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ABSTRACT The current development of 5G technology is flourishing with widespread deployment
across the world at a rapid pace. However, there is still a demand concerning 5G research for service and
performance improvement. Research tasks include but are not limited to quality-of-service (QoS), energy
efficiency, massive connectivity, reliable communications, and security. Due to the advancement of deep
learning, numerous such research has utilized this technique. This article provides a comprehensive review
of 5G communications research using deep learning. Specifically, we address the issues of low-density
parity-check (LDPC) coding, massive multiple-input multiple-output (MIMO), non-orthogonal multiple

access (NOMA), resource allocation, and security.

INDEX TERMS Deep learning (DL), machine learning (ML), fifth generation (5G), massive multiple-
input multiple-output (MIMO), low-density parity-check coding (LDPC), non-orthogonal multiple access

(NOMA), resource allocation, security.

I. INTRODUCTION
IRELESS technology and communications have
evolved drastically throughout the years. Wireless
cellular technology began with the first generation mobile
voice-system in the early 1980s, and in roughly four decades
we are headed into the fifth generation of technology, 5G.
Originally, the focus was on the basics of mobile voice calls,
then short message service (SMS), Web browsing, video
consumption, and high-speed data. In 2020 we are push-
ing the limits to achieve all previously mentioned along
with lower latency, higher capacity, and increased band-
width compared to the fourth generation technology, 4G.
The world’s connectivity needs continue to advance and,
to sustain the consumption of consumers, wireless cellular
technology introduces 5G. The implementation of 5G has
begun and anticipated explosive growth in data traffic will
bring about great challenges worldwide.
5G network performance is measured by three essential
components: enhanced mobile broadband (eMBB), ultra-
reliable low-latency communications (uURLLC), and mas-
sive machine-to-machine communication (mMTC). With the
arrival of 5G come emerging applications such as device-to-
device (D2D) communications, machine-to-machine (M2M)

communications, Internet of Things (IoT), Internet of
Vehicles (IoV), healthcare and wearable technology, as
well as smart grids, homes, cities and financial technolo-
gies [1]. 5G will revolutionize the way we live today and
the deployment of 5G is already in progress. Although 5G
networks have been implemented in select locations by vari-
ous telecommunications operators, there are caveats such as
massive multiple-input multiple-output (MIMO), low-density
parity-check (LDPC) coding, and non-orthogonal multiple
access (NOMA) communications require further study.

Deep learning (DL) techniques are being used to advance
and enable the full potential of 5G. The impact of deep learn-
ing began to boom in the early 2000s, but it was not until
recently did the utilization of deep learning become more
prevalent. Deep learning can process, create, and provide an
advanced analysis on nearly any task it is given with con-
cise and reliable results. It has state-of-the-art performance
and some of its outstanding successes include automatic
speech recognition, image classification, and the detection
of various objects. Deep learning is used in a myriad of
domains including wireless systems and 5G with faster, more
consistent, more reliable results and by easy to configure
means.
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FIGURE 1. 5G research using deep learning.

Unlike other survey papers [1]-[5], this article combines
both 5G wireless communication and deep learning to ana-
lyze the different challenges that 5G entails. Related survey
papers discuss the vision of 5G wireless networks along with
its features [1], security/privacy of 5G technologies [2], the
artificial neural networks [3], and the machine learning tech-
niques used in wireless communication [4]. The paper most
prevalent to ours is [5] due to its providing a broad overview
of deep learning techniques in mobile networks. This article
presents new research results in the following five topics
areas specifically in 5G: massive MIMO, LDPC coding,
NOMA communications, resource allocation, and security.
Notice that the topics of massive MIMO such as mmWave
blockage prediction [6], [7] and NOMA such as power
allocation spectral or energy efficiency [8] and system capac-
ity [9] are also extremely prevalent in beyond-5G (B5G)/6G
wireless communications networks. B5G/6G also includes
key technologies such as reconfigurable intelligent surfaces
(RIS) [10], [11], Terahertz (THz) communications [11], [12]
and unmanned aerial vehicle networks (UAV) [13], [14] that
can utilize DL. Figure 1 illustrates the contents and structure
of the 5G research presented in this article.

The remainder of this article is organized as follows.
Section II will cover the various datasets and data preprocess-
ing methods. Section III discusses deep learning models used
in 5G research. Sections IV-—VIII presents the research and
different challenges in 5G and how deep learning can help.
The 5G research topics will be discussed in the following
order: LDPC, massive MIMO, NOMA, resource allocation,
and security. Section IX will provide a brief discussion of
the application of DL in other key B5G technologies. The
paper concludes with Section X.

Il. DATA AND DATA PREPROCESSING

A. DATA

Being as 5G is still an evolving technology, the datasets
available for experimentation are limited. There exist datasets
such as ViWi [15], Raymobtime [16] and DeepMIMO [17]
or datasets provided for Al challenges such as ITU AI/ML in
5G. However, most of the data used in the literature surveyed
in this article are either self-generated through experi-
ments or using tools such as MATLAB and TensorFlow.
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Security research has the most available datasets such as
the Benchmark Aegean Wi-Fi Intrusion dataset [18], CTU
dataset [19], NSL-KDD dataset [20], and the WSN-DS
dataset [21]. Although security has available data sets, these
datasets are not niched to 5G. Nonetheless, these datasets
provide a more uniform understanding of the widespread
study of security that can be applicable for 5G as well.

B. PREPROCESSING

Data preprocessing is a data mining technique that takes
place to transform raw data into a state that the DL model
requires to easily parse and learn. The most commonly used
preprocessing method is the resizing or reformatting of data.
As previously mentioned, security has available datasets that
researchers use; however not everything in the dataset will be
important to the researcher so they will preprocess and select
what they want through different means. For example, [22]
will need to extract the data in a CSV file format and then
reshaped into RGB images of size 100 x 100 x 3 for the
convolutional neural network (CNN) with any excess data
discarded. Data that [18] is using will consist of both numer-
ical and nominal values so different types of encoding or
normalization steps, such as a conversion to 16-bit integer
form, are necessary to make the data coherent for the DL
model. Similarly, [20] will convert their data into the right
value; given a dataset with numeric and non-numerical val-
ues, all non-numerical values will be converted to a binary
vector that will be appended to create a 12 x 12 matrix for
the CNN model. Both Rezvy et al. and Zhu et al. also use
a logarithmic scaling method for reducing the scaling scope
and conduct detailed statistical analysis to monitor minimum
and maximum values for each feature.

In areas like NOMA, LDPC, resource allocation, and mas-
sive MIMO, data was self-generated so less preprocessing
is used because they specify what they collect during the
experiments. Nonetheless, researchers like Jin, Ni, Wang,
Liao, and Henarejos still had minor tweaks made to their
data before inputting them in the DL model. References [23],
[24] and [25] studied channel decoding, specifically LDPC
decoding, and their methods were the division of blocks of
N bit sequences into segments with a segment length of
4 bits, constellation demapping followed by the conversion
into log-likelihood bits, and the addition of bits before the
receiver receives different codewords to create their unique
indicator section respectively. References [26] and [27] both
combined the real and imaginary parts of the channel matrix
into a larger matrix for massive MIMO and reshaped the
matrix to their specific needs.

There is a multitude of ways to transform data but a
few techniques are aggregation, dimensionality reduction,
sampling, and attribute transformation. If data is unclean
(i.e., containing duplicates, outliers, missing attributes, or
incorrect data) the quality of the results will be degraded.
Regardless of what technique is used, data preprocessing is
crucial because it has a direct impact on the success rate of
the DL model.
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lll. DEEP LEARNING MODELS

Deep learning, a subset of machine learning (ML), uti-
lizes supervised, unsupervised, and reinforcement learning
via neural networks. It facilitates decision making and the
classification of data using various algorithms to obtain high
accuracy and in-depth results with little to no human super-
vision. Machine learning algorithms are designed to learn
by understanding labeled data and then used to produce out-
puts; however, if the output is not desirable, it requires human
intervention. On the other hand, DL algorithms do not require
human interaction because the nested layers will process the
data through hierarchies and learn distinct features while
learning from its errors. DL will require a substantially larger
set of data than ML thus requiring high computational capac-
ity. Industries ranging from transportation to medicine are
utilizing deep learning applications. From automated driving
by using deep learning for object and pedestrian detection
to medical research for the detection of cell abnormalities,
the growth of deep learning has just begun.

The neural network architecture resembles the percep-
tion process in a human brain. A specific set of units
are activated given the current environment, influencing the
output of the neural network model and its goal to approx-
imate complex functions through a configuration of simple
and predefined operations of units (or neurons) [5]. Neural
networks are organized into layers that utilize feed-forward
or back-propagation to indicate the direction of data flow. A
node will assign a value known as weight and as data flows
through the node, the value will be multiplied by the asso-
ciated weight thus producing multiple different values. Data
will travel from the input layer through the hidden layer(s)
and finally the output layer.

An important aspect of neural networks is the activation
function, which allows the network to learn complex pat-
terns in the data. Some of the different types of activation
functions include but are not limited to Rectified Linear
Unit (ReLu), Sigmoid, Tanh, Softmax and Leaky ReLu. The
most commonly used activation function is ReLu due to its
computational efficiency. If the value is below a specified
threshold value, it will not pass any data to the following
layer. If the value is above the threshold value, that value,
or sum of weighted inputs will be assigned to the next layer.
Since the range of ReLu is bounded from O to infinity, there
exists a dilemma. The issue with ReLu is that all the neg-
ative values immediately become zero which decreases the
model’s ability to fit or train the data properly. Leaky ReLu
attempts to fix the problem by altering the range to be from
negative infinity to infinity and providing a negative slope
of 0.01 for values below the threshold; however, the results
provided by Leaky ReLu are not consistent for negative input
values. The Sigmoid activation function is bounded between
0 and 1, thus normalizing the output and providing a smooth
gradient; however, it is computationally expensive and has
a vanishing gradient problem. The Tanh activation function
is similar to the Sigmoid function with the additional bene-
fit of being zero centered. The Softmax function is unique
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because, unlike other activation functions, it is able to handle
multiple classes.

With the emergence of 5G communications and all it
entails, deep learning can prove to be an extremely pow-
erful tool in solving its challenges including the encoding
and decoding of LDPC coding, power control in massive
MIMO, power-based and code-based NOMA, resource allo-
cation, and security. The most commonly used models for
5G research are deep reinforcement learning (DRL), deep
neural network (DNN), convolutional neural network, and
long short-term memory (LSTM).

A. DRL

Deep reinforcement learning follows the idea of learning
by interacting. Reinforcement learning learns not by being
told what actions to take but by discovering for itself which
actions produce the greatest reward through a simple trial and
error concept. There are two core components in a reinforce-
ment learning framework: the agent and the environment. It
is commonly seen in Al games such as AlphaGo, chess, and
TORCS. DRL incorporates the concepts in RL and DNN
so the agents are self-sufficient; since DRL replaces tabular
methods of estimating state values with function approxima-
tion, it permits the agent to generalize the value of states it
has yet to encounter.

In 5G, DRL frameworks are generally used in resource
allocation since resource allocation focuses on resource
optimization. Abiko et al. [28] and Yu er al. [29] utilized
a DRL network slicing architecture to accommodate diverse
Quality-of-Service (QoS) requirements in 5th generation cel-
lular networks, rationally allocating resources to minimize
energy usage of the remote radio heads (RRHs). Since the
state of the radio access network changes from moment to
moment and automatic control of network slicing is neces-
sary to respond to service requirements in real-time, [28]
proposes using DRL to design state, action and reward to
allocate resource block (RB). The agent estimates the optimal
RB amount for the state using the information in the slice
as the state and controls the RB allocation to satisfy the
slice requirements as an action. The reward is the slice
requirement satisfaction with the intent of maximizing the
percentage of user equipment per slice. Although [29] aims
to minimize the energy usage of RRHs, its motivation is for
TV multimedia service and broadband media forms.

5G antennas consume three times more energy on average
than a 4G antenna and utilizing DRL to design a computation
offloading and resource allocation strategy could assist in
minimizing system energy consumption while still delivering
high throughput to its multiple users [30]. Regardless of the
motivations, a DRL framework is commonly applied in the
area of resource allocation.

B. DEEP NEURAL NETWORKS

Artificial neural network (ANN) is the overarching canopy
that encompasses any deep learning model. ANNs can be
shallow, containing only one hidden layer, or deep, more than
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one hidden layer - better known as deep neural network.
DNNs are highly popular and successful in research due
to their excellent performance in benchmark problems and
applications. The simplest type of ANN is feed-forward
neural network (FNN) where the data travels in one sim-
ple direction when there is more than one hidden layer,
it becomes a deep feed forward (DFF). Some more spe-
cific types of DNNs are convolutional neural network and
recurrent neural network (RNN).

1) CONVOLUTIONAL NEURAL NETWORK - CNN

CNNs use images and videos since CNNs are applied in
image classification, computer vision, and mainly for find-
ing characteristics or patterns in images by using filters. The
basic structure of a CNN is composed of three types of lay-
ers: convolutional layer, pooling layer, and fully connected
layer. The convolutional layer is to extract high-level features
through the means of a filter. A filter is a defined N x M grid
of numbers that are multiplied with the number represent-
ing the pixel value of the original image. Filters are applied
throughout an image or images in a video to extract dom-
inant features and reduce data redundancy using a pooling
layer. The pooling layer will compress the extracted impor-
tant characteristics into one image to be processed in the
next layer that could for instance be a multilayer percep-
tion (MLP), convolutional layer. It will use a max-pooling
or average pooling layer in an attempt to reduce the spatial
size and decrease the computational power required to pro-
cess the data. The fully connected layer will learn non-linear
combinations of the high-level features and flatten the image
into a column vector and used as an input for training and
future iterations. There is also a dropout layer, which is a reg-
ularization technique used to reduce over-fitting. Typically,
a dropout layer is used on the fully connected layers, but
is also possible to use dropout after the max-pooling layers,
creating image noise augmentation.

In 5G, CNN is the most popular and diversely used DNN;
it is used when studying LDPC coding, massive MIMO,
resource allocation, and security. In 5G security, CNN was
used to detect network anomalies and compared to see if
it will outperform previously used machine learning meth-
ods such as Niive Bayes, Random Forest, Random Tree,
and SVM [20] so software-defined security can be applied
to an intrusion detection system to create a more flexi-
ble, scalable, portable and end-to-end defense for a 5G
network [22]. The purpose is for any identified anomalies
to be stored with corresponding traffic features for future
automated detection and database updates so incoming mali-
cious flows can be properly defined and the system can
be protected. Similarly, in LDPC coding, Ni et al., also
used CNN for the blind detection and the identification of
quasi-cyclic LDPC, and spatially coupled LDPC for cog-
nitive radio or military communications systems. It is an
essential decoding interaction for the receiver to be capa-
ble of blindly identifying the channel code adopted by the
transmitter to reduce extra channel resources [23]. A novel
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resource allocation method used CNN to optimize channel
state information (CSI) was developed in [31] and reported
that DL outperforms the traditional resource optimization
methods. The idea of optimizing channel resources proves
to be fundamental in massive MIMO when [27] utilized a
2D and 3D CNN network to learn the non-linear structural
characteristics of the channel, extract the channel feature
vectors to compress the data for further use and when [26]
used a flexible denoising CNN on a cell-free mmWave mas-
sive MIMO system to exploit an accurate estimation of CSI.
Vieira et al., specifically utilized CNNs to show that mas-
sive MIMO channel measurements can be used to achieve
precise positions inference for fingerprint-based inference of
user positions by using its sparse channel structure [32]. In
addition, [33] and [34] used CNN based models to attempt
and solve the non-convex sum rate maximization and sum
spectral efficiency optimization problems in massive MIMO.
With a deep convolutional neural network consisting of 32
convolution layers, 37 residual layers, average pooling layer,
fully connected layer and sigmoid part, [33] is able to deter-
mine a mapping from the large scale-fading coefficients and
optimal power using the quantized channel. CNN’s hierar-
chical structure and feature extraction capabilities prove to
be an exceptionally robust algorithm when dealing with a
variety of situations including 5G research.

2) RECURRENT NEURAL NETWORK - RNN

RNNs are different from CNNs and they are generally used
for text and speech analysis. RNNs unique characteristic is
the ability to learn based on past instances of itself to predict
the future. This means that RNN is capable of processing
a sequence of inputs so that each data is dependent on the
previous one. The disadvantage of RNNs is that they have a
gradient vanishing and exploding problem, which introduces
long short-term memory networks (LSTM). LSTM special-
izes in processing and predicting time series time lags of
unknown duration using three types of gates: input gate,
forget gate, and output gate.

In 5G, LSTM has a diverse reach; it is used when study-
ing massive MIMO, multiple access, resource allocation,
and security. Yu et al. and Gui et al. implemented LSTM
for framework purposes in resource allocation and multiple
access, specifically NOMA, respectively. In resource allo-
cation, LSTM was used to gain predictions of the best
precision and compare that to the performance of several
other recent approaches with traffic data obtained from a self-
organizing network (SON) entity before the design of a DRL
framework to allocate wireless resources for energy-efficient
TV broadcast services [29]. Whereas, [35] used the LSTM
framework to simulate and evaluate data detection under
different channel conditions via offline learning and then
used during the online learning process to realize automatic
encoding, decoding, and channel detection in an additive
white Gaussian noise channel for enhancing system capac-
ity and spectral efficiency in NOMA systems. Similarly,
Maimo et al., also used LSTM for data detection, in this
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TABLE 1. Summary table of major DL methods.

Category CNN RNN | DRL
LDPC [23]

Massive MIMO [26], [27], [32] - [34] [27]

NOMA [35]

Resource Allocation [31] [29] (28] - [30]
Security [20], [22] [19]

case, for a cyber-defense architecture to identify cyberthreats
in 5G mobile networks; hoping to manage traffic fluctuation
and optimize computing resources and performance of anal-
ysis and detection, LSTM was used for network anomaly
detection [19]. Offline learning was used in both NOMA
and massive MIMO, and the difference was that massive
MIMO used LSTM along with CNN. A Bi-LSTM and Bi-
ConvLSTM network was used in the decompression process
to recover the original CSI for single-user and multi-users
hoping to improve reconstruction quality and feedback accu-
racy of the CNN compressed structural characteristics of the
massive MIMO channel information [27]. LSTM proved to
be extremely useful when researchers deal with sequential
data and, since LSTM allows the preservation of gradients,
it allows one greater flexibility in controlling the desired
outcomes.

Table 1 summarizes major DL methods used in 5G
research and related references are listed in the table.

IV. CHANNEL DECODING - LDPC

Channel coding introduces redundancy in the transmit-
ted signals to protect the information from channel noise
and interference that create unwanted errors. Noise and
interference disturb the reliability of digital communication
systems and the error-correcting codes applied to control
these occurrences are classified into linear block codes
(i.e., Hamming codes, Golay codes, BCH codes, and Reed
Solomon codes), and convolutional codes. Channel coding
can be evaluated based on their signal to noise ratio (SNR)
and block error rate (BLER) performance.

In 3G and 4G wireless communication, turbo code, a mix
between convolutional and block codes, was implemented
given that it is one of the best forward error correction
(FEC) codes that perform closest to the Shannon limit and
had remarkable power efficiency in additive white Gaussian
noise (AWGN) and flat-fading channels for moderately low
bit rate error (BER). However, for 5G wireless communica-
tion, due to its high throughput and low latency requirements,
low-density parity-codes (LDPC) are adopted over turbo
codes. Although LDPC codes achieve better performance
and faster decoding, it contains a higher encoding complex-
ity than turbo coding and typically requires more iterations
than iterative turbo decoding which could lead to higher
latency.

Since 5G communications systems have adopted polar
codes, specifically LDPC codes, DL has been used to dis-
cover methods to blindly identify LDPC codes [23], reduce
the decoding delay [25], [36], [37], [38], analyze the trade-
off of LDPC codes for channel coding [24], develop error
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correction codes for nonlinear channels [39] and optimize
the decoding algorithm to solve a non-convex minimization
problem [40]. As expected, when comparing traditional
decoding to DL-based decoding, DL has a greater reward.
Since one of the crucial characteristics of 5G network
performance is its enhanced mobile broadband (eMBB),
it requires reliable control signaling simultaneously with
high throughput data transmission. Wang et al. [25] imple-
ments powerful decoders using DL by concatenating an
indicator section to identify coding types and then com-
pared it with the traditional belief propagation-based (BP)
decoding algorithm. When the results of BER versus SNR
performance were compared, the DNN LDPC decoding
scheme outperforms the traditional scheme by 0.8 dB at
a BER of 1072, Thus, the unified 3-layer DNN LDPC
decoder with a rectified linear unit (ReLU) activation func-
tion in the hidden layers, a sigmoid activation function
in the output layer, and MSE loss function was able to
provide similar BER performance against traditional belief
propagation methods while achieving a significant improve-
ment for throughput [25]. The issue of greatest concern
is the high decoding complexity and delay that accompa-
nies LDPC codes, which prompts [36] to use a scheme
that parallels multiple neural networks that incorporate both
the forward and backward propagation of polar codes to
reduce the overall time complexity of decoding. Its DNN
structure contains three hidden layers, in which each hid-
den layer has 256 nodes, input and output layers with 16
nodes, a ReLU activation function, and mean square error
(MSE) loss function. With its proposed DNN structure of
parallel multiple neural networks, the time complexity of
the proposed scheme is O(N) + O(h+1), where N is the
inner code length and % is the number of layers in the
DNN, which is lower than the traditional time complexity
of O(N) + O(n(logan)), where n is the code length of the
polar codes.

Literature [37] and [38], unlike [25] and [36], utilizes a
low-complexity BP-based decoding method. Reference [37]
relies on its early stopping prediction stage and decodability
detection stage to eliminate the unnecessary decoding oper-
ations that increase the complexity of LDPC decoding for
polar codes; it successfully achieves a 71% decoding delay
reduction while maintaining the same decoding performance
as traditional schemes. Reference [38] studies the min-sum
algorithm decoding approach and proposes both a neural
normalized min-sum network (NNMS) and a shared neural
normalized min-sum network (SNNMS). The latter network
is used to reduce the number of correction factors while also
making use of the advantages of model-driven DL methods.
Experimental results show that the BER performance of the
proposed NNMS decoder uses fewer iterations and is 1.5 dB
better than the conventional LDPC decoder. Furthermore, the
proposed SNNMS decoder outperforms the proposed NNMS
decoder by up to 0.4 dB with a lower and computational
complexity. Table 2 summaries a number of LDPC research
tasks using DL methods.
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TABLE 2. Summary table of LDPC research using deep learning.

[ Research Tasks | DL Method | Performance and Observations | References
o Blind LDPC code identification ¢ CNN o Identification accuracy at SNR=2dB and code sequence length 23]
N=100:
— QC-LDPC: 99.07% & SC-LDPC: 98.75%
Identification accuracy at SNR=0dB and N=100:
— QC-LDPC: 85.00% & SC-LDPC: 93.48%
o Optimization-based decoding algo- | ¢ FNN Impressive improvement in BER performance [40]
rithm for hardware architectures Control trade-off between decoding complexity and decoding
performance
o Comparison of traditional decoding to | e ANN Lower BER compared to traditional demapping and decoding [241, [25]
DL based decoding ¢ DNN implementations
Saves significant implementation resources
e Decoding of both polar and LDPC ¢ DNN Reduces time complexity [251, [361, [371, [38]
o Decoding delay and complexity reduc- Block error rate performance is the same compared with tradi-
tion tional methods.
Achieves 71% decoding delay reduction while maintaining the
same decoding performance as traditional methods
Shared neural normalized min-sum decoding network has lower
complexity compared with a basic neural normalized min-sum
decoder
o Developing error correction codes for | ¢ ANN Large spectral efficiency gain [39]
nonlinear channels Higher-order modulation formats are operable for one-bit re-
ceivers

V. MASSIVE MIMO

Massive MIMO, an extension of MIMO, expands by adding
a much larger number of antennas at the base station. Before
massive MIMO, MIMO uses multiple antennas at the trans-
mitter and receiver sides to send and receive signals by
exploiting multipath propagation. As one would assume, 4G
wireless communication utilized MIMO but with the huge
increase in data usage that 5G will bring, emerges mas-
sive MIMO. The massive number of antennas helps focus
on energy, which brings drastic improvements in throughput
and efficiency due to its more responsive behavior towards
devices transmitting in higher frequency bands. It will also
make the 5G network more resilient against interference and
jamming that the current network experiences. As expected,
there are challenges with massive MIMO such as finding
new deployment scenarios, reducing internal power con-
sumption to achieve total energy reductions, the acquisition
and synchronization for all the newly joined terminals, and
the exploitation of the extra degrees of freedom provided by
the massive number of antennas.

DL has been utilized to improve localization [32], [41],
solve the non-convex optimization problem in power con-
trol [33], [34], and exploit CSI feedback [26], [27], [31], [42]
for an accurate estimation of channel and direction of arrivals
(DOA) estimation. The most prevalent DL architecture used
in massive MIMO is DNN and CNN in both localiza-
tion and CSI. In wireless communication, CSI is extremely
important because the channel properties in a communica-
tions link provide information on how a signal propagates.
This information can then be used for channel estimation
which is required to compensate for any distortion. The
concept of optimizing channel resources was studied in [27]
when it utilized a 2D and 3D CNN network with a ReLU
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activation function to learn the non-linear structural charac-
teristics of the channel, extract the channel feature vectors
to compress the data for further use and when [26] used a
flexible denoising convolutional neural network on a cell-
free mmWave massive MIMO system to exploit an accurate
estimation of CSI. Liao et al. [27] implemented a Bi-LSTM
and Bi-ConvLSTM network in the decompression process
to recover the original CSI for single-user and multi-users
hoping to improve reconstruction quality and feedback accu-
racy of the CNN compressed structural characteristics of the
massive MIMO channel. Both 2D and 3D were used but
for separate cases; 2D was for the single-user case and
3D was for the multi-user case. Once the data was fil-
tered and feature vectors were extracted with the 2D and
3D CNN, it was compressed through the 2D and 3D max-
pooling networks respectively so the data would be 1/4 the
original and reshaped into a one-dimensional vector [27].
This compressed information would then be fed through the
Bi-LSTM and Bi-ConvLSTM networks for CSI prediction.
Similarly, Jin et al. [26] also use a ReLU activation function
with a combination of two other operations being convolu-
tion and batch normalization to create his flexible denoising
CNN with zero paddings after each layer.

mmWave is a major aspect of the 5G wireless network
and represents the wave spectrum between 30 GHz and
300 GHz. Jin and Huang et al. both studied a combination
of a mmWave massive MIMO system using DL methods
like CNN and DNN to reduce hardware complexity, reduce
energy consumption [42] and exploit accurate estimation
of channel state information [26]. Unlike Jin, Huang et al.
focused on a mmWave massive MIMO framework for effec-
tive hybrid precoding using a DNN. The DNN is comprised
of a fully connected layer with 128 units followed by two

401



LY AND YAO: REVIEW OF DEEP LEARNING IN 5G RESEARCH

hidden layers that are fully connected layers but with 400
and 256 units respectively. Following is a noise layer to
disturb the signals with AWGN or other mixing distortions
and the last two hidden layers contain 128 and 64 units
respectively followed by an output layer. Each hidden layer
and input layer contained a ReLU activation function [42].
Both [26] and [42] had great success with their mmWave
massive MIMO system. As determined by the normalized
mean square error (NMSE) performance, the flexible denois-
ing CNN outperforms conventional estimation methods and
has a larger noise perception range than a conventional
denoising CNN. The only downfall is the normalized mean
square error (NSME) performance against the number of
iterations; the denoising CNN does better than the flexi-
ble denoising CNN but with only a 1 dB gap between the
two schemes until they converge within 150 iterations [26].
As determined by the spectrum efficiency performance, the
DL-based hybrid precoding scheme outperforms other meth-
ods due to the phenomenal mapping, structural information,
and learning capability of DL and that also implies that the
proposed mmWave massive MIMO strategy will solve the
existing non-convex optimization in hybrid precoding [42].

When researching the application of deep learning on
power control for massive MIMO systems, [33] solved the
non-convex sum rate maximization problem on four differ-
ent power control schemes to determine the best channel
statistics to convert the power allocation problem into a
standard geometric program using a deep convolutional neu-
ral network and [34] analyzes the sum spectral efficiency
optimization problem in multi-cell massive MIMO systems
using CNN. The deep convolutional neural network shows
less than 0.02% loss when comparing the training sets to the
test sets and the loss decreases as the total number of train-
ing sets increase. The DL-models attain the same or better
performance compared to when solving these problems using
basic optimization theory. Likewise, the CNN model in [34]
shows results that the joint pilot and data power optimization
obtains 30% higher sum spectral efficiency with less than
1% loss in a symmetric multi-cell system serving 90 users.
Each literature demonstrates the feasibility of using deep
learning for real-time power control in massive MIMO.

Although we have only gone in depth about power control
and channel estimation [43] regarding massive MIMO, other
research topics exists like beamforming [44], specifically
beam selection [16], [45], [46] and beam prediction [44],
[45], [47], [48] along with blockage prediction [6], [7], [47],
[48], [49], [50] and power prediction [51] in mmWave mas-
sive MIMO. DL can be applied to many areas of massive
MIMO to target various challenges so 5G can provide an
increased network capacity, improved coverage, and better
overall user experience. Table 3 summaries various massive
MIMO research tasks using DL methods.

VI. MULTIPLE ACCESS - NOMA
In cellular communication, it is required to have a mecha-
nism that provides communications services to multiple users
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at the same time. Throughout the years, there have been sev-
eral multiple access schemes being used such as frequency
division multiple access (FDMA), time division multiple
access (TDMA), code division multiple access (CDMA), and
orthogonal frequency division multiple access (OFDMA).
In 4G wireless communication, OFDMA and single car-
rier FDMA (SC-FDMA) were ideal in the downlink and
uplink for high-speed data transmission because it provides
resilience against narrowband fading.

With 5G, wireless networks will be heavily congested
with an explosive amount of data traffic that accompanies
the increasing number of users and non-orthogonal multiple
access (NOMA) can exploit the existing resources in a more
efficient basis than conventional multiple access techniques
to effectively support services for the congestion of data
traffic and users. In NOMA, there are two types of training:
offline training, where the channel state information (CSI)
of different environments is collected from simulations and
arbitrary sequences of the input are extensively trained and
online training, where the input signal is trained with the
CSI in real-time with the help of the data being carried by
pilot signals. As [54] states, “In NOMA, a multiuser signal
is multiplexed using superposition coding in the transmitter
and then sent to the users using different power levels in
a non-orthogonal basis.”” This means that when a signal is
received, the user with the stronger channel gain will retrieve
it immediately and the user with the weaker channel will rec-
ognize other signals as interference and perform successive
interference cancellation (SIC) to retrieve its original signal.
Before NOMA, orthogonal multiple access systems would
use guard periods to avoid interference which decreases spec-
tral efficiency. NOMA operates on the principle of sharing
time-frequency resources between users by separating them
in another domain with two regimes [55]: power-based and
code-based [56], [57].

DL can be applied in enhancing the system capacity and
spectral efficiency [35], reliability, and connectivity [52],
[58], while also reducing overall latency [59], [60] in NOMA
systems to offer the best quality of service (QoS) to all the
users [61]. For example, when it comes to enhancing spec-
tral efficiency and system capacity, Gui et al., utilized a
LSTM network consisting of 8 layers, 6 of which are hid-
den layers like dense and noise layers processed by the ReLU
function to carry out training and recognition, to simulate
and evaluate data detection under different channel condi-
tions via offline learning and then used during the online
learning process to realize automatic encoding, decoding,
and channel detection in an additive white Gaussian noise
channel [35]. This LSTM-aided NOMA scheme achieved
an area under the curve (AUC) of 0.98 indicating that it
has a good performance in terms of robustness and accu-
racy. When it comes to satisfying the QoS while minimizing
the total transmitted power, [61] achieved this using a
deep belief network with two hidden layers and noted that
both single-carrier NOMA (SC-NOMA) and multi-carrier
NOMA (MC-NOMA) systems are more power-efficient than
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TABLE 3. Summary table of massive MIMO research using deep learning.

[ Research Tasks | DL Method | Performance and Observations | References |
o Estimation of CSI o DNN FFDNet and DnCNN outperform conventional channel estimation [26], [42]
o mmWave band o CNN methods (LS and MMSE) by a large margin

Minimizes the BER and enhances spectrum efficiency of mmWave

massive MIMO

Achieves better performance in hybrid precoding compared with

conventional schemes
e Downlink of MIMO-NOMA e FNN Achieves lower MSE and lower BERs [52]
e Precoding and SIC decoding Addresses the issue of imperfect SIC decoding in a nonlinear

manner
o Channel estimation and DOA estimation | ¢ DNN MSE performance of the DOA estimation is more stable with larger [271, [53]
o CSI feedback o CNN batch sizes

¢ LSTM Performance of the channel estimation is optimized when employ-

ing longer training sequences

BER performance is better than in the DCT, PCA, KLT and CsiNet

algorithms.

Maintains a high system performance gain under the different

antenna configurations at the BS.
o WiFi positioning ¢ CNN Average accuracy decreases as number of users increase [32], [41]
e Improve localization e MLP Positioning capabilities generalizes well in highly-clustered propa-

gation scenarios with or without line-of-sight
o Power control o CNN Number of iterations needed to reach the stationary point does not [33], [34]
o Solve non-convex problem vary significantly when increasing the network size

Largest relative improvement is when going from 1 to 5 initializa-

tions, but the average improvement is still less than 1%

Single neural network can handle varying number of users per cell

Increases the median of the cumulative distribution of the achievable

uplink sum rate of the cell-free massive MIMO system by more than

three times compared to existing schemes

Large scale-fading based power control scheme provides a better

performance with multiple antennas per access point

OFDMA systems and the performance of MC-NOMA is
superior to that of SC-NOMA. It was also noted that there
was a direct relationship between the total transmitted power
and the noise power regardless of the number of UEs but if
the noise power is kept constant, the number of users will
directly affect the minimum total transmitted power.
Another important aspect is the massive connectivity that
NOMA supports by serving more users simultaneously. This
is made possible by successive interference cancellation. The
uplink/downlink transmission of 5G data will face numerous
hindrances using the current multiple-access techniques due
to their incapability to support efficient spectrum usage but
DL can assist the timing and recovery of NOMA systems
by reducing the effect of imperfect SIC. Both Kang et al.
and Saetan and Thipchaksurat utilize DL to reduce the
effect of the imperfect SIC for downlink NOMA systems.
Reference [58] aims to also maximize the energy efficiency
for downlink multiuser NOMA systems by using a DNN
with a scaled conjugate gradient optimization algorithm, a
hyperbolic tangent activation function for the hidden layers, a
logistic function for the output layer and three inputs: the set
of channel response, the uncancelled fraction of signal power
and the total transmit power. It was then tested for a 2-users
and 3-users NOMA system and achieved an energy efficiency
performance close to the optimal exhaustive search power
allocation scheme of 97-99% but with lower complexity and
noticed that the energy efficiency performance of the DL
scheme and the exhaustive search power allocation (ESPA)
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scheme decreases due to the effect of the uncancelled fraction
of signal power. For [52], the authors proposed the DL-model
FNN of 2 hidden layers with 100 nodes to learn the cod-
ing and SIC decoding process of MIMO-NOMA systems
to minimize the total mean square error of the user’s sig-
nals. This scheme yields a lower MSE when learning the
joint precoding and SIC decoding in a non-linear manner
by addressing the issue of imperfect SIC decoding than the
existing linear schemes. It also achieves lower BERs, which
indicates high reliability that NOMA systems offer.

When it came to code-based NOMA, both literatures used
DNN to improve the uplink code domain of NOMA whether
it be by proposing an uplink multiple access scheme to
support a highly overloaded multi-user system [56] and by
formulating a finite-alphabet signature design [57]. In [56],
one DNN-based detection was used for near users and one
DNN-based detection was used for far users. Both DNNs had
3 hidden layers; one using a tanh function with 480 neurons
and two using a sigmoid function with 10 neurons. In [57],
the data would go through an encoder module, then a channel
module, followed by a decoder module. Despite the diverse
research tasks, DL has proved to be extremely successful
in achieving lower BER than conventional methods. Table 4
summaries various NOMA research tasks using DL methods.

Vil. RESOURCE ALLOCATION
Resource allocation is the process of manning and assigning
resources in a form that helps to reach the most strategic
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TABLE 4. Summary table of NOMA research using deep learning.

[ Research Tasks | DL Method | Performance and Observations | References
o Downlink of NOMA o DNN e Attains optimal energy efficiency (EE) performance with lower [58], [52]
o Reduce effect of imperfect SIC o FNN complexity
e Precoding and SIC decoding o Yields substantially lower MSE and BERs than the existing schemes

o As the modulation order becomes higher, more errors are induced
in the SIC decoding
e Minimize transmission delay o DNN e Observes that multidimensional signatures achieve slightly better [59], [60]
o Balance between performance and com- SER performance than linear signatures.
putational complexity e Higher accuracy than conventional schemes
o Reliability gain with respect to user activity detection and symbol
reconstruction can reduce re-transmission numbers and lead to
further latency reduction.
e Minimize total transmit power ¢ DBN o Takes less time to approximate the optimal solution, which facili- [35], [61]
o Satisfy QoS requirements e LSTM tates to meet the requirement of ultra-low latency.
o Enhance system capacity and spectral ef- o Under the same setting of noise power, the minimum total transmit
ficiency power is monotonically increasing with the increase in the number
of UEs
e Sum rate improves as the training sequence length increases
o LSTM scheme outperforms the conventional schemes in terms of
the sum rate
e Improve uplink code-based NOMA e DNN e Achieves a lower BER than the conventional multi-user shared 561, [59]
access and Welch-Bound Equality-based schemes.
o Performance is robust when the percentage of the change of channel
statistics is between 0%-5%.
o High performance degradation occurs when the percentage of the
change of channel statistics is greater than 5%.

solution. With all the rapid changes in technology, many seek
ways to find methods that prove to be exceedingly efficient in
reducing both time and effort. 5G can be summed up with an
assessment purpose triangle consisting of capacity enhance-
ment, massive connectivity, and low latency with ultra-high
reliability [62]. Being as the number of mobile devices is
increasing at an enormous rate with various traffic patterns,
the infrastructure must determine how to properly support
all the countless requirements. As a result, the already con-
gested radio spectrum will only get more congested with 5G
network services and must thus be optimized.

The optimization of resources will prove to be a diffi-
cult feat, but DL can assist with resource allocation and the
minimization of energy usage of the remote radio heads. In
current works of literature, DL has been compared to tradi-
tional resource optimization methods [31], [63] with great
success and advantageous such as flexibility and comput-
ing speed. DL has also been used to allocation resources to
satisfy diverse quality of service constraints [28], [29], [64]
or to minimize system energy consumption [29], [30], [64].
QoS requirements are technical specifications of the system
quality in areas like performance, scalability, serviceability,
and availability. 5G brings a growth of video service traffic
and a vast volume of M2M connections. Considering this
growth, the expectations of the 5G QoS requirements are a
throughput of 10-20 Gbps, a reduction in end-to-end latency,
100% network availability, reliability, and bandwidth from
100Kbps to several hundred megabits per second.

Dong et al. [64] focused on developing a framework
using DL, specifically FNN and cascading neural networks,
to obtain a near-optimal energy-efficient bandwidth and
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power allocation scheme where they focus on the QoS
requirements of delay-tolerant, delay sensitivity, and uRLLC
services. URLLC allows for the processing of immensely
large amounts of data with minimal delay. The intent behind
the two kinds of neural networks is to approximate the
optimal policy that maps the system states to the optimal
resource allocation. The parameters of the neural networks
are initialized with Gaussian distributed random variables
with zero mean and unit variance, and since the cascaded
neural networks are comprised of multiple FNNs with 4
hidden layers each with 800 neurons, the complexity of the
FNN is analyzed before the training of the cascaded neu-
ral networks where a backward propagation is implemented.
When comparing the results of the QoS achieved by the
FNN and the cascaded neural networks, the latter satisfies
the requirements with a probability of 99.98% whereas the
FNN satisfies 99.2% [64].

Abiko et al. [28] and Yu et al. [29] tried to optimize
radio resources while also focusing on the QoS constraints
as a measure of their success. Abiko focused on radio access
network (RAN) slicing to allocate divided slices for services
using DRL. The method developed to control resource allo-
cation to RAN slices and confirmed that with their method,
resource block allocation is unaffected even as the num-
ber of slices changes. Yu, also using DRL and proposing
slice resource allocation architectures, specifically focused
on resource allocation for TV multimedia services, noticed
that DRL-based resource power allocation outperforms the
existing algorithms by causing high energy efficiency while
maintaining a similar quality of service. As expected, the
energy efficiency, network power, and bandwidth become
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TABLE 5. Summary table of resource allocation research using deep learning.

[ Research Tasks

| DL Method | Performance/Results

| References

o Network slicing flexibility o DRL .

Slice 5 performs best-effort communication and has a period of 0
allocation resource blocks (RBs) for allocating excess RBs

o Allocates RBs and satisfy slice requirements even if the number of
slices changes

[28]

o Comparison of traditional methods to DL | ¢ DNN .
based method o CNN
e Make use of full scale information in- .

stead of traditional resource optimization

Maximum test accuracy of 86.31% for 4 hidden layers and 86.14%
for 3 hidden layers

Compared to MMSE, there is about 1.04% loss but they have the
advantage of flexibility and computing speed

[31], [63]

o Accomodate diverse QoS constraints e DRL .
e Minimize system energy consumption | e FNN
and power consumption e LSTM .

e Optimize bandwidth

of 99.98%

Energy efficiency, network power and bandwidth get worse as the
number of users increases

Outperforms existing methods by achieving high energy efficiency
while maintaining a similar quality of service

o Cascaded NNs can satisfy the QoS requirement with a probability

[29], [30], [64]

worse as the number of users increases due to network pres-
sure increments as more resources are required [29]. DRL
was an extremely prevalent DL method when it came to
resource allocation because optimization problems focus on
improving long term rewards rather than immediate rewards
and DRL, the idea of learning by interacting, has the advan-
tage of not requiring expert labels but instead learns directly
from its interaction in the world or these cases, in a system.
Table 5 summaries various research allocation tasks using
DL methods.

VIIl. SECURITY

Cybersecurity has gotten increasingly significant in the past
few years and with the rise in the widespread use of
technology, there has also been a rise in cybercrime and
cyber-attacks. These cybersecurity threats consist of but
are not limited to malware, phishing, data leakage, hack-
ing, structured query language (SQL) injection, denial-of-
service attacks, and domain name system (DNS) Tunneling.
Cybersecurity is important because it pertains to protecting
user’s sensitive data and personal information.

The next-generation technology, 5G, is designed to bring
faster speeds, to lower latency, and be more robust than the
previous 3G and 4G communications; however, there will
be an elevated security threat due to the vast number of vec-
tors through which adversaries can attack. 5G could make
existing intrusion detection and defense procedures obso-
lete and with the increasingly alarming rate of cyberattacks,
various services including online access to healthcare, com-
munications, e-commerce, and banking systems will require
new DL-based methods implemented in network intrusion
detection systems.

Like LDPC coding, security will require network traffic
classification [19], [20], [22], and cyberthreat identifica-
tion [18], [21]. In 5G networks, the cloud radio access
network (C-RAN) is considered a promising future archi-
tecture in terms of minimizing energy consumption and
allocating resources efficiently; however, it is vulnerable to
malicious attacks. Hachimi et al. [21] focuses on being able
to detect and classify four types of jamming attacks: constant
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jamming, random jamming, deceptive jamming, and reactive
jamming using multilayer perceptron (MLP) with several
hidden layers. MLP was chosen over other DL algorithms
due to its flexibility which allows it to be applied to different
types of data. The data that Hachimi used is the Wireless
Sensor Networks Dataset, a dataset dedicated to wireless
intrusion detection and achieved a classification accuracy of
91.9% with just MLP. When implemented with the kernel
support vector machine (KSVM), a machine learning algo-
rithm used for binary classification, the model achieves a
classification accuracy of 94.5%. The purpose of the addi-
tional KSVM is to reduce the false negatives that MLP has to
a 7.84% false-negative rate [21]. Similarly, Rezvy et al. [18]
also utilized DL to classify and predict network intrusion.
Using the Aegean Wi-Fi Intrusion dataset, Rezvy designed a
supervised three-layer DNN with a softmax activation layer
as the output layer with an unsupervised pre-training using
an autoencoder. This deep autoencoder DNN allows input
data to be compressed into a low-dimensional representation
and uses techniques such as dropout and batch normaliza-
tion to speed up the training process and avoid overfitting.
It achieved a detection accuracy of 99.9% for flooding,
injection, and impersonation attacks. When it comes to
cyberthreat identification, DL has an excellent performance
rate [18].

With 5G, there will be more devices, more mobile
data, higher user rate thus higher network traffic than
with previous wireless networks. Network traffic can be
inspected to determine what will happen on the network
to ensure that there will be no unexpected security breaches.
Literature [19], [20], and [22] used a variety of CNN,
FNN, LSTM, DBN, and SAE models as well as various
datasets such as CICIDS2018 dataset, CTU dataset, and
the NSL-KDD dataset. Maimé et al. [19], used a com-
bination of LSTM, DBN, and SAE for data detection.
LSTM was used to implement the network anomaly detection
and both DBN and SAE were used for anomaly symptom
detection. Reference [19] hoped to manage traffic fluctu-
ation and optimize computing resources and performance
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TABLE 6. Summary table of security research using deep learning.

[ Research Tasks | DL Method |

Performance/Results

| References |

o Detection of specific wireless network | ¢ DNN
intrusion

o Detection accuracy of flooding, impersonation and injection type of
attacks: 99.9%
Classification accuracy of attacks is 94.51% with a 7.84% false

[18], [21]

Identifies benign traffic with a 100% accuracy rate and anomalous
traffic with a 96.4% detection rate

CNN (77.8%) and FNN (80.34%) obtain higher accuracy and
detection rate with lower false positive rates

o Higher accuracy than classic ML algorithms which achieve about
75% accuracy

o Classification of jamming attacks in C- .
RAN negative rate
o Detection of anomalous network traffic ¢ CNN .
o Analyze network traffic ¢ LSTM
¢ FNN .
o DBN

[31], [63]

of the analysis. On the other hand, Lam and Abbas [22]
and Zhu et al. [20] focused on the detection of anoma-
lous network traffic. Zhu et al. compared the effects of
DL models like CNN and FNN with ML algorithms like
J48, Niive Bayes, NB Tree, Random Forest, Random Tree,
and SVM. It was observed that CNN with feed-forward
propagation, backpropagation, and a softmax layer for clas-
sification as well as the FNN with one hidden layer or the
FNN with two hidden layers achieved a classification accu-
racy of 77.8% and 80.34% respectively [20]. The models
obtain a higher accuracy and detection rate with lower false-
positive rates than all of the machine learning algorithms.
Lam and Abbas [22], like Zhu et al. [20], utilized a CNN
model to detect anomalous network traffic in hopes of pro-
ducing software-defined security that could be implemented
into an intrusion detection system to create more proactive
and end-to-end defense for a 5G network. The model was
extremely effective with an identification accuracy of 100%
for benign traffic and a 96.4% detection rate for anomalous
traffic [22]. These phenomenal results detecting network traf-
fic and cyberthreats will lead to a safer 5G network. Table 6
summaries a number of security research tasks using DL
methods.

IX. DISCUSSION ON B5G/6G
Although this article has focused solely on 5G, several topics
will continue to be prevalent in B5G. B5G can be viewed
as a pathway to 6G technologies and like previous gener-
ations and will render its preceding generation of wireless
communication pale in comparison. The vision of B5SG/6G
will consist of increased network intelligence, increased data,
enhanced senses, quantum networks, extended battery dura-
tion and energy as well as fast spectrum reallocation. Similar
to 5G, this will require adequate resource allocation and an
enhanced security infrastructure and privacy management.
The five topic areas covered in this article will evidently be
of importance for BSG and 6G and the deep learning tech-
niques can be extended in some key technologies of B5G
such as reconfigurable intelligent surfaces, Terahertz, and
unmanned aerial vehicles.

The 5G spectrum is a range of radio frequencies in the sub-
6 GHz range and the mmWave frequency range of roughly
24-40 GHz for cell carriers with 5G availability. For the next
generation of wireless communications systems, frequencies
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are expected to range from 100 GHz to 3 THz [12] to support
the increasing number of applications such as virtual reality,
wireless cognition, IoT and wireless backhaul that requires
more significant data rates and lower latency than offered
by 5G. The ultra-high data rates enabled through mmWave
and Terahertz will also revolutionize wireless cognition in
areas like robotic control and autonomous vehicles as well
as make radar and imaging more effective than the current
light or infrared-based imaging because it will minimize the
impact of weather and ambient light [12].

There has been research on ML techniques on UAV-based
communications to study the throughput, radio coverage,
QoS, latency, energy efficiency and spectral efficiency with
varying success. As concluded in [65], there exists several
open issues towards optimizing UAV networks and DL could
reveal useful correlations among such large amounts of het-
erogeneous data. DL methods have thus far provided to
enhance the results of ML methods. There has already been
some research [11] using deep learning on hybrid precoding,
specifically a RIS-based hybrid precoding architecture for
Terahertz communications due to its energy efficient [66]
characteristic. Using a parallel DNN system each with one
input layer, one output layer and three hidden layers, [11]
was able to approximate the complex non-convex function
of the traditional hybrid precoding algorithm well at a lower
runtime and negligible performance loss. This is just the
beginning of what deep learning can accomplish and with
future research using such DL methods presented in the
exploration of 5G, there is no doubt that B5G and 6G can
achieve great success.

X. CONCLUSION

This article provides a comprehensive review of 5G research
using various DL methods such as CNN, RNN, DRL and
LSTM. We focused on the five main challenges that 5G
entails: channel coding, massive MIMO, non-orthogonal
multiple access, resource allocation, and security. It is seen
that, in channel coding, deep learning will greatly reduce the
time complexity of LDPC codes without the deterioration of
performance. For massive MIMO, deep learning models like
DNN and CNN will greatly improve the BER performance
and system capacity while optimizing channel estimation and
feedback. NOMA, along with massive MIMO, will deliver
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enhanced performance and a reduction of internal power con-
sumption to achieve total energy efficiency reductions. With
deep learning, resource allocation and NOMA will satisfy
QoS requirements and optimize bandwidth usage. Finally,
deep learning is exceptional at the security of 5G espe-
cially at detecting wireless network intrusions and analyzing
network traffic. With further DL research in 5G wireless
networks, future deployments of 5G will produce excep-
tional connectivity at unprecedented speeds and with low
latency that will redefine the world of technology.
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