channels with primary
user outage constraint,” IEEE J. Sel. Areas Commun., vol. 29, no. 2,
pp. 374–383, Feb. 2011.

[12] L. Musavian and S. Aïssa, “Capacity and power allocation for
spectrum-sharing communications in fading channels,” IEEE Trans.
Wireless Commun., vol. 8, no. 1, pp. 148–156, Jan. 2009.

[13] A. Ghasemi and E. S. Sousa, “Capacity of fading channels under
spectrum-sharing constraints,” in Proc. IEEE Int. Conf. Commun.,
vol. 10, Jun. 2006, pp. 4373–4378.

[14] Y. Yang, H. Ma, and S. Aissa, “Cross-layer combining of adaptive
modulation and truncated ARQ under cognitive radio resource require-
ments,” IEEE Trans. Veh. Technol., vol. 61, no. 9, pp. 4020–4030,
Nov. 2012.

[15] K. Eswaran, M. Gastpar, and K. Ramchandran, “Bits through ARQs:
Spectrum sharing with a primary packet system,” in Proc. IEEE Int.
Symp. Inf. Theory, Jun. 2007, pp. 2171–2175.

[16] J. C. F. Li, W. Zhang, A. Nosratinia, and J. Yuan, “SHARP: Spectrum
harvesting with ARQ retransmission and probing in cognitive radio,”
IEEE Trans. Commun., vol. 61, no. 3, pp. 951–960, Mar. 2013.

[17] Z. Rezki and M.-S. Alouini, “Ergodic capacity of cognitive radio
under imperfect channel-state information,” IEEE Trans. Veh. Technol.,
vol. 61, no. 5, pp. 2108–2119, Jun. 2012.

[18] E. Kayalvizhi and B. Gopalakrishnan, “Estimation of optimal channel
gain in cognitive radio networks using bisectional algorithm,” Int. J.
Adv. Netw. Appl., vol. 11, no. 1, pp. 4171–4176, 2019.

[19] 3GPP Technical Specification Group Radio Access Network Physical
Layer Procedures (FDD) (Release 5), V5.11.0, 3GPP Standard TS
25.214, 2005.

[20] Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications: Higher-Speed Physical Layer Extension in the
2.4 GHz Band, IEEE Standard 802.11b-1999 (R2003), 1999.

[21] R. Zhang, “On active learning and supervised transmission of spectrum
sharing based cognitive radios by exploiting hidden primary radio
feedback,” IEEE Trans. Commun., vol. 58, no. 10, pp. 2960–2970,
Oct. 2010.

[22] L. Zhang, M. Xiao, G. Wu, G. Zhao, Y.-C. Liang, and S. Li,
“Proactive cross-channel gain estimation for spectrum sharing in
cognitive radio,” IEEE J. Sel. Areas Commun., vol. 34, no. 10,
pp. 2776–2790, Oct. 2016.

[23] C. Tarhini and T. Chahed, “On capacity of OFDMA-based IEEE802.16
WiMAX including adaptive modulation and coding (AMC) and inter-
cell interference,” in Proc. 15th IEEE Workshop Local Metropolitan
Area Netw. (LANMAN), 2007, pp. 139–144.

[24] J. Yang, N. Tin, and A. K. Khandani, “Adaptive modulation and coding
in 3G wireless systems,” in Proc. 56th Veh. Technol. Conf., vol. 1,
2002, pp. 544–548.

[25] F. Zhou, Y. Wu, R. Q. Hu, Y. Wang, and K.-K. Wong, “Energy-efficient
NOMA enabled heterogeneous cloud radio access networks,” 2018.
[Online]. Available: arXiv:1801.01996.

[26] X. Qiu and K. Chawla, “On the performance of adaptive modulation in
cellular systems,” IEEE Trans. Commun., vol. 47, no. 6, pp. 884–895,
Jun. 1999.

[27] C. M. Spooner and W. A. Gardner, “The cumulant theory of cyclosta-
tionary time-series. II. Development and applications,” IEEE Trans.
Signal Process., vol. 42, no. 12, pp. 3409–3429, Dec. 1994.

[28] A. Fehske, J. Gaeddert, and J. H. Reed, “A new approach to signal
classification using spectral correlation and neural networks,” in Proc.
1st IEEE Int. Symp. New Front. Dyn. Spectr. Access Netw. (DySPAN),
Nov. 2005, pp. 144–150.

[29] H. Abuella and M. K. Ozdemir, “Automatic modulation classification
based on kernel density estimation,” Can. J. Electr. Comput. Eng.,
vol. 39, no. 3, pp. 203–209, 2016.

[30] C. Mehlführer, M. Wrulich, J. C. Ikuno, D. Bosanska, and M. Rupp,
“Simulating the long term evolution physical layer,” in Proc. 17th Eur.
Signal Process. Conf., Aug. 2009, pp. 1471–1478.

[31] J. Cavers, “Variable-rate transmission for Rayleigh fading channels,”
IEEE Trans. Commun., vol. 20, no. 1, pp. 15–22, Feb. 1972.

[32] B. Vucetic, “An adaptive coding scheme for time-varying channels,”
IEEE Trans. Commun., vol. 39, no. 5, pp. 653–663, May 1991.

[33] J. M. Cioffi, Course Notes for Digital Communications: Signal
Processing, Stanford Bookstore Custom Publ., Stanford, CA, USA,
2007.

[34] T. R. Newman, B. A. Barker, A. M. Wyglinski, A. Agah, J. B. Evans,
and G. J. Minden, “Cognitive engine implementation for wireless
multicarrier transceivers,” Wireless Commun. Mobile Comput., vol. 7,
no. 9, pp. 1129–1142, 2007.

[35] M. Nrgaard, O. E. Ravn, N. K. Poulsen, and L. K. Hansen,
Neural Networks for Modelling and Control of Dynamic Systems: A
Practitioner’s Handbook, 1st ed. Secaucus, NJ, USA: Springer-Verlag,
2000.

[36] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time
Series Analysis: Forecasting and Control. Hoboken, NJ, USA: Wiley,
2015.

[37] W. Lyu, Z. Zhang, C. Jiao, K. Qin, and H. Zhang, “Performance
evaluation of channel decoding with deep neural networks,” 2017.
[Online]. Available: arXiv:1711.00727.

[38] S. Navabi, C. Wang, O. Y. Bursalioglu, and H. Papadopoulos,
“Predicting wireless channel features using neural networks,” 2018.
[Online]. Available: arXiv:1802.00107.

[39] T. Luo and S. G. Nagarajan, “Distributed anomaly detection using
autoencoder neural networks in WSN for IoT,” Proc. IEEE Int. Conf.
Commun., 2018, pp. 1–6.

[40] V. K. Tumuluru, P. Wang, and D. Niyato, “A neural network based
spectrum prediction scheme for cognitive radio,” in Proc. IEEE Int.
Conf. Commun., May 2010, pp. 1–5.

[41] Y. Yu, T. Wang, and S. C. Liew, “Deep-reinforcement learning multiple
access for heterogeneous wireless networks,” in Proc. IEEE Int. Conf.
Commun., 2018, pp. 1–7.

[42] A. Sorjamaa, J. Hao, N. Reyhani, Y. Ji, and A. Lendasse,
“Methodology for long-term prediction of time series,”
Neurocomputing, vol. 70, nos. 16–18, pp. 2861–2869, 2007.

[43] S. Haykin and X. B. Li, “Detection of signals in chaos,” Proc. IEEE,
vol. 83, no. 1, pp. 95–122, Jan. 1995.

[44] J. C. Principe, N. R. Euliano, and W. C. Lefebvre, Neural and Adaptive
Systems: Fundamentals Through Simulations, vol. 672. New York,
NY, USA: Wiley, 2000,

[45] J. L. Elman, “Finding structure in time,” Cogn. Sci., vol. 14, no. 2,
pp. 179–211, 1990.

[46] B. A. Pearlmutter, “Gradient calculations for dynamic recurrent neu-
ral networks: A survey,” IEEE Trans. Neural Netw., vol. 6, no. 5,
pp. 1212–1228, Sep. 1995.

736 VOLUME 2, 2021



[47] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term depen-
dencies with gradient descent is difficult,” IEEE Trans. Neural Netw.,
vol. 5, no. 2, pp. 157–166, Mar. 1994.

[48] T. Lin, B. G. Horne, and C. L. Giles, “How embedded memory
in recurrent neural network architectures helps learning long-term
temporal dependencies,” Neural Netw., vol. 11, no. 5, pp. 861–868,
1998.

[49] T. Lin, B. G. Horne, P. Tino, and C. L. Giles, “Learning long-
term dependencies in NARX recurrent neural networks,” IEEE Trans.
Neural Netw., vol. 7, no. 6, pp. 1329–1338, Nov. 1996.

[50] E. Diaconescu,
“The use of NARX neural networks to predict chaotic time series,”
WSEAS Trans. Comput. Res., vol. 3, no. 3, pp. 182–191, 2008.

[51] J. M. P. Menezes and G. A. Barreto, “Long-term time series prediction
with the narx network: An empirical evaluation,” Neurocomputing,
vol. 71, no. 16, pp. 3335–3343, 2008.

[52] H. Allende, C. Moraga, and R. Salas, “Artificial neural networks in
time series forecasting: A comparative analysis,” Kybernetika, vol. 38,
no. 6, pp. 685–707, 2002.

[53] T.-N. Lin, C. L. Giles, B. G. Horne, and S.-Y. Kung, “A delay damage
model selection algorithm for NARX neural networks,” IEEE Trans.
Signal Process., vol. 45, no. 11, pp. 2719–2730, Nov. 1997.

[54] I. J. Leontarits and S. A. Billings, “Input-output parametric models
for non-linear systems—Part I: Deterministic non-linear systems,” Int.
J. Control, vol. 41, no. 2, pp. 303–328, 1985.

[55] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60,
no. 6, pp. 84–90, May 2017.

[56] “3GPP technical specification layer 1 documents TS 36.200 series
(release 8),” 3GPP, Sophia Antipolis, France, Rep. TS 36.200, 2009.

[57] LTE Physical Layer Framework for Performance Verification,
document TSG-RAN#148, R1-070674, 3GPP, Gothenburg, Sweden,
2007.

[58] “Guidelines for evaluation of radio transmission technologies for
IMT-2000,” Int. Telecommun. Union, Geneva, Switzerland, ITU-
Recommendation M. 1225, 1997.

[59] G. J. Foschini and Z. Miljanic, “A simple distributed autonomous
power control algorithm and its convergence,” IEEE Trans. Veh.
Technol., vol. 42, no. 4, pp. 641–646, Nov. 1993.

[60] H. Mirzaee, “Long-term prediction of chaotic time series with
multi-step prediction horizons by a neural network with Levenberg-
Marquardt learning algorithm,” Chaos Solitons Fractals, vol. 41, no. 4,
pp. 1975–1979, 2009.

[61] G. S. Handelman et al., “Peering into the black box of artificial
intelligence: Evaluation metrics of machine learning methods,” Amer.
J. Roentgenol., vol. 212, no. 1, pp. 38–43, 2019.

FATEMEH SHAH-MOHAMMADI (Member, IEEE)
received the B.S. degree in electrical engineer-
ing in 2008, the M.S. degree in electrical and
communication engineering Iran, in 2011, and the
Ph.D. degree in engineering from the Rochester
Institute of Technology, Rochester, NY, USA. She
was an Assistant Professor for three years with
the Electrical Engineering Department, Parsian
Institute of Higher Education, Iran. She is cur-
rently with the Icahn School of Medicine at
Mount Sinai. Her research interest includes cog-

nitive radios, machine learning and data analytic applied to wireless
communications, and biomedical data.

HATEM HUSSEIN ENAAMI (Member, IEEE)
received the B.Sc. degree in electrical engineer-
ing from Libya, in 2002, and the M.S. degree
in electrical and electronic engineering from the
Rochester Institute of Technology, Rochester, NY,
USA, in 2012, where he is currently pursuing the
Ph.D. degree in engineering.

ANDRES KWASINSKI (Senior Member, IEEE)
received the Diploma degree in electrical engineer-
ing from the Buenos Aires Institute of Technology,
Buenos Aires, Argentina, in 1992, and the M.S.
and Ph.D. degrees in electrical and computer engi-
neering from the University of Maryland, College
Park, Maryland, in 2000 and 2004, respectively.
He is currently a Professor with the Department
of Computer Engineering, Rochester Institute of
Technology, Rochester, NY, USA. He has coau-
thored more than 80 publications in peer-reviewed

journals and international conferences. He has also coauthored the books
Cooperative Communications and Networking (Cambridge University Press,
2009) and 3D Visual Communications (Wiley, 2013). His current areas of
research include cognitive radios and wireless networks, cross-layer tech-
niques in wireless communications, smart infrastructures and networking,
and operation of the Internet-of-Things. He is currently an Area Editor
for the IEEE Signal Processing Magazine and a Chief Editor of the IEEE
Signal Processing Repository (SigPort). He has been an Editor for the
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS and the IEEE
WIRELESS COMMUNICATIONS LETTERS.

VOLUME 2, 2021 737



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


