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ABSTRACT Applications such as virtual reality and online gaming require low delays for acceptable
user experience. A key task for over-the-top (OTT) service providers who provide these applications
is sending traffic through the networks to minimize delays. OTT traffic is typically generated from
multiple data centers which are multi-homed to several network ingresses. However, information about
the path characteristics of the underlying network from the ingresses to destinations is not explicitly
available to OTT services. These can only be inferred from external probing. In this paper, we combine
network tomography with machine learning to minimize delays. We consider this problem in a general
setting where traffic sources can choose a set of ingresses through which their traffic enter a black box
network. The problem in this setting can be viewed as a reinforcement learning problem with strict linear
constraints on a continuous action space. Key technical challenges to solving this problem include the
high dimensionality of the problem and handling constraints that are intrinsic to networks. Evaluation
results show that our methods achieve up to 60% delay reductions in comparison to standard heuristics.
Moreover, the methods we develop can be used in a centralized manner or in a distributed manner by
multiple independent agents.

INDEX TERMS Load distribution, segment routing, reinforcement learning, machine learning.

I. INTRODUCTION

RECENT emerging applications including virtual reality,
online or cloud gaming require low delay for accept-

able user experience [1], [2]. Minimizing delay by optimizing
load distribution through underlying networks is an impor-
tant task for providers of these services. However, since these
services are often “over-the-top” services, the providers do
not have full knowledge of the underlying networks and
have to make load distribution decisions based purely on
inference of the network characteristics from edge-based
observations. Inferring network characteristics from exter-
nal observations, called “network tomography”, has been
extensively studied. Early work in network tomography
focused on the “inverse problem” of estimating traffic matri-
ces from link-level observations only [3]–[5]. In this paper,
our interest is in “active tomography” where probes from
the network periphery are used to infer internal network
characteristics [6]–[9].

We view the network as a black box with most of
the network’s features of interest for load distribution pur-
poses being not directly observable. Most of the important
information for performance optimization is hidden and hard
to measure. For example, without information from the
Internet Service Providers (ISPs), inferring the routing struc-
ture of the network is often an impossible task. While ping
and traceroute may provide some insight, routers may not
respond to these kinds of probe packets.
We consider the scenario in Figure 1 where there are

a set of sources that have traffic to send through the black
box network to a set of destinations.The traffic sources know
the ingresses into the network and can send probes though the
network to different endpoints. The probes are echoed by the
endpoints; returning probes can be observed to determine
the network’s response to probing and infer behavior of the
underlying network. Sources have the choice of distributing
their traffic over the set of ingresses to the network – a source
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FIGURE 1. Sending traffic through a black box network.

may send all its traffic to a destination through a particular
ingress or it may decide to distribute its traffic to the dif-
ferent ingresses in proportions that minimize the total delay
through the network. Because the network is a black box, the
information that is needed to make the optimal distribution
choice can only be gleaned from external observations of
responses to past actions. For the load-distribution problem,
we use the history of tomography-obtained responses to past
actions to train a neural network which we then combine
with reinforcement learning to make future load distribu-
tion decisions that minimize delay through the underlying
black box network. Unlike network tomography, where the
primary goal is network monitoring and measurement, our
goal here is automated performance optimization where
information obtained through tomography is used to optimize
performance through black box networks. To this end, we
combine learning-based methods with network tomography
to optimize performance through black box networks. In our
method, a single neural network can act as both the tomog-
raphy module and the learning module. By learning from
the past results, the agent takes actions to minimize delay
and probe the black box network at the same time.
The scenario we consider of a black box network through

which traffic has to be distributed to minimize delay, is
representative of many important use cases in networking.
A few of these are outlined below:

• A content provider with content replicated in multiple
data centers (Figure 2) has to decide what fractions of
requested traffic have to be drawn from the different
data centers and consequently how this traffic is to be
distributed to the different ingresses of the network to
which the data centers are connected. To the content
provider, the network characteristics are not directly
observable and so the load distribution decision has to
be based on network characteristics observable from the
network edge.

• An ISP has to decide how traffic towards downstream
destinations has to be split amongst multiple egresses
from its network into downstream networks (Figure 3),
i.e., the ISP has to pick the optimal split of traffic

FIGURE 2. Load distribution from data centers to black box network.

FIGURE 3. Egress picking to minimize delays.

to the different ingresses of downstream networks.
Since downstream networks may belong to different
providers (and hence different Autonomous Systems),
the internals of downstream networks are not directly
observable. Moreover, Border Gateway Protocol (BGP)
does not provide path metric information sufficient for
fine-grained performance optimization. Hence, traffic
distribution decisions to downstream ISPs have to be
based on tomography-based information obtained by
probing through the black box downstream networks.

• In Software-Defined WANs (SD-WANs), gateway nodes
can be multi-homed and have to decide how to split
traffic to different underlay ingresses to minimize delays
through the underlay network. This is shown in Figure 4.
The underlay is a black box for the SD-WAN nodes and
the only information about the underlay available to the
SD-WAN nodes is by network tomography

• Network load balancers [10] that distribute incoming
demands to a set of distributed servers, as shown in
Figure 5, can view the combination of the underlying
network and servers as a black box and can optimize
the load distribution based on the observed delays in
response to past actions.
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FIGURE 4. Load distribution from SD-WAN gateway nodes to underlay networks.

FIGURE 5. Network load balancing over black box networks.

• Segment routing [11] has been proposed for traffic engi-
neering in networks to improve service quality and avoid
link congestion. In segment routing, the end-to-end path
is composed of segments (as in Figure 7) where the end-
points of the segments are carefully chosen to avoid
network congestion. If segment routing is done at the
overlay layer, the segments themselves are routed by
Interior Gateway Protocol (IGP) picked paths in the
underlay. The optimal choice of segment end-points
and the optimal split of traffic through different seg-
ment routed paths to the same destination will need to
be done based on information available at the sources
through network tomography.

In this paper, we focus on the scenario that the underlay
network is acting as a complete black box. We assume that
it is impossible to directly measure the end-to-end delays
such a system, only the system average delay is available.
In practical systems, such measurements can be obtained by
injecting measurement packets into the system. Each mea-
surement packet provides a sample of the delay between a
source node and a destination, however, the black box under-
lay network prevents us from inferring which nodes they
are. Only by taking the mean value of a sufficient number
of samples could we obtain an approximate measurement of

the average delay. We use these measurements in conjunc-
tion with past decisions that resulted in the observed delays
to make current decisions. The decisions made have to be
robust to changing underlying network conditions and be
responsive to changes in network topology like link or node
failures.
Though tomography based techniques have been used to

identify hot spots in networks (See for example, [12]), it is
challenging to use it in a machine learning based approach
to optimize load distribution. This is due to the fact that
the decision space (how to split the traffic) as well as
the rewards (tomography measurements) are continuous and
high dimensional. This makes it very difficult to use tradi-
tional reinforcemnet learning based techniques to solve the
problem. However, recent advances in reinforcement learn-
ing, especially actor-critic networks, make it possible to
implicitly store the actions and rewards in a neural network.
Our problem, apart from being continuous and high dimen-
sional, also has constraints on the set of actions. Instead of
actor-critic learning, we propose a critic only learning algo-
rithm and use a Frank-Wolfe [13] based technique to enforce
the constraints. This approach leads to learning algorithms
with rapid convergence, with robustness to topology changes
and the large number of nodes.
To our knowledge, the problem of reinforcement learning

with strict linear constraints on a continuous action space has
not been investigated in the machine learning field. Though
previous papers have investigated reinforcement learning or
MDP with constraints, in this paper the setting of the prob-
lems and constraints is different. MDPs with constraints was
covered in [14], however, with a focus on problems with
finite action spaces. Achiam et al. [15] proposed to use sur-
rogate functions to achieve a worst case constraint-violation
bound. Similarly, Tessler et al. [16] adopted a penalty sig-
nal to guide the agent to satisfy constraints. Le et al. [17]
focused on batch policy learning, with multiple constraints,
however, in their setting, at each time the agent does not have
to strictly follow the constraints, their method focus on mini-
mizing a cost function of violating the constraints. A method
was proposed in [18] to train agents that satisfy general con-
vex constraints, including safety and diversity constraints.
Constraint satisfaction has also been studied in multi-armed
bandit problems. In [19] and [20], taking an action will result
in a random cost and the agent attempts to satisfy a cost
budget constraint. In [21] and [22], the constraint function
is unknown and the agent aims at satisfying the constraints
according to feedback from the environment. The papers on
multi-armed bandit problems all assume unknown constraint
functions, which is different from the specific constraints
on the action space in our case. In addition, the algorithms
in [15]–[22] do not ensure the constraints are strictly satis-
fied. In this paper, we focus on the problems with continuous
action spaces, and the characteristics of our problem require
that the given constraints must always be satisfied. This
is also the first paper that proposes to use gradient esti-
mates provided by a neural network in a Frank-Wolfe based
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technique, for the purpose of solving reinforcement learning
problems.
Overall, the main contribution of this paper are
• We provide a general model for problems including load
distribution, egress picking, load balancing and segment
routing.

• The problems can be formulated as a reinforcement
learning problem, with constraints on a continuous
action space. To the best of our knowledge no prior
work has proposed any method to enforce constraints
on a continuous action space.

• We propose the method of critic only reinforcement
learning and combine it with the Frank-Wolfe method.
The overall algorithm achieves better performance com-
pared with the state-of-the-art method DDPG [23], with
higher data efficiency.

• The proposed method can be used in a centralized
manner, or independently by multiple distributed agents.

II. RELATED WORK
Traffic engineering problems have been extensively inves-
tigated [24]–[26]. Several papers focus on managing the
elephant flows to achieve better performance. In [27], a
method called Hedera is proposed to detect elephant flows
using edge switches and assign better paths. Devflow [28]
uses wild carded OpenFlow rules and a static multi-path
routing algorithm to manage elephant flows. Mahout [29]
detects large flows at end hosts and computes the best path
or the least congested paths for the flows. MicroTE [30] also
utilizes the short term correlation of flows for route assign-
ment. MiceTrap [31] also considers mice flows to improve
system scalability. On the other hand, other papers propose to
classify the traffic and route the flows according to different
requirements [32], [33].
In general, traffic engineering assumes that the network

topology, link capacities as well as the estimated point-to-
point traffic is known and the objective is to determine how
to route the incident traffic in a congestion-free manner.
While this is an appropriate model for an ISP that is design-
ing MPLS tunnels or OSPF weights, full knowledge of the
topology and routing cannot be assumed for “over-the-top”
routing. This is the reason we have to use tomography to
implicitly infer the topology and capacities of the opaque
network.
Network tomography, as originally proposed in [3], was

aimed at estimating the traffic matrix from link measure-
ments [4], [5]. Tomography has evolved to the problem
of inferring internal information of a network from end
point measurements. A maximum-likelihood estimator for
loss rates on internal links based on losses observed by
multicast receivers was proposed in [6], [7], [9]. In [8] it was
found that sending stripes of probe packets helps increase
estimation accuracy of link loss. There has also been recent
interest [12] in using large scale end-to-end pings for network
diagnostics in very large networks. In [34], performance and
capacity aware routing methods were proposed to help large

content providers avoid congested edges and improve user
experience. A traffic controller received real time traffic and
performance measurements to make routing and traffic bal-
ancing decisions. Reference [35] investigated the problem of
steering large scale traffic at the ISP level. They show that
traffic on long-haul links can be reduced by 30 percent if
suitable egress points are recommended to a large content
provider.
The tomography literature has focused mainly on deter-

mining hot spots in networks by making edge-to-edge
measurements. In this paper, we extend this idea and use
tomography data to actually optimize network performance.
Using tomography measurements for optimizing network
performance is possible due to recent developments in the
machine learning literature. The idea of using reinforce-
ment learning for routing was initiated in [36] before the
recent developments in machine learning. More recently, [37]
investigated the problem of using machine learning for rout-
ing. These machine learning approaches assume that the
network topology is known to the learning algorithm and
do not deal with optimizing routing over opaque networks.
There has been recent work on using machine learning
for flow scheduling [38], congestion control [39]–[42] and
optimization in video streaming [43]. In addition, sev-
eral papers also study the application of RL on routing
and network performance optimization problems [44]–[46].
In [45], the authors proposed to use RL for path selection in
routing problems. In [46], the authors propose to use RL for
traffic engineering, however, their method focus on a flow
level load distribution and require flow level delay feedback.
In this paper, we adopt the RL techniques for optimizing load
distribution using tomographic information only, our method
only require the minimum information of the demand sizes
and average delay.

III. TWO REPRESENTATIVE PROBLEMS
Though the idea of tomography based learning is applica-
ble to several networking scenarios, this paper focuses on
two applications, Egress Picking and Traffic Engineering
using Segment Routing, to illustrate the applicability of
the method. We now describe these two problems in more
detail. In order to achieve better performance and scalabil-
ity, network operators frequently split traffic across different
components of a network. This is especially important when
the capacity is asymmetric either due to different types of
equipment deployed in different parts of the network or due
to asymmetric sharing of capacity between multiple users.
A common (implicit or explicit) objective when sharing is
to minimize the average packet delay. Minimizing average
packet delay leads the traffic being split roughly in propor-
tion to the capacity. Traffic splitting is complicated by the
fact that different network components are shared between
multiple users and the available capacity for a given user
varies over time. Both the problems that we study in detail
are traffic splitting problems over networks where we do
not have visibility into the topology or interfering traffic.
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FIGURE 6. An illustration of egress picking.

However, we can use tomography to obtain delay estimates
and we use these measurements to guide the traffic splitting
process.

A. EGRESS PICKING
Consider an ISP that is routing traffic to destinations down-
stream through other Autonomous Systems which are opaque
to the ISP originating traffic. In general, the originating ISP
has multiple choices through which it can transit traffic. The
egress picking problem [47] is one where the originating
ISP has to determine how to split traffic among the different
egress choices in order to efficiently use the capacity down-
stream. In particular, it is important to ensure that the amount
of flow sent on any path does not exceed the capacity of
the components on that path, Since the capacities are not
observable, it is possible to estimate whether capacities are
being violated by measuring the delay. One way of ensur-
ing that capacity is used efficiently is for the egress picking
algorithm to minimize the mean delay. Traffic from an ISP
is routed using destination prefixes. Each prefix is routed to
a destination along an egress point. In this work, we assume
that the prefixes can be split across multiple egresses. The
splitting is done such that individual flows are routed along
the same path in order to avoid out of sequence packets. In
general, there can be thousands of prefixes that are routed
but typically there are a small subset of prefixes that carry
the bulk of the traffic [48]. Therefore, we focus attention on
the top few prefixes. We illustrate the egress picking problem
in Figure 6, which shows an example with four egress points
and three prefixes. Assume that there are n large destina-
tion prefixes and m egress point choices. Let ti denote the
amount of traffic for prefix i and let Aij represent the fraction
of traffic from prefix i that is routed through egress j. Traffic
that is routed to egress j is now forwarded along some path
to the destination through the opaque network. Let Dij(A)

represent the delay from egress j to the destination of prefix
i, with the load distribution of A. This delay Dij(A) is a
non-linear function of the traffic on the links of the opaque
destination network, which is determined by A, assuming all
the ti are constant in a short time frame. The objective is
to determine the split of each prefix to minimize the mean

FIGURE 7. An illustration of segment routing for congestion avoidance.

delay.

min
A

1
∑n

i=1 ti

n∑

i=1

m∑

j=1

tiDij(A)Aij (1)

subject to
m∑

j=1

Aij = 1,∀i

Aij ≥ 0,∀i ∀j
The

∑m
j=1 Aij = 1 constraints are called the simplex

constraints. In addition to the simplex and non-negativity
constraints there may be additional constraints that may
result from policy considerations. For example, there may
be upper bounds on the total amount of traffic that can be
routed to a particular egress point. If this is the capacity
of the egress point then the objective of minimizing mean
delay will automatically enforce the constraint, but if it is
a policy constraint, then it has to be explicitly enforced by
the optimization algorithm. Note that the delay Dij(A) is
a non-linear function of A, and if this function is known
(and convex), then we can use projected gradient descent
based techniques to solve this problem. Since the network is
opaque, we do not know the function Dij(A) and therefore
we use a tomography based learning algorithm to solve this
problem. The tomography module measures delays across
the opaque network using probing and this is used as a
feedback for the optimization algorithm.

B. TRAFFIC ENGINEERING USING SEGMENT ROUTING
Another application of tomography based learning is traffic
engineering using Segment Routing. Segment routing is an
IETF protocol for traffic engineering [11]. The key idea of
segment routing is to break the route of a flow into several
segments. Each segment is a shortest path between the two
end points of the segment. Segment information is carried
in the packet header and therefore there is no per-flow state
maintained in the network. Assume that we have a opaque
network where we only have access to a set of edge nodes.
We want to route traffic between the edge nodes. Assume
that the amount of traffic between edge node i and edge node
j is Tij. One option is to directly route from i to j through the
opaque network. If the shortest path from i to j is congested
then it is possible to segment route the connection from i
to some other edge node k and then from k to j. If the set
of two shortest paths i− k and k− j are not congested, then
this will result in better delay performance. Figure 7 shows
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an example of using segment routing to avoid a congested
link. In this case, the link between router R1 and R2 is
congested. We can route along the two segment path R1−R3,
R3−R2 to avoid the congested link. In general, we can route
along a path with several segments. In this paper, we restrict
the solutions to paths having at most two segments. The
techniques developed extend directly to paths having more
than two segments. Let Bikj represent the fraction of traffic
from i to j that is routed though node k. The fraction of traffic
that is routed on a single segment from i to j is represented
by Bijj. As in the egress picking case, the delay suffered in
the opaque network is a non-linear function of the traffic
Tij, the traffic splits Bijk as well as any other background
traffic carried by the network. Let �ij represent the delay
on direct path between nodes i and j. We can think of this
as the single hop segment delay. The delay Dikj(B) incurred
on the two segment path i − k − j is Dikj(B) = �ik + �kj.

Assume that we have n edge nodes in the opaque network
and l nodes can be selected as a middle point. We can then
write the problem of finding the split values to minimize the
average delay as

min
B

∑n
i=1

∑m
j=1

∑l
k=1 Dikj(B)BikjTij

∑n
i=1

∑m
j=1 Tij

(2)

subject to

l∑

k=1

Bikj = 1,∀i ,∀j

Bikj ≥ 0,∀i ,∀j ,∀k.
The constraints that sets the sum of the traffic splits to one are
the simplex constraints. The main challenge in solving this
problem is the fact that we do not know how the delay varies
with the traffic split parameters. As in the egress picking
problem, tomography provides end-to-end delay measure-
ments that guides the machine learning based optimization
algorithm. We now outline the tomography based learning
techniques that we use to solve this problem.

IV. TOMOGRAPHY BASED LEARNING
The only information that we obtain from the opaque
network is the tomography measurements. The idea is to
use these measurements to determine how to distribute the
load. The standard approach to using these measurements
is in a learning based algorithm. The most straightforward
approach is to use reinforcement learning (RL), where an
agent interacts with an environment in discrete time steps.
A general setting for reinforcement learning is shown in
Figure 8. At each time step t, the agent observes the state of
the environment st, takes certain action and receives reward
rt. The common objective for the agent is to maximize
the expected cumulative discounted reward E[

∑∞
t=0 γ trt].

In our case, the state is the current traffic demands and the
reward corresponds to the tomography inferred delays. The
action that we take is to change the traffic split to optimize
the objective function. In order to convert the minimization

FIGURE 8. A general setting for reinforcement learning.

problem to a maximization problem, the reward can be mod-
eled as the negative of the weighed sum of mean delays.
The agent maintains a buffer comprising of the received
rewards for each state-action pair that has been used thus
far. When a new state is observed, the action that results
in the maximum reward is chosen in the exploitation mode
or a random action is taken in the exploration mode. For
small and discrete state and action space, this can be done
by using a simple table. However, for large and continuous
state and action spaces, it is impossible to store the table
directly. This is the case for our problems.
Since deep neural networks have shown great poten-

tial in function approximation, it is possible to replace the
state-action-reward table with a deep neural network. This
technique, called Deep Q Network (DQN), has been used
for solving problems with a large continuous state space [49].
In the DQN algorithm, a deep neural network is used to esti-
mate the reward for each discrete action under a given state.
At each step, the agent chooses the action with the maxi-
mum estimated reward. Though DQN shows great potential
for solving problems with large state spaces, it can only
solve problems with discrete and low-dimensional action
spaces. In our case, the action space is the traffic split
values, which is continuous. For problems with continu-
ous action space, DQN cannot be directly applied because
the action is chosen based on discrete maximization of
the estimated reward. Though the continuous action space
can be discretized, the number of actions will increase
exponentially with the number of degrees of freedom.
For a continuous action space, the preferred approach is
to use Deep Deterministic Policy Gradient (DDPG) [23].
DDPG comprises of two neural networks to determine the
optimal action. An actor network determines the optimal
action for a given state and a critic network estimates
the reward for a given state-action pair. The actor is
trained with the policy gradient provided by the critic
network. Without special parameter tuning, DDPG has
shown promising results on various continuous control
problems [23]. However, DDPG is applicable when the
action space is unconstrained and our problems have several
constraints.
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A. ENFORCING CONSTRAINTS
In our case, the action space comprises of traffic splits and is
constrained both by the simplex constraint (sum of the splits
equals one) as well as non-negativity constraints. In addi-
tion, as stated earlier, there may be policy constraints that
have to be enforced. Therefore, it will be convenient to use a
method where it is easy to enforce constraints on the action
space. A technique that is suitable for these types of problems
is the Critic Only Reinforcement Learning (CORL) [50].
Unlike DDPG that uses two neural networks, the critic
network for estimating rewards and an actor network for
determining the optimal actions, CORL trains only a critic
neural network. The action or policy can be derived directly
from the critic network by determining the action that mini-
mizes the estimated cost provided by the critic. While solving
the optimization problem we can enforce constraints on the
solution space. There are two ways to enforce the simplex
constraints.
• Enforcing Constraints Using Softmax: The standard
approach to enforcing simplex constraints in a neural
network is to use the softmax function. The softmax
function f (xi) = exi/

∑K
1 e

xk is enforced at the output
layer of the actor network. This ensures that sum of
the probability over all the actions is one. However,
the softmax function does not fully cover the entire
action space. For example, the softmax function cannot
set one of the outputs to one and all other outputs to
zero. However, the softmax function is simple to imple-
ment in a neural network and works reasonably well in
practice to enforce simplex constraints.

• Enforcing Constraints Using Projection or Frank-Wolfe:
An alternative approach is to start off with a feasible
operating point that satisfies all constraints (but may not
be optimal). Then the constraints are explicitly enforced
by either projecting the gradient or by the projection free
Frank-Wolfe method to ensure that the new operating
point does not leave the feasible region. We show that
by combining CORL with the Frank-Wolfe algorithm,
we obtain rapid convergence to the optimal solution.
To the best of our knowledge, this is the first use of
Frank-Wolfe in CORL.

B. TOMOGRAPHY AND LOAD DISTRIBUTION IN DDPG
AND CORL
For DDPG and CORL, the tomography module and load dis-
tributor correspond to different parts of the architecture. For
both DDPG and CORL, the tomography module is the part of
the critic network that measures the effect of a given action.
The actor network serves as the load distributor in DDPG.
In CORL where there is no actor network, the critic network
along with the constraint enforcement module acts as the load
distributor. During each interaction with the environment, the
critic network estimates the best possible action, gets the cor-
responding reward from the environment using tomography,
and learns from the reward-action pair. By directly serving
as both the load distributor and the reward estimator, the

critic network is able to probe the black box network more
efficiently. According to our results, CORL converges faster
and performs better than DDPG in most cases.

V. CRITIC ONLY REINFORCEMENT LEARNING
METHODS FOR TRAFFIC SPLITTING
We describe the Critic Only Reinforcement Learning
(CORL) algorithm as applied to our problem in more detail.
First, we outline CORL where the simplex constraints are
enforced using a softmax layer. Since typical neural networks
for classification tasks come equipped with the softmax
function, this algorithm is easy to implement and per-
forms reasonably well in terms of delay minimization on
the topologies tested. Next we briefly outline the Frank-
Wolfe algorithm that is used to enforce the constraints. The
Frank-Wolfe based approach can be used to enforce lin-
ear constraints as long as we can solve a linear optimization
problem over these constraints. In the case of the simplex and
non-negativity constraints, the linear programming problem
is trivial to solve, and this makes the Frank-Wolfe approach
extremely attractive.

A. DEFINITION OF BASIC CONCEPTS
We first define the basic components of reinforcement learn-
ing in the traffic splitting and segment routing settings. In
these problems, the state is the original traffic demand vector
t in the traffic splitting case, or the traffic demand matrix T
in the segment routing scenario. The RL agent has no knowl-
edge of the topology. The action is A in traffic splitting or
B in segment routing. The environment is the network for
data transmission. During each interaction with the envi-
ronment, the RL agent receives an observation of the state,
and takes an action. The action is executed through the envi-
ronment; finally the agent receives a reward. The reward
is the negative of the average delay over the system after
each interaction, so the agent aims at minimizing the aver-
age delay. Since the change of traffic splits is unlikely to
impact the volume of traffic demand, there is little correla-
tion between the actions and the change of the environment,
so instead of using a total discounted reward, the negative of
average delay after each interaction is used as the reward. In
addition, in our experiments, the collected traffic traces are
replayed, so the state transitions are completely defined by
the dataset. The duration of each interaction is determined
by the sampling interval of the traffic demands.

B. CRITIC ONLY REINFORCEMENT LEARNING
The CORL algorithm has a critic neural network Q(s, a|θ),
where s is the state, and a is the action. θ is the parameter for
the neural network. The critic network estimates the reward
for a given pair of state and action. A suitable action given
a state can be derived by performing gradient descent with
the critic. The CORL method is described in Algorithm 1.
Note that for the problem of traffic splitting, the choice
of action has no impact on the transition of states, since
the traffic demands depend solely on the users. So instead
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Algorithm 1 CORL Algorithm

1: Randomly initialize critic network Q(s, a|θQ) with
weights θQ.

2: Initialize target network Q′ with weights θQ
′ ← θQ.

3: Initialize replay buffer R.
4: for t = 0, . . . ,T do
5: Collect traffic demand st from the system.
6: Generate one batch of random traffic split vectors

v0, . . . vN .
7: Enforce the constraint by setting ai = f (vi)
8: Set v = argminvi Q(st, f (vi)|θQ′)
9: for k = 0, . . . ,K do
10: Update v: v← v+ γ∇vQ′(st, f (v)|θQ′).
11: end for
12: Execute traffic split a = f (v).
13: Collect information from the black box network and

estimate the average delay ct.
14: Store traffic demand, traffic split and average delay

(st, at, ct) in R.
15: Sample a minibatch of M buffer samples (si, ai, ci)

from R.
16: Update critic by minimizing the loss: L = 1

M

∑
i(ci−

Q(si, ai|θQ))2. In this case the critic is also the tomog-
raphy module and it is capable of emulating the
network.

17: Update the target network: θQ
′ ← τθQ + (1− τ)θQ

′
.

18: end for

of maximizing the discounted reward, at each time, only
the current reward is maximized. Standard CORL is used
for maximization. Since our objective is to minimize mean
delay, we maximize the negative of the mean delay.
Similar to DDPG [23], we use the “soft” update mecha-

nism for the critic network. A copy of the critic network is
created as the target critic network Q(s, a|θ). The weights of
the target network is updated slowly according to the learned
critic network: θQ

′ ← τθQ+ (1− τ)θQ
′
with τ � 1. At the

beginning of the experiment, both networks are initialized
with the same random weights. A fixed length replay buffer
is used to store past action, state and reward data for training.
At the beginning of each time slot, a batch of random vec-
tors that correspond to traffic splits v0, . . . , vN is generated.
The softmax activation function f (xi) = exi/

∑K
1 e

xk is used
on the corresponding elements of v to enforce the simplex
and non-negativity constraints. An initial split is selected
by picking the vector with the lowest estimated cost. Then
the action is optimized for K iterations using the gradi-
ent provided by the target critic network. Finally the traffic
split is executed and a reward is estimated from the envi-
ronment. After each interaction with the environment, the
original demand, traffic split and average delay is stored in
the buffer. A minibatch of data is selected from the buffer to
update the critic target by minimizing the MSE of the esti-
mated average delay. At the end of each time slot, the target

Algorithm 2 Frank-Wolfe
1: Pick an arbitrary x0 ∈ D
2: for k = 0, . . . ,K do
3: Compute z: = argminz∈D〈z,∇f (xk)〉
4: xk+1 = (1− γ )xk + γ z, γ = 2

k+2
5: end for

critic network is “soft” updated. Note that for the problems
we consider in this paper, the states are represented by a
traffic demand matrix. Since the action taken by the agent
has no impact on the traffic demand, so the agent is trying to
minimize the average delay at current time. We now outline
the Frank-Wolfe algorithm in general and then show how
we incorporate it into CORL.

C. THE FRANK-WOLFE ALGORITHM
The Frank-Wolfe algorithm [13], [51] was proposed to solve
convex optimization problems over linear polytopes. The
optimization problem that we want to solve is

min
x∈D

f (x), (3)

where D is a linear polytope. The Frank-Wolfe algorithm
starts off at an initial feasible point. If the polytope D is
complicated, then finding a feasible point itself is non-trivial.
For our problem, any arbitrary set of traffic splits is feasi-
ble. The algorithm iterates through a sequence of feasible
points approaching the optimal solution. At each step of
the algorithm, the non-linear objective function is linearized
at the current feasible point. Next, a linear programming
problem is solved with this linear objective function over
the polytope D. This solution will be an extreme point of
D. We then move along the straight line from the current
feasible point to the current optimal extreme point. We can
either perform a line search to determine the optimal point to
move to or we can use a step length function that guarantees
convergence. We use the second approach. A description of
the algorithm is given in Algorithm 2. The solution at step
k satisfies f (xk) − f (x∗) ≤ O( 1

k ), where x∗ is the optimal
solution. In [52], the authors show that even with noisy esti-
mates of the gradient, the Frank-Wolfe based method can
achieve a bounded approximation of the optimal solution
for several types of linear polytopes. We now show how to
incorporate the Frank-Wolfe algorithm into CORL. We call
this algorithm CORL-FW.

D. CRITIC ONLY REINFORCEMENT LEARNING WITH
FRANK-WOLFE OPTIMIZATION
We now outline CORL-FW, which combines Frank-Wolfe
with CORL. In the standard Frank-Wolfe algorithm, the gra-
dient of the non-linear objective function is computed at the
current operating point. Since the network is opaque, we
do not know the objective function. Therefore, we use the
critic network to provide the estimate of the gradient for
the Frank-Wolfe method. The linear programming problem
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Algorithm 3 CORL-FW Algorithm

1: Randomly initialize critic network Q(s, a|θQ) with
weights θQ.

2: Initialize target network Q′ with weights θQ
′ ← θQ.

3: Initialize replay buffer R.
4: for t = 0, . . . ,T do
5: Collect traffic demand st from the system.
6: Generate one batch of random traffic splits a0, ... aN

from the action space D.
7: Set a = argminai Q(s, ai|θQ′)
8: for k = 0, . . . ,K do
9: Compute z := argminz∈D〈z,∇aQ′(s, a|θQ′)
10: a← (1− γ )a+ γ z, γ = 2

k+2
11: end for
12: Execute traffic split a.
13: Collect information from the black box network and

estimate the average delay ct.
14: Store original demand, traffic split and average delay

(st, at, ct) in R.
15: Sample a minibatch of M buffer samples (si, ai, ci)

from R.
16: Update critic/tomography module by minimizing the

loss: L = 1
M

∑
i(ci − Q(si, ai|θQ))2.

17: Update the target network: θQ
′ ← τθQ + (1− τ)θQ

′
.

18: end for

is trivial to solve for both the representative problems. In
the case of egress picking, the linear programming problem
is separable over the different prefixes and in the traffic
engineering problem the linear program is separable over
different traffic source-destination pairs. Once the optimal
solution is determined, the new traffic splits are computed
by using the step length shown in Algorithm 2. Simulation
results show that even with estimated gradients CORL-FW
can achieve close to optimal solutions. Details of CORL-FW
is shown in Algorithm 3.

VI. SIMULATION RESULTS
We test the performance of our methods1 on real topologies
from the Rocketfuel project [53] and Abilene dataset [4].
Note that this explicit knowledge of topologies is used only
for evaluation purposes, i.e., to have the ground truth for
evaluation purposes. Clearly, the traffic sources do not use
this information in their load distribution decisions, since
from their perspective, the network to which they are sending
traffic is a black box, and the only usable information about
the network is that inferred from external probing (network
tomography). The delay between source node i and desti-
nation node j, Di,j(A) or Di,j(B), consists of queuing delay
and propagation delay on each link along the path. We use
a common non-linear model [54] from queuing analysis

g(x) =
{ w

1−x/C + p If x < C
D+ p If x ≥ C (4)

1. Code available at https://github.com/shenghexu/CORL.

to model the delay on a given link. Here w = 1/μ, μ is the
service rate, x is the link load, p is the fixed propagation
delay, C is the capacity of the link and D is a fixed conges-
tion delay if the utilization of the link gets close to or greater
than its capacity. Depending on the scenario, the value of
C and w may be calculated differently, In our experiments,
we set D to one second, so no link will have a queuing
delay greater than one second. When the link load is less
than the link capacity, our delay function follows the M/M/1
model which is widely used in delay analysis including the
5G core network [55], congestion control [56] and rate allo-
cation [57]. When the delay is greater than the link capacity,
D+ p simulates the time-out delay. Again, it is worthwhile
to stress that explicit knowledge of these parameters is used
only for evaluation purposes. This knowledge is not used for
determining optimal load distribution.
To model realistic network traversal, for all the experi-

ments, we assume ECMP is used throughout the black box
network. So the overall end to end delay is a weighted
sum of the delay from all the paths between the source and
destination node.
For both sets of topologies, we evaluate the effectiveness

of our load distribution scheme for the two representative
use cases (of routing through black box networks) discussed
in detail earlier. For egress picking problems, all the neural
networks for DDPG, CORL and CORL-FW are simple fully
connected networks, with two hidden layers of size 256. For
the case of segment routing, all the neural networks have
two hidden layers of size 512 and 256. The size of the first
layer is increased to cover the wider range of delays caused
by congestion.
For the DRL methods, to select a suitable initial point,

1000 random initial points are first evaluated with the critic
networks, then the best one is selected as the initial point.
All the DRL agents maintain a replay buffer with the 1000
most recent states, actions and rewards. After each interaction
with the environment, a batch of 32 samples are used for
the update of the neural networks. A learning rate of 0.001
is used for all the neural networks. For CORL, we use the
Adam optimizer for optimization of the action with a learning
rate of 0.05.
For CORL, at each time the optimization is run for 100

iterations. For CORL-FW, we set the stopping criteria to
be either reaching 10 steps of optimization or when the
Euclidean distance between D and xk is under 0.00001.
To derive a close lower bound, for the Frank-Wolfe (FW)
method we assume that optimization is performed with accu-
rate gradients for 100 iterations or until the distance between
D and xk is under 0.00001.

A. RESULTS OF EXPERIMENTS WITH ROCKETFUEL
TOPOLOGIES
We first show results comparing the performance of the dif-
ferent load distribution methods when each of five Rocketfuel
topologies is used as the topology of the black box network.
Details of the five topologies are shown in Table 1.
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FIGURE 9. Egress Picking.

FIGURE 10. Egress Picking with Four Egress Points.

TABLE 1. Rocketfuel topologies.

Since real traffic matrices (TMs) are not available for
these five topologies, we randomly generate TMs using the
gravity model [58]. The gravity model assumes demand pij
from node i to node j is,

pij = pini p
out
j (5)

where pini and poutj can be randomly generated from an expo-
nential distribution for each node. To model the correlation
across time, we assume that for the duration of the experi-
ment, at each time each pini and poutj is drawn from a Gaussian
distribution. In our experiments, we first generate the mean
values for each pini and poutj , and scale up the mean values
so that the maximum link utilization is over 90 percent (to
effectively illustrate the delay impact). Then at each time
slot, the pini and poutj are multiplied with factors randomly
generated from a Gaussian distribution with mean value of
1 and std of 0.01.
For egress picking, we run ten experiments on each topol-

ogy. For each run, 20 egress points are randomly selected;
these are egresses from the sending ISP and implicitly cor-
respond to the ingresses into the downstream black box
network. 20 other nodes in the black box network are ran-
domly selected as destinations – these correspond to true
destinations or egresses from the black box network toward
the final destinations. Again note that knowledge of these
exit nodes from the black box network is for evaluation
purposes only. Egress picking is performed by the sending

ISP only for 20 egresses from its network. The black box
network also has background traffic which we generated
from the randomly chosen traffic matrix. Figure 9 shows,
for each topology and time instant, the reduction in average
delay through the black box network (between its ingress
nodes and destination nodes) for ten runs.
For all the five topologies, CORL-FW achieves around

60 percent average delay reduction, with a gap of less than
20 percent from the lower bound. CORL-FW also achieves
the highest performance improvement in the least amount
of time. CORL achieves around 50 percent average delay
reduction. While DDPG also reduces the average delay, it
performs worse than the CORL methods. The naive heuris-
tic of equally splitting traffic amongst the egress points
hardly improves and sometimes even degrades performance.
The results clearly show the effectiveness of using network
tomography combined with learning-based decision mak-
ing. Despite the network being a black box, considerable
performance improvement is possible by judicious load
distribution using only externally observable information.
To evaluate the performance of the methods on large scale

problems, we run another experiment in which four egress
points are randomly selected, and all the other nodes are
chosen as destinations. In this case there are 100, 83, 157, 75
and 134 prefixes for topology rf1221, rf1755, rf3257, rf3967
and rf6461, respectively. Results are shown in Figure 10.
With less egress points to choose from and more prefixes,
the performance gains are lower than the previous case.
However the CORL methods still perform consistently better
than DDPG. With larger problem sizes, the performance of
CORL is very close to CORL-FW. This may be because the
hidden layers of the NNs is kept at 256, and the capacity
of the NNs is bounding the performance of CORL-FW.
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FIGURE 11. Distributed Egress Picking.

FIGURE 12. Segement Routing.

Next, we test the performance when different sending ISPs
simultaneously send traffic (using independent egress pick-
ing on their networks) to a common black box network.
We assume four service providers are sending traffic using
optimized egress picking. Each ISP picks 20 egresses for
traffic toward 20 prefixes. One exception is for rf3967 where
each service provider uses 19 egress nodes and 19 prefixes.
Results are shown in Figure 11.
For this distributed egress picking, CORL-FW outperforms

all other methods in terms of average delay reduction and
efficiency. For DDPG the overall performance actually oscil-
lates with time – this may be caused by the instability of the
agents. The DDPG agents possibly were not able to learn the
suitable policies to cooperate with others and were compet-
ing over the same link resources. This again shows the gains
that can be achieved by combining the limited tomography
derived information with learning-based decision making,
even in a distributed setting with independent decision mak-
ers, as would be the case when multiple autonomous systems
independently optimize their egress picking to a common
opaque network.
For segment routing, after generating the mean values for

each pini and poutj , we scale them up so that the maximum
link utilization is over 105 percent (to show the need for
avoiding highly utilized links). Similar to egress picking,
for each topology 10 experiments are performed, with 4
randomly selected source nodes and 16 destinations. For the
middle points, we include the 4 source nodes with an option
of routing the traffic with no middle point and randomly
select 12 other nodes as possible middle nodes. Results are
shown in Figure 12. In this case, since the congested link
generates a fixed delay providing no gradient, the direct FW
approach fails to work.

Since the congested link has to be avoided by spread-
ing the traffic among certain paths, the problem of segment
routing is harder than egress picking. For segment routing,
the CORL methods achieve over 10 percent average delay
reduction on rf1221 and 50 percent on the other four topolo-
gies, while DDPG fails to improve performance on four of
the topologies.
For segment routing, we also simulate the scenario where

four service providers are simultaneously running the RL
methods for congestion avoidance. Each service provider
uses 4 source nodes, 16 middle points and 16 prefixes.
In the distributed segment routing case, as shown in

Figure 13, the CORL methods are still able to improve
overall performance across the system, while DDPG and
equal splitting fails to work in this case. Note that the
DDPG is included only for comparison purposes since it
is a widely used method. We do not advocate its use for our
purpose. Clearly, traffic engineering using segment routing
is much harder with only externally observable information.
Nevertheless, we can still use learning-based methods to
optimize performance as the experiments show.

B. RESULTS OF EXPERIMENTS ON THE ABILENE
DATASET
To further validate the performance of our methods with
real traffic demands, we test our methods on the Abilene
dataset [4]. The Abilene dataset consists of about 40,0000
measurements of network traffic matrices (TM) on a topol-
ogy with 12 nodes. The capacities of all the links in this
topology are known, however the propagation delays are
unknown. We use the known geographical locations to cal-
culate the propagation delays p. We assume that we have
control over four of the egress points (or associated ingresses
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FIGURE 13. Distributed Segment Routing.

into the black box network) in the topology. The destinations
includes all the other eight nodes. Each of the TMs is an
average of traffic demands over 5 minutes. So the results on
the Abilene dataset shows the performance of the methods
over a longer range of time, with less frequent opportuni-
ties for changing the traffic splits. To simulate a realistic
application of our methods, the TMs are replayed in time
order. For each TM the learning agent is able to perform
one splitting decision and obtain the delays between all four
egress points and eight destinations. We ran ten experiments
and each time the egress points and prefixes are selected
randomly.
As for the Rocketfuel topologies, for comparison, we also

test the performance of DDPG [23]. For DDPG, CORL and
CORL-FW we use NNs with two hidden layers of size 256.
For all methods a replay buffer with size 1000 and learning
batch size of 32 is used. Soft update is adopted for better
performance stability [59]. Figure 15 shows the performance
of the two learning methods on the Abilene dataset. The
delays are moving averages of 100 samples. For CORL and
CORL-FW each action selection step consists of 100 iter-
ations of gradient descent on the actions space, using the
Adam optimizer [60]. It can be seen that the Critic-Only
method achieves lower delay with more robust performance
compared with DDPG. To show the effectiveness of CORL
methods, we also run a direct FW simulation. In this case
we assume all the information about the link characteristics
and other traffic are known. A step size of 2

2+k is used and
we set the stopping criteria to be either reaching 100 steps
of optimization or the distance between D and xk is under
0.00001. The FW method converges before 100 iterations
for over 90 percent of the cases. So it serves as a very close
estimate of the lower bound of the average delay.

C. ANALYSIS OF THE QUALITY OF SOLUTIONS
To better understand the solution qualities of the different
methods, we saved the traffic splits from CORL, CORL-FW,
DDPG and direct FW for the egress picking simulations in
Figure 9. The traffic splits of the last 10 iterations in each
topology are used for comparison. Since the FW method
achieves the optimum solution, it is used for MSE compu-
tation for the traffic splits of the algorithms. DDPG, CORL
and CORL-FW achieve MSE of 0.0891, 0.0715 and 0.0689,
respectively. The relatively large MSE of DDPG’s traffic

FIGURE 14. Empirical CDF of Traffic Splits.

splits indicates that its solutions are further from the opti-
mum. While CORL and CORL-FW achieve very close MSE
values, according to the empirical CDF in Figure 14, CORL
almost never gives a traffic split of 1, meaning that it never
assigns a demand completely to a single egress point. By
contrast for FW, which is the optimal solution, around 5% of
the time a demand is completely assigned to a single egress
point. This may have been caused by the softmax function
used in CORL, which is preventing it from getting close to
the optimal solution.
While CORL-FW displays considerable improvement in

Figure 9, it performs similar to CORL in Figure 10 and
Figure 12. This is likely because that in the latter cases the
action space is much larger, consequently the agents have
not found solutions close enough to the optimum, so the dif-
ference between a 97% assignment and a 100% assignment
does not make much impact on performance.

D. IMPACT OF LINK FAILURES
We study the impact of link failures in the black box network.
Though the black box network will have its own restora-
tion mechanisms (such as IP or MPLS fast re-route) to
handle link failures, clearly link failures can result in loss
of network capacity and consequent delay increases. When
external probing shows a delay increase, our decision making
algorithms react to mitigate the delay increase. We perform
experiments to study how well our algorithms respond to
changes in network conditions. To study the effect of link
failure, for the first 1000 samples the original topology is
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FIGURE 15. Performance Comparison on Abilene Dataset.

FIGURE 16. Performance Comparison on Abilene Topology with Link Failure.

used. Then after every 1000 samples an impaired topology
is used. The topology is generated by randomly dropping
one link from the original graph, while still keeping all the
nodes connected. Results are shown in Figure 16. In this
case CORL-FW achieves a good compromise between close
to optimum results and robust performance, showing more
stable performance after link failures.

VII. CONCLUDING REMARKS
Network tomography has been extensively studied as a
means to infer pertinent network characteristics from external
observations. With the growing use of network virtualization
and deployment of overlay technologies such as SD-WANs,
the use of network tomography by overlay networks to infer
characteristics of the underlay networks is likely to grow. In
this paper, we considered the use of network tomography in
a broader context – can we combine network tomography
with machine learning based decision making for automated
performance optimization from the periphery of the network.
We considered this problem in a general setting where an

external entity that is generating traffic (such as an over the
top service provider) to a set of its clients (destinations) has
to send the traffic over a black box network (such as an
underlay) while minimizing average delay. Using learning-
based approaches for this problem poses several technical
challenges including the dimension of the solution space
and the enforcement of constraints that arise naturally in
the networking context (such as policy constraints, capac-
ity constraints, etc.). We show how these constraints can be
handled while using a deep reinforcement learning frame-
work for decision making. For two representative problems
(egress traffic picking and optimized segment routing) we
show simulation results on two widely used network topol-
ogy databases. The methods we use can be used both in a
centralized manner and distributedly by multiple indepen-
dent agents. The effectiveness of our method is illustrated
by delay reductions of as much as 60% in comparison to
standard heuristics. However, the assumptions made in the
simulation environment may limit the accuracy of the sim-
ulation results. The performance of the methods could be
further verified in testbed or real systems. We also believe
that the methods proposed in this paper have many other
applications. The methods could also be used to maximize
throughput or minimized jitter in the load distribution prob-
lems. They could also be used for the problem of power
allocation in wireless networks [61], which can be formu-
lated as a RL problem with a constrained continuous action
space.
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