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ABSTRACT Reconfigurable Intelligent Surface (RIS) has emerged as a promising technology in wireless
networks to achieve high spectrum and energy efficiency. RIS typically comprises a large number of
low-cost nearly passive elements that can smartly interact with the impinging electromagnetic waves for
performance enhancement. However, optimally configuring massive number of RIS elements remains
a challenge. In this article, we present a machine learning (ML) based modeling approach that learns the
interactions between the phase shifts of the RIS elements and receiver (Rx) location attributes and uses
them to predict the achievable rate directly without using channel state information (CSI) or received
pilots. Once learned, our model can be used to predict optimal RIS configuration for any new receiver
locations in the same wireless network. We leverage deep learning (DL) techniques to build our model
and study its performance and robustness. Simulation results demonstrate that the proposed DL model
can recommend near-optimal RIS configurations for test receiver locations which achieved close to an
upper bound performance that assumes perfect channel knowledge. Our DL model was trained using less
than 2% of the total receiver locations. This promising result represents great potential in developing
a practical solution for the optimal phase shifts of RIS elements without requesting CSI from the wireless
network infrastructure.

INDEX TERMS Reconfigurable intelligent surface, large intelligent surface, deep learning, channel
estimation.

I. INTRODUCTION

IS (Reconfigurable Intelligent Surfaces) has been envi-

sioned as a promising technology to reduce the energy
consumption and improve the communication performance
by artificially reconfiguring the propagation environment of
electromagnetic (EM) waves. As such, RISs have the huge
potential to revolutionize the design of wireless networks
to realize smart radio environments [1], particularly when
combined and integrated together with other candidate tech-
nologies for the next generation networks, such as terahertz
communications and artificial intelligence (AI)-empowered

wireless networks. Some fundamental characteristics that
make RIS different from current available technologies
as pointed out in [2], [3] include the unique design con-
straints associated with the nearly passive nature of RIS
elements which cannot perform channel estimation directly,
the opportunities offered by RIS for redefining the tra-
ditional notion of communication without producing new
EM signals but by recycling existing radio waves, and the
choice of using cost-effective material in realizing RIS to
promote more sustainable wireless by design. These charac-
teristics offer new opportunities for customizing the wireless
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environment, more efficient use of radio waves, coverage
extension, power transfer, positioning, and increasing the
spatial capacity density [2], [3], [4] while also improving
energy efficiency [5]. At the same time, these character-
istics also pose new challenges in designing RIS-assisted
networks/systems (e.g., communication, sensing, wireless
charging, etc.), such as information transfer within the
RIS-embedded environment, RIS configuration optimization
with limited information, resource allocation and network
optimization in such communication systems as discussed
in [6], [7].

In this article, we consider the challenge of RIS configu-
ration optimization which mainly originates from the large
number of parameters to be optimized based on the con-
textual information. Traditional or analytics-based solutions
build upon communication theories, mathematical models,
and optimization algorithms. While solid and very success-
ful, they face challenges in supporting RIS-assisted systems
as discussed in [6]. Firstly, most analytics-based recent
works on the optimization of RIS parameters assume relevant
channels are available and develop algorithms to config-
ure the RIS given the channel knowledge [8], [9]. However,
given the nearly-passive nature of the RIS (i.e., elements
on the RIS are not equipped with on-board sensing or sig-
nal processing capability while only passively reflecting the
incidents according to the configuration) and the massive
number of parameters to be estimated, these approaches
would encounter more challenges in RIS-assisted wireless
systems as discussed in [6], [7]. On top of that, the chan-
nel model of an RIS-assisted MIMO system has not yet
been well understood. Secondly, such “sensed” channel sta-
tus is mostly “after fact” and the system can only react
to what already happened, which makes it extremely hard
to combat any unfavorable or sudden change of propaga-
tion conditions, especially at high frequency bands. Lastly,
from the deployment perspective, such an approach would
require the communication nodes and devices to support the
necessary signal processing functions and low layer pro-
tocols of the communication systems. Such requirements
impose constraints on candidate application scenarios of RIS
systems.

Most of the challenges are illustrations of the current
wireless network design choice and assumptions that the
improvements only operate on the end-points of the com-
munication environment while regarding the wireless prop-
agation environment between the communicating devices as
uncontrollable as pointed out by [2], [6]. It leaves the job
of tuning and adapting to the environment to field engineers
or optimization tools. In this article, we argue that such
design choice is not sufficient anymore, given the increas-
ingly challenging requirements for future applications and
new technologies/tools at our hands now.

Due to recent advances in machine learning (ML) technol-
ogy, especially in deep learning (DL), applying ML-based
approach in wireless communication has shown promis-
ing results for many applications as discussed in [10].

VOLUME 2, 2021

In the area of RIS-assisted wireless communication, ML-
based approach has great potential given its strength in
handling high-dimensional and non-convex optimization
problems [11], [12]. In the supervised learning setting: [13]
presented a deep neural network (DNN) model that uses
the sampled channel knowledge from a few active RIS ele-
ments as input to train the proposed DNN model offline to
predict the optimal RIS reflection beamforming matrix; [14]
and [15] presented methods that use received pilots as input
to train the proposed DNNs to predict the optimal RIS
phase shifts and beamforming vector at the base station (BS)
while bypassing the intermediate step of channel estima-
tion; the authors in [16] proposed a DNN model that is
trained offline to learn the implicit relationship between
the measured Rx coordinates and the optimal RIS con-
figuration. To avoid the overhead of collecting labelled
data in the supervised learning setting, the authors in [17]
leveraged unsupervised learning technique and designed
an RIS beamforming neural network (RISBFNN) archi-
tecture to predict the optimal phase shift configuration
using estimated channels at BS as input and the negated
transmission rate as the loss function. Another learning
alternative, deep reinforcement learning (DRL), which uses
the data collected online to train the model, has gained
momentum in various wireless network scenarios, especially
for optimization problems [18]. For RIS-assisted wireless
communication: the authors in [19] introduced an actor-
critic DRL approach to study the joint design of transmit
beamforming matrix at the BS and the RIS phase shift con-
figuration for multiuser multiple input single output (MISO)
system; in [20], the authors presented a potential standalone
RIS solution, also based on DRL, to determine the optimal
RIS beamforming vector; [21] presented a DRL-based frame-
work to maximize the average energy efficiency by enabling
a BS to determine the proper transmit power and best RIS
configuration.

The above-mentioned ML approaches either take esti-
mated channel information or observed pilots at Tx / BS
to predict the optimal RIS beamforming matrix or learn
the optimal RIS configuration using Rx location coordi-
nates alone without explicitly considering the propagation
environment between the Tx and Rx. In this article, we
propose a new DL-based approach which aims to learn
the characteristics of the channel variations in the propaga-
tion environment between the communication devices. Once
learned, the DL model will capture the relationship(s) across
the RIS panel and configurations, to the devices (and poten-
tially other environmental characteristics). Such model can
be used for optimal control of RIS elements and other
RIS-aided applications without relying on explicit channel
estimation. In addition, we believe there is a need to combine
the strength of communication knowledge and ML technique,
thus we design a communication theory-inspired feature map
that enables the proposed DL model to learn the under-
lying relationships and environmental characteristics more
efficiently.
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Within the context described above, the main contributions
of this article can be summarized as follows:

« We consider an RIS-assisted wireless communication
network and propose a ML-based approach to model
the local propagation environment without relying on
explicit channel estimation. The trained model will
reflect the important properties of the modeled envi-
ronment, thus can predict the optimal RIS configuration
within a specific context.

« We introduce a novel feature representation design
to capture both the correlation between the real part
and imaginary part of the RIS reflection beamform-
ing vector, and the interaction between RIS elements
and the Rx location attributes. This design enables the
customized convolution neural network (CNN) archi-
tecture to learn the mapping function more efficiently,
thus significantly reduces the overhead of collecting
labelled data.

« Simulation results show that the proposed approach can
achieve close to an upper bound performance while
requiring less data (10x less) in the training phase com-
pared to the benchmark method. This demonstrates that
by leveraging both domain knowledge and ML tech-
niques, a practical ML-based RIS configuration control
solution can be realized.

The rest of this article is organized as follows. In
Section II, we describe the network model and the chan-
nel model for an RIS-embedded environment. Section III
summarizes the problem space and the mathematic formula-
tion. Note that although our proposed approach is ML-based,
we describe the channel model and problem formulation
based on traditional communication theory-based mathe-
matic formulas first in Sections II and III; later in this
article, we describe how the relationships can be learned
without using channel state information. In Section IV, we
present our DL-based approach to learn the local prop-
agation environment, its architecture, loss function, and
algorithm pseudo-code. Section V shows numerical anal-
ysis results for the proposed approach and comparison
with the baseline approach. Finally, we present conclu-
sion and share our view for future research topics in
Section VI.

Notation: Unless otherwise stated, we wuse the fol-
lowing notation throughout this article: scalars, vectors,
and matrices are denoted by lower/upper case, boldface
lower case, and boldface uppercase letters, respectively.
For an arbitrary matrix A, A* and AT are its conju-
gate and transpose, respectively. diag (a) is a diagonal
matrix created by putting the elements of a in its diag-
onal positions. vec(A) is a vector whose elements are
the stacked columns of matrix A. Hadamard product of
matrices A and B is represented by AG®B. N(u,R) is
a complex Gaussian random vector with mean @ and
covariance matrix R. Imaginary unit of a complex num-
ber is denoted by j = =1 Finally, E[-] denotes
expectation.
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Il. SYSTEM MODEL

In this subsection, we consider an RIS-embedded envi-
ronment as the target physical world environment and as
a use case we study in this article. We describe the mod-
els (network model and channel model), and assumptions
of such an environment first, followed by problem for-
mulation in Section III. These models and formulas are
used to construct/simulate the RIS-environment upon which
observations are drawn to train the proposed DL model.

A. NETWORK MODEL
We consider an RIS-assisted downlink communication
system, where an RIS composed of N passive reflecting
elements is deployed to assist in the communication from
the transmitter (Tx) to a receiver (Rx). Tx and Rx are both
equipped with single omni-directional antennas each. Our
model can be easily extended to a multi-antenna scenario.
As done in [20], [22], we adopt an OFDM-based system
of K subcarriers, and let hr i, hri € CN*1 pe the N x 1
channels from Tx/Rx to RIS at the k™ sub-carrier. In this
article, we will focus on the case where the direct link
between the Tx and Rx does not exist, i.e., the direct link
is either blocked or has negligible received power compared
to that received beside the RIS-assisted link and there is
no other environmental input to the receiver besides the
RIS. The interactions of the RIS elements on the incident
signal is modeled by the diagonal matrix

O, = diag(a1exp(joy), .. ., anexp(jon)), (1)
where 6, € [0, 27) and o, € [0, 1] represent the phase-shift
and the amplitude coefficient for element n € {1,2,..., N},

respectively. According to [23], the amplitude coefficients
are dependent on the reflection phase shifts. However, for
simplicity, we assume no loss/attenuation on the incident
signals, i.e., o, = 1 for all elements in the sequel of the
paper. For a multi-carrier system like OFDM, similar time-
delay in the analog domain will result into different phase
shifts in different sub-carriers and the differences will be
dependent on the carrier frequency, f.. These non-uniform
phase shifts over different sub-carriers will cause undesired
phase errors that should be compensated by either hardware
or signal processing [24]. Such per sub-carrier basis phase
shift optimization is done in some recent papers [25], [26].
However, for simplicity, in this article, we assume that the
same phase shift will be used for all sub-carriers and we
plan to consider per sub-carrier basis phase shift optimization
method for future. Hence, we will drop the subscript k from
O/ in the rest of this article.

Then the received signal at the receiver can be
expressed as:

vk = hp  Ohy jxi + g, )

@ (hR,kGhT,k)Tka + ng, 3

where v is the RIS reflection beamforming vector, i.e.,
O = diag(v), x; denotes the transmitted signal over the
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k™ subcarrier and satisfies ]E[|xk|2] = }%, with Pr repre-

senting the total transmit power and n; ~ N(O, 0,%) is the
noise power. The phase of each RIS element can be adjusted
through the PIN diodes [24], which are controlled by the
RIS-controller over the backhaul link. Here we assume that
the backhaul link uses separate frequency resource other than
the data communication frequency. We also assume that the
signals reflected by RIS two or more times are ignored due
to the severe “distance-product” power loss over multiple
reflections [24].

B. CHANNEL MODEL

Motivated by [20], [22], here we also adopt the wide-
band geometric channel model [22] to model the channels
hr i, hrr between the Tx/Rx and the RIS. Let us con-
sider a Tx-to-RIS channel, hry, (and similarly for the
RIS-to-Rx channel) consisting of M clusters. Each clus-
ter contributes with one ray from the transmitter to the
RIS. The ray parameters are: azimuth/elevation angles of
arrival, 6,,, ¢, € [0, 27); complex coefficient g,, € C; time
delay 7, € R,Vm € {1, 2, ..., M}. The transmitter-RIS path
loss is denoted by Lr. The pulse shaping function, with
Ts-spaced signaling, is defined as p(r) at T seconds. The
delay-d channel vector hr 4, can then be defined as

N M
hra = ,/L—T > gmp(dTs — 1) 2O, dm). )
m=1

where a(6,,, ¢,,) € CV*! denotes the array response vector
of the RIS at the angles of arrival (6,,, ¢;). Given this delay-d
channel, the frequency domain channel vector at subcarrier
k, ht i can be expressed as

D—1
hri=Y hrae B 5)

d=0
We consider a block-fading channel model, k7 and hg
are assumed to be constant over the channel coherence time,
denoted T,, which depends on the mobility of the users
and the dynamics of the environment. Hence, the reflection
coefficient matrix @ only needs to be updated after every
coherence interval T,. It is worth noting that for mmWave
channels, the value of M can be very low, whereas for
sub-6 GHz, signal propagation generally experiences rich

scattering resulting in channels with more M.

lll. PROBLEM FORMULATION

As stated previously, our main goal is to design the RIS
reflection beamforming vector v, to maximize the achievable
rate at the receiver. Given the system and channel models
in Section II, this achievable rate can be written as

[ Pr T2
R=—Y log (1 —‘ h O v‘ .6
K; og2< +Ka,% (hr kOhT k) ) (6)

In this article, we also assume that the RIS elements can
only take one of the discrete quantized set of angles due to
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hardware constraint [23], [24]. Hence, we consider that the
reflection beamforming vector v can only be picked from
a pre-defined codebook F. Each codeword in JF is assumed
to be implemented using quantized phase shifting capability
of RIS elements. Hence, our main goal is to find the optimal
reflection beamforming vector v* that satisfies the following

K
Pr T |2

*_ Y log, ( 1 —‘ hg cOh ) .
v argmaxkil ogz( + Ko? (hg kOhT ) V )

veF

)

The above solution will provide the optimal rate R*, which
can be expressed as
2
). ®)

Due to the quantized codebook constraint, there is
no closed form solution for the optimization problem
in (8). Moreover, such problems are non-convex optimization
problems [22], [24], [27], and since the discrete phase shifts
are constrained in a finite set F, the optimal solution can be
obtained by the exhaustive search (ES) over the codebook
F. It is worth noting that the size of the codebook should
normally be in the same order of N, which means that for
RIS with large N, ES will not be a feasible approach.

A traditional analytical solution would follow similar
framework as described above. Instead, in this article we
aim to find the optimal RIS reflection beamforming vec-
tor efficiently without any explicit channel estimation. Since
our problem space is discrete and hence, non-smooth, we
cannot directly use gradient search based method as done
in [25], [26]. As discussed before, optimal solution of
problem (7) will require ES. Moreover, for finding sub-
optimal solutions efficiently, authors in [27] have proposed
successive refinement algorithm whose complexity is of
exponential order with respect to the number of phase quan-
tization bits [27]. On the other hand, one of the goals
for our work is to build a realistic model that simulates
the RIS-embedded environment’s behavior without relying
on channel estimation, which allow us to determine the
optimal RIS reflection beamforming vector v* from the
model output, and according to the universal approxima-
tion theorem [28], DL-based methods can capture complex
mappings between input-output pairs where input includes
physical objects RIS and user equipment locations and out-
put is the corresponding achievable rates in the scope of
our work. These reasons motivated us to exploit DL-based
technique to find the optimal RIS configurations given the
users’ locations as input.

We use (6)-(8) for the construction of observed achiev-
able rates and the ground truth of optimal configurations for
different receiver locations. Unlike [20], [22], we assume no
presence of any active RIS element. In the next section, we
introduce our novel DL-based method to learn a model that
maps the environmental attributes for a given location with

K
1 Pr T
RP=—-3%"1 1—‘h hy ) vt
K; 0g2< +KU”2(R,/<® T.k)
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any intended RIS reflection beamforming vector to the corre-
sponding achievable rate by exploiting the location attributes
of the possible receiver locations in the network.

IV. DEEP LEARNING-BASED APPROACH

In this section, we introduce a ML-based approach that
aims to learn the local propagation environment between the
communication devices in an RIS-assisted wireless commu-
nication network and predict the optimal RIS configuration.
We leverage DL technique to build such a model that cap-
tures the interaction across the physical objects (RIS and user
equipment) and the spatial patterns on the RIS to characterize
the RIS-embedded environment and its intended or predicted
behavior toward the user equipment, i.e., achievable rate.
This approach enables the model to learn the mapping func-
tion directly without using CSI as input. First, we explain
the key ideas and intuition behind the proposed method.
Then, we describe our method in detail, and discuss how
we construct the neural network architecture in the proposed
method.

A. KEY IDEAS

RIS-assisted wireless networks consist of Tx (e.g., wire-
less base station), Rx (e.g., user equipment), and RIS panel.
From [29], the captured power at the Rx can be represented
as some function of gains of RIS elements, wavelength, and
Tx/Rx locations. However, with all the elements on the RIS
being passive, antenna gain information at the RIS elements
is not directly available whereas we understand it depends
on RIS phase-shift configuration. With the intuition derived
from [29], we design our ML-based approach to directly
predict the achievable rate at a given Rx location after apply-
ing the RIS reflection beamforming vector v as described in
(6) by using its location attributes and the intended v as input,
while bypassing channel estimation. Our approach utilizes
a DL-based approach to learn the mapping function given its
strength in learning complex non-linear relationships. Once
the DL model learns the mapping function, the optimal RIS
configuration for any new Rx location can be obtained from
the model’s prediction results. This means the RIS-assisted
communication networks can approach optimal achievable
rate as described in (8) without requiring channel estima-
tion. Once trained, the model can be deployed as a software
component at the controller which can be collocated with
the RIS.

Our approach is related to a few prviously proposed
methods. In [16], the authors propose a DL-base method
to predict the “optimal” RIS configuration directly using
only the measured coordinates at a user’s location. The
major difference between our approach and [16] is that our
approach predicts the achievable rate for “any” Rx loca-
tion and RIS reflection beamforming vector combination,
which allows the system to determine proper action based
on the prediction result of all or a subset of candidate
RIS configurations during online inference phase even if
some configurations are not seen during the training phase.

266

Obstacle

———<AP / Transmitter / M
Offline data collection Deployment
Receiver RIS Achievable New receiver
location config rate location
I 1
Feature o

transformation

W

. '

Training Phase Inference Phase

8] o] ] O ] 0 ” o g O

D o o B

Deep Learning Learned Env-Twin Model

Predicted optimal RIS
configuration

FIGURE 1. Proposed framework for the model learning and inference phases.

Another two related works as discussed in Section I: [17]
presented an unsupervised learning approach for passive
beamforming in RIS-assisted communication environment
and takes estimated channel as input to predict the optimal
RIS phase shift configuration; [15] proposed a DL-based
approach that learns to configure the RIS phase shifts and the
beamforming matrix at the BS to maximize the system sum
rate based on the received pilot. The main difference between
our approach and [15], [17] is that our approach does not
use either estimated channel information or received pilot as
input since one of our main goals is to remove the depen-
dency on explicit channel information; instead, our model
takes the fused feature maps that are constructed from a set
of RIS phase shift configurations and Rx location attributes
to predict the corresponding achievable rate at the Rx for
a given RIS-assisted communication network.

B. PROPOSED METHOD

The proposed solution framework involves two phases in
operation, namely the model offline training phase using
training locations and the model inference phase for new Rx
locations as depicted in Fig. 1.

1) Model Training Phase: During this phase, the system
collects location measurement data offline from a set of
sampled Rx locations, a set of RIS phase-shift config-
urations used in the data transmission for the sampled
locations, and the corresponding achievable rates at the
Rx locations. Suppose measurements for U Rx loca-
tions are collected, each can be denoted as I; = (J; y,
liy,dy) withi=1,2,..., U, whereas ; ,, [; y represent
Rx i’s x coordinate, y coordinate, and d; represents Rx

VOLUME 2, 2021



‘IEEES IEEE Open Journal of the
Com3oc  communications Society

i’s distance to each of the elements on the RIS panel.
Note that the size of d; is equal to number of elements
on the RIS. Part of the input for each training sample
is RIS reflection beamforming vector for Rx location i.
Each Rx location has N possible RIS reflection beam-
forming vectors denoted as v;, with p=1,2,..., N,
where N is the total number of RIS reflection beam-
forming vectors specified in the predefine codebook
F. The default size of N is N x N, where (N1, N»)
is the dimension of RIS, and for convenience of dis-
cussion we can set Ni = N,. Thus, the training input
set for location i can be denoted as

Si = {(li, viyl), (l,‘, ‘Di,z), ey (li, 17,"1\1)}.

The corresponding labelled output, represented by R; ,
(bps/Hz) is the observed achievable rate at Rx loca-
tion i after RIS reflects using reflection beamforming
vector v; p, thus, there are a total of N achievable rate
prediction results for Rx location i, one for each input
vip as defined in the codebook F. Once the samples
are acquired, the DL model is trained using these col-
lected training samples. The training process allows the
model to learn how to map an input sample (RIS reflec-
tion beamforming vector, v; ,, and location attributes I;
for Rx i) to its corresponding output (achievable rate,
R;ip). The offline data collection and model training
procedures can be performed on the RIS controller if
it has sufficient capacity, or at a separate computing
equipment that has access to the data. The trained DL
model can then be uploaded to the RIS controller for
the next model inference step.

2) Model Inference Phase: During the model inference
phase, the system first receives estimated location
attributes from the intended Rx j, namely its x coordi-
nate, y coordinate, and calculates its distance features
d; to each of the RIS elements to form input [; =
(ljx, ljy, d;). Then, the system constructs input sam-
ples for location j using all possible RIS reflection
beamforming vectors specified in the predefined code-
book F. The new input sample set for the intended
Rx location j can be denoted as

S = vin), (4. vi2)s - o) -

After the new sample set is constructed, the trained
DL model takes the input and predicts the achievable
rates at location j for each possible RIS reflection
beamforming vectors, v; ,, which can be expressed as

N N o
= {Rj,l,Rj,Z, -"aRj,N}'

The system performs an exhausted search across the
achievable rates from the DL prediction output to
determine the optimal RIS reflection beamforming vec-
tor for location j. This predicted optimal reflection
beamforming vector v; is then used in data transmis-
sion for location j. Note that the inference procedure
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Algorithm 1 Deep Learning based Env-Twin Model

Step 1: Model Training

// Training Input: Q (number of samples), receiver location features €; = (x;ypd;).

Ni=1,..., U, RIS reflection beamfoiming vector v;_p, N1 N2 (RIS dimension)

// Training Output: achievable rate R at receiver location i after RIS reflects using vp
Input_train < reshape(Input, (Q, N1, N,, dim(location attributes) + 2))
Output_train reshape(Output, (Q, 1))

D <« (Input_train, Output_train)
Build CNN model M for learning
Initialize weights, 6 for M
for ep = 6 to epoch-1 do:
Minibatch training dataset D
forward propagation to calculate R
gradient descent on MSE(R, R) to obtain new 6
update model weights using new 6
end

Step 2: Model Inference

// Input: trained CNN model M, location features ¢; for intended receiver location j,

// predefined RIS reflection beamfoiming vectors vy p

// Output: predicted best reflection beamfoiming vector for intended receiver location j
Input < ((l’.j, V1), (lj, V2)yens (l]—, vp)

Input < reshape(Input, (p, N1, N,), dim(location attributes)+2))

F = M.predict(Input)

opt_index <« argmax(r)

RIS uses vopt_index as the reflection beamfoiming vector for the intended receiver

location j
Sampled 1?7'(-1”\

1\ m
1.

FIGURE 2. This figure shows the representation of input features to the proposed
CNN model.

can be performed on the RIS controller, which is also
responsible for acquiring the needed input data, i.e.,
available RIS beamforming vectors and Rx location
attributes, from the communication infrastructure and
determining the optimal RIS configuration based on
the prediction outcome from the model. The inference
procedure will introduce additional delay, mainly due
to data acquisition, which needs to be considered when
designing the end-to-end solution.

The Proposed DL-Based Operation is Described in
Algorithm 1.

C. DEEP NEURAL NETWORK ARCHITECTURE AND
PARAMETERS
1) Feature Representation: Each input sample to the DL
model comprises of RIS configuration, and Rx’s loca-
tion attributes. Inspired by [29], we construct input
features for each sample to the DL model, (;, v; ),
as separate 2D channels. The first channel is the real
part of v; ,, the second channel is the imaginary part
of v; p, and channels 3 — 5 are the location attributes.
This representation is depicted in Fig. 2.
2) Neural Network Architecture: Our proposed DNN
architecture for RIS-assisted wireless networks is illus-
trated in Fig. 3. We choose to leverage CNN-based NN
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(N, xN,x5)  64@2x2 128@2x2 256@2x2

iy = pooling pooling poolin
(2x2) (2x2) (2x2) output
L 1 0 0 [ ) ~ (AR)
RIS v il | D i D D
Imee o o o
mag U
.4 Dropout Dropout Dropo|
RIS R L J
eal Input Layer I FCL + Dropout Layers

Convolution Layers

FIGURE 3. The CNN Architecture for the proposed NN model.

architecture because a) we believe there are spatial pat-
terns on the RIS, thus CNN-based approach is a better
fit in learning and extracting the spatial relationships /
features vs. multilayer perceptron-based NN architec-
ture, and b) the interactions across input features will
jointly impact the achievable rate at the Rx location,
thus it is natural to represent them as separate chan-
nels and use a CNN model to learn their interactions
more explicitly. In our proposed CNN-based approach,
the input layer is a 5-channel map as described in
the Feature Representation subsection, and the dimen-
sion of each channel is N; x N, where we assume
Ni = N;. The first channel comprises of the real part
of the input RIS reflection beamforming vector, the
second channel comprises of the imaginary part of the
RIS reflection beamforming vector, the third channel
comprises of the Rx location’s x coordinate, the fourth
channel is the Rx location’s y coordinate, and the fifth
and last channel comprises of the distance between
the Rx location and each RIS element. Layers 2, 5,
and 8 are convolutional layers (CLs), and each is fol-
lowed by a pooling layer. The last pooling layer is
followed by two fully connected layers (FCLs), and
there is a dropout layer between each pooling layer
and the next CL and after each FCL. The last layer is
a regression layer which predicts the scalar achievable
rate for the input Rx location. We train the model using
Adam optimizer [30] with default beta_1 and beta_2
and use 0.001 for the learning rate. During training,
we use batch size to 64 and set epochs to 100, and
apply early stopping with patience set to 20, which
ceases training procedure when the validation loss does
not improve in 20 consecutive epochs. Note that we
tried a few learning rate variations and select the final
learning rate based on the performance of the valida-
tion samples. We also tried a few different batch sizes
but we notice that changing batch size doesn’t impact
performance much. As noisy estimations of location
attributes are ubiquitous in real-world dataset, it poses
a challenge for training a DNN that can generalize
well when encounters unseen noisy input data. There
are various regularization mechanisms to improve the
robustness of DNN as discussed in [31], [32]. In this
study, we add a dropout layer and Gaussian noise after
each pooling layer and after each FCL in the proposed

DNN architecture to reduce model overfitting on the
training dataset. A more thorough study may be con-
ducted when real-world sample data is collected to
determine what regularization techniques work best
for our scenario.

3) Loss Function: The objective of the model is to accu-
rately learn the mapping function and the output is the
achievable rate for a given Rx location i after apply-
ing RIS reflection beamforming vector v; ,. We train
the model using a regression loss function of mean-
squared-error (MSE), denoted as MSE (f?, R) for each
minibatch, in each epoch in the model training phase
to minimize the MSE between the achievable rate pre-
dicted by the convolution neural network (CNN) model
and the ground-truth label of achievable rate, which is
obtained through simulation.

V. NUMERICAL RESULTS

A. EXPERIMENTAL SETUP

In this section, we evaluate our performance by lever-
aging the public dataset, DeepMIMO [33]. This dataset
includes scripts and tools that enables generating different
datasets to simulate different scenarios by using specified
parameters and settings, which facilitates ML research and
development for mmWave/massive MIMO. Some research
works [13], [20] have already been published using this open
dataset, thanks to its open-source and ease of use. To verify
our approach, we also leverage the DeepMIMO ray-tracing
scenario to generate sample data for training and testing our
proposed model. Considering the use case of RIS and the
goal of using RIS to reflect the beamforming, we select BS
3 in the DeepMIMO °‘O1’ scenario to be the RIS surface
and treat the antenna elements on BS 3 as RIS elements.
To best simulate the impact of the environmental geometry
on the realistic channels, ray-tracing is adopted to capture
the dependence on the key environmental factors such as
the environment geometry and materials the RIS and Tx/Rx
locations, the operating frequency, etc. More specifically in
this project, we chose the scenario O1_28 as the simulated
real physical environment. The layout of scenario O1_28 is
shown in Fig. 4.

In the scenario O1_28, there is one Tx as labelled by
a red dot in Fig. 4. The Rx’s location area is shown by
a gray rectangle starting from Row 1,000 to Row 1,300. For
each row in the receiving area, there are 181 Rx locations.
In another way, there are a total of 300 x 181 = 54, 300
possible Rx locations in total in this scenario. Between the
Tx and Rx’s, BS3 is selected as the RIS for reflecting the
beamforming, which is denoted by a red line.

The configuration of the RIS and the communication
parameters in O1_28 are shown in Table 1. The RIS
employs a uniform planar array (UPA) with 16 x 16
(256) antennas at the 28GHz setup. The Tx and Rx are
assumed to have a single antenna each. Based on the above
configuration parameters, the DeepMIMO simulation tool
generates the RIS reflection beamforming codebook. In
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FIGURE 4. This figure illustrates the DeepMIMO simulation scenario ‘O1’ used to
generate the dataset for performance study of the proposed approach. The Tx is fixed
at R950 and column 90. Candidate receiver is located between R1000 and R1300.

TABLE 1. The adopted DeepMIMO dataset configuration parameters.

PARAMETER Value

Number of RIS Antennas (Nx;Ny;Nz) = (1; 16; 16)

Antenna spacing 0.5
System bandwidth 100 MHz
Number of OFDM subcarriers 512
OFDM sampling factor 1
OFDM limit 16
Number of paths 5

Transmit Power Py 5dB

this scenario, it adopts a discrete Fourier transform (DFT)
codebook [34], [35] for the candidate RIS reflection beam-
forming vectors, which are also part of the input to the neural
network of our method. Next, the DeepMIMO dataset used
the ray-tracing simulator, Remcom Wireless InSite [36], to
calculate the achievable bit rate for each location of the Rx
based on the obtained DFT codebook and parameters for
scenario O1_28. Given the above RIS configurations and
parameters, there are a total of 256 reflection beamform-
ing vectors in the codebook by default. The DeepMIMO
simulator calculates the achievable bit rate for each RIS
reflection beamforming vectors for each location according
to (6), which is treated as the ground truth of our neural
network training process. Note that the DeepMIMO dataset
doesn’t contain separate location coordinates for each ele-
ment on the RIS / BS3, thus, we use BS3’s coordinates as
feature input in our model.

B. EVALUATION METRICS

This subsection discusses the metrics we use for evaluating
the performance of our work. Previous research [13] using
the DeepMIMO dataset has demonstrated promising results
using ML-based approach, thus we choose this approach as
our baseline method. For comparable comparison, we use
the same parameters to run the baseline method [13] and
our proposed approach. We also use the same set of training
locations and testing locations in all our comparisons. Note
that [13] requires some active elements on the RIS panel and
we set that to 8 (M = 8) in our experiment to generate the
baseline result. In [13], sampled channel vectors are used as
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input to predict achievable rates for all the RIS reflection
beamforming vectors specified in the codebook at the same
time. Our approach uses the Rx’s location attributes with any
intended RIS reflection beamforming vector as defined in the
codebook F as input to predict the corresponding achiev-
able rate. For performance evaluation, we use the following
metrics:

e Top 1 prediction accuracy: This metric calculates the
percentage of testing locations with correct prediction
for the optimal RIS reflection beamforming vector, i.e.,
the predicted matches the ground truth according to
the DeepMIMO dataset. The top 1 prediction accuracy,
denoted as Topl,. can be expressed as

1

U
Toplace = ; ; (Opt(i) == Top1*()), (9

where U is total number of testing Rx locations,
Top1*(i) is the true optimal RIS reflection beamform-
ing vector for location i according to the DeepMIMO
dataset, and 5171‘( i) is the best RIS reflection beamform-
ing vector for location i according to the prediction
results from the model.

o Top 3 prediction accuracy: This metric measures the
percentage of testing locations whose predicted optimal
RIS reflection beamforming vectors from the model are
among the top 3 RIS reflection beamforming vectors
according to the DeepMIMO dataset. Note that RIS
reflection beamforming vectors for each testing location
are ranked in descending order according to the resulted
achievable rates based on the DeepMIMO ray-tracing
output which assumes perfect channel knowledge. The
top 3 prediction accuracy, denoted as Top3,. can be
expressed as

U
Top3ace = Z Opt(i) € T0p1 (i), Top2™ (i), Top3* (z)})

(10)

where U is total number of testing Rx locations,
Top1* (i) is the true optimal RIS reflection beamforming
vector for location i, and Top,*(i) and Tops™(i) are the
true second and third best RIS reflection beamforming
vectors for location i. Top* (i), Top,* (i), and Tops™(i)
are obtained from the DeepMIMO dataset.

« Recovered achievable rate percentage: For each testing
location, we calculate the achievable rate reached when
RIS applied the best reflection beamforming vector as
predicted by the model. This predicted achievable rate
is divided by the optimal achievable rate for the loca-
tion based on the DeepMIMO dataset. We then average
the results across all the testing locations to get the
average recovered achievable rate percentage. The aver-
age recovered achievable rate percentage, denoted as
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Prediction Accuracy vs. Number of locations used in training
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FIGURE 5. This chart illustrates top 1 and top 3 prediction accuracy comparison
between our approach and the baseline approach [13]. Results from each model are
averages from 10 runs.

Recov_AR_avg, can be expressed as

U —,.
1 AR(i)
Recov_AR_avg = 5 i_El m,

Y

where U is total number of testing Rx locations, Zl\e(i)
is the achievable rate after applying the best RIS
reflection beamforming vector for location i based on
the prediction result of the model, and AR*(i) is the
achievable rate for location i after applying the true
optimal RIS reflection beamforming vector based on
the DeepMIMO ray-tracing simulation scenario.

C. SIMULATION RESULTS

In this subsection, we discuss the performance evalua-
tion results. We train our model based on the generated
DeepMIMO dataset for scenario O1_28 and evaluate the
results using the metrics of average achievable rate and
the Top P accuracy, where P € {1, 3} as defined in the
Evaluation Metrics subsection.

Fig. 5 illustrates the optimal RIS reflection beamform-
ing vector prediction performance of the proposed model in
terms of Toplga.. and Top3,.. as defined in (9) and (10),
respectively. As shown, prediction accuracy improves when
the number of training locations increases, and our proposed
model achieved decent performance when using samples
from only 100 Rx locations. We compare the performance
with the approach proposed in [13], which also achieved
decent Top3,.. when using 1,000 training locations, whereas
the proposed model showed significantly better performance
in Topl,.. when fewer training locations were used in train-
ing the model. Note that the result of each approach is
the average of ten independent runs of the corresponding
method. We notice performance degradation in the baseline
method when number of training locations is increased from
100 to 200. This could be due to randomly initialized neural
network weights.
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FIGURE 6. The average achievable rate of our approach is compared with the
baseline approach proposed in [13] and random RIS configuration. The upper bound
is generated from the DeepMIMO dataset, which assumes perfect channel knowledge.
Results for each approach are the averages from 10 runs.

TABLE 2. Recovered achievable rate for 1,000 testing locations (results are the
averages from 10 runs).

100% RIS samples 30% RIS samples True
- avg.
Training R R optimal
Rx Avg. AR | "2 | Avg AR | TR0 | TR
locations (Pred.) g (Pred.) gj (bps/H
z)
100 0.265 0.861 0.264 0.861
200 0.276 0.889 0.270 0.879 0.330
500 0.282 0.895 0.278 0.887 '
1000 0.293 0913 0.290 0.909

To understand the achievable rate recovered after apply-
ing the best RIS reflection beamforming vector predicted by
our model, we study model performance by using different
numbers of Rx locations in the training phase. We calcu-
late Recov_AR_avg as defined in (11) and the results are
described in the second and third columns of Table 2. We
compare the recovered achievable rate between our model,
the baseline approach [13] and random RIS configuration,
and the results are illustrated in Fig. 6. As shown in the sec-
ond and third columns of Table 2 and Fig. 6, Recov_AR_avg
increases when the number of training locations increases.
Our model can achieve ~0.89 in Recov_AR_avg when using
only 200 locations (less than 0.5% of the total 54,300 Rx
locations) in training, which is significantly higher than both
the baseline approach and random RIS configurations. With
1,000 training Rx locations, our model achieved 0.91 in
Recov_AR_avg.

To evaluate the robustness of the proposed CNN-based
approach, we perform two analyses. The first analysis is to
evaluate whether our proposed approach can generalize to
unseen Rx locations. We first train our model using 1,000 Rx
locations (less than 2% of 54,300 locations), then we use
the trained model to predict the achievable rates for various
numbers of testing Rx locations and the results are illus-
trated in Table 3. Note that due to memory constraint on the
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TABLE 3. Achievable rates reached using predicted RIS configuration vs. true
optimal achievable rate from the DeepMIMO dataset (1,000 locations were used in
training the model).

AVERAGE
AVERAGE
OPTIMAL
NUMBER OF ACHIEVABLE
ACHIEVABLE Recov AR
TESTING RATE (USING =
RATE (USING _avg
LOCATIONS PREDICTED
TRUE OPTIMAL
BEST CONFIG.)

CONFIG.)
200 0.26415 0.31084 0.889
500 0.27722 0.31064 0.905
1000 0.27443 0.30865 0.896
6000 0.27612 0.31429 0.893
11000 0.28114 0.31662 0.901
16000 0.28375 0.32122 0.898
21000 0.28351 0.32106 0.899
26000 0.28029 0.31809 0.896
31000 0.28120 0.31881 0.897

machine, we ran predictions up to 31,000 testing receiver
locations. As shown, the Recov_AR_avg stays stale between
0.89 and 0.91 across all the testing Rx location ranges. The
second analysis is to evaluate whether the proposed approach
can generalize well for unseen RIS reflection beamforming
vectors. In this analysis, we first randomly sampled 30% of
the available RIS reflection beamforming vectors from the
DeepMIMO dataset for each training Rx location, then used
only these 30% of RIS samples in the model training phase.
Note that the random sampling was performed for each loca-
tion independently to resemble the real-world deployment
scenario. The results are described in the fourth and fifth
columns of Table 2. As shown, the prediction performance
for the optimal RIS configuration degraded slightly when
using less RIS samples in the training phase comparing with
the original model that used 100% of the RIS reflection
beamforming vectors. However, we regard the performance
is still decent. These two analyses suggest that our CNN
model is very sampling efficient, which enables practical
realization of RIS control as it requires fewer number of
training locations as well as fewer number of RIS reflection
beamforming vector samples.

VI. CONCLUSION

In this article, we introduced a ML-based approach to
predict the optimal RIS phase shifts by building a DL
model that aims to capture the interactions and characteristics
between the surrounding environment and the communica-
tion network. Our model learns the mapping between the
RIS-embedded environment and the achievable rates at Rx
locations and recommends the optimal RIS phase shifts
without relying on any explicit channel estimation effort.
Simulation results showed that our DL model can con-
verge to near-optimal data rates using less than 2% of the
total number of Rx locations, and it can generalize well to
unseen RIS reflection beamforming vectors. Even though
RIS-assisted wireless communications is still in its initial
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research stage, we believe this technology has great poten-
tial which makes the research work of developing techniques
to optimize the RIS configuration important and rewarding.
For future research, we plan to extend our research for sce-
narios like multi-user, multiple BS and multiple antennas at
the Tx and Rx and to study the practical application chal-
lenges of the proposed method using data collected from
the real-world including non-RF sensing type of data to
capture additional environmental characteristics. Meanwhile,
how to combine ML-based approach with traditional analyt-
ical method is a potential research topic to leverage the
strengths of both.
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