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ABSTRACT Deep learning (DL) has seen great success in the computer vision (CV) field, and related
techniques have been used in security, healthcare, remote sensing, and many other areas. As a parallel
development, visual data has become universal in daily life, easily generated by ubiquitous low-cost
cameras. Therefore, exploring DL-based CV may yield useful information about objects, such as their
number, locations, distribution, motion, etc. Intuitively, DL-based CV can also facilitate and improve
the designs of wireless communications, especially in dynamic network scenarios. However, so far, such
work is rare in the literature. The primary purpose of this article, then, is to introduce ideas about
applying DL-based CV in wireless communications to bring some novel degrees of freedom to both
theoretical research and engineering applications. To illustrate how DL-based CV can be applied in
wireless communications, an example of using a DL-based CV with a millimeter-wave (mmWave) system
is given to realize optimal mmWave multiple-input and multiple-output (MIMO) beamforming in mobile
scenarios. In this example, we propose a framework to predict future beam indices from previously
observed beam indices and images of street views using ResNet, 3-dimensional ResNext, and a long
short-term memory network. The experimental results show that our frameworks achieve much higher
accuracy than the baseline method, and that visual data can significantly improve the performance of the
MIMO beamforming system. Finally, we discuss the opportunities and challenges of applying DL-based
CV in wireless communications.

INDEX TERMS Computer vision, deep learning, multiple-input and multiple-output, beamforming, beam
tracking, long short-term memory, wireless communications.

I. INTRODUCTION

RECENTLY, deep learning (DL) has seen great success
in the computer vision (CV) field. DL networks com-

prise networks such as deep neural networks, deep belief
networks, recurrent neural networks (RNNs), and convolu-
tional neural networks (CNNs). Many DL networks with
various structures have emerged with the availability of large
image and video datasets and high-speed graphic processing
units (GPUs) [1]. DL networks can achieve success in CV
because they discover and integrate low-/middle-/high-level
features in images and leverage them to accomplish specific

tasks [2]. DL can easily fulfill CV applications with remark-
ably high performance, such as semantic segmentation,
image classification, and object detection/recognition [1].
DL-based CV has therefore been widely utilized in pub-
lic security, healthcare, and remote sensing, as such fields
generate much visual data [3]. However, DL-based CV is
rarely seen in the design and optimization of wireless com-
munication systems in which the researchers mainly focus
on the transmission quality of the information bits/packets,
e.g., transmission rate, bit/packet error, traffic/user fairness,
etc. via purely exploiting the information on the transmission
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behaviors of radio frequency signals (e.g., the power, direc-
tion, phase, transmission duration, etc.), rather than making
use of the geometry information of the surrounding space.
Thus, such presented design and optimization of wireless
communications cannot achieve the optimal performance
with no doubts.
Nowadays, high-definition cameras are installed almost

everywhere because of their low cost and small size. In
some public areas, cameras have long existed for monitor-
ing purposes. Therefore, visual data can easily be obtained in
wireless communication systems in real life [4]. As useful
information about static system topology (including termi-
nals’ numbers, positions, distances among themselves, etc.)
and dynamic system information (including moving speed,
direction, and changes in the number of the terminals) can
be recognized, estimated, and extracted from these multi-
medium data via DL-based CV techniques, new potential
benefits can be exploited for wireless communications to
aid system design/optimization, such as resource scheduling
and allocations, algorithm design, and more.
Fig. 1 presents the framework of applying DL-based CV to

wireless communications, the core idea of which is to explore
the useful information obtained/forecasted by DL-based CV
techniques to facilitate the design of wireless communi-
cations via DL-based/traditional optimization methods. In
the following, we introduce some applications of DL-based
CV in wireless systems in three aspects: the physical layer,
medium access control (MAC) layer, and network layer.
1) In the physical layer of wireless communication

systems, traditional methods usually first estimate the chan-
nel state by sending pilot signals from the transmitter
to receivers [5]. Then according to the achieved channel
state information (CSI), specific modulation, source encod-
ing, channel encoding, and power control strategies can be
selected to realize the optimal utilization of system resources
(e.g., bandwidth and energy budgets). However, the CSI only
contains amplitudes and phases information of the channel
fading rather than the locations, number, and environmen-
tal information of the users which can be easily obtained
from visual data by object detection and segmentation tech-
niques in CV, leading to the fact that the real optimal system
performance cannot be realized. However, with the aid of the
more comprehensive users’ information, dynamic modula-
tion, encoding, and power control can be easily and optimally
formulated and implemented. For example, in multiple-input
and multiple-output (MIMO) beamforming communication
systems, the direction and power of beams can be scheduled
using the knowledge of users’ locations and blocking cases
in the visual data, which cannot be obtained via traditional
methods.
2) In the MAC layer, like in cellular wireless networks,

receiver-to-transmitter feedback information and cell-to-cell
CSI is very important information to be utilized to allocate
resources and to guarantee the quality of service in the tra-
ditional methods [6]. Thus, a long time delay may always
exist when analyzing the feedback and CSI in crowded

scenarios in which a huge number of users are served by
the network. By jointly using these information and the den-
sity or distribution of users obtained from the visual data
in the serving area of the BS, channel resources (including
frequency bands, time slots, etc.) can be efficiently reserved
and allocated to achieve optimal overall performance. For
example, smart homes have various kinds of terminals such
as smartphones, televisions, laptops, and other intelligent
home appliances. As such, channel resources can be dynam-
ically scheduled by considering the information obtained
from the visual data, such as the number and locations of
the users. Unlike traditional handover algorithms that adopt
the measured fluctuation of received signal power to esti-
mate the distance between the terminal and BS, the moving
information including velocity and its variations can be fully
estimated from visual data to accurately facilitate channel
resource allocation in the handover process. This will be
quite useful in fifth-generation wireless networks due to the
shrinking sizes of the serving zones.
3) For the network layer, taking multi-hop transmis-

sion scenarios as an example, traditional routing algorithms
are mostly running based on the length of the routing
path estimated by the pilot and feedback signals which
cannot reflect the timely location changes in mobile sce-
narios [7]. By exploiting system topology information from
the visual data, novel routing algorithms can be designed
to efficiently improve transmission performance, such as the
end-to-end delivery delay, packet loss rate, jam rate, and
system throughput. For another instance, wireless sensor
networks have numerous sensors that can be deployed in tar-
get areas to monitor, gather, and transmit information about
their surrounding environments. Then, the system topology
information from visual data can be used to design multi-
hop transmissions, which are required due to the inherent
resource limitations and hardware constraints of the sensors.
In general, traditional algorithms adopted in wireless com-

munication systems depend on traditional channel/network
state estimation methods to grab the CSI and network state
information which unavoidably suffer time delay and/or
feed errors, resulting in low efficiency or even wrong deci-
sions. Especially, it is hard or impossible to get accurate
CSI or network state information in high dynamic network
scenarios through traditional methods. Thanks to the inher-
ent merits of DL-based CV techniques, the static and
dynamic system information can be accurately and effi-
ciently extracted from visual data, bringing vital benefits
to the design and optimization of wireless communication
systems.
In this context, this article introduces the methodologies,

opportunities, and challenges of applying DL-based CV in
wireless communications as an essential reference/guide for
theoretical research and engineering applications.
The rest of this article is organized as follows. Section II

overviews related work from two perspectives: datasets and
applications. Section III presents an example of apply-
ing a DL-based CV to mmWave MIMO beamforming and
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FIGURE 1. Framework of applying DL-based CV to wireless communications (PHY: Physical layer; MAC: MAC layer; Net.: Network layer; AI: artificial intelligence).

elaborates on the problem definition, framework architecture,
pipeline, the results of the example, and practical applica-
tion. Section IV introduces and discusses some challenges
and open problems of applying DL-based CV to wireless
communications. Finally, Section V concludes this article.

II. AN OVERVIEW OF RELATED WORK
Applying DL-based CV to wireless communications has two
essential dimensions: datasets and applications. In the fol-
lowing, we give a brief overview of recent work in these
two aspects.
a) Datasets: Building datasets is an essential step as DL is

data-hungry. In [8], the authors proposed a parametric, sys-
tematic, scalable dataset framework called Vision-Wireless
(ViWi). They utilized this framework to build the first-
version dataset containing four scenarios with different
camera distributions (co-located and distributed) and views
(blocked and direct). These scenarios were based on a mil-
limeter wave (mmWave) MIMO wireless communication
system. Each scenario contained a set of images captured by
the cameras and raw wireless data (signal departure/arrival
angles, path gains, and channel impulse responses). Using
the provided MATLAB script, they could view the user’s
location and channel information in each image from the
raw wireless data. Later, the same authors built the second-
version dataset called ViWi Vision-Aided Millimeter-Wave
Beam Tracking (ViWi-BT) [9] and posted it for the machine
learning competition at the IEEE International Conference on
Communications (ICC) 2020. This dataset contains images
captured by the co-located cameras and mmWave MIMO
beam indices under a predefined codebook. Section III-D1
covers the details of this dataset. The authors of [10] intro-
duced another dataset called Raymobtime which contains

ray-tracing, LIDAR, matrix channel, GPS, and image data
in mmWave MIMO vehicle-to-infrastructure wireless com-
munication systems. Notably, ray-tracing data provides path
parameters such as received power, time of arrival, angle of
departure, angle of arrival, line of a sight ray status, and
ray phase while GPS user info data has line-of-sight (LOS)
status, channel valid or not information, number of the TX
in the vehicle, and the 3D coordinates. Beam selection and
channel estimation challenges are held based on this dataset
in International Telecommunication Union (ITU) Artificial
Intelligence/Machine Learning in 5G Challenge. As both
ViWi and Raymobtime datasets are versatile, except the chal-
lenges in ICC and ITU, many other interesting applications
(e.g., blockage prediction, power prediction, angle estima-
tion, LOS decision, etc.) can be explored according to their
abundant data. In [11], a dataset consisting of depth image
frames from recorded videos was built and can be applied
in channel estimation tasks.
b) Applications: There are plenty of interesting applica-

tions of DL-based CV techniques designed to tackle prob-
lems in wireless communications. A framework to implement
beam selection in mmWave communication systems by lever-
aging environmental information was presented by [4]. The
authors used the images with different perspectives cap-
tured by one camera to construct a three-dimensional (3D)
scene and generate corresponding point cloud data. They
built a model based on 3D CNN to learn the wireless
channel from the point cloud data and predict the optimal
beam. Based on the first-version ViWi dataset, [12] proposed
a modified ResNet18 model to conduct beam and block-
age prediction from the images and channel information.
Based on the second-version ViWi-BT dataset, the authors
of [9] provided a baseline method based on Gated Recurrent
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TABLE 1. Paper review.

Units (GRUs) without the images, only the beam indices.
They believe they can achieve better performance if they
leverage both kinds of data. Based on the Raymobtime
dataset, CNN and deep reinforcement learning (DRL) were
utilized to select proper pair of beams for vehicles with
images generated from GPS locations data in vehicle-to-
infrastructure scenarios in [10]. The authors also compared
DL-based methods with other traditional machine learning
methods such as SVM, AdaBoost, decision tree, and ran-
dom forest. The results showed that DL-based method has
the best performance. In [13], two CNNs were proposed
to conduct line-of-sight decision and beam selection by
using LIDAR point cloud data in the Raymobtime dataset.
In [14], authors proposed a neural network containing CNNs
and an RNN-based recurrent prediction network to predict
the dynamic link blockages using red, green, blue (RGB)
images and beamforming vectors provided by the extended
ViWi-BT dataset. In [11], authors developed a CNN-based
framework called VVD to estimate the wireless communi-
cation channels only from only depth images in mmWave
systems. In [15], a framework consisting of CNN and con-
volutional LSTM (convLSTM) network was presented to
proactively predict the received power through depth images
in mmWave networks and exhibited the highest accuracy
compared with the random forest algorithm and a CNN-
based method. In [16], a proactive handover management
framework was proposed to make handover decisions by
using camera images and DRL. In [17], a multimodal
split learning method based on convLSTM networks was
presented to predict mmWave received power through cam-
era images and radio frequency signals while considering
communication efficiency and privacy protection. All afore-
mentioned papers are summarized in Table 1 for comparison
purposes.

III. AN EXAMPLE OF APPLYING DL-BASED CV TO
BEAMFORMING
A. PROBLEM DEFINITION
MmWave communication is a promising technique in the
fifth-generation communication system, thanks to its broad
available bandwidth and ultra-high data-transmitting rate [8],
[9], [12]. MIMO and beamforming are widely used in
mmWave communication systems and should be imple-
mented in a large antenna array to achieve the required high

FIGURE 2. Scenario of applying DL-based CV to mmWave MIMO beamforming.

power gain and direction. The classic beamforming and beam
tracking algorithms suffer a common disadvantage: com-
plexity increases dramatically with the number of antennas,
resulting in substantial computational overhead. DL-based
CV is a promising candidate to address this overhead issue.
In this section, we give an example of applying the DL-

based CV to mmWave MIMO beamforming. As defined
in [9], the considered scenario contains 2 BSs located on
the opposite sides of a street with a distance of 60 meters.
As shown in Fig. 2, each BS forms a MIMO beam to serve
a target user moving along the street. Therefore, the beam
direction must be dynamically adjusted to catch the tar-
get mobile user. The target user may be blocked at some
moments, such as t8 in Fig. 2, and then the beam can-
not directly reach the target user, while proper reflection
from other objects, such as buildings and vehicles, must
be designed. Meanwhile, three cameras installed at the BS
capture RGB images of the whole street view to assist the
beamforming process. The problem here is how to utilize
the eight pairs of previously-observed consecutive beams
and corresponding images to predict the future one, three,
and five beams through DL model. Notably, these beams
are represented as beam indices under the same predefined
codebook.
A sequence containing the eight pairs of previously-

observed images and corresponding beam indices for the
uth user at the time instance t is given as

Su[t] = {(Xu[i], bu[i])}ti=t−7, (1)
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FIGURE 3. Architecture of our proposed framework.

where Xu[i] is the RGB image taken at the ith time instance
and bu[i] is the corresponding beam index.

Let f�(Su[t]) be a prediction function of a DL model and
b̂u[t+ n] (n = 1, . . . , 5) be the predicted beam index at the
time instance t+n. f�(Su[t]) takes in the sequence Su[t] and
outputs a predicted sequence {b̂u[t + n]}5

n=1. � is a set of
parameters of the DL model which is obtained by training
the model with the training set. The training set consists
of labelled sequences, i.e., D = {(Su[t], {gu[t + n]}5

n=1)}Uu=1
where each pair consists of an observed sequence and five
groundtruth future beam indices.
Equivalent to the defined problem, our goal is to get the

prediction function which can maximize the joint success
probability of all data samples in D. The object function is
expressed as

max
f�(Su[t])

U∏

u=1

5∏

n=1

Pr
{
b̂u[t + n] = gu[t + n]

∣∣∣Su[t]
}
, (2)

where each success probability only relies on its observed
sequence Su[t].

B. FRAMEWORK ARCHITECTURE AND METHODS
We propose a DL network framework shown in Fig. 3 com-
posed of ResNet [2], 3D ResNext [18], a feature-fusion
module (FFM) [19], and a predictive network.

1) RESNET, RESNEXT AND 3D RESNEXT

ResNet consists of several residual blocks, as presented in
Fig. 4. Each block contains two or more convolutional layers
and superimposes its input to its output through identity
mapping. It can efficiently address the vanishing gradient
issue caused by the rising number of convolutional layers.
If a specific number of such blocks are concatenated, as
depicted in Fig. 4, ResNet is available to achieve as many
as 152 layers.
Fig. 4 also presents the structure of the ResNext

block [20], an improved version of the residual block, that
adds a ‘next’ dimension, also called ‘Cardinality’. It sums the
outputs of K parallel convolutional layer paths that share the
same topology and inherits the residual structure of the com-
bination. As K diversities are achieved by K paths, this block
can focus on more than one specific feature representations
of the images.

FIGURE 4. Structure of residual block, ResNet, and ResNext block.

In 3D ResNext, a similar structure can be observed but
with 3D convolutional layers instead of two-dimensional
(2D) ones. The 3D convolutional layer is designed to capture
spatiotemporal 3D features from raw videos.
ResNet and 3D ResNext have been widely used as feature

extractors for their powerful feature-representation abilities.
If they are used in a DL network directly, however, the
training time will become extremely long, and many compu-
tational resources will be occupied due to the large number of
layers. Therefore, researchers commonly apply a pre-trained
ResNet on the ImageNet dataset to extract visual features
from images and a 3D ResNext on the Kinetics dataset
to extract spatiotemporal features from videos [21]. These
features are then fed to the DL network as inputs.

2) LONG SHORT-TERM MEMORY (LSTM) NETWORK

The LSTM [22] network is designed for the tasks that
contain time-series data, such as prediction, speech recog-
nition, text generation, etc. Hence, it is a suitable candidate
for our predictive network. The network comprises several
LSTM cells, as depicted in Fig. 5. Event (current state),
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FIGURE 5. Structure of LSTM cell, method with 1D LSTM network, and method with 2D LSTM network.

previous long-term memory (cell state), and previous short-
term memory (hidden state) are the inputs of an LSTM
cell, in which learn, forget, remember, and output gates are
employed to explore the information from the inputs. The
LSTM cell outputs new long-term memory and short-term
memory in which the latter is also regarded as a prediction.
When an LSTM cell is recursively utilized in a 1D array

form, a 1D LSTM network is obtained, as presented in Fig. 5.
At each moment, the cell and hidden states of the previous
moment are used to generates the outputs of the current
moment.
As shown in Fig. 5, a 2D LSTM network can be realized

when the LSTM cell is recursively in a 2D mesh form [23].
Each LSTM cell utilizes the hidden and cell states from
the two neighboring cells in the left and below positions
in the mesh, and its states are delivered to its neighboring
cells in the right and top positions. Obviously, the number
of predictions is equal to the number of rows.

3) FEATURE-FUSION MODULE (FFM)

Fig. 3 shows the structure of the FFM which comprises
two LSTM networks and a cross-gating block. The fea-
tures from ResNet and 3D ResNext are aggregated by the
LSTM networks and then high-level features are obtained.
The cross-gating block can make full use of the related
semantic information between these two kinds of features by
multiplication and summation operations. Thus, the merged
features can be obtained through a linear transformation.

C. PIPELINE OF OUR FRAMEWORK
In the pipeline of the considered DL network, eight consec-
utive images are inputted and utilized. As each is equivalent
to a video clip, they contain motion information, which is
helpful for the beam prediction. Combined with the visual

information from each image, location, motion, and blockage
information can be extracted from these RGB images. The
pre-trained 3D ResNext with 101 layers (3D ResNext101) is
adopted to extract motion features and the pre-trained ResNet
with 152 layers (ResNet152) is used to extract visual fea-
tures. These features are then merged as a vector through
FFM and sent to the predictive network.
As depicted in Fig. 5, there are three kinds of inputs

in the predictive network, namely, initial state, embedded
beam vectors, and merged feature vector. The initial state
is set as a vector of all zeros. Embedding is mapping a
constant (beam index) to a vector and can represent the
relation between constants well. So the embedded vector is
utilized to represent the beam index. In each LSTM cell, the
embedded beam vector and the merged feature vector are
firstly transformed to the same shape and then sum them
up as the ‘event’. According to the event, short and long
term memories are obtained from the previous LSTM cell,
and each cell predicts future 1 output vector whose index of
the maximum element is the beam index. Notably, all the
LSTM cells share the same merged features.
Based on the 1D and 2D LSTM networks introduced in

Section III-B2, three methods are proposed and explained
below.

1) METHOD WITH 1D LSTM NETWORK

When the predictive network in Fig. 3 is a 1D LSTM
network, the first method is obtained, as presented in Fig. 5.
The LSTM cell is recursive 12 times. The cell at the kth
moment is denoted as the ‘kth LSTM cell’.
As shown in Fig. 6, during the training process, the

pipeline of our first method is the following.
Step 1: Eight consecutive images are fed to the pre-

trained ResNet152 and 3D ResNext101 and then
visual features and motion features are obtained;
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FIGURE 6. Training procedure of method with 1D LSTM network.

FIGURE 7. Testing procedure of method with 1D LSTM network.

Step 2: These features from step 1 are merged through
the FFM;

Step 3: The output vector from the FFM is fed to each
LSTM cell as an input;

Step 4: The embedded vectors of the first 12 beam indices
go through the first to the last LSTM cells to
update the hidden states and generate 12 output
vectors;

Step 5: The 12 output vectors are used to calculate the
training loss with the ground truth and train the
network.

During the testing process, as we only have the first eight
beam indices and images, the fourth step above is not appli-
cable and is separated into two sub-steps as depicted in
Fig. 7:

Substep 4.1: The embedded vectors of the first eight
beam indices go through the first to seventh
LSTM cells and update the hidden states;

Substep 4.2: The eighth to twelfth LSTM cells are used
to predict the future beam indices which
are obtained by acquiring the indices of the
maximum element in these output vectors.
Each cell is fed with the hidden state and the
embedded beam index from the prediction
of the previous LSTM.

The fifth step is skipped during testing.

2) METHOD WITH MODIFIED 1D LSTM NETWORK

In our first method, the training and testing procedures
are different. Actually, the first method essentially aims to
predict the next beam index as we utilize all the first 12 beam
indices as inputs during the training. During the testing pro-
cess, among the eighth to twelfth predicting beam indices,

the previous one’s correct prediction is important for the
next prediction. To make training and testing processes con-
sistent, we designed a modified version of the first method,
in which the output vector of each of the last five LSTM
cells undergoes a linear transformation module and is fed to
the next cell as the embedded input. In this way, only the
first eight beam indices are used as inputs, and the training
and testing can be the same.

3) METHOD WITH 2D LSTM NETWORK

When we apply the 2D LSTM network to the predictive
network, the third method can be realized as shown in Fig. 5.
In this method, we need to input the initial state, the merged
feature vector and embedded vectors of the first eight beam
indices into the LSTM network, and then get five outputs
vectors directly. The training process is the same as the
testing one.

D. EXPERIMENT
In this section, we evaluate our three proposed methods on
the ViWi-BT dataset. All the experiments are conducted in
the framework of PyTorch on one NVIDIA V100 GPU.

1) DATASET

The VIWI-BT dataset contains a training set with 281,100
samples, a validation set with 120,468 samples, and a test
set with 10,000 samples. There are 13 pairs of consecutive
beam indices and corresponding images of street views in
each sample of the training and validation sets. Furthermore,
the first eight pairs are the observed beams for the target user
and the sequence of the images where the target user appears.
The last five pairs are groundtruth data containing the future
beams and images of the same user. In this experiment,
the first eight pairs serve as the inputs of the designed DL
network to generate the predicted future five beam indices
which are compared with the groundtruth ones.

2) IMPLEMENTATION DETAILS

We first use the pre-trained ResNet152 and 3D ResNext101
to extract 2048-dimensional visual and 8192-dimensional
motion features from the first eight images of each sample.
The merged features are embedded as a 463-dimensional
vector and fed to the predictive LSTM network. There are a
512-dimensional hidden size and a 129-dimensional output
vector in each LSTM cell. The training pipeline mentioned
in Section III-C is then implemented to train the proposed
network.
During the training, the designed DL network is optimized

by the Adam optimizer. The learning rate is set as 4 × 10−4

at first and reduced by half every eight epochs. The batch
size is set as 256. The cross-entropy loss is utilized for the
loss function.

3) PERFORMANCE

Following the evaluation in [9], the performances of our
proposed methods are evaluated on the validation set with the
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TABLE 2. Performance of top-1 accuracy and exponential decay scores.

same metrics, which are the top-1 accuracy and exponential
decay score.
As defined in [9], the top-1 accuracy of n future beams

is expressed as

Acc(n)top-1 = 1

M

M∑

i=1

1
{
ĝ(n)
i = g(n)

i

}
, (3)

where M is the number of the samples in the validation
set, 1{·} denotes the indicator function, and ĝ(n)

i and g(n)
i

represent the predictive and groundtruth beam indices vectors
of the ith sample with the length n.

The exponential decay score of n future beams is given as

score(n) = 1

M

M∑

i=1

exp

⎛

⎜⎝−
∥∥∥ĝ(n)

i − g(n)
i

∥∥∥
1

nσ

⎞

⎟⎠, (4)

where σ = 0.5 is a penalization parameter.
Table 2 lists our results, in which the baseline method

in [9] is considered for comparison purposes. In the baseline
method, the authors simply leveraged the beam-index data
and ignored image data.
From the top-1 accuracy, we can see that our proposed

method with the 1D LSTM network outperforms the base-
line method in [9]. The method with a modified 1D LSTM
network is better than the baseline method on ‘1 future
beam’ and ‘3 future beams’. The method with only the 2D
LSTM network performs better than the baseline method on
‘1 future beam’.
For the exponential decay scores, the designed methods

with the 1D LSTM network and modified 1D LSTM network
absolutely outperformed the baseline method. The method
with the 2D LSTM network is better than the baseline on
‘1 future beam’ and ‘3 future beams’ but a little worse on
‘5 future beams’.
Our proposed methods outperform the baseline method

on predicting ‘1 future beam’. Because the location, block-
age, and speed information of the target user is extracted
from the images and represented as motion and visual fea-
tures to assist the prediction, and advanced LSTM networks
are leveraged as the predictive networks. Among the three
proposed methods, the method with the 1D LSTM network
shows the best beam prediction performance in the target
mobile scenarios. Compared with this method, the other two
exhibit extra linear transformation modules or more LSTM
cells in their predictive networks and need to be trained by
more data. Therefore, performance degradation occurring on

the predictions of ‘3 future beams’ and ‘5 future beams’ are
caused by the small size of the training dataset.
The computational complexity here is measured by the

running time of ‘1 future beam’ prediction which exhibits the
best performance and is more potential to be implemented in
the practical wireless communication systems. The running
time of our methods consists of the execution time of feature
extraction, FFM, and predictive network. It takes 0.42 sec-
onds for the pre-trained 3D ResNext101 and ResNet152 to
extract features from each set of eight images. Our method
with 2D LSTM network exhibits the longest average run-
ning time due to its most complex structure shown in Fig. 5.
The baseline method runs for the shortest time as it utilizes
simple GRUs as the predictive network and abandons the
image data. The method with 1D LSTM network shows the
best predictive performance but a moderate prediction time,
0.016 seconds.
The feature extraction takes a little long time which will

cause latency issues but can be mitigated by employing more
efficient CNNs in future work. From [24, Table 1], we can
see that the TSN [25] takes 15.5 ms and the ECO [26]
takes 17.4 ms on NVIDIA Tesla P100 GPU to extract 3D
spatiotemporal features from eight images. In practical appli-
cation, only one new image is captured at each time instance,
and the previously extracted spatiotemporal features can be
merged with the new image to reduce the latency. Similarly,
for the 2D feature extraction, only the new image needs to be
processed at each time instance. In [27, Table 2] shows that
the Darknet-19 can achieve a speed of 171 frames per second
(5.85 ms per image) to extract 2D features on NVIDIA Titan
X GPU. 2D and 3D features extractions can be conducted
simultaneously which means that the longer latter determines
the whole feature extraction time. By jointly using TSN and
Darknet-19, the running time of the method with 1D LSTM
network can be reduced to less than 15.5+16 = 31.5 ms on
V100 GPU which is more powerful than P100 and Titan X.
Besides, in our experiments, we built the LSTM cell by
ourselves. If we use the basic building block of LSTM
in PyTorch, the comparable running time of the predictive
network can be obtained with the baseline method. In engi-
neering practice, even shorter latency can be achieved by
utilizing GPU computing in the whole process and designing
a more efficient framework (platform).

4) PRACTICAL APPLICATION

In practical scenarios, RGB images and their corresponding
beam indices can be obtained by cameras installed on the
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BS and the classic beamforming algorithm. After obtaining
sufficient data for the training set, our proposed network will
be pre-trained on these data and then run in the processors
of the BS for beamforming. At the beginning of the serv-
ing time, the first eight beam indices can be estimated by
the classic beamforming algorithm. Then the eight pairs of
images and beam indices are sent to the processors for future
beam predictions. Notably, after the first eight beams, the fol-
lowing beams will be predicted by using previously-obtained
images and beam indices. These predicted beam indices and
their corresponding images can be added to the training set
to enlarge the dataset and improve the performance.

IV. CHALLENGES AND OPEN PROBLEMS
Although the previous sections elaborated on leveraging
CV to tackle the mmWave beamforming problem, some
challenges and open problems still exist in the front
way of applying DL-based CV technologies in wireless
communications.

A. BUILDING DATASETS
As DL is immensely data-hungry, a large dataset can guaran-
tee the successful application of DL-based CV techniques to
wireless communications. A qualified dataset in CV usually
includes more than 10,000s of samples. For example, there
are more than 14 million images in ImageNet, 60,000 images
in Cifar-10, and roughly 650,000 video clips in Kinetics. It
takes much time, money, and labor to generate such a huge
amount of visual data. However, building a qualified dataset,
which should be comprehensive and exhibit a balanced diver-
sity of data, is still far from accomplished. These data should
be able to represent all possibilities in the corresponding
problem, and the amounts of different kinds of data can not
make such a difference. Usually, a training set, a validation
set, and a test set comprise a dataset. These three sets should
be homogeneous and not overlapping, so randomly sampling
them from a shuffled data pool is a better way to obtain the
three sets. These data should be well-organized and easily
manipulated. Therefore, the hardest work in DL is to build
a satisfactory dataset.

B. SELECTING CV TECHNIQUES
Many state-of-the-art DL techniques have been proved
efficient and powerful in CV, such as reinforcement
learning, encoder-decoder architecture, generative adver-
sarial networks (GANs), Transformer, graph convolutional
networks (GCNs), etc. Reinforcement learning has been
widely applied in tackling optimization problems in wire-
less communications [28]. GCNs can be leveraged to
address network-related issues [29], and encoder-decoder
architecture is widely used in semantic segmentation and
sequence-to-sequence tasks. The GAN is an immensely pow-
erful CNN to learn the statistics of training data and has
been widely used to improve the performance of other DL
networks in CV [1]. Transformer built on the attention mech-
anisms is a kind of the encoder-decoder architecture that

FIGURE 8. Pipeline of applying DL-based CV to cellular networks.

FIGURE 9. An example of applying DL-based CV to cellular networks.

can handle unordered sequences of data [30]. Much CV
research has shown that if these techniques are jointly applied
to make full use of the visual data, better results can be
obtained [19], [21], [31].
Thus, a single proper CV technique or an adequate com-

bination of several CV techniques are required to handle a
specific problem in wireless systems. In the example given
in Section III-B, we combined ResNet, 3D ResNext, and
an LSTM network to achieve the required performance.
Finding proper, efficient CV techniques thus remains an open
problem.

C. OPEN PROBLEMS IN VISION-AIDED WIRELESS
COMMUNICATIONS
As many kinds of cameras and LIDARs operate in real life,
an enormous amount of visual data can be obtained through
them, for more accurate motion and position information in
the terminals that can be recognized, analyzed, and extracted
from these multimedia data, which can also be explored to
design and optimize wireless communications. Thus, some
open problems in wireless communication scenarios are
introduced and discussed as follows.
(1) Cellular Networks: As shown in Fig. 8, visual data

obtained at the BS in a cellular network may contain the
locations, number, and motion information of the terminals
in the open area. This information can be used for the BS
to adjust its transmitting power and beam direction to save
power consumption and reduce interference. Fig. 9 presents
a real-life example: the motion information of the users in
the coverage area of a BS can be utilized to forecast the
future positions of these terminals and judge whether/when
a terminal goes out or comes into its serving area. Then,
transmit power and beam can be accurately assigned for
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FIGURE 10. An example of applying DL-based CV to vehicle-to-everything communications.

FIGURE 11. An example of applying DL-based CV to UAV-ground communications.

these users who still stay in the coverage area, and channel
resource allocation can be set up for the handover process
to improve the utilization efficiency of the system resource.
(2) Vehicle-to-Everything Communications: Visual data

captured by one vehicle can reveal its environments, such
as traffic conditions, which can be used to set up links
with neighboring terminals, access points, and vehicles.
Therefore, traffic schedules and jam/accident alarms can be
conducted for improved road safety, traffic efficiency, and
energy savings. As depicted in Fig. 10, the BS located on the
side of the road utilizes the visual information to estimate the
distance of a vehicle terminal from it and adjust its transmit
power accordingly for power saving and interference deduc-
tion purposes. Moreover, the images or videos captured by
the cameras assembled on the vehicles can detect the traf-
fic jam or accident, and then forwards the observed traffic
information to the traffic control center for alarm and future
traffic schedule.
(3) Unmanned Aerial Vehicle (UAV)-Ground

Communications: When a UAV serves as an aerial
BS, visual data captured by the UAV can be used to
identify the locations and distribution of ground terminals,
which can be utilized in power allocation, route/trajectory

FIGURE 12. An example of applying DL-based CV to IRS system.

planning, etc. Moreover, when a ground BS communicates
with several UAVs, visual data captured by the ground
terminal can be used to define the serving range, allocate
the channels/power, and so forth. Fig. 11 illustrates an
example in which a group of UAVs communicates with
a set of ground terminals. The header UAV first takes an
image of the whole area and detects all the terminals. Then
the serving area is divided into several subareas. Each UAV
serves one specific subarea and designs a route schedule
according to the location information of these ground
terminals obtained from the images.
(4) Smart Cities: Visual data captured by satellites or air-

borne crafts can be applied to recognize and analyze the
user’s distribution and schedule power budget/serving ranges
to achieve optimal energy efficiency.
(5) Intelligent Reflecting Surfaces (IRSs): Usually, imple-

menting channel estimation and achieving network state
information at an IRS is impossible because there is no
comparable calculation capacity and no radio frequency
(RF) signal transmitting or receiving capabilities at the IRS.
Fortunately, DL-based CV can offer useful information to
compensate for this gap. Thus, a proper control matrix can
be optimally designed to accurately reflect the incident sig-
nals to the target destination by utilizing the visual data
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captured by the camera installed on the IRS, which includes
the locations, distances, and the number of terminals shown
in Fig. 12.

V. CONCLUSION
This article mainly presented the methodologies, opportuni-
ties, and challenges of applying DL-based CV to wireless
communications. First, we discussed the feasibility of apply-
ing a DL-based CV in physical, MAC, and network layers
in wireless communication systems. Second, we overviewed
related datasets and work. Third, we gave an example of
applying a DL-based CV to a mmWave MIMO beamform-
ing system. In this example, previously observed images and
beam indices were leveraged to predict future beam indices
using ResNet, 3D ResNext, and an LSTM network. The
experimental results show that visual data can significantly
improve the accuracy of beam prediction. Finally, challenges
and possible research directions were discussed. We hope
this work stimulates future research innovations and fruitful
results.
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