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ABSTRACT Network traffic matrix (TM) is a critical input for capacity planning, anomaly detection and
many other network management related tasks. The TMs are often computed from link load measurements.
The TM estimation problem is the determination of the TM from link load measurements. The relationship
between the link loads and the TM that generated the link loads can be modeled as an under-determined
linear system and has multiple feasible solutions. Therefore, prior knowledge of the traffic demand pattern
has to be used in order to find a potentially feasible TM. In this paper, we consider the TM estimation
problem with limited prior information. Unlike previous methods that require past measurements of
complete TMs, which are hard to obtain or protected by regulations, our method works even if only the
distribution of TMs is known. We develop an iterative projection based algorithm to solve this problem.
If large number of past TMs can be measured, we propose a Generative Adversarial Network (GAN)
based approach for solving the problem. We compare the strengths of the two approaches and evaluate
their performance for several networks using varying amounts of past data.

INDEX TERMS Traffic matrix, estimation, machine learning, generative adversarial networks.

I. INTRODUCTION

THEAMOUNT of traffic incident on a network is usually
captured in the form of a traffic matrix (TM). A TM

consists of the amount of traffic between each node pair
in a network. Knowledge of the TM is essential to solv-
ing networking problems including link capacity planning,
routing path design and network anomaly detection [1]–[3].
However, it is not easy for a network operator to directly
measure the point to point traffic in a network. The most
commonly used method to estimate the TM is to use link
load measurements to infer the TM. The amount of traffic
on a link is relatively easy to measure or estimate using
traffic monitoring mechanisms like NetFlow.
However, previous methods for TM estimation assume

that a certain amount of past TMs are available for algorithm
design, model training or estimation. Nowadays, with larger
network sizes and increasing privacy protection rules [4],
this assumption is no longer valid. In fact, even papers in
2019 and 2020 [5]–[9] are still using the Abilene dataset [10]
and GÉANT dataset [11], which were created over a decade

ago. Technical issues and legal regulations make it diffi-
cult to create TM datasets from current networks. As stated
in [11], even for the 23 node GÉANT dataset, hundreds of
gigabytes of Netflow data had to be stored to derive the TMs.
For large scale networks with hundreds or thousands of end
points nowadays, up to thousands of terabytes of data need
to be stored to generate sufficient data for algorithm design
and model training. Even if the full TMs can be measured,
it is difficult to share the TMs. Several U.S. Federal laws
prohibit or restrict network monitoring and the sharing of
records of network activity [12]. In the research community,
there has also been ethical concerns over publications regard-
ing traffic data [13]. In addition, many European countries
have strict regulations on user privacy protection, which pro-
hibits moving data between certain countries [4], [14]. For
large cross-country networks, this makes it even harder to
obtain a full TM. In this paper, we consider the TM esti-
mation problems in the practical setting where full TMs
cannot be used for estimation purposes. We consider two
specific cases, in the first case, full TMs cannot be measured,
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only the distribution of the TMs is known. We propose a
cyclic projection based method to utilize the distribution con-
straint. In the second case, a few TMs can be measured, but
they cannot be directly used for the estimation of current
TM. We proposed to use a Generative Adversarial Network
(GAN) based method to improve estimation accuracy, while
protecting users’ privacy.
In a network with n nodes, the size of the TM is O(n2),

whereas the number of links in the network is typically
O(n). Therefore, the problem of determining a TM from
link load measurements is deriving a solution to an under-
determined system of linear equations. This system has an
infinite number of solutions even if we restrict the solutions
to be non-negative. Therefore some additional information
has to be used to restrict the solution space to this system
and obtain a single TM. This additional information or extra
knowledge typically takes the form of assuming some spatial
or temporal correlations about the entries in the TMs. We
give two examples of these assumptions, one spatial and one
temporal.
• Gravity Models where a weight is associated with each
node in the network and the amount of traffic between
two nodes is proportional to the product of the weights.

• Proportional Splitting where it is assumed that the traf-
fic from a given node is split proportionally to different
destinations and these proportions are time invariant.
Data can be collected across n time periods and jointly
used to solve for the proportions.

Another class of assumptions is traffic sparsity in cer-
tain transform domain. See [10], [15]–[24] for examples of
different assumptions for deriving a unique TM from link
measurements.
In this paper, we consider constraints on the TM estimation

problem that arises from TM observations. If the operator
has measured a few TMs on the network of interest or some
similar network, then it is reasonable to restrict the estimated
TM to have properties similar to the measured or observed
TMs.
Distribution Constraint: It has been observed in prac-

tice [25]–[27] that the point-to-point traffic in a network is
generally not uniform. There are some large traffic source-
destination pairs, and several small traffic source-destination
pairs. Modeling the demand size variation as a distribution,
the objective of the TM estimation problem is to determine
a TM that achieves the measured link loads and follows
the given distribution. In practice, the distribution model
can be selected using hypothesis testing [28]. The value of
the parameters can be obtained from maximum likelihood
estimations [29].
One of the advantages of the distribution constraint is that

it can be used when limited or partial measurements of TMs
is available. Since we do not require full TMs to derive
a distribution, measurements of demands between different
source-destination pairs from different time can be combined
to fit a distribution. In Section VII we show that fitting a
distribution require much less data, reducing the cost and

complexity of TM measurements. In addition, fitting a dis-
tribution only requires the value of the demands, the demands
can be shuffled and anonymized before they are shared, help-
ing the network operator better protect users’ privacy and
meet regulations.
Similarity Constraint: More generally, if we are given a

previously observed set of TMs, the objective of the TM esti-
mation problem is to derive a TM that achieves the given
link loads and is “similar” to the previously observed TMs.
In this case, it is possible to capture more complex spa-
tial correlations between different source-destination pairs
in the TM. The problem of determining a solution to an
under-determined linear system has been studied in the signal
processing literature [30]. One way of getting unique recov-
ery is to assume sparsity and the objective is to determine
a solution to the linear system with the minimum number
of non-zero components or a solution that minimizes the
L1-norm. More recently, there has been work to construct a
solution to a linear system that is close to the range space of
a generative model[31]. The generative model can be speci-
fied by a Generative Adversarial Network (GAN) [32]–[34]
or a Variable Autoencoder [35]. We make use of these new
approaches to derive solutions to the TM estimation problem.
In the mean time, similar to other applications of GANs for
private data sharing [36], [37], training and sharing a GAN
can avoid sharing of the original TMs, meeting the privacy
protection regulations.

A. OUR CONTRIBUTIONS
In this paper we focus on the practical setting where past
TMs can not be directly used for TM estimation, we propose
two methods to solve the TM estimation problem.

• In the case where only the empirical distribution of
the TMs is available, we develop an iterative projec-
tion based method to find a solution to the system
Ax = b where the solution x satisfies the dis-
tribution. To our knowledge, this is the first work
that determines the solution of an under-determined
system where the solution has to satisfy a distribution
constraint.

• For the case where there are many prior TMs, but they
can not be directly shared due to regulations, we develop
a GAN based approach that first trains a GAN to learn
the characteristics of these TMs. Then the GAN can
be shared to derive a solution to the system that is
“similar” to the previously observed TMs.

The rest of the paper is organized as follows. Section II
briefly summarizes related work. In Section III we formu-
late the problem. The projection based method is proposed
in Section IV. In Section V and Section VI we intro-
duce the GAN based TM estimation method. Experiment
setup is included in Section VII. The performance of the
methods is evaluated in Section VIII. In Section IX we
draw the conclusions and propose directions for future
work.
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II. RELATED WORK
Traffic matrix estimation, also called network tomography, is
an extremely important first step for solving several network
design and network management problems. This problem has
been studied extensively under different assumptions about
traffic demand information and estimation.
An example of research exploiting temporal correlation

to estimate the TM is [15], where it is assumed that the
traffic demands over time follow Poisson distribution and
this information is used to derive a TM.
Several papers [10], [16]–[18] consider using spatial char-

acteristics of the TMs to improve the recovery results.
Zhang et al. [10] proposed gravity models to solve the
problem of network tomography. In [18], the authors
proposed an information-theoretic method for network
tomography.
Later works [19], [23], [24] consider using both spatial

and temporal information for better recovery results. A com-
pressive sensing based method called Sparsity Regularized
Singular Value Decomposition (SRSVD) was introduced
in [19]. In addition to link measurements, measurements of
demands between some of the origins and destinations are
assumed to be available. Measurements of previous TMs are
also used to improve estimation accuracy. The SRSVD uti-
lizes sparsity of TMs in transform domain for recovery. There
are also other methods [20]–[22] that utilize low rank or
sparse characteristics of TMs for TM completion. Instead of
forming sampled TMs into a 2D matrix, [23], [24] proposed
to form TMs directly into 3D tensors. In this way the peri-
odicity of certain traffic demand features can also be utilized
by tensor completion methods for traffic demand estimation.
More recently, deep neural networks (DNNs) [38], [39]

have achieved some of the state-of-the-art results in areas
including image inpainting [40] and image compressive sens-
ing [31]. Since TM estimation is also a similar problem, neu-
ral networks have also been used in this area. In [41], [42]
the authors also proposed to use neural networks for TM
completion.
All of these previous methods rely on temporal or spatial

correlation for better estimation results. However, to utilize
the temporal or spatial correlation, it is essential to have past
measurements of the TMs. As stated in Section I, for current
networks it is often impossible to obtain these measurements.
In this paper we only assume that the estimation results
should be similar to the previous TMs or follow the same
distribution. Our method does not require direct access to the
TMs. To our knowledge, this problem has not been addressed
in the literature. Note that the other methods mentioned
above will not work if only a distribution constraint is given.

III. PROBLEM DEFINITION
Assume that the network is represented as a directed capac-
itated graph G = (V,E) with n nodes V and m directed
links E. Assume that we are given the set of link weights
w = (w(e1),w(e2), . . . ,w(em)). The traffic in the network is
specified in terms of a n×n TM between each pair of nodes

in the network. The traffic between source node s and des-
tination node d is represented by xs,d. In general, there may
not be traffic between all source-destination pairs. We use
p to denote the number of source-destination pairs between
which there is non-zero traffic. In the rest of the paper,
instead of viewing the traffic as a matrix, we represent the
traffic as a p-vector x. For a given set of link weights w, traf-
fic is routed between nodes s and d along the shortest path
between s and d. We assume that ties between shortest paths
are broken arbitrarily. It is easy to extend this approach to the
case where traffic is split between equal cost paths (ECMP).
Let S(e) denote the set of source destination pairs that are
routed on link e. A source-destination pair (s, d) ∈ S(e) if
link e is on the shortest path from s to d. Let b(e) denote
the measured flow on link e. The TM estimation problem is
the determination of xs,d given the link load measurements
b(e). Note that the traffic flow on link e

b(e) =
∑

(s,d)∈S(e)
xs,d. (1)

We create a routing matrix A with m rows, one corresponding
to each directed link, and p columns, one corresponding to
each source-destination pair. For the case of ECMP routing,
the elements in the matrix can be either zero of a fraction
of the traffic going through the link. In the case of shortest
path routing, we set

Aij =
{

1 if M(j) ∈ S(i)
0 Otherwise

(2)

where M is the mapping from row index i to a source-
destination pair (s, d). The objective of the TM estimation
problem is to determine a non-negative solution to the system
Ax = b where A is an m × p routing matrix and b is the
link load vector. If there is no additional information, the
number of source-destination pairs will be much more than
the number of links, then this system has an infinite number
of solutions since m � p. Therefore, we impose additional
constraints on x in order to narrow down the solution space.

A. DISTRIBUTION CONSTRAINT
In order to motivate the distribution constraint, we consider
the TM estimation problem on a network (NET82) with
82 nodes and 296 directed links. Each TM comprises of
6724 = (82 × 82) potential demands. The NET82 dataset
is a real network with available measurements of the real
TM. In the TM that was measured, there are 1939 non-zero
demands. We show a plot of demand sizes on the left side
of Figure 1.
Note that there are a few large demands and several

medium to small demands. The right hand side of Figure 1
shows the cumulative distribution function of the normal-
ized demand sizes where the demands are scaled such that
the largest demand is one unit. Note that cdf is modeled
well using a power law distribution x0.01. The same pat-
tern is observed in 4 other demand matrices on the same
network. Therefore, when estimating a TM on this network
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FIGURE 1. Plot of the Demands and the normalized Empirical Distribution Function.

FIGURE 2. Two Different Traffic Matrix Estimates for the Same Link Load
Observation.

from link load measurements, we would ideally like this TM
to have the same pattern of distribution. Assume that we have
observed a link load vector b from an unknown TM and we
want to find a solution for the system Ax = b, x ≥ 0. We
show two alternative solutions to this system in Figure 2.
In the solution on the left, the TM comprises of uniformly

distributed demands. In the solution shown in the right hand
side of the Figure 2, the normalized demands follow the
power law x0.01. It is much more likely, given information
about the demand distribution that the actual data looks like
the traffic distribution on the right.
We want to caution the reader that even with this addi-

tional constraint on the demand size distribution, the TM
reconstruction may not be unique. Since the total traffic in
the network can change significantly over time, we have to
normalize the demands before applying the distribution con-
straint. In order to formally define the distribution constraint,
we first define the the empirical cumulative distribution func-
tion and the normalized empirical cumulative distribution
function for a given data set.
Definition 1: Given a set of data points y1 ≤ y2 ≤ · · · ≤ yn

drawn from a distribution, the empirical cumulative distri-
bution function (empirical cdf) of these points is a step
function that jumps up by 1

n at each of the n data points.
Its value at any specified z, is the fraction of observations
of the measured variable that are less than or equal to z.
The normalized empirical cumulative distribution function
(normalized empirical cdf) of these points is a step func-
tion that jumps up by 1

n at each of the n scaled data points
y1
yn

,
y2
yn

, . . . , 1. Its value at any specified z ≤ 1, is the fraction
of observations of the measured variable that are less than
or equal to z.

The domain of the normalized empirical cdf of a set of
data points is [0, 1]. Assume that the observed TM has a

normalized empirical cdf of G(z) for 0 ≤ z ≤ 1. As part of
the solution procedure, we have to generate random variables
having a normalized empirical cdf of G(z). A random vari-
able having cdf F(z) can be generated easily using standard
random variable generation procedure. We want to use this
process to generated random variables having a normalized
empirical cdf of G(z). The following result relates the cdf of
a random variable to the normalized cdf of n i.i.d. samples
of the random variable.
Theorem 1: Let X1,X2, . . . ,Xn represent independent,

identically distributed samples from a probability density
function f (x) (with the corresponding distribution function
F(x)). Let

Yj = Xj
maxi Xi

(3)

Then, Yj are distributed with cdf

G(y) = n
∫

t
F(yt)[F(t)]n−2f (t)dt, 0 ≤ y ≤ 1. (4)

Proof: Given X1,X2, . . . ,Xn i.i.d. from a distribution
function F(x), we let

M = max
1≤i≤n Xi. (5)

Then

Pr[M ≤ t] = Pr[Xi ≤ t, ∀i] = [F(t)]n, (6)

with the corresponding density function pM(t) =
n[F(t)]n−1f (t). We set

Yj = Xj
M

, 1 ≤ j ≤ n. (7)

Then

Pr
[
Yj ≤ y

] =
∫

t
Pr

[
Xj ≤ yt|M = t

]
pM(t)dt

=
∫

t
Pr

[
Xj ≤ yt|Xj ≤ t

]
pM(t)dt

=
∫

t

Pr
[
Xj ≤ yt

]

Pr
[
Xj ≤ t

] pM(t)dt

= n
∫

t

F(yt)

F(t)
[F(t)]n−1f (t)dt

= n
∫

t
F(yt)[F(t)]n−2f (t)dt, (8)

0 ≤ y ≤ 1.

This concludes our proof.
We now give an example usage of this theorem that is

also very useful in practice to generate samples with the
desired normalized empirical cdf. In many examples, the
normalized cdf of the demand sizes follows a power law
distribution with parameter α. In this case, the G(x) ∼ xα

for some specified value of α for 0 ≤ x ≤ 1. Note that
with a higher value of α, the number of larger demands will
be smaller. In the next result, we use Theorem 1 to show
that a suitable underlying beta distribution has a normalized
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power law cdf. The probability density function of a beta
distribution is given by

f (x) = Cxα−1(1− x)β−1 (9)

where C is a constant to ensure that the total probability is 1.
This distribution covers a common case. It is possible to use
the result of Theorem 1 to generate any desired normalized
empirical cdf.
Normalized Empirical cdf of Beta Distribution: If Xi ∼

B(α, 1) for 1 ≤ i ≤ n denote n i.i.d. samples from a beta
distribution with parameters (α, 1) then the distribution and
density functions of Xi are

F(x) = xα, f (x) = αxα−1, 0 ≤ x ≤ 1. (10)

Therefore from Theorem 1, the normalized cdf is

G(y) = n
∫ 1

0
F(yt)[F(t)]n−2f (t)dt, 0 ≤ y ≤ 1

= n
∫ 1

0
(yt)αt(n−2)ααtα−1dt, 0 ≤ y ≤ 1

= nαyα
∫ 1

0
tnα−1dt, 0 ≤ y ≤ 1

= yα, 0 ≤ y ≤ 1 (11)

Note that the normalized empirical cdf is independent of
n and is only a function of α. This is not true in general.
Therefore, if we need to generate n random variates hav-
ing a normalized empirical cumulative cdf of xα we do the
following:

• Generate X1,X2, . . . ,Xn independent random samples
from B(α, 1).

• Let Xmax = max1≤i≤n Xi.
• Output

X1

Xmax
,

X2

Xmax
, . . . ,

Xn
Xmax

as the set of n samples with normalized empirical cdf xα.

IV. PROJ-D: PROJECTION BASED TRAFFIC MATRIX
ESTIMATION METHOD
Kakcmarz method [43] or the Algebraic Reconstruction
Technique (ART) is a well known technique for finding a
feasible solution to the system Ax = b. Assume that there
are m rows in the matrix and p columns. Recall that each of
the m rows corresponds to a link load measurement and each
of the p columns corresponds to a demand. We can represent
the set of equations as aix = bi for i = 1, 2, . . . ,m, ai and x
are p dimensional vectors. ART is a cyclic projection tech-
nique where we start off from an arbitrary initial p-vector x.
The algorithm then projects this point onto the first constraint
a1x = b1. Projection just involves finding the closest point
to x on the hyperplane a1x = b1. This is the new point. This
point is then projected onto the second hyperplane and so
on until we reach hyperplane m. This point is then projected
onto the first hyperplane and this process is repeated in a
cyclic manner as shown in the Cyclic Projection Algorithm.

Algorithm 1 Cyclic Projection Method
1: Pick an arbitrary p-vector x.
2: for k = 1, 2, . . . ,K do
3: for i = 1, 2, . . . ,m do
4: x← x+ aiT(bi − aix)/(aiaiT)
5: end for
6: end for

Theorem 2: The Cyclic Projection Algorithm shown above
converges to a feasible solution to Ax = b after a sufficient
number of iterations.
See [43] for a proof of this result. In the description of the

cyclic projection algorithm, we refer to one iteration through
all m constraints as a cycle. This cyclic projection algorithm
can be extended directly to the case where we want to find
a non-negative feasible solution to the system Ax = b by
modifying the projection step by

x← max
{

0, x+ aiT(bi − aix)/
(
aiaiT

)}
(12)

where the max operation is a pointwise maximum. In other
words, if after computing the projection, some components
of x are negative, then we set these components to zero. More
recently randomized versions of the cyclic projection method
where the next hyperplane to project onto is picked at random
has been shown to have linear expected convergence [44].
In order to ensure that the solution satisfies the distribution
constraint, we periodically move the current solution to the a
compatible point in the distribution. This is done as follows:

• Once every t cycles, we take the current solution x and
assume that we renumber the components such that
x1 ≤ x2 ≤ · · · ≤ xp.

• We generate p random variates y1 ≤ y2 ≤ · · · ≤ yp that
have the desired normalized empirical distribution. For
instance, if we want x to have a power law distribution
with power law exponent α, then we generate p i.i.d.
samples from a beta distribution B(α, 1).

• We set xi = λyi for 1 ≤ i ≤ p for a suitably chosen
scaling parameter λ.

The scaling parameter λ is chosen to minimize the
deviation D where D is defined as

D =
m∑

j=1

(
λajy− bj

)2
. (13)

Note that D is sum of the squared deviation over all the
constraints. Using calculus, it is easy to see that the optimal
solution is

λ =
∑m

j=1

(
ajy

)
bj

∑m
j=1

(
ajy

)2
(14)

We now scale all the y values by λ and map the y variables
to the corresponding x variables, that is, xi = λyi for 1 ≤
i ≤ p. This is the new starting point for the next cycle.
The algorithm is terminated after K cycles. We can view
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Algorithm 2 Proj-D: Projection Based TM Estimation
1: Pick an arbitrary p-vector x.
2: for k = 1, 2, . . . ,K do
3: for j = 1, 2, . . . , t do
4: for i = 1, 2, . . . ,m do
5: x← max

{
0, x+ aiT(bi − aix)/(aiaiT)

}

6: end for
7: Reorder x such that x1 ≤ x2 ≤ · · · ≤ xm
8: Generate y1 ≤ y2 ≤ · · · ≤ yp with the desired

normalized empirical distribution

9: Compute λ =
∑m

j=1(ajy)bj∑m
j=1(ajy)

2

10: Set xi = λyi for 1 ≤ i ≤ p
11: end for
12: end for

this process as running the cyclic projection method with
K starting solutions having the desired normalized empirical
cdf. The overall description of the algorithm is shown below.
Proj-D assumes that the there is only enough data or

operator experience to specify the (normalized) distribution
of the demands. The projection based approach is tailor made
for the TM estimation problem with a distribution constraint,
and it outperforms the GAN based approach if we only have
distribution information in our experiment.

V. GENERATIVE ADVERSARIAL NETWORKS
The idea of using a GAN based approach to capture spa-
tial correlation in the TM was motivated by the impressive
capabilities demonstrated by GANs for generating samples
that resemble real world images [32]–[34]. In addition, GAN
based methods can also be used for data sharing with pri-
vacy protection [36], [37]. The training of a GAN involves
a game between the generator network and discriminator
network. The generator and discriminator are both neural
networks. The generator learns a mapping from random noise
to the space of the given signal. The discriminator tries to
distinguish between the real signal and the generated sig-
nal. During the game of GAN training, the discriminator
is updated by learning from the real and generated images.
The generator is updated by the gradient provided by the
discriminator so that the generator learns to generate samples
that resemble the real images.
The game between the generator T and discriminator D

can be written as the objective:

min
T

max
D

Ex∼Pr

[
log(D(x))

]+ Ex̃∼Pt

[
1− log(D(̃x))

]
(15)

where Pr is the distribution of real data and Pt is the distri-
bution of the data generated from the generator network T .

The game involved in the training process of a GAN
requires that there exists some kind of balance between the
generator and discriminator. If the discriminator is too strong
then it fails to provide useful gradient for the training of
generator. Various kinds of methods have been proposed to
stabilize the training process of GANs [33], [34]. In [34], the

method WGAN was proposed, where the Wasserstein-1 dis-
tance was used for the training of GANs. The WGAN value
function is constructed using the Kantorovich-Rubinstein
duality [45] to achieve

min
T

max
D

Ex∼Pr [D(x)]− Ex̃∼Pt [D(̃x)] (16)

The value function in WGAN makes the gradient of the critic
function with respect to its input behave better, thus mak-
ing optimization of the generator easier. However, according
to [34], to enforce the Lipschitz constraint on the critic,
the weights of the critic has to be clipped within a com-
pact space, which could lead to capacity under use and
exploding or vanishing gradients, which makes the train-
ing process unstable [33]. The authors in [33] proposed a
gradient penalty approach for the training of GANs called
WGAN-GP, which shows even better performance for the
task of image generation. In this case the new objective is

Ex∼Pr [D(x)]− Ex̃∼Pt [D(̃x)]+ λEx̂∼Px̂

[(∥∥∇x̂D
(
x̂
)∥∥

2 − 1
)2

]

(17)

where Px̂ is the distribution of uniform samples along the
straight lines between pairs of points sampled from distribu-
tion of data Pr and distribution of the generator Pt. According
to their experiment results, the added gradient penalty term
helps further improve the performance of GANs. In this
paper we adopt the method of WGAN-GP as the training
process of the GAN.

VI. TRAFFIC MATRIX ESTIMATION USING GENERATIVE
ADVERSARIAL NETWORKS
Since GANs can capture the characteristics of given data, the
authors in [31] proposed to use a GAN as a mapping from
latent space to signal space for the application of compressive
sensing.
As shown in [31], if we assume the vector we want

to recover is k-sparse in some basis, with d-layer neu-
ral networks as GANs, O(kd log n) Gaussian measurements
can guarantee good reconstruction with high probability.
Their results show that the GAN based compressive sensing
method achieves better performance when the sampling rate
of the signal is low. And the performance is also robust with
non-Gaussian measurements, such as in the case of image
inpainting.
The problem of TM estimation given link measurement

has the same format as the problem of image compressive
sensing. Since the link measurements of a TM are also rela-
tively low, we propose to solve the TM estimation problem
with a GAN as the generator for the TM. Suppose the latent
variable of the GAN is �, the generator T generates the esti-
mated TM T(�), then the problem of TM estimation can be
written as:

min
l
‖y− AT(�)‖22. (18)

A properly trained generator T provides a mapping from the
lower dimensional latent space to the space of possible TMs.
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Algorithm 3 GAN Based TM Estimation Method
1: Generate random Gaussian noise n0.
2: n̂ = n̂0
3: for i = 1; i < Ni; i++ do
4: Generate random Gaussian noise ni
5: if ‖y− AT(ni)‖22 < ‖y− AT(n̂)‖22 then
6: n̂ = ni
7: end if
8: end for
9: for j = 0; j < N2; j++ do
10: n̂ = n̂+∇nL
11: end for

Since the function T is differentiable, the objective function
can be optimized by simple gradient descent.
Compared with the projection approach, the estimation

method using a GAN can be applied for more general cases.
If we only have knowledge of the normalized empirical dis-
tribution then the GAN can be trained with data generated
from the given normalized empirical distribution. If mea-
surements from the past are available, the GAN can also be
trained with the data from the past and shared for estimation
purposes.

A. TRAFFIC MATRIX ESTIMATION UNDER
DISTRIBUTION CONSTRAINT
We first consider the problem of TM estimation under a
distribution constraint. Unlike the constraint of signal spar-
sity from previous compressive sensing methods, which can
be enforced by adding sparsity regularization terms to the
objective function, it is unclear how a distribution constraint
can be incorporated into the objective function. However,
since a GAN is able to capture the characteristics of given
data and generate samples with similar features, the distribu-
tion constraint can be included in the objective function by
training a GAN that generates samples following a similar
distribution. Then the optimization can be conducted in the
latent space. Given the cost function

L = ‖y− AT(�)‖22, (19)

the gradient of L can be easily computed by the chain rule.
Therefore L can be updated step by step by using simple
stochastic gradient descent or any other optimizer such as
the adaptive moment estimation (Adam) optimizer [46]. For
the experiments in this paper we use the Adam optimizer
as the optimizer over the latent space. In the experiments,
we find that choosing a better initial point in the latent
space can help reduce the optimization steps and provide
better estimation results. So we generate Ni random vectors
ni in the latent space and select the one that provides link
measurements that is closest to the given link measurements.
Then we run the optimization forN2 steps.We show the details
of this method in Algorithm 3. This GAN based estimation
method under a distribution constraint is denoted as GAN-D.

B. TRAFFIC MATRIX ESTIMATION WITH TRAINING DATA
In some cases, in addition to link measurements, some TMs
from the past may be also available. In this case the GAN
can be directly trained with the available data. In addition to
the distribution of demands, the TM data may also contain
spatial information that can be learned by the GAN. With
the trained generator, the optimization steps will be the same
as those with a distribution constraint.

VII. EXPERIMENT SETUP
We evaluate the performance of our methods with three
datasets. The first dataset is the NET82 dataset which con-
tains one TM measured on a real topology with 82 nodes.
The second dataset is the Abilene dataset [10] which con-
tains TMs with 12 nodes and 54 links. The third dataset
is the GÉANT dataset [11], which has 23 nodes and 38
links. Note that when β = 1 the Beta distribution becomes
a power law distribution. In our experiments we found that
the power law distribution is sufficient for fitting the dis-
tribution of the TMs. And the α values are the maximum
likelihood estimates from the measured TMs [29].
Firstly we test the performance of our method assuming

only the distribution of the demands is known. For the first
dataset a Beta distribution with α = 0.01154, β = 1.0 is
used for the projection based method (Proj-D) and the GAN
based method (GAN-D). The parameters are directly used
for Proj-D. For GAN-D, we first train the GAN with random
matrices generated from the fitted distribution, then we use
the GAN for TM estimation.
For the Abilene dataset we use the TMs collected from

March to June for distribution fitting. We use 1000 of the
TMs collected in July for testing. We fit a Beta distribution
with α = 0.0107, β = 1.0 according to all the demands
collected from March to June. Similar to the case of the
first dataset, for Proj-D we use the Beta distribution directly.
For GAN-D, the TMs from March to June are available and
the TM estimation is conducted for the data in July. So the
TMs from March to June can be used for the training of
the GAN. The GAN is trained for 300 epochs, with 27360
TMs collected from March to June.
For the GÉANT dataset, a Beta distribution with α =

0.01411 and β = 1.0 is used for Proj-D. For GAN-D, 8016
TMs collected from January to March are used for the train-
ing of GAN. Network parameters for the GAN are the same
as those for the Abilene dataset. Both methods are tested on
1000 TMs collected in April.
In our experiment, all the data from the training set is

used to fit the distribution. However, we found that the
distribution can be fitted with much less data. To sim-
ulate a practical scenario, we randomly selected 35000
demands from the training set of the Abilene topology. The
sampled data is used for distribution fitting. This exper-
iment is repeated 100 times, among them the maximum
fitted value of α is 0.0136 and the minimum value is
0.0107. Similarly, for the GÉANT dataset, 60000 demands
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FIGURE 3. Performance evaluation on the NET82 dataset (shortest path).

FIGURE 4. Performance evaluation on the Abilene dataset (shortest path).

TABLE 1. Performance comparison.

were randomly sampled from the training set. The max-
imum value of α is 0.0146 and the minimum value
is 0.0137.
Network Parameters: We use the same structure for the

GAN for all the datasets. The generator of the GAN is a fully
connected neural network with hidden layers of size 32, 64
and 128. The discriminator is also a fully connected neural
network with hidden layers of size 512, 256, 256 and 256.
We do not focus on finding the best parameters of the GAN
in this paper. However we found it beneficial to use a larger
neural network for the discriminator, so that the discriminator
can more efficiently capture the difference between TMs and
random matrices. ReLU is used as the activation function
for the neural networks. To keep the balance between the
capability of the discriminator and the generator, we update
the discriminator 64 times after each training step of the
generator.

VIII. PERFORMANCE EVALUATION
In this paper, we focus on the practical scenario where the
past TMs are not available for estimation purpose. The exist-
ing methods for TM estimation either require access to past
TMs, or can not exploit the distribution constraint, therefore
it is unsuitable to compare our methods with the previous
spatial or temporal correlation based methods. Performance
of the methods are evaluated with two different metrics: the
root mean square error (RMSE) and the normalized mean
absolute error (NMAE) of the estimation results. The RMSE
can be written as:

RMSE =
√∑n

i=1

(
x− x̂)2

n
. (20)

The NMAE can be written as:

NMAE =
∥∥x− x̂∥∥1

‖x‖1 . (21)

The results are shown in Table 1. Errors are calculated for
the non-zero demands.
For the NET82 dataset, Proj-D achieves RMSE of 125.94

Mbps and NMAE of 1.20. The RMSE of the results from
GAN based method is 194.81 Mbps and the NMAE is
1.93. To evaluate the method’s ability to meet the distri-
bution constraint, we also compare the empirical cumulative
distribution function (CDF) of the solutions. Figure 3 evalu-
ates the performance of the methods on NET82. Figure 3(a)
shows the CDF of the solutions, the fitted distribution and
original data. Figure 3(b) shows the recovered demands ver-
sus the original demands. Figure 3(c) shows the fitted link
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FIGURE 5. Performance evaluation on the GÉANT dataset (shortest path).

FIGURE 6. Performance evaluation on the NET82 dataset (ECMP).

measurements versus the given link measurements. For the
CDF plot, the TMs are normalized by the maximum value
of all the TMs. Since very few of the normalized values are
greater than 0.25, we show the CDF plot from 0 to 0.25 to
better evaluate how well the estimated TMs fit the original
distribution.
Figure 4 shows the CDF, demands and link measure-

ment of recovery results of the two methods on the Abilene
dataset. The CDF plot is generated in the same way as in
Figure 4. The demand plot and link measurement plot are
generated from the first ten TMs.Proj-D achieves RMSE of
40.47 Mbps and NMAE of 0.94, while GAN-D achieves
RMSE of 25.74 Mbps and NMAE of 0.66. Figure 5 shows
the CDF, demands and link loads of recovery results of the
two methods on the GÉANT dataset. The demand plot and
link measurement plot are generated from the first ten TMs.
Proj-D achieves NMAE of 1.51, GAN-D achieves NMAE of
1.18. In terms of RMSE, Proj-D has RMSE of 87.96 Mbps,
GAN-D has RMSE of 65.69 Mbps.
Comparing results shown in Figure 3, both methods are

able to generate results that satisfy the distribution constraint.
GAN-D is able to generate results that are closer to the
original distribution. However Proj-D is able to generate data
that fit better to the link measurement constraint, with the
cost of diverting a bit from the given distribution constraint.
Though the GAN learns to generate samples according to
the given distribution, it is not able to cover all possible
space of the distribution, therefore GAN-D performs worse
than Proj-D in terms of RMSE and NMAE.

For the Abilene dataset, both methods are able to pro-
vide estimation results that closely meet the distribution
constraint and link measurement constraints. Since the GAN
is trained with real TMs measured from the past, it is able to
learn the spatial correlations and other structural information
of the TMs from the training data. For GAN-D the num-
ber of optimization steps N2 also determines how well the
results meet the link measurement constraints; with more
optimization steps the results will fit the link measurement
constraints better, but the elements of the estimated TMs
will start to divert from the real value after certain number
of steps. We use N2 = 10000 in our experiment. For Proj-D
the results can better meet the link measurement constraints,
at the cost of diverting a bit from the distribution constraint.
For the GÉANT dataset, both Proj-D and GAN-D are able

to generate results that fit the distribution constraint. This
may be because that there are fewer links in this dataset so
both methods can meet the distribution constraint without
over-fitting. However, in terms of NMAE and RMSE the
GAN based method still performs better than Proj-D. So the
GAN is still able to learn spatial and structural information
from the TMs used for training.
In addition to shortest path routing, Figures 6, 7 and 8

show the results with ECMP routing. Since the methods do
not depend on any specific routing mechanism, they achieve
similar performance with ECMP routing.
In general, there exists the choice between meeting the

distribution or similarity constraint better or meeting the link
measurement constraint better. The GAN based method is
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FIGURE 7. Performance evaluation on the Abilene dataset (ECMP).

FIGURE 8. Performance evaluation on the GÉANT dataset (ECMP).

able to provide estimation results that meets the distribution
constraint better. The Projection based method is able to
generate results that have better fit of the link measurement
constraints. The users can choose either one of the methods
based on their requirements in the specific use cases.
Due to the practical problem settings in this paper, the

other spatial-temporal based method or learning based meth-
ods will not work in this setting due to their requirement
of direct access to TM measurements. We compare our
method with the simple gravity model in [10], which requires
the least amount of additional information in our problem
setting. The simple gravity model achieves a RMSE of
18.4 Mbps and NMAE of 0.51 on the Abilene dataset, per-
forming slightly better than GAN-D. This suggests that the
GAN based method is able to learn from the training set and
exploit the spatial correlation, similar to hand-crafted mod-
els. Since Proj-D only considers a distribution constraint and
does not incorporate network domain knowledge, it performs
worse than the gravity model. However, the gravity model
requires measurement of total inbound and outbound traffic
at edge links. Sharing of such kind of data can violate regu-
lations [4], [12], [14]. GAN-D and Proj-D can work without
edge link measurements and better protect users’ privacy.

IX. CONCLUSION AND FUTURE WORK
In this paper we focus on the practical scenario of TM
estimation where past TMs are not directly accessible for
estimation purposes, due to measurement complexity or pri-
vacy protection regulations. We proposed two methods for

the problem of TM estimation given link measurements
under a constraint of the distribution of demands. Experiment
results show that both the method Proj-D and GAN-D are
able to generate estimation results that fit the link measure-
ments and the distribution constraint. The Projection based
method is able to provide estimation results that fits the link
constraints better, while the GAN based method generates
TMs that better fit the given distribution. In addition, if TMs
measured in the past are available, the GAN based method
is able to learn the spatial and structural correlations of the
TM data and provide better estimation results. Future work
includes extending these methods to other similar problems
and finding the suitable kind of GAN for the GAN based
method.
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