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ABSTRACT In this article, we investigate intelligent anti-jamming communication method for wireless
sensor networks. The stochastic game framework is introduced to model and analyze the multi-user anti-
jamming problem, and a joint multi-agent anti-jamming algorithm (JMAA) is proposed to obtain the
optimal anti-jamming strategy. In intelligent multi-channel blocking jamming environment, the proposed
JMAA adopts multi-agent reinforcement learning to make online channel selection, which can effectively
tackle the external malicious jamming and avoid the internal mutual interference among sensor nodes.
The simulation results show that, the proposed JMAA is superior to the frequency-hopping method, the
sensing-based method and the independent reinforcement learning. Specifically, the proposed JMAA has
the higher average packet receive ratio than both the frequency-hopping method and the sensing-based
method. Compared with the independent reinforcement learning, JMAA has faster convergence rate when
reaching the same performance of average packet receive ratio. In addition, since the JMAA does not
need to model the jamming patterns, it can be widely used for combating other malicious jamming such
as sweep jamming and probabilistic jamming.

INDEX TERMS Communication anti-jamming, channel selection, multi-agent reinforcement learning,
Q-learning, wireless sensor networks.

I. INTRODUCTION

AS A NOVEL network to realize the comprehen-
sive information interaction between human and the

objective world, the Internet of Things (IOT) is based
on information perception, transmission and processing.
Wireless sensor network (WSN) is an important underlying
network technology to realize the wide application of the
IOT. It is a short-distance wireless communication network
composed of a large number of low-cost, low-power, multi-
functional sensor nodes [1], [2]. In recent years, the WSN
has engulfed many application fields for its potential advan-
tages [3], [4], [5]. When WSN is applied to some pivotal
scenarios, such as traffic monitoring [6], health monitor-
ing [7], military target tracking [8], etc., its information
transmission needs to be guaranteed with strict reliability.

However, the open transmission medium, the limited com-
puting, storage, and power resources, and the simple network
architecture make WSN extensively vulnerable to artificial
malicious jamming. For example, a malicious jammer can
inject electromagnetic jamming with a certain power into
the communication channels to suppress data communica-
tion between sensors [9]. Furthermore, a malicious jammer
can intercept and thereafter tamper with the data being trans-
mitted, or even masquerade as a sensor node and transmit
false data [10]. How to effectively combat various malicious
jamming is a significant challenge for WSN.
Spectrum spreading technology is the mainstream commu-

nication anti-jamming technology, among which frequency-
hopping spectrum spreading (FHSS) [11] and direct sequence
spectrum spreading (DSSS) [12] have been widely used.
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These technologies have remarkable anti-jamming effect on
the conventional jamming, such as sweep jamming, pulse
jamming and wideband blocking jamming. However, on
the one hand, the traditional anti-jamming methods have
some limitations. For example, FHSS relies on a predeter-
mined frequency-hopping pattern [13]. DSSS relies on a
local pseudo-random code [14]. On the other hand, with
the development of artificial intelligence (AI) and software
defined radio (SDR) technology, new trends such as diversity,
dynamics and intelligence of jammers [15], [16] have put for-
ward higher requirements for communication anti-jamming
technology [17].
In recent years, the machine learning (ML) has been

widely concerned in various fields, including wireless
communication network. As a popular machine learning
technique, deep learning has been widely researched in wire-
less communication scenarios. In [18], the deep learning
algorithm was used to predict the future traffic load and
congestion of the IOT, and channel allocation was carried
out. In [19], a novel deep learning based algorithm was
proposed to realize intelligent traffic control in large scale
dynamic network. Reinforcement learning (RL) is another
major branch of ML, which mainly focuses on how agents
can take different actions in their environment to obtain the
maximum reward. The RL represented by Q-learning has
been widely researched in wireless communication scenar-
ios. In [20], a Q-learning based algorithm was proposed to
learn the optimal channel assignment policy in the mobile
communication system. In [21], a Q-learning based approach
was proposed to avoid the interference between different
cells in the Self-Organized Femtocell Network. Deep rein-
forcement learning (DRL) is a combination of DL and RL,
which is also widely concerned in the field of wireless com-
munication network. In [22], a novel deep reinforcement
learning based algorithm was proposed to dynamically allo-
cate radio resources in an online manner for high mobility
wireless heterogeneous network. In [23], to maximize the
network performance, a deep reinforcement learning based
distributed cooperation framework was proposed that allows
nodes to assess network conditions and make decisions on
whether to keep data communications, defend the network
against jamming, or jam other transmissions.
The novel technology mentioned above has pointed out

new research directions for both jamming attack and counter
malicious jamming. In [24], a deep learning-based jammer
is proposed to predict and jam the wireless transmissions.
In [25], two different jammers were proposed, namely a
feed-forward neural network (FNN) jammer and a deep rein-
forcement learning (DRL) jammer, to perform the jamming
attacks on a user performing dynamic multichannel access
using a DRL agent itself. Therefore, based on the idea of
“using intelligence to counter intelligence”, more efficient
intelligent anti-jamming methods are needed.
Machine learning can be divided into supervised learning

(SL), unsupervised learning (UL) and reinforcement learning
(RL), Unlike SL and UL, RL does not require pre-calibrated

data sets for training, and its learning process is characterized
by autonomous exploration of optimal strategies. It means
that the online learning can be realized by RL. In the com-
munication anti-jamming problem, the jamming environment
may change rapidly. Malicious jamming may be dynamic
jamming, unknown type jamming or even intelligent jam-
ming, which means that it is difficult to give the training data
set in advance. RL in the face of unknown jamming environ-
ment can learn the jamming pattern in real time and gradually
improve the transmission strategy, which is of great benefit to
realize reliable communication in complex dynamic jamming
environment. By introducing RL into the anti-jamming prob-
lems, users can continuously adjust the transmission strategy
by trying different actions under the jamming environment,
and finally obtain the optimal strategy. RL such as the clas-
sical Q-learning algorithm has been widely used in solving
anti-jamming problems [26], [27], [28]. Nevertheless, the
existing anti-jamming schemes based on RL also have some
limitations and shortcomings. For example, in [29], [30], the
optimal frequency-hopping strategy under dynamic jamming
environment was obtained by using standard Q-learning or
improved Q-learning algorithm. However, only the single-
user scenario was considered, and hence it is not applicable
to WSN with a large number of sensor nodes. In [31], the
anti-jamming problem was extended to multi-user scenario.
Each user adopted an independent Q-learning algorithm to
obtain the optimal channel switching strategy. Then, the
authors in [32] considered the coordination among users, and
a collaborative multi-agent anti-jamming algorithm based on
RL was proposed to obtain the optimal anti-jamming strat-
egy. However, only the conventional sweep jamming was
considered in [31], [32]. The authors of [33] further studied
the problem of anti-jamming communication under intelli-
gent comb jamming environment. The deep reinforcement
learning (DRL) technology combining deep learning (DL)
and RL was introduced to obtain the optimal anti-jamming
strategy. However, only the single-user scenario was con-
sidered, and the rigorous demand of DRL technology on
computing resources limits its application in WSN.
To solve these problems mentioned above, this article

investigates the anti-jamming problem of multi-sensor nodes
based on multi-agent reinforcement learning (MARL) for the
malicious jamming with a certain intelligence, so as to pro-
vide a preliminary solution and technical support for the
realization of “using intelligence to counter intelligence” in
WSNs. Note that the limited transmission distance of sensor
nodes makes the compact WSN easy to be covered by high-
power jammers. Thus, in order to focus on the problem of
MARL-based approach against intelligent dynamic jamming,
we can consider the external jamming faced by each node
as equivalent, without considering the differences of jam-
ming power or jamming channel faced by different nodes.
Specifically, the stochastic game framework is introduced
to model and analyze the multi-user anti-jamming problem.
Than, to effectively counter the external malicious jamming
and avoid the co-channel interference among sensor nodes,
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FIGURE 1. System model.

the cooperative learning is considered. Thus, a joint multi-
agent anti-jamming algorithm (JMAA) based on multi-agent
Q-learning is proposed. The main contributions of this article
are as follows:

• In order to avoid external multi-channel intelligent
blocking jamming and mutual interference among sen-
sor nodes in WSN, a joint multi-agent anti-jamming
algorithm (JMAA) based on multi-agent Q-learning is
proposed. The proposed algorithm has the character-
istics of “cooperative learning, distributed computing,
and centralized decision-making”, which can quickly
converge to the optimal anti-jamming strategy.

• The proposed algorithm does not need to estimate the
jamming patterns or any parameters of the jammer,
which can be applied to a variety of anti-jamming
scenarios.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
The system model is shown in Fig. 1. In order to facilitate
the research, we make the following assumptions:

1) the WSN is composed of N sensor nodes and one
sink node. The sensor nodes can communicate directly
with each other, and the sink node is responsible for
coordinating the transmission channel between each
sensor node. The set of sensor nodes is denoted as
N = {1, . . . ,N}. There are M channels in the area that
can be used for transmission between sensor nodes.
The sensor node does not have a priori knowledge
about the channel occupied by other nodes or the jam-
mer, but can sense whether there is external jamming
in all M channels. In addition, the sink node and sensor
node can achieve reliable signaling interaction through
the protocol-reinforced low-capacity control link.

2) The communication/jamming time is divided into
communication/jamming timeslots with equal length,
which is the minimum time unit for channel switching
of the node/jammer. The sensor node divides the com-
munication timeslot into sensing sub-slot, transmission
sub-slot and local learning sub-slot. Each transmis-
sion sub-slot can transmit one data packet, and an
ACK message can be received if the transmission is

successful. The sensing sub-slot and local learning sub-
slot are used to jamming sensing and local learning
respectively. Besides, the sink node divides the com-
munication timeslot into decision-making sub-slot and
learning sub-slot. The decision-making sub-slot is used
to decide and coordinate the transmission channel of
each sensor node. And the learning sub-slot is used to
execute the learning algorithm.

3) The high-power jamming signal emitted by an exter-
nal intelligent jammer can completely cover all sensor
nodes. Since the sensor nodes are close to each other,
they can be considered to face the same external mali-
cious jamming. Besides, The intelligent jammer can
continuously sense all available channel, and the K
(K < M) channels that are occupied for the longest
time in the current jamming timeslot will be the block-
ing targets of the next jamming timeslot. The above
malicious jamming has the characteristics of frequency
tracking and selective jamming, which obviously has
a certain degree of intelligence. In this article, we will
call it intelligent multi-channel blocking jamming.

4) When multiple sensor nodes occupy the same chan-
nel for transmission, mutual interference will occur.
Both mutual interference and intelligent multi-channel
blocking jamming can cause transmission failure,
while the effect of channel noise on transmission
is ignored. Since all nodes are synchronized accord-
ing to the timeslot, when a sensor node is sensing,
other nodes are also performing the same operation,
which makes it impossible to directly perceive mutual
interference. However, if the node neither receives
ACK message nor senses malicious jamming, it can be
determined that the reason for the transmission failure
is mutual interference.

B. PROBLEM FORMULATION
In traditional single-agent reinforcement learning, a Markov
decision process (MDP) that includes a single agent and
multiple environment states is generally used for problem
formulating. However, in the multi-agent scenario consid-
ered in this article, the actions taken by any agent will have
an impact on the state of the environment, as well as the
rewards that can be obtained by other agents. This is a game
involving multiple agents and multiple states. Therefore,
extending MDP to multi-agent scenarios is a stochastic
game, also known as Markov game [34], which can be
used to model multi-agent reinforcement learning (MARL)
problems. Mathematically, the anti-jamming problem can be
expressed as a tuple <N,S,A1, . . . ,AN, f ,R1, . . . ,RN>,
where the specific meanings of each element are as
follows:

• N represents the number of sensor nodes;
• S represents the environment state space; s ∈ S is the
element of the state space, representing the environment
state of the WSN;
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• An, n = 1, 2, . . . ,N represents the action space of sen-
sor node n; an ∈ An is the optional action of sensor
node n;

• f : S × A1 × · · · × AN × S → [0, 1] is the state tran-
sition probability function, which represents the proba-
bility that the environment state is transferred to s′ after
different nodes take action an ∈ An in state s;

• Ra, n = 1, 2, . . . ,N represents the reward obtained after
node n executes action an ∈ An in state s.

The environment state of the WSN is closely related to
the jamming signal, and hence the environment state space
is defined as follows:

S �= {s : s = (j1, . . . , jK)}, (1)

where jk ∈ {1, . . . ,M}, k = 1, . . . ,K represents the serial
numbers of K blocked channels sensed by the sensor node
through broadband spectrum. We represent the state s of the
environment by arranging K different jk from small to large.
There are CKM states in the environment state space.
The action of each sensor node is to select its own trans-

mission channel. Therefore, the independent action space of
each sensor node is the same, i.e., A1 = A2 = · · · = AN .
Then, the independent action space of any node n can be
defined as:

An
�= {an : an ∈ {1, . . . ,M}}, (2)

where independent action an ∈ {1, . . . ,M}} represents the
number of the transmission channel selected by node n. A
joint action a = {a1, . . . , aN} is a combination of indepen-
dent actions of different nodes, and hence the joint action
space can be defined as follows:

A �= A1 ⊗ A2 ⊗ · · · ⊗ AN, (3)

where ⊗ represents the cartesian product operation. There
are CNM+N−1 joint actions in the joint action space.
The transition of environment state depends on the change

of jamming channel. As mentioned above, the change of jam-
ming channel depends on the statistics and selection of the
transmission channel by the intelligent jammer. Obviously,
The transitions of environmental state are difficult to predict
and model when the sensor nodes are not aware of the
jamming strategy.
The local reward for node n taking independent actions

an in state s depends on whether there are other nodes or
jamming signals in the selected transmission channel, which
can be defined as follows:

rn(s, an) =
{

1, an �= jk & an �= am(m ∈ N /n);
0, otherwise.

(4)

The above formula means that when the data packet sent
by node n is successfully received (confirmed by ACK mes-
sage), the reward is 1, otherwise it is 0. Different nodes get
the same reward by taking joint action a = {a1, . . . , aN},
which is the sum of local rewards of each node. It can be
expressed as follows:

R1(s, a) = · · · = RN(s, a) = R(s, a) =
∑N

n=1
rn(s, an). (5)

In a stochastic game, agents may have cooperative, com-
petitive or mixed relationships. Stochastic game can be
divided into different categories according to different reward
functions. When the reward function of all agents is exactly
the same, there is a cooperative relationship between agents,
which can be called a complete cooperative game. If the
sum of reward functions of two agents is zero, there is
a competitive relationship between them, which can be
called a zero-sum game. When there are multiple types of
reward functions among agents, there is a mixed relation-
ship between agents, which can be called general and random
games.
In the above stochastic game, different nodes clearly

have a completely cooperative relationship, and their com-
mon goal is to obtain the optimal joint strategy �∗. Each
sensor node can obtain the largest cumulative discount
reward for long-term execution of the optimal joint strategy
�∗. State-action value, also known as Q-value, can reflect
the cumulative discount reward that a certain strategy can
obtain [35], which can be defined as:

Q*(s, a) = max
π

Eπ

[ ∞∑
τ=0

γ τRt+τ |st = s, at = a

]
, (6)

where st and at are the state and joint action at step t, respec-
tively. Rt+τ is the global immediate reward under strategy π

at step t + τ . Eπ [ · ] is the mathematical expectation oper-
ator. 0 ≤ γ < 1 is the discount factor which represents the
importance of long-term reward [36].
If the optimal state-action values corresponding to all

states-action pairs can be obtained, the optimal joint strategy
can be introduced according to the optimal state-action value
function as follows:

�∗(a|s) =
{

1, if a = arg maxa∈AQ∗(s, a);
0, otherwise.

(7)

III. JOINT MULTI-AGENT ANTI-JAMMING ALGORITHM
A. DETAILED DESCRIPTION OF THE ALGORITHM
According to the analysis in the previous section, to obtain
the optimal joint strategy, we need to obtain the optimal
Q-values corresponding to all state-action combinations.
Besides, since the state transition probability function is
difficult to model, model-free reinforcement learning algo-
rithm should be adopted to calculate the optimal Q-value.
Q-learning algorithm is a classical model-free reinforcement
learning algorithm, which can approach the optimal Q-values
gradually through simple iteration [37]. Specifically, the
Q-learning algorithm creates a Q-table to store the corre-
sponding Q-values for all state-action pairs. In any given
state, the algorithm selects an action according to the current
Q-table. After performing the selected action, the algorithm
observes the immediate reward and the next state, and then
updates the Q-values based on the Q-value function. In the
above-mentioned fully cooperative stochastic game, all nodes
have the same reward function, and hence the state-action
value function of each node executing any joint strategy
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should also be the equal. In other words, all the nodes
only need to update the same Q-table. The Q-values can
be updated as follows:

Q(st, at) =
⎧⎨
⎩
Q(st, at) + αt

(
Rt + γ maxat+1 Q(st+1, at+1)

−Q(st, at)), if s = st, a = at;
Q(st, at), otherwise.

(8)

Besides, substituting Eq. (5) into Equation (6) can be
obtained as follows:

Q(s, a) = E

[ ∞∑
τ=0

γ τRt+τ |st = s, at = a

]

=
N∑
n=1

E

[ ∞∑
τ=0

γ τ rn,t+τ |st = s, at = a

]

=
N∑
n=1

Qn(s, an). (9)

In the above, Qn(s, an) represents the Q-value correspond-
ing to the independent action path (i.e., the independent
strategy) of node n, which may be called independent
Q-value. Then, Eq. (8) can be rewritten as:

Q(st, at) =

⎧⎪⎪⎨
⎪⎪⎩

∑N
n=1

(Qn
(
st, an,t

) + αt
(
rn,t

+γ maxat+1 Qn
(
st+1, an,t+1

)
−Qn

(
st, an,t

)))
, if s = st, an = an,t;

Q(st, at), otherwise.

(10)

Therefore, the update of the Q-value Q(st, at) in joint
Q-table can be converted into updating the independent
Q-values Qn(st, an,t) of each sensor node separately as
follows:

Qn
(
st, an,t

) = Qn
(
st, an,t

) + αt
(
rn,t

+γ max
at+1

Qn
(
st+1, an,t+1

) − Qn
(
st, an,t

))
,

(11)

and then summing, thereby achieving distributed update of
the Q-value Q(st, at). When all Q-values in the joint Q-table
converge to the optimal value, the nodes can obtain the
optimal joint strategy according to Eq. (7).
According to the analysis above, we propose a joint multi-

agent anti-jamming algorithm (JMAA) based on Q-learning.
As illustrated in Fig. 2, each sensor node maintains an inde-
pendent Q-table and the sink node maintains a joint Q-table.
The rows and columns of the independent Q-table corre-
spond to the environment states and independent actions,
respectively. Therefore, the independent Q-table has CKM
rows and M columns. Similarly, the rows and columns
of the joint Q-table correspond to the environment states
and joint actions, respectively. Therefore, the joint Q-table
has CKM rows and CNM+N−1 columns. The core idea of the
proposed algorithm is that each node updates its independent
Q-value according to local sensing results and transmission
rewards, while the sink node accepts all independent Q-
values to update the joint Q-value and decides the next

FIGURE 2. Multi-agent Q-learning based model.

FIGURE 3. Illustration of the communication timeslot structure.

transmission action of all nodes. In brief, the proposed JMAA
has the characteristics of “distributed learning, centralized
decision-making, and independent execution”.
As shown in Fig. 3, the sink node divides the commu-

nication timeslot into decision-making sub-slot and learning
sub-slot, which are used to coordinate the transmission chan-
nel and implement the learning algorithm respectively. The
sensor node divides the communication timeslot into sensing
sub-slot, transmission sub-slot and local learning sub-slot,
which are respectively used for jamming sensing, data trans-
mission and local learning. Each timeslot corresponds to an
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Algorithm 1: Joint Multi-Agent Anti-Jamming
Algorithm (JMAA)

1 Initialize: α, γ, ε ∈ [0, 1),Q(st, at),Qn(st, an,t);
2 for t = 1, . . . ,T do
3 Sensor nodes obtain state st = (j1, . . . , jK);
4 Sensor nodes transmit st and Qn(st−2, an,t−2) to the

sink node;
5 The sink node selects a joint action at by the

ε-greedy algorithm;
6 The sink node sends instructions to sensor nodes

according to at;
7 Sensor nodes perform independent action an,t

according to the instructions;
8 Sensor nodes calculate reward rn(st, an,t);
9 Sensor nodes update the independent Q-value

Qn(st−1, an,t−1) by Eq. (11);
10 The sink node updates the joint Q-value

Q(st−1, an,t−1) by Eq. (9);

11 t = t + 1.

iteration of the JMAA. The details of the JMAA is provided
in Algorithm 1. The specific flow of the JMAA is as follows.

1) Firstly, in the sensing sub-slot, each sensor node
obtains the current environment state st by jamming
sensing (line 3), and then transmits st and the locally
updated independent Q-value of the previous timeslot
to the sink node together (line 4).

2) Secondly, in the decision-making sub-slot, the sink
node selects a joint action by Softmax algorithm based
on the current joint Q-table (line 5), and then sends
instructions to all the sensor nodes to coordinate their
transmission channels (line 6).

3) Thirdly, in the transmission sub-slot, each sensor node
executes its own independent actions according to the
instructions from the sink node, i.e., data transmis-
sion is carried out in the assigned channel respectively
(line 7).

4) Lastly, in the local learning sub-slot, Each sensor
node calculates its own reward based on the sensing
results and the ACK message (line 8), then updates
the independent Q-value by Eq. (11) (line 9).

5) While the sensor node performs the above two steps,
in the learning sub-slot, the sink node updates the joint
Q-value by Eq. (9) based on the independent Q-values
updated in the previous timeslot (line 9).

In step 2 above, the Softmax algorithm is introduced to
select the joint action, which is one of the common method to
solve the “Exploration-Exploitation dilemma [38]” faced by
reinforcement learning. Specifically, the strategy of selecting
the joint action of the sink node can be expressed as:

�(at|st) = eQ(st,at)/ξ∑
a e

Q(st,a)/ξ
(12)

FIGURE 4. Flowchart summarizing the operations of nodes.

where ξ > 0 is called “temperature”. The smaller ξ is,
the greater the probability that the joint action with higher
Q-value will be selected. As ξ approaches 0, the Softmax
algorithm will tend to “exploit only”. Conversely, as ξ tends
to infinity, the Softmax algorithm tends to “explore only.” To
achieve a smooth transition from “exploration” to “exploita-
tion”, the temperature is updated according to the following
rules:

ξ =
{

ξ0e−υt ξ ≥ ξfinal
ξfinal ξ < ξfinal

(13)

where the initial temperature ξ0 is positively correlated with
the “exploration” ability of the algorithm at the initial stage.
When υ > 0, ξ can approach 0 gradually with the algorithm
iteration, and its value determines the length of the transition
time.
Operations of nodes presented in the form of a flowchart in

Fig. 4. Different from the offline algorithm, which needs to
complete the training before output the strategy, the proposed
JMAA is online, and its iterative learning process is also a
process of constantly improving the transmission strategy. It
means that sensor nodes and the sink node will continue to
execute the proposed algorithm until the transmission is ter-
minated. As the transmission progresses, the joint Q-table is
continuously updated, i.e., the transmission strategy is con-
tinuously improved. After a finite number of iterations, when
all Q-values in the joint Q-table do not change significantly,
it means that the Q-values have converged to the optimum.
The strategy based on the joint Q-table converges to the
optimal strategy.

B. COMPLEXITY ANALYSIS
The main computational complexity of the proposed
Algorithm 1 lies in steps 3 to 7. The steps 3 to 7 are
performed only once in each iteration, and their computa-
tional complexity is independent of the size of the Q-table.
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Hence, the computational complexity of step 5, 6 and 10
of the sink node can be expressed as O(3T). The compu-
tational complexity of each sensor node can be expressed
as O(5T), then the computational complexity of N sensor
nodes is N · O(5T). The total computational complexity of
Algorithm 1 can be expressed as C = (N + 1) · O(T), which
means that the proposed algorithm can achieve an optimal
solution in polynomial time.
As previously mentioned, the size of independent

Q-table and joint Q-table are CKM ×M and CKM × CNM+N−1,
respectively. Therefore, the space complexity of the sen-
sor node and the sink node can be expressed as
O(CKM ×M) and O(CKM × CNM+N−1), respectively. The total
space complexity of Algorithm 1 can be expressed as
O(CKM ×M + CKM × CNM+N−1), which means that the space
complexity of Algorithm 1 will increase sharply with the
number of channels and sensor nodes.

C. CONVERGENCE ANALYSIS
The authors in [36] have proved that when the learning rate
αt in Eq. (10) and (11) satisfies the following conditions:

αt ∈ [0, 1),

∞∑
t=1

αt = ∞, and
∞∑
t=1

(αt)
2 < ∞, (14)

Q-learning algorithm can traverse all states with the number
of iterations increases, and finally converge to the optimal
Q-values for all state-action pairs after a finite number of
iterations. The proposed JMAA obtains the joint actions
according to the joint Q-table, and hence it can converge
to the optimal strategy.

D. SIGNALING OVERHEAD ANALYSIS
Since the proposed JMAA relies on the information
interaction between the sink node and sensor nodes, the
signaling overhead should be considered. As previously men-
tioned, in each iteration, the sensor node sends sensing result
and independent Q-value to the sink node, and receives
channel assignment instructions from the sink node. Let
Is, Iq and Ia denote the quantity of information contained
in sensing result, in independent Q-value and in channel
assignment instruction, respectively. The signaling overhead
of each sensor node can be expressed as (Is + Iq)/Ts, while
the signaling overhead of the sink node can be expressed
as Ia/Ts. Since N sensor nodes have to send information to
the sink node in each iteration, the signaling overhead of N
sensor nodes can be expressed as [N(Is + Iq)]/Ts. Therefore,
the total signaling overhead of Algorithm 1 can be expressed
as [N(Is + Iq) + Ia]/Ts, which means that the total signaling
overhead is proportional to the number of sensor nodes.

IV. SIMULATION RESULTS
A. SIMULATION SETTING
The simulation parameter settings are shown in Table 1.
To evaluate the performance of the proposed JMAA, we

compare the performance of the proposed algorithm with the
following methods:

TABLE 1. Parameter settings.

• Frequency-hopping based method: The sensor nodes
switch transmission channels according to the randomly
generated fixed frequency-hopping patterns, and the
frequency-hopping patterns of different sensor nodes
are orthogonal to each other to ensure that the same
channel is occupied by only one sensor node at the
same time.

• Sensing based method: Each sensor node can sense all
the jammed channels. If the channel in use is blocked
in the current timeslot, the sensor node will randomly
switch to an idle channel in the next timeslot, otherwise
leaving the channel unchanged. Furthermore, there is no
exchange of information among nodes.

• Independent Q-learning method (IQL): Each sensor
node performs a Q-learning algorithm individually.
Moreover, the decisions of each sensor are based solely
on locally learning results, and the ACK mechanism is
not adopted.

• Independent Q-learning method with ACK mechanism
(IQL-ACK): This method introduces the ACK mecha-
nism on the basis of IQL, and can determine whether
there is mutual interference by combining with the result
of jamming sensing. The difference between IQL-ACK
and JMAA is that there is no information exchange
among nodes in IQL-ACK, and each sensor node’s deci-
sion is based on the local independent Q-table rather
than the joint Q-table.

• Distributed Q-learning method (DQL): Each node adopts
a multi-agent reinforcement learning algorithm called
distributed Q-learning [39]. Similar to IQL, this method
does not require information exchange between sensors.
Each node maintains local Q-value Qn(st, an,t) through
its own actions and rewards. The update of Q-value is
carried out in the direction of increasing Q-value:

Qn
(
st, an,t

) = max
{Qn

(
st, an,t

)
,

rn,t + γ max
at+1

Qn
(
st+1, an,t+1

)}
, (15)
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FIGURE 5. Average packet receive ratio of JMAA under different parameter settings.

FIGURE 6. Average packet receive ratio of JMAA under different parameter Settings.

We introduce the average packet receive ratio to com-
pare the anti-jamming performance of different meth-
ods. The average packet receive ratio can be defined as
ρavg(t) = 1/N

∑N
n=1(Dn(t)/W), W is the number of inde-

pendent runs of the proposed algorithm. Dn(t) is the number
of data packets successfully transmitted by sensor node n in
timeslot t when the algorithm runs independently W times.
Besides, the following simulation results about the average
packet receive ratio are the average of 5000 independent
runs.

B. SIMULATION ANALYSIS
Fig. 5 compares the average packet receive ratio of JMAA
when Softmax algorithm has different parameters. The
smaller υ is, the longer the exploration process of JMAA is,
which means that the convergence rate is slower. However,
sufficient exploration can make the convergence value of the
average packet receive ratio higher. When it takes at least
6000 iterations to complete the transition from exploration
to exploitation, the average packet receive ratio of JMAA
can converge to the optimal value, about 0.93.

Fig. 6 shows a comparison of the average packet receive
ratio for different methods. Considering that the performance
of anti-jamming algorithm based on reinforcement learning
is affected by parameter setting of Softmax algorithm, we
choose the optimal performance curve of DQL and IQL (i.e.,
the case with the least number of iterations when the optimal
performance is achieved) as the comparison scheme. Besides,
due to the excessive number of iterations required for IQL-
ACK to converge to the optimal value, the performance curve
when the convergence is completed within 10,000 iterations
is shown in Fig. 6. Firstly, it is known from Fig. 5 that
the average packet receive ratio of JMAA can converge to
the optimal value of 0.93 within 6000 iterations, while the
IQL-ACK can converge to 0.9 within 6000 iterations and
0.915 within 9000 iterations. It means that IQL-ACK needs
more iterations to achieve similar performance to JMAA.
The reason is that cooperative learning among nodes is
not introduced in IQL-ACK, and it takes more time for
nodes to independently explore and find the optimal strategy.
Secondly, although the optimal performance curves of DQL
and IQL converge quickly, the optimal value after conver-
gence is significantly worse than that of JMAA. The reason
is that updating Q-value of DQL according to Eq. (15) can
always make it proceed in the direction of increase, which
has the advantage of accelerating convergence and the dis-
advantage of falling into local optimization. IQL ignores the
mutual interference among nodes, resulting in fast conver-
gence but poor anti-jamming effect. Finally, due to the fixed
anti-jamming strategy, the average packet receive ratio of
FH-based and Sense-based methods commonly used in prac-
tice is far lower than that of JMAA, and even lower than the
above several comparison algorithms based on reinforcement
learning.
Since the proposed JMAA does not need to model the

jamming patterns, and has the ability to explore and learn
from the unknown jamming environment, it should be able
to solve the problem of reliable communication in vari-
ous jamming environments. Hence, the following simulation
verify the performance of the proposed JMAA when the
external malicious jamming is sweep jamming or proba-
bilistic jamming [40]. Among them, the sweep jamming is
a conventional dynamic jamming which can periodically
jam the target frequency range or the target channel in
turn. Moreover, probabilistic jamming can determine the tar-
get channel of different timeslots according to the specific
jamming probability matrix. To be specific, if the jammer
determines the jamming channels according to the proba-
bility matrix shown in Fig. 7(a), then Fig. 7(b) shows the
generated jamming pattern in two jamming cycles. More
details about probabilistic jamming can be found in [39].
Fig. 8 and Fig. 9 show the average packet receive ratio

of JMAA in probabilistic jamming environment and sweep
jamming environment. In both sweeping and probabilistic
jamming environment, with the decrease of the parameter υ,
the convergence speed decreases, but the convergence value
is closer to 1. Obviously, the average packet receive ratio can
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FIGURE 7. Diagram of probabilistic jamming: (a) Jamming probability matrix.
(b) Generated jamming pattern.

FIGURE 8. Average packet receive ratio of JMAA in probabilistic jamming
environment.

converge to 1 when the appropriate parameter is set, which
means that the proposed JMAA can completely avoid the
malicious jamming and mutual interference. In addition, the
average packet receive ratio of JMAA requires at least 4000

FIGURE 9. Average packet receive ratio of JMAA in sweep jamming environment.

iterations of exploration before it converges to 1 in proba-
bilistic jamming environment, while in the sweep jamming
environment, it only needs 1000 iterations of exploration.

V. CONCLUSION
In this article, we investigate the problem of anti-jamming
communication in a wireless sensor network. For the internal
mutual interference caused by competition among sensor
nodes and external intelligent multi-channel blocking jam-
ming. We model the anti-jamming problem as a stochastic
game framework, and a joint multi-agent anti-jamming
algorithm (JMAA) is proposed for achieving real-time anti-
jamming channel selection. By cooperative learning, the
proposed JMAA can eliminate mutual interference and effec-
tively avoid the tracking of intelligent multi-channel blocking
jamming. The simulation results show that the proposed
JMAA is superior to the frequency-hopping based method,
the sensing-based method and the independent Q-learning
method (with or without ACK mechanism). In addition, we
prove the effectiveness of the proposed JMAA in sweep
jamming or probabilistic jamming environment, which indi-
cates the proposed JMAA can be widely used in various of
jamming environments.
In future work, the transfer learning approach may be a

good candidate to obtain faster convergence speed in multi-
user sensor networks with limited computing resources. In
addition, it would be more meaningful to consider that
different nodes face different external jamming.
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