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ABSTRACT In this paper, the problem of joint unmanned aerial vehicle (UAV) trajectory planning and low-
orbit satellites (LEO-Sats) selection in space-air-ground integrated networks (SAGIN) will be investigated. 
This problem is of utmost importance when SAGIN is exploited for post-disaster relief services, where 
ground base stations (GBSs) within the post-disaster area are completely damaged or malfunctioned. In this 
scenario, UAV will provide wireless connectivity for the victims, while LEO-Sats will relay the UAV data 
to the nearest survival GBS. UAV trajectory should be optimized to maximize the collected data from the 
victims subject to its limited battery capacity, while it should jointly select the best LEO-Sat in each visited 
location within its optimized trajectory. The selected LEO-Sat should maximize UAV’s achievable data rate 
while maintaining a long remining visible time to minimize frequent LEO-Sats’ handovers. In this paper, an 
online learning approach using multi-armed bandit (MAB) models will be proposed to address this highly 
dynamic problem. As LEO-Sat selection should be performed after UAV arrives at a dedicated location in 
its optimized trajectory, the problem is divided into two MAB stages. In the first stage, the battery constraint 
UAV trajectory optimization is modeled as budget constraint MAB (BC-MAB) game using BC-upper 
confidence bound (BC-UCB) algorithm. In the second stage, LEO-Sat selection in each visited location is 
modeled as contextual MAB with variable arms (CMAB-VA) game using LinUCB-VA algorithm. 
Numerical analysis confirms the superior performance of the proposed approach over candidate benchmarks. 

INDEX TERMS Unmanned Areial Vehicles (UAV), Low Earth Orbit (LEO) Satellite, 
Contextual Bandit, Space Air Ground Integrated (SAGIN)  

I. INTRODUCTION 
The transition from fifth generation (5G) to sixth 

generation (6G) wireless networks will mark a monumental 
shift, as delineated in [1]-[2]. Notably, 6G systems are 
anticipated to mandate minimum data rate of 1Tbps, latency 
below 1msec, and spectrum efficiency of 1Gbps/m2. 
Comprehensive details on these specifications, among 
others, are elucidated in [1]. Cutting-edge technologies, 
including reconfigurable intelligent surfaces (RIS) [3], 
harnessing of high-frequency domains such as millimeter 
wave (mmWave) and tera hertz (THz) bands [4], networks 
empowered by artificial intelligence (AI) [5], the 
convergence of cloud and fog networking [6], cell-free 
network setups [7], and the melding of space, air, and 
ground integrated networks (SAGIN) [8], collectively 
contribute to the realization of 6G networks. Within the 
scope of this paper, our attention predominantly converges 
on SAGIN, with a spotlight on the cooperation between low 

earth orbit satellites (LEO-Sats) and unmanned aerial 
vehicles (UAVs) while using AI to facilitate its operation. 

LEO-Sats stationed at altitudes between 500 to 2,000 
kilometers above the Earth, bring forth notable merits in 
terms of consistent connectivity such as swift internet 
connections, voice and video conferencing, instant 
messaging, and data relay, even in the most isolated regions 
[9]. Several endeavors, like Iridium, Globalstar, and the 
contemporary Starlink, have been initiated to harness LEO-
Sats for delivering voice and internet services [10]. 
Similarly, UAVs come equipped with a plethora of 
distinctive attributes, notably their aerial agility and 
navigation ability [11]. These attributes have garnered 
significant interest, paving the way for UAVs in diverse 
domains such as emergency response, calamity mitigation, 
aerial imaging, vehicular traffic regulation, postal 
deliveries, and as airborne communication hubs [12][13]. 
For wireless communications, UAVs are adopted as flying 
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base stations (BSs) or aerial relays for providing/ relaying 
wireless connectivity to far away or hard-to-reach regions. 
Recently, the integration between LEO-Sats and UAVs 
attracted a lot of researchers to take advantage of both 
platforms towards a complete SAGIN [14]-[19].  

In this paper, a SAGIN is proposed to cover a post 
disaster region, e.g., after earthquakes or floods. In this 
scenario, the terrestrial infrastructure is 
completely/partially destroyed including the cellular 
system setup, which causes destruction/malfunction to the 
ground base stations (GBSs) located within this 
catastrophic area. Thus, direct communication links 
between ground devices (GDs) of the survivors and the 
terrestrial networks cannot be maintained. Instead, a 
SAGIN is proposed to facilitate the rescue services, where 
a UAV scans the catastrophic area by taking photos, 
recording life videos, providing wireless connections to 
survivors’ GDs, etc. However, both UAV and survivors’ 
GDs cannot directly communicate with the nearby survival 
GBSs. This is due to the limited coverage range/cell raduis 
of the nearby survival GBSs as typically cellular networks 
are planned with minimal mutual coverage (interference) 
between adjacent cells. In addition, a post-disaster area after 
earthquakes or floods is typically about several km2 
containing many destroyed/malfunctioned GBSs, which are 
far from nearby survival GBSs. Furthermore, it is time and 
energy consuming to let the UAV collect data from the area 
then flies toward the nearest survival GBs to offload it and 
then flies back to resume its rescue mission, especially in 
such kind of time-sensitive rescue application. Instead, 
LEO-Sats in SAGIN can provide an adequate solution for 
directly relaying UAV’s communication to the nearest 
survival GBS. However, UAV trajectory planning (UTP) 
should be optimized to maximize the GDs’ achievable data 
rates within the UAV’s limited battery capacity. 
Concurrently, whenever the UAV reaches at a new location 
in its trajectory, it should opt for a LEO-Sat from its visible 
LEO-Sat constellation (LEO-SatCon) that maximizes the 
data rate of the LEO-UAV connection. This choice should 
consider the traffic needs of GDs within this location and 
ensure extended LEO-Sat visibility to minimize frequent 
LEO-UAV handovers. Thus, the main contributions of this 
paper can be summarized as follows: 
• A SAGIN is proposed for facilitating the rescue 

operations in post-disaster scenarios, where joint UTP 
and LEO-Sat selection will be investigated. This 
optimization problem presents major challenges from 
two primary aspects. First, the UAV lacks knowledge 
about the traffic demands of GDs at each location, 
especially in the post-disaster scenarios. This 
uncertainty adds complexity to the UAV’s tasks, given 
its limited battery life. Second, the UAV cannot 
determine the LEO-Sats covering a specific location 
until it arrives there, due to the rapid movement of both. 
Compounding this, the swift dynamics of LEO-Sats 
mean that some become visible to the UAV while 

others vanish from its sight within the same location. 
In this shifting environment, the UAV needs to choose 
a LEO-Sat that not only offers a data rate compatible 
with its current traffic needs but also guarantees 
extended visibility duration. 

• To efficiently address this highly dynamic and time 
dependent optimization problem, online learning will 
be approached in this paper by modeling the problem 
as a multi-armed bandit (MAB) game [20]. Since LEO-
Sat selection should be performed after UAV arrives at 
its intended location, we split the problem into two 
MAB stages. In the first MAB stage, UTP problem will 
be modeled as a budget constraint MAB (BC-MAB) 
game [21] to optimize the next location in UAV’s 
trajectory. In the second MAB stage, LEO-Sat 
selection at UAV’s current location will be considered 
as contextual MAB game [22]-[23] with variable arms 
(CMAB-VA). To implement the proposed two-stage 
MAB model, budget constraint upper confidence 
bound (BC-UCB) will be proposed to implement the 
energy efficient UTP in the first MAB stage. For LEO-
Sat selection in the second MAB stage, LinUCB 
algorithm with variable arms (LinUCB-VA) will be 
proposed to implement it.   

• By means of numerical analysis, the proposed “BC-
UCB” algorithm outperforms benchmark techniques 
for UTP optimization. Also, the proposed “LinUCB-
VA” outperforms the state-of-the-art LEO-Sat 
selection techniques, which are only based on 
maximizing one of LEO-Sat features, such as 
maximum received power (MRP), maximum elevation 
angle (MEA), maximum available bandwidth (MBW), 
and maximum remaining visible time (MRVT) based 
LEO-Sat selection as given in [24][25]. 

The remainder of this paper is organized as follows; 
Section II explores the literature review. Section III gives 
the proposed system model including link models and 
optimization problem formulation. Section IV gives the 
proposed two-stage MAB approach including both BC-
UCB and LinUCB-VA algorithms. Section V gives the 
conducted numerical analysis followed by the concluding 
remarks in Section VI.   

 
II.  RELATED WORKS 

Lately, SAGIN has been spotlighted as a key facilitator 
for forthcoming 6G networks [8]. The intricacies of SAGIN 
arise from the merger of multiple network tiers. This 
encompasses space networks such as GEO-Sats, medium 
earth orbit -Sats (MEO-Sats), and LEO-Sats; aerial 
networks like high-altitude platform systems (HAPS), 
UAVs, and airships; and conventional land-based networks, 
namely Macro, Micro, and Pico BSs [8]. Each of these 
networks possesses unique specifications, making their 
seamless integration a tough endeavor. In [26], a model was 
introduced where content service providers managed 
content requests for SAGIN. The authors of [27] suggested 
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a SAGIN that employed free space optics (FSO) for space-
to-air connections and radio frequency (RF) for air-to-
ground links. The authors of [28] presented an outage 
probability study for a SAGIN that includes GEO-Sat, 
HAPs, and terrestrial users. The authors of [29] offered a 
SAGIN design to amplify maritime communication by 
directing space signals to sea vessels via commercial 
passenger planes, with deep learning techniques optimizing 
the routing within this SAGIN. 

Within the scope of SAGIN, there is a particular interest 
by researchers in integrating LEO-Sats with UAVs. In [14], 
the focus was on resource allocation and 3D trajectory fine-
tuning, using UAVs as airborne BSs and delegating 
computing assignments to LEO-Sats. The authors of [15] 
introduced a cloud-edge framework tailored for the Internet 
of Vehicle Things (IoV) in SAGIN, where factors like 
service delays, energy consumption, resource usage, and 
security functions were holistically optimized. In [16], a 
SAGIN model utilizing UAVs as intermediaries to relay 
satellite transmissions to terrestrial receivers was proposed. 
UAVs featured phased-array antennas for satellite reception 
and deployed non-orthogonal multiple access (NOMA) for 
data relay to ground users. The authors of [17] described a 
communication strategy where FSO bridged the LEO-Sat to 
UAV link, and mmWave connected UAVs to ground users. 
In [18], the proposal was to harness both UAVs and LEO-
Sats to collect data from distant sensors in the Internet of 
Remote Things (IoRT) within the framework of 6G 
networks. In [19], the idea was to use LEO-Sats and UAV 
caching to amplify ground network connectivity and 
content delivery capabilities. Recently in [30], the authors 
of this paper proposed LEO assisted UAV distributions in 
post-disaster scenario. 

For UAV resource allocation and power control in 
SAGIN, the authors in [31] proposed hovering altitude 
adjustment and power control for UAVs to optimize 
resource allocation in UAVs network while considering 
interferences coming from space and ground tiers. 
However, this work considered neither UTP nor LEO-Sat 
selection. Also, the authors in [32] proposed a SAG-IoRT 
network, where several UAVs are used to collect IoRT 
information and relay it to the ground network via LEO-Sat 
links. The authors optimized sub-channels selection, power 
control and UAVs relay deployment for maximizing system 
energy efficiency. However, only one LEO-Sat was 
adopted, without considering the problem of LEO-Sat 
selection or UTP optimization. To the best of our 
knowledge, no existing studies in SAGIN, especially those 
focusing on LEO-UAV integration, have addressed the 
issue of joint UTP and LEO- Sat selection like the current 
work. This issue is pivotal given the rapid dynamics of 
LEO-Sats and UAVs especially in post-disaster scenarios.  

 

 
FIGURE 1. Proposed SAGIN system model for post-disaster rescue 
operation including joint UTP and LEO-Sat selection. 

 
III. Proposed System Model 

Figure 1 shows the proposed SAGIN system model for 
post-disaster rescue operation including UTP and LEO-Sat 
selection. Several GBSs are destroyed inside the post 
disaster area making the direct connections between UAV 
or survivors’ GDs to the terrestrial network almost 
impossible. Thus, UAV 𝑉𝑉 is employed to cover a region 
containing several locations of post-disaster survivors, e.g., 
𝐿𝐿1 , . . , 𝐿𝐿𝑛𝑛 , . . , 𝐿𝐿𝑁𝑁 . UAV trajectory should be optimized to 
cover 𝑁𝑁 locations for maximizing its achievable data rate 
subject to its limited battery budget without any prior 
knowledge about the traffic needs of these locations. For 
covering a specific location, the UAV will hover at the 
center of this location at a fixed altitude to provide 
maximum coverage to the randomly distributed survivors 
within it. Simultaneously, at every visited location, UAV 
should select one of its 𝑀𝑀 visible LEO-Sats in LEO-SatCon. 
Again, the UAV has no-prior knowledge about the set of 
LEO-Sats covering a certain location until it reaches. 
Moreover, this set of LEO-Sats is dynamically changing 
with time due to LEO-Sats movement. For example, when 
covering 𝐿𝐿1 at a time instant 𝑡𝑡, the UAV falls within the 
coverage of LEO-Sats 1 to 5 but not covered by LEO-Sat 6. 
UAV should weigh various LEO-Sat characteristics for 
selecting the best one. These include the elevation angle of 
the LEO-Sat, its remaining visibility duration, its peak 
received power, and the remaining bandwidth it offers. 
Making a choice based solely on one of these features might 
lead to a suboptimal LEO-UAV communication link as 
given in [24][25]. Given these changing conditions and 
varying LEO-Sats/UAV attributes, an effective method is 
essential to help the UAV for optimizing its UTP while 
picking the best LEO-Sat at each visited location 𝑛𝑛 in time 
𝑡𝑡. This should maximize the data rate of the whole LEO-
UAV-GDs link, while considering the remaining visible 
time of LEO-Sats and the limited battery budget of the 
UAV.  

In the proposed system model, a three-tire paradigm 
using UAV as an intermediate node between LEO-Sat and 
survivors’ GDs is utilized instead of two-tier paradigm via 
directly connecting GDs with LEO-Sats. This is because 
UAV typically uses communication technologies and 
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frequency bands available for mobile communications and 
being used by survivors’ GDs. However, in the two-tier 
case, GDs should have the capability of communicating 
with LEO-Sats within their assigned frequency bands, a 
functionality which is not available in most commercial 
cellular devices. Also, as UAV hovers at low altitude of tens 
of meters above GDs, low power communications can be 
maintained between UAV and survivors’ GDs, which 
highly reduces their energy consumptions and prolongs the 
lifetimes of their batteries in consequence. In the opposite 
side, as the separation distances between LEO-Sats and 
GDs are of hundreds of kilometers, GDs should transmit at 
very high powers, which highly drains their batteries. In 
post-disaster scenarios, GDs’ battery lives, and their energy 
consumptions are of most significance as the electricity 
network will be destroyed/malfunctioned with low chances 
for re-charging GDS’ batteries. In the following, the 
channel models of UAV-GD and LEO- UAV links will be 
provided. Then, the optimization problem of joint UTP and 
LEO-Sat selection will be formulated. 

A.  UAV-GD Link Model 
For UAV-GD communication link, we utilized the simple 

link model given in [33], and without loss of generality we 
assume uplink transmission. In this model, the total path loss, 
𝛽𝛽𝑉𝑉𝑉𝑉𝑛𝑛(𝑟𝑟𝑉𝑉𝑉𝑉𝑛𝑛),  in dB between UAV 𝑉𝑉 and GD 𝑘𝑘 in location 𝑛𝑛 
as a function of their separation distance 𝑟𝑟𝑉𝑉𝑉𝑉𝑛𝑛 , can be 
expressed as [33]: 

𝛽𝛽𝑉𝑉𝑉𝑉𝑛𝑛(𝑟𝑟𝑉𝑉𝑉𝑉𝑛𝑛) = ∑ ℙ𝑙𝑙𝛽𝛽𝑉𝑉𝑉𝑉𝑛𝑛
𝑙𝑙 (𝑟𝑟𝑉𝑉𝑉𝑉𝑛𝑛),

𝑙𝑙∈{𝐿𝐿𝐿𝐿𝐿𝐿,𝑁𝑁𝐿𝐿𝐿𝐿𝑁𝑁}

               (1) 

where 

𝛽𝛽𝑉𝑉𝑉𝑉𝑛𝑛
𝑙𝑙 (𝑟𝑟𝑉𝑉𝑉𝑉𝑛𝑛) = 20 log(

4𝜋𝜋𝑓𝑓𝐺𝐺𝑟𝑟𝑉𝑉𝑉𝑉𝑛𝑛
𝑐𝑐

) + 𝛼𝛼𝑙𝑙 ,          (2) 

𝑙𝑙 ∈ {𝐿𝐿𝐿𝐿𝐿𝐿,𝑁𝑁𝐿𝐿𝐿𝐿𝑁𝑁} indicates the line of sight (LoS) and non-
LoS (NLoS) path components, while 𝛽𝛽𝑉𝑉𝑉𝑉𝑛𝑛

𝑙𝑙 (𝑟𝑟𝑉𝑉𝑉𝑉𝑛𝑛) stands the 
𝑙𝑙 − 𝑡𝑡ℎ path loss component of 𝛽𝛽𝑉𝑉𝑉𝑉𝑛𝑛(𝑟𝑟𝑉𝑉𝑉𝑉𝑛𝑛). Also, 𝑓𝑓𝐺𝐺, 𝑐𝑐 and 𝛼𝛼𝑙𝑙 
are the operating frequency of the UAV-GD link, the speed 
of light and the system loss due to path component 𝑙𝑙. ℙ𝑙𝑙  
indicates the probability of the 𝑙𝑙 − 𝑡𝑡ℎ path component, where 
ℙ𝐿𝐿𝐿𝐿𝐿𝐿 = 1 − ℙ𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿, and it can be defined as follows [33]: 

     ℙ𝐿𝐿𝐿𝐿𝐿𝐿 = [1 + 𝑎𝑎exp (−𝑏𝑏(𝜑𝜑𝑉𝑉𝑉𝑉𝑛𝑛 − 𝑎𝑎))]
−1

.         (3) 

The environmental features are represented by parameters 𝑎𝑎 
and 𝑏𝑏. The elevation angle between UAV 𝑉𝑉 and GD 𝑘𝑘 in 
location 𝑛𝑛, denoted as 𝜑𝜑𝑉𝑉𝑉𝑉𝑛𝑛  in (3), is determined as 𝜑𝜑𝑉𝑉𝑉𝑉𝑛𝑛 =

tan−1 ( ℎ𝑉𝑉
𝑟𝑟𝐻𝐻𝑉𝑉𝐻𝐻𝑛𝑛

). Herein, ℎ𝑉𝑉 stands for the UAV’s altitude, 

and 𝑟𝑟𝐻𝐻𝑉𝑉𝑉𝑉𝑛𝑛signifies the horizontal separation between UAV 𝑉𝑉 
and GD 𝑘𝑘 in location 𝑛𝑛. Thus, the uplink UAV-GD data rate 
Ψ𝑉𝑉𝑉𝑉𝑛𝑛  can be expressed as follows: 

Ψ𝑉𝑉𝑉𝑉𝑛𝑛 =
𝑊𝑊𝑉𝑉

𝐾𝐾𝑛𝑛
log2 (1 +

𝑃𝑃𝑡𝑡𝐺𝐺10𝛽𝛽𝑉𝑉𝐻𝐻𝑛𝑛(𝑟𝑟𝑉𝑉𝐻𝐻𝑛𝑛)/10

𝜎𝜎2
) ,        (4) 

where 𝑃𝑃𝑡𝑡𝐺𝐺  is the GD transmit (TX) power, and 𝜎𝜎2 is the 
additive wight gaussian noise (AWGN) power. 𝑊𝑊𝑉𝑉 is the 
total UAV’s available bandwidth, and 𝐾𝐾𝑛𝑛 is the total number 
of GDs in location 𝑛𝑛. In this context, we assumed no 
interference among GDs in location 𝑛𝑛 as an interference 
mitigation technique, e.g., frequency division multiple access 
(FDMA), is used to coordinate their transmission to UAV as 
given in (4). 

For UAV energy consumption, it mainly comes from three 
sources, namely flying, hovering and communication, where 
we neglected the other physical factors for simplicity and due 
to their minor effects [34]. Actually, there are eight sources 
of UAVs’ energy consumptions as given in details in [34]. 
However, flying, hovering, and communication energy 
consumptions are the most dominant ones as shown in [34], 
with flying consumes more energy than other sources [34].  
Theus, UAV’s energy consumption 𝐸𝐸𝑉𝑉𝑛𝑛−1,𝑛𝑛 for covering 
location 𝑛𝑛 can be expressed as follows [3]: 

𝐸𝐸𝑉𝑉𝑛𝑛−1,𝑛𝑛 = 𝑃𝑃𝑓𝑓𝑇𝑇𝑓𝑓𝑛𝑛−1,𝑛𝑛 + (𝑃𝑃ℎ+𝑃𝑃𝑐𝑐)𝑇𝑇ℎ𝑛𝑛 ,                  (5) 

𝑇𝑇𝑓𝑓𝑛𝑛−1,𝑛𝑛 = 𝑟𝑟𝑛𝑛−1,𝑛𝑛
𝐿𝐿𝑉𝑉

,𝑇𝑇ℎ𝑛𝑛 = 𝑇𝑇𝑇𝑇𝑛𝑛
Ψ𝑉𝑉𝑛𝑛

,   Ψ𝑉𝑉𝑛𝑛 = ∑ Ψ𝑉𝑉𝑉𝑉𝑛𝑛 ,𝐾𝐾𝑛𝑛
𝑉𝑉𝑛𝑛=1          (6)    

where 𝑃𝑃𝑓𝑓, 𝑃𝑃ℎ, 𝑃𝑃𝑐𝑐 are the UAV’s flying, hovering, and 
communication powers, respectively. In this context, both 
𝑃𝑃𝑓𝑓  and 𝑃𝑃ℎ given in (5) are related to the mass of the UAV, the 
gravitational force, the radius of the propeller, and the air 
density. In addition, 𝑃𝑃𝑓𝑓 depends on the deviation angle 
between the UAV vertical axis and the 𝑍𝑍 axis as given in [34]. 
For more details about various sources of UAV power 
consumption and their mathematical details, interested 
readers are advised to check [34]. 𝑇𝑇𝑓𝑓𝑛𝑛−1,𝑛𝑛 is the UAV’s flying 
duration between its current location 𝑛𝑛 − 1 and the target 
location 𝑛𝑛 as a function of their separation distance 𝑟𝑟𝑛𝑛−1,𝑛𝑛 
divided by UAV’s flying speed 𝐿𝐿𝑉𝑉 in m/s as given in (6). 
Also, 𝑇𝑇ℎ𝑛𝑛 is the hovering time duration of UAV over location 
𝑛𝑛, which is equal to the total traffic demand of location 𝑛𝑛, 
𝑇𝑇𝑇𝑇𝑛𝑛, divided by its total data rate as given in (6).  

B.  LEO-UAV Link Model 
In the LEO-UAV link model, the fading channel 

framework outlined in [35] is adopted. Due to the relative 
motion of LEO-Sat and UAV, the channel model is highly 
time dependent [35]. This model recognizes the interactions 
of signals with common terrestrial obstructions like trees, 
buildings, and hills adjacent to the UAV. The fading pattern 
changes from Rician fading with higher received power at 
steeper elevation angles to Rayleigh fading with lower 
received signal power at shallower elevation angles as 
described in [35], where the received (RX) power is 
formulated as [35]: 

𝑃𝑃𝑟𝑟𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 = 𝑃𝑃𝑡𝑡V𝐺𝐺(
𝑐𝑐

4𝜋𝜋𝑓𝑓𝑉𝑉𝑟𝑟𝑚𝑚𝑉𝑉𝑛𝑛,𝑡𝑡
)

2
 ,                           (7)  

where 𝑃𝑃𝑟𝑟𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 is the time dependent RX power by LEO-Sat 
𝑚𝑚 ∈ ℳ𝑉𝑉𝑛𝑛,𝑡𝑡 from UAV 𝑉𝑉 when covering location 𝑛𝑛 at time 𝑡𝑡 
assuming uplink transmissions. ℳ𝑉𝑉𝑛𝑛,𝑡𝑡 is the set of LEO-Sats 
from LEO-SatCon covering UAV 𝑉𝑉 at location 𝑛𝑛 in time 𝑡𝑡.   
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FIGURE 2. Geometrical representation of LEO-UAV communication link. 

 

 
FIGURE 3. Trace angle and coverage area of LEO-Sat. 

 
𝑃𝑃𝑡𝑡V and 𝑓𝑓𝑉𝑉 represent UAV TX power and operating 
frequency, respectively. Also, 𝐺𝐺 includes the product of both 
TX and RX antenna gains. 𝑟𝑟𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 represents the time 
dependent separation distance between LEO-Sat 𝑚𝑚 and UAV 
𝑉𝑉 hovering at location 𝑛𝑛, which is expressed as [36]: 

𝑟𝑟𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 = 

−(𝑅𝑅𝑒𝑒 + ℎ𝑉𝑉) sin(𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡) +√(𝑅𝑅𝑒𝑒 + ℎ𝐿𝐿)2 − (𝑅𝑅𝑒𝑒 + ℎ𝑉𝑉)2cos2(𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡) , (8)  

where, 𝑅𝑅𝑒𝑒, ℎ𝑉𝑉, ℎ𝐿𝐿, and 𝜃𝜃𝑚𝑚𝑉𝑉𝑛𝑛,𝑡𝑡 stand the earth’s radius, the 
UAV’s altitude, the LEO-Sat’s altitude, and the LEO-Sat’s 
𝑚𝑚 elevation angle towards UAV 𝑉𝑉 when covering location 𝑛𝑛 
in time 𝑡𝑡. These values are geometrically represented by Fig. 
2. In this figure, 𝑖𝑖 indicates the inclination angle of the LEO-
SatCon from the equatorial plane, 𝐻𝐻 represents the 
subsatellite point on the Earth’s surface, and the time 
dependent trace angle is represented by γ𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡. In this 
context, 𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 is expressed as [36]: 

𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 = 

tan−1 (
cos((𝜔𝜔𝐸𝐸 cos(𝑖𝑖)−𝜔𝜔𝑆𝑆)𝑡𝑡+𝜓𝜓𝑚𝑚𝑉𝑉𝑛𝑛,0)cos(γ𝑉𝑉𝑛𝑛)−(

𝑅𝑅𝑒𝑒+ℎ𝑈𝑈
𝑅𝑅𝑒𝑒+ℎ𝑆𝑆

)

sin(cos−1(cos((𝜔𝜔𝐸𝐸 cos(𝑖𝑖)−𝜔𝜔𝑆𝑆)𝑡𝑡+𝜓𝜓𝑚𝑚𝑉𝑉𝑛𝑛,0) cos(γ𝑉𝑉𝑛𝑛)))
) , (9)  

where, 𝜔𝜔𝐸𝐸 represents the Earth’s rotational angular velocity. 
Also, the angular velocity of the LEO-Sat, 𝜔𝜔𝐿𝐿, is connected 
to the LEO-SatCon orbit radius, and is written as [36]: 

𝜔𝜔𝐿𝐿 = √
𝜌𝜌

(𝑅𝑅𝑒𝑒 + ℎ𝐿𝐿)3 ,                            (10) 

where, 𝜌𝜌 stands for Kepler’s constant, with a value of 
3.986e+5 km3/sec2. The angle 𝜓𝜓𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡, illustrated in Fig. 3, 
refers to the angle on the Earth’s surface that links 𝐻𝐻 to the 
𝑄𝑄 point. At 𝑡𝑡 = 0, 𝜓𝜓𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 becomes 𝜓𝜓𝑟𝑟𝑉𝑉𝑛𝑛,0 which is included 
in (9). Moreover, γ𝑉𝑉𝑛𝑛 is the trace angle, defining the smallest 
angle for the angular distance between the ground trace of the 
LEO-Sat and the UAV’s footprint located at 𝑛𝑛, 𝑉𝑉𝑛𝑛, as 
depicted in Fig. 3. This angle is determined by the UAV’s 
geographical position relative to the LEO-Sat. Appendix A 
proves (9) and the value for 𝜓𝜓𝑟𝑟𝑉𝑉𝑛𝑛,0. The primary source for 
this derivation comes from [36], but our focus is on the LEO-
UAV situation, as opposed to the LEO-GD context assumed 
in [36]. Considering multi-path effect, the expression for the 
probability density function (PDF) of 𝑃𝑃𝑟𝑟𝑟𝑟𝑉𝑉𝑛𝑛 is given as [35]: 

𝑓𝑓(𝑃𝑃𝑟𝑟𝑟𝑟𝑉𝑉𝑛𝑛) = 𝑍𝑍𝑒𝑒−𝑍𝑍(𝑃𝑃𝑟𝑟𝑚𝑚𝑉𝑉𝑛𝑛+1)𝐼𝐼0 (2𝑍𝑍√𝑃𝑃𝑟𝑟𝑟𝑟𝑉𝑉𝑛𝑛  ) .        (11) 

In which 𝑍𝑍 signifies the proportion of the LoS to the 
multipath signals received. The term 𝐼𝐼0 is the zero-order 
Bessel function. When the LEO-Sat and UAV are in relative 
motion at a speed of 𝐿𝐿𝑟𝑟𝑉𝑉, the received signal characteristics 
change due to the Doppler effect. Under this circumstance, 
the Doppler frequency 𝑓𝑓𝐷𝐷 has a relationship with the 
wavelength of the UAV TX signal 𝜆𝜆𝑉𝑉 and 𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 as follows 
[35]: 

𝑓𝑓𝐷𝐷 =
|𝐿𝐿𝑟𝑟𝑉𝑉|
𝜆𝜆𝑉𝑉

cos(𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡).                        (12) 

To acquire the impact of the Doppler effect based on 𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡, 
we can represent the Doppler power spectral density as 
follows [35]: 

δ(𝑓𝑓𝐷𝐷) = {

1

𝜋𝜋𝑓𝑓𝐷𝐷max√1−(
𝑓𝑓

𝑓𝑓𝐷𝐷max
)
2

,        |𝑓𝑓| < 𝑓𝑓𝐷𝐷max

0,                                            elsewhere 

,   (13)  

where 𝑓𝑓𝐷𝐷max is the maximum Doppler frequency. Thus, the 
data rate of LEO-UAV link, when covering location 𝑛𝑛 at time 
𝑡𝑡, reflecting the detailed statistical link model given in (7) to 
(13) can be expressed as follows: 

Χ𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 = 𝑊𝑊𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 log2 (1 +
𝑃𝑃𝑟𝑟𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡

𝜎𝜎2
) ,               (14)  

where 𝑊𝑊𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 indicates the available bandwidth of LEO-Sat 
𝑚𝑚 covering 𝑉𝑉𝑛𝑛 at time 𝑡𝑡, and 𝜎𝜎2 is the AWGN power. For 
simplicity, we assumed that no source of interference affects 
the LEO-UAV link using high interference mitigation 
techniques.  

Apparently, the aforementioned UAV-GD and LEO-UAV 
channel models are different from the terrestrial network 
ones. They are mainly based on channel geometry like 
elevation angles, UAV altitude, environmental parameters, 
LEO-Sat altitude, Earth raduis, angular velocity of both Earth 

Equatorial Plane

Earth

LEO-Sat 

UAV ( ) LEO-SatCon

UAV Path

Coverage Area

LEO-Sat 

LEO-Sat ground trace

UAV footprint
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and LEO-Sat, etc. All these parameters are not affecting the 
channel models of the terrestrial networks as they are mainly 
based on the separation distance between TX and RX. 

C.  Optimization Problem Formulation  
In this subsection, the problem of joint UTP and UAV 

centric LEO-Sat selection will be formulated. The main 
objective of the optimization problem is to jointly find the 
next location on the UAV’s trajectory 𝑛𝑛𝑡𝑡∗ and select the most 
appropriate LEO-Sat 𝑚𝑚𝑡𝑡

∗ covering it. The aim is to maximize 
the data rate of the whole LEO-UAV-GDs link while 
maintaining long remining LEO-Sat visible time subject to 
UAV’s limited battery capacity and LEO-Sats’ features. 
Mathematically speaking, this optimization problem can be 
formulated as follows: 

{𝑛𝑛𝑡𝑡∗,𝑚𝑚𝑡𝑡
∗} = arg max

𝒩𝒩,ℳ𝑉𝑉𝑛𝑛,𝑡𝑡 
(Σ𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡𝒯𝒯𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡),            (15)  

where  

                        Σ𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 = min (Ψ𝑉𝑉𝑛𝑛,𝑡𝑡 ,Χ𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡)     

s.t. 

(15.a) ℳ𝑉𝑉𝑛𝑛,𝑡𝑡 ⊂ ℳ𝐿𝐿𝑆𝑆𝑡𝑡𝑆𝑆𝐿𝐿𝑛𝑛  

(15.b) 𝐸𝐸𝑉𝑉𝑛𝑛−1,𝑛𝑛,𝑡𝑡 < 𝐸𝐸𝑉𝑉Min 

(15.c) 𝒯𝒯𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 ∈ {0,𝒯𝒯𝑉𝑉𝑛𝑛max} 

(15. d) 𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 ∈ {𝜃𝜃0,𝜃𝜃𝑉𝑉𝑛𝑛max} 

(15.e) 𝑊𝑊𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 ∈ {0,𝑊𝑊𝐿𝐿max} 

(15.f) 𝑓𝑓𝐷𝐷 ∈ {0, 𝑓𝑓𝐷𝐷max} 

(15.g) 𝐿𝐿𝑉𝑉 ≤ 𝐿𝐿𝑉𝑉max 

where 𝒯𝒯𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 represents the time dependent remaining visible 
time of LEO-Sat 𝑚𝑚 when communicating with UAV 𝑉𝑉 in 
location 𝑛𝑛. The constraint (15.a) means that ℳ𝑉𝑉𝑛𝑛,𝑡𝑡 should be 
a subset of the total set of LEO-Sats ℳ𝐿𝐿𝑆𝑆𝑡𝑡𝑆𝑆𝐿𝐿𝑛𝑛 in the LEO-
SatCon. Typically, ℳ𝑉𝑉𝑛𝑛,𝑡𝑡 is dynamically changing with time 
as some LEO-Sats will enter UAV visibility while others will 
leave it. The constraint (15.b) means that the UAV energy 
required to move from its current location 𝑛𝑛 − 1  to its next 
location 𝑛𝑛 at time 𝑡𝑡 in its trajectory should be less than its 
minimum battery energy 𝐸𝐸𝑉𝑉Min. 𝐸𝐸𝑉𝑉Min preserves the 
minimum energy enabling the UAV to fly to its start location 
for battery re-charging. The constraint (15.c) indicates that 
𝒯𝒯𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 has a range between 0 and 𝒯𝒯𝑉𝑉𝑛𝑛max, where 0 signifies 
that LEO-Sat 𝑚𝑚 is no longer visible to the UAV at location 
𝑛𝑛, while 𝒯𝒯𝑉𝑉𝑛𝑛max represents the longest duration LEO-Sat 𝑚𝑚 
remains visible. 𝒯𝒯𝑉𝑉𝑛𝑛max is equivalent to double the time taken 
to achieve the peak elevation angle, 𝜃𝜃𝑉𝑉𝑛𝑛max. As per [36], 
𝒯𝒯𝑉𝑉𝑛𝑛max is calculated as: 

𝒯𝒯𝑉𝑉𝑛𝑛max =
−2𝜓𝜓𝑟𝑟𝑉𝑉𝑛𝑛,0

((𝜔𝜔𝐸𝐸 cos(𝑖𝑖) − 𝜔𝜔𝐿𝐿))
.                   (16) 

The constraint (15.d) specifies that the elevation angle, 
𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡, ranges between its lowest value, 𝜃𝜃0, and its highest 

value, 𝜃𝜃𝑉𝑉𝑛𝑛max. The calculation for 𝜃𝜃𝑉𝑉𝑛𝑛max is provided in [36] 
as: 

𝜃𝜃𝑉𝑉𝑛𝑛max = tan−1 (
cos(γ𝑉𝑉𝑛𝑛) − (𝑅𝑅𝑒𝑒 + ℎ𝑉𝑉

𝑅𝑅𝑒𝑒 + ℎ𝐿𝐿
)

sin(γ𝑉𝑉𝑛𝑛)
) .            (17) 

A comprehensive derivation of 𝒯𝒯𝑉𝑉𝑛𝑛max and 𝜃𝜃𝑉𝑉𝑛𝑛max is 
available in [36]. The constraint (15.e) implies that the 
accessible bandwidth of LEO-Sat 𝑚𝑚, 𝑊𝑊𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡, must not 
exceed its maximum available value of 𝑊𝑊𝐿𝐿max. Similarly, the 
constraint (15.f) indicates that the Doppler frequency falls 
between 0 and its uppermost value 𝑓𝑓𝐷𝐷max, where (12) is used 
to compute 𝑓𝑓𝐷𝐷max when 𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 = 𝜃𝜃0. The last constraint 
given in (15.g) indicates that 𝐿𝐿𝑉𝑉 is bounded by its maximum 
value 𝐿𝐿𝑉𝑉max. 

The optimization problem presented in (15) is a 
profoundly nonlinear dynamic challenge. This kind of 
problems cannot be solved using traditional optimization 
techniques or even exhaustively searching all solution spaces 
at every time 𝑡𝑡. Simply because the set of visible LEO-Sats 
covering 𝑛𝑛𝑡𝑡∗ is not exactly known unless UAV moves to that 
location. Nevertheless, this set of visible LEO-Sats is 
dynamically changing with time. Even conventional methods 
used in satellite-to-mobile user selection/handover cannot 
efficiently address the problem of LEO-Sat selection alone 
[24][25]. This is because those traditional techniques 
typically focus on optimizing a single feature of the LEO-Sat, 
like MRP, MEA, MBW, or MRVT [24][25]. However, for 
an effective solution to LEO-Sat selection, it is essential to 
take all these features into account at once, as dictated by the 
constraints.  

 
IV. Proposed Two-Stage MAB Approach  

As LEO-Sat selection should be performed after UAV 
arrives at its next location in its trajectory, the problem can 
be split into two stages. At the first stage, UTP is optimized 
subject to the limited UAV energy by finding the next 
location in its trajectory, while the most appropriate LEO-Sat 
is selected for that location subject to LEO-Sats’ features in 
the second stage. Also, as the problem presented in (15) is a 
sequential time-based optimization challenge influenced by 
the characteristics and dynamicity of the LEO-Sats bounded 
by UAV’s battery capacity, two stage online learning 
approach using two MAB models will be proposed. In the 
first stage, a BC-MAB model implemented by BC-UCB 
algorithm is proposed to find the next appropriate location in 
the UAV trajectory, while CMAB-VA implemented by 
LinUCB-VA algorithm is proposed to select the most 
appropriate LEO-Sat at that location in the second stage. 

A.  MAB Models 
MAB is an effective online learning tool that emulates the 

choices for a gambler playing with a multi-armed slot 
machine. In this scenario, the gambler observes the rewards 
obtained by playing different arms of the machine [20]. The 
objective for the player is to consistently choose the arm that 
has yielded the highest reward thus far, while also trying out 
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new arms. This is often referred to as exploitation and 
exploration balance in MAB games [37]. Strategies like 
epsilon-greedy (ϵ-greedy), upper confidence bound (UCB), 
and Thompson sampling (TS) [38] are recognized as 
effective approaches for implementing MAB models. The 
significance of MAB models has grown recently due to their 
applicability in areas like advertising, medicine, and 
telecommunications, among others. There have also been 
various adaptations of the basic MAB model to suit different 
real-world scenarios. In some cases, choosing an arm incurs 
a cost constrained by the player’s available budget. This 
model is referred to as the BC-MAB, as presented in [21]. 
Another adaptation, the contextual MAB model, leverages 
features of the arms to hasten the decision-making process 
for the optimal arm, using algorithms like LinUCB [22]. 
Additionally, in some MAB scenarios, certain arms might 
become inaccessible, which is called MAB game with 
sleeping arms [23]. These MAB models’ variations and more 
offer solutions and optimization strategies for complex 
applications, like the one discussed in this paper. 

While deep reinforcement learning (DRL) is a powerful 
approach for sequential decision-making, it often requires 
extensive computational resources, substantial training 
datasets, and may exhibit challenges in terms of 
interpretability. SAGIN has a dynamic nature especially in 
post-disaster scenario, where real-time decision is a critical 
matter plus no prior information is typically available about 
the environment including the number of survivors and their 
traffic demands. Thus, MAB models were considered more 
practical and computationally efficient for this specific 
application over DRL due to the following reasons. 1) MAB 
models do not need any prior intensive offline training or 
even any pre-information about the environment like DRL. 
2) No frequent updates to the constructed offline databases 
based on environment changes are needed as befalls in DRL. 
3) Given the constraints of the UAV’s onboard processing, 
UAV’s limited battery budget, and the real-time demands of 
post-disaster scenarios, MAB models were deemed more 
suitable than DRL for efficient real-time decision-making. 

B.  Proposed Two-Stage MAB Approach 
The proposed two-stage MAB approach presented in 

Algorithm 1 consists of BC-MAB implemented using BC-
UCB algorithm in the first stage while CMAB-VA 
implemented using LinUCB-VA in the second stage. The 
inputs to the algorithm are the design parameter Ω,  𝒩𝒩, 
ℳ𝐿𝐿𝑆𝑆𝑡𝑡𝑆𝑆𝐿𝐿𝑛𝑛, the full UAV battery capacity 𝐶𝐶𝑉𝑉Max, and the 
minimum UAV energy 𝐸𝐸𝑉𝑉Min. The outputs of the algorithm 
are the selected location 𝑛𝑛𝑡𝑡∗ and the selected LEO-Sat 𝑚𝑚𝑡𝑡

∗ at 
time 𝑡𝑡. For initialization, the UAV explores all locations, 
∀𝑛𝑛 ∈ 𝒩𝒩, from its start position, 𝑛𝑛 = 1, and observes their 
achievable sum rates Ψ𝑉𝑉𝑛𝑛,𝑡𝑡  and energy consumptions 𝐸𝐸𝑉𝑉1,𝑛𝑛,𝑡𝑡 . 
Then, UAV backs to its start location, and the following 
parameters are initialized: 𝑡𝑡 = 𝑁𝑁, {𝑛𝑛 − 1} = 1, Ψ̅𝑉𝑉𝑛𝑛,𝑡𝑡 =
Ψ𝑉𝑉𝑛𝑛,𝑡𝑡 , �̅�𝐸𝑉𝑉𝑛𝑛−1,𝑛𝑛,𝑡𝑡 = 𝐸𝐸𝑉𝑉𝑛𝑛−,𝑛𝑛,𝑡𝑡, 𝑗𝑗𝑛𝑛,𝑡𝑡 = 1 ∀𝑛𝑛 ∈ 𝒩𝒩, 𝐸𝐸𝑉𝑉𝑉𝑉,𝑡𝑡 = 𝐶𝐶𝑉𝑉Max. 
𝑗𝑗𝑛𝑛,𝑡𝑡 indicates how many times location 𝑛𝑛 was selected up to 
time 𝑡𝑡, and 𝐸𝐸𝑉𝑉𝑉𝑉,𝑡𝑡 indicates the remining UAV energy at time 
𝑡𝑡. Also, Ψ̅𝑉𝑉𝑛𝑛,𝑡𝑡 and �̅�𝐸𝑉𝑉𝑛𝑛−1,𝑛𝑛,𝑡𝑡  are the average data rate of  

Algorithm 1 Two-Stage MAB Approach for Joint UTP and LEO-Sat 
Selection 
Output: 𝑛𝑛𝑡𝑡∗,𝑚𝑚𝑡𝑡

∗ 
Input: Ω ∈ ℝ+, 𝐶𝐶𝑉𝑉Max, 𝐸𝐸𝑉𝑉Min, 𝒩𝒩, ℳ𝐿𝐿𝑆𝑆𝑡𝑡𝑆𝑆𝐿𝐿𝑛𝑛  
Initialization:  
 UAV visits each location in 𝒩𝒩 at once from its start location, 

and observes its achievable sum rate Ψ𝑉𝑉𝑛𝑛,𝑡𝑡  and energy 
consumption 𝐸𝐸𝑉𝑉1,𝑛𝑛,𝑡𝑡.  

 UAV backs to its start location and set {𝑛𝑛 − 1} = 1, 𝑡𝑡 = 𝑁𝑁, 
Ψ̅𝑉𝑉𝑛𝑛,𝑡𝑡 = Ψ𝑉𝑉𝑛𝑛,𝑡𝑡 , �̅�𝐸𝑉𝑉1,𝑛𝑛,𝑡𝑡 = 𝐸𝐸𝑉𝑉1,𝑛𝑛,𝑡𝑡, 𝑗𝑗𝑛𝑛,𝑡𝑡 = 1 ∀𝑛𝑛 ∈ 𝒩𝒩, 𝐸𝐸𝑉𝑉𝑉𝑉,𝑡𝑡 = 𝐶𝐶𝑉𝑉Max 

While 𝐸𝐸𝑉𝑉𝑉𝑉,𝑡𝑡 > 𝐸𝐸𝑉𝑉Min 
     𝑡𝑡 = 𝑡𝑡 + 1 

• First Stage: UTP using BC-UCB Algorithm 
1. 𝜈𝜈𝑡𝑡 = min

𝒩𝒩
(�̅�𝐸𝑉𝑉𝑛𝑛−1,𝑛𝑛,𝑡𝑡−1) 

2. 𝑛𝑛𝑡𝑡∗ = arg max
𝒩𝒩 

( Ψ̅𝑉𝑉𝑛𝑛,𝑡𝑡−1

�̅�𝐸𝑉𝑉𝑛𝑛−1,𝑛𝑛,𝑡𝑡−1
+ 1

𝜈𝜈𝑡𝑡
(1 + 1

𝜈𝜈𝑡𝑡−√
ln(𝑡𝑡−1)
𝑗𝑗𝑛𝑛,𝑡𝑡−1

)√ln(𝑡𝑡−1)
𝑗𝑗𝑛𝑛,𝑡𝑡−1

)  

3. Observe Ψ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 and 𝐸𝐸𝑉𝑉𝑛𝑛−1,𝑛𝑛∗ ,𝑡𝑡 
4. 𝑗𝑗𝑛𝑛∗,𝑡𝑡 = 𝑗𝑗𝑛𝑛∗,𝑡𝑡−1 + 1 

5. Ψ̅𝑉𝑉𝑛𝑛∗,𝑡𝑡 = 1
𝑗𝑗𝑛𝑛∗,𝑡𝑡

∑ Ψ𝑉𝑉𝑛𝑛∗ ,𝑖𝑖
𝑗𝑗𝑛𝑛∗,𝑡𝑡
𝑖𝑖=1  

6. �̅�𝐸𝑉𝑉𝑛𝑛−1,𝑛𝑛∗,𝑡𝑡 = 1
𝑗𝑗𝑛𝑛∗,𝑡𝑡

∑ 𝐸𝐸𝑉𝑉𝑛𝑛−1,𝑛𝑛∗ ,𝑖𝑖
𝑗𝑗𝑛𝑛∗,𝑡𝑡
𝑖𝑖=1  

7. 𝐸𝐸𝑉𝑉𝑉𝑉,𝑡𝑡 = 𝐸𝐸𝑉𝑉𝑉𝑉,𝑡𝑡−1 − 𝐸𝐸𝑉𝑉𝑛𝑛−1,𝑛𝑛∗,𝑡𝑡 
8. {𝑛𝑛 − 1} = {𝑛𝑛𝑡𝑡∗} 

• Second Stage: LEO-Sat selection using LinUCB-VA 
Algorithm for the selected 𝑛𝑛𝑡𝑡∗ location. 

1. Enumerate ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 ⊂ ℳ𝐿𝐿𝑆𝑆𝑡𝑡𝑆𝑆𝐿𝐿𝑛𝑛 , where 𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 ≥ 𝜃𝜃0  and then 
observe 𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 ∀𝑚𝑚 ∈ ℳ𝑉𝑉𝑛𝑛∗,𝑡𝑡 

       for ∀𝑚𝑚 ∈ ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡  
              If  𝑚𝑚 is a new satellite in UAV visibility  

                 𝚨𝚨𝑟𝑟𝑉𝑉𝑛𝑛∗ ← 𝐈𝐈𝑏𝑏 
                  𝚪𝚪𝑟𝑟𝑉𝑉𝑛𝑛∗ ← 0𝑙𝑙×1 

             end If 
             If 𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 < 𝜃𝜃0, 
                  LEO-Sat 𝑚𝑚 is considered as a sleeping satellite and 

removed from ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 
             end If 

    �̂�𝒒𝑟𝑟𝑉𝑉𝑛𝑛∗ = 𝚨𝚨𝑟𝑟𝑉𝑉𝑛𝑛∗
−1 𝚪𝚪𝑟𝑟𝑉𝑉𝑛𝑛∗ 

End for 

2. 𝑚𝑚𝑡𝑡
∗ = arg max

ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 
(𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡

𝑇𝑇 �̂�𝒒𝑟𝑟𝑉𝑉𝑛𝑛∗ + Ω√𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡
𝑇𝑇 𝐀𝐀𝑟𝑟𝑉𝑉𝑛𝑛∗

−1 𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡) 

3. Observe Χ𝑟𝑟∗𝑉𝑉𝑛𝑛,𝑡𝑡  
4. 𝐀𝐀𝑟𝑟∗𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 ← 𝐀𝐀𝑟𝑟∗𝑉𝑉𝑛𝑛∗,𝑡𝑡 + 𝒚𝒚𝑟𝑟∗𝑉𝑉𝑛𝑛∗ ,𝑡𝑡𝒚𝒚𝑟𝑟∗𝑉𝑉𝑛𝑛∗ ,𝑡𝑡

𝑇𝑇  
5. 𝚪𝚪𝑟𝑟∗𝑉𝑉𝑛𝑛∗,𝑡𝑡 ← 𝚪𝚪𝑟𝑟∗𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 + Χ𝑟𝑟∗𝑉𝑉𝑛𝑛,𝑡𝑡𝒚𝒚𝑟𝑟∗𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 

End While 
 
location 𝑛𝑛 and energy consumptions of UAV when moving 
from location 𝑛𝑛 − 1 to location 𝑛𝑛 at time 𝑡𝑡, respectively. 
These values are initially set to Ψ𝑉𝑉𝑛𝑛,𝑡𝑡  and 𝐸𝐸𝑉𝑉𝑛𝑛−,𝑛𝑛,𝑡𝑡 calculated 
using (5) and (6), respectively. After initialization, the two-
stage MAB approach is conducted as long as 𝐸𝐸𝑉𝑉𝑉𝑉,𝑡𝑡 > 𝐸𝐸𝑉𝑉Min 
as follows. 

1) FIRST STAGE: UTP USING BC-UCB ALGORITHM 
In this BC-MAB stage, the UAV will act as the player, the 

arms of the MAB game will be the set of distributed locations 
𝒩𝒩, and the rewards will be the UAV achievable data rates 
Ψ𝑉𝑉𝑛𝑛,𝑡𝑡. Also, the game is bounded by UAV’s energy budget 
𝐸𝐸𝑉𝑉Min. In this context, BC-UCB algorithm is proposed to find 
the next UAV location 𝑛𝑛𝑡𝑡∗ in its trajectory. UCB is the most 
effective MAB algorithm that can well address the balance 
between exploration and exploitation [20]. In UCB, 
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exploitation refers to the average rewards garnered from the 
arms that have been played, while exploration denotes the 
number of times each arm has been played. Essentially, the 
algorithm aims to maximize the confidence in the selected 
arm by minimizing its uncertainty. In the BC-UCB variant, 
the arms budget is added to the naive UCB equation, where 
not only the average reward but also the average budget of 
the arms is included in the exploitation term. Also, a 
parameter indicating the minimum average budget over all 
arms is included in the exploration term. The proposed BC-
UCB algorithm is influenced by that presented in [39]. At the 
beginning of the algorithm after increasing 𝑡𝑡 by 1, the 
parameter 𝜈𝜈𝑡𝑡 is evaluated. Then, the location 𝑛𝑛𝑡𝑡∗ maximizing 
the following formula is selected to be the next location in 
the UAV’s trajectory: 

𝑛𝑛𝑡𝑡∗ = arg max
𝒩𝒩 

( Ψ̅𝑉𝑉𝑛𝑛,𝑡𝑡−1

�̅�𝐸𝑉𝑉𝑛𝑛−1,𝑛𝑛,𝑡𝑡−1
+ 1

𝜈𝜈𝑡𝑡
(1 + 1

𝜈𝜈𝑡𝑡−√
ln(𝑡𝑡−1)
𝑗𝑗𝑛𝑛,𝑡𝑡−1

)√ln(𝑡𝑡−1)
𝑗𝑗𝑛𝑛,𝑡𝑡−1

),  (18)  

Then, the values of Ψ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 and 𝐸𝐸𝑉𝑉𝑛𝑛−1,𝑛𝑛∗ ,𝑡𝑡 corresponding to 𝑛𝑛𝑡𝑡∗ 
are observed by the UAV. Then, its related parameters 𝑗𝑗𝑛𝑛∗,𝑡𝑡, 
Ψ̅𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 and �̅�𝐸𝑉𝑉𝑛𝑛−1,𝑛𝑛∗ ,𝑡𝑡 are updated as given in Algorithm 1. 
Also, 𝐸𝐸𝑉𝑉𝑉𝑉,𝑡𝑡 is updated, and the index of location 𝑛𝑛 − 1 is set 
to equal 𝑛𝑛𝑡𝑡∗ for the next round of location selection as given 
in Algorithm 1. 

2) SECOND STAGE: LEO-SAT SELECTION USING 
LINUCB-VA ALGORITHM 

After choosing 𝑛𝑛𝑡𝑡∗, UAV flies towards it to collect its data 
and then selects the most appropriate LEO-Sat 𝑚𝑚𝑡𝑡

∗ from 
ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 to cover it. In this stage, the player will also be the 
UAV, ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡  will act as the arms of the MAB game, and the 
rewards will be the achievable data rates of the LEO-UAV 
links. In should be noted that these arms are variable with 
time due to appearance of new LEO-Sats and disappearance 
of old ones. Also, 𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡, 𝒯𝒯𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 and 𝑊𝑊𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 will be the 
features of the arms, while the effect of 𝑓𝑓𝐷𝐷 is included in 
𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 as given in (12). In this paper, to implement this 
CMAB-VA game, LinUCB-VA algorithm is proposed as 
given in Algorithm 1. The initial version of LinUCB was 
introduced in [21] for CMAB models, where it linearly 
projects the time dependent context vector onto the reward 
space. The proposed LinUCB-VA is an advanced version of 
LinUCB that incorporates the dynamic nature of LEO-Sat 
arms. Thus, the 𝑏𝑏 dimension features vector of LEO-Sat 𝑚𝑚 
when covering location 𝑛𝑛𝑡𝑡∗ can be represented as: 

𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 = [𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 ,𝑊𝑊𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 ,𝒯𝒯𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡]
𝑇𝑇

.             (19) 

For each time instant 𝑡𝑡, the GBS in the SAGIN communicates 
this feature vector to the UAV. Within this framework, 
𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 can be deduced using (9). 𝒯𝒯𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 starts from its 
maximum value at 𝑡𝑡 = 0 when LEO-Sat 𝑚𝑚 becomes visible 
to the UAV at location 𝑛𝑛𝑡𝑡∗ and reduces at each subsequent 
time instant until it becomes zero when LEO-Sat 𝑚𝑚 
disappears from UAV visibility. The value of 𝑊𝑊𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 for 

each LEO-Sat 𝑚𝑚 can be relayed to the UAV by the GBS via 
its connected LEO-Sat at time 𝑡𝑡.  

CMAB was first presented in [21] to address personalized 
article suggestions by factoring in historical user choices 
associated with article content. In this model, the payoff 
Χ𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 is said to be correlated with the features vector 
𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡. In the problem under consideration, this relation 
holds true since Χ𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 connects to 𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 ,𝑊𝑊𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 , and 
𝒯𝒯𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡. Both 𝑊𝑊𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 and 𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 directly affect Χ𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡; as 
they rise, so does Χ𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡, and vice versa. Also, as the LEO-
Sat moves, both 𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 and 𝒯𝒯𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 fluctuate, consequently 
impacting Χ𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡. As per [21], the relationship between 
Χ𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 and 𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 can be written as follows: 

 𝔼𝔼[Χ𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡\𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡] = 𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡
𝑇𝑇 𝒒𝒒𝑟𝑟𝑉𝑉𝑛𝑛∗

∗ ,                  (20) 

where 𝔼𝔼 signifies expectation, and 𝒒𝒒𝑟𝑟𝑉𝑉𝑛𝑛∗
∗  is an indeterminate 

coefficient. The CMAB’s goal is to predict 𝒒𝒒𝑟𝑟𝑉𝑉𝑛𝑛∗
∗ values via 

continuous online learning. This involves using linear 
regression, where �̂�𝒒𝑟𝑟𝑉𝑉𝑛𝑛∗ is computed as [21]: 

�̂�𝒒𝑟𝑟𝑉𝑉𝑛𝑛∗ = 𝚨𝚨𝑟𝑟𝑉𝑉𝑛𝑛∗
−1 𝚪𝚪𝑟𝑟𝑉𝑉𝑛𝑛∗ ,                                  (21) 

𝚨𝚨𝑟𝑟𝑉𝑉𝑛𝑛∗ = 𝐃𝐃𝑟𝑟𝑉𝑉𝑛𝑛∗
𝑇𝑇 𝐃𝐃𝑟𝑟𝑉𝑉𝑛𝑛∗ + 𝐈𝐈𝑏𝑏 ,                           (22) 

𝚪𝚪𝑟𝑟𝑉𝑉𝑛𝑛∗ = Ψ𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,                               (23) 

𝐃𝐃𝑟𝑟𝑉𝑉𝑛𝑛∗  is an 𝑙𝑙 × 𝑏𝑏 contextual vectors matrix, where each 𝑙𝑙 
row contains 𝑏𝑏 contextual vector. 𝐈𝐈𝑏𝑏 represents the 𝑏𝑏 × 𝑏𝑏 
identity matrix. As proven in [21]:  

|𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡
𝑇𝑇 �̂�𝒒𝑟𝑟𝑉𝑉𝑛𝑛∗ −  𝔼𝔼[Χ𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡\𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡]| ≤ Ω√𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗,𝑡𝑡

𝑇𝑇 𝐀𝐀𝑟𝑟𝑉𝑉𝑛𝑛∗
−1 𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗,𝑡𝑡.  (24)  

The design parameter Ω balances between the exploitation 
represented by (𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡

𝑇𝑇 �̂�𝒒𝑟𝑟𝑉𝑉𝑛𝑛∗) and the exploration denoted 

by (Ω√𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡
𝑇𝑇 𝐀𝐀𝑟𝑟𝑉𝑉𝑛𝑛∗

−1 𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡). Merging these two terms 

yields the selected LEO-Sat index 𝑚𝑚𝑡𝑡
∗ at time 𝑡𝑡 [21]: 

 

𝑚𝑚𝑡𝑡
∗ = arg max

ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 
(𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡

𝑇𝑇 �̂�𝒒𝑟𝑟𝑉𝑉𝑛𝑛∗ + Ω√𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡
𝑇𝑇 𝐀𝐀𝑟𝑟𝑉𝑉𝑛𝑛∗

−1 𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡) . (25) 

The details of the proposed LinUCB-VA algorithm 
implementing the second stage of the proposed MAB game, 
namely CMAB-VA, are given in Algorithm 1. It takes Ω and 
ℳ𝐿𝐿𝑆𝑆𝑡𝑡𝑆𝑆𝐿𝐿𝑛𝑛 as inputs, delivering the chosen LEO-Sat 𝑚𝑚𝑡𝑡

∗. As the 
first step, the set of visible LEO-Sats ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 satisfying the 
condition 𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 ≥ 𝜃𝜃0 is enumerated by UAV at location 𝑛𝑛. 
This involves two phases: initially, the UAV verifies the 
LEO-Sat index; if new, the related parameters 𝚨𝚨𝑟𝑟𝑉𝑉𝑛𝑛∗  and 
𝚪𝚪𝑟𝑟𝑉𝑉𝑛𝑛∗  are set as detailed in Algorithm 1. If 𝜃𝜃𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 for any 
existing LEO-Sats falls below 𝜃𝜃0, they are flagged as 
sleeping and excluded from ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡, showcasing LinUCB-
VA’s variable arm feature. Subsequently, �̂�𝒒𝑟𝑟𝑉𝑉𝑛𝑛∗  values are 
calculated for all visible LEO-Sats as in (21). Upon 
determining �̂�𝒒𝑟𝑟𝑉𝑉𝑛𝑛∗ , 𝑚𝑚𝑡𝑡

∗ is calculated using (25). Then, its 
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associated reward Χ𝑟𝑟∗𝑉𝑉𝑛𝑛,𝑡𝑡 is observed, and its related 
parameters are updated as per Algorithm 1. 

C.  Regert Analysis of the Proposed Two-Stage MAB 
Approach 

To bound the performance of MAB algorithms, regret 
analysis provides an effective metric. It is mathematically 
represented as follows [22]:  

ℛ(𝑇𝑇𝐻𝐻) = 𝔼𝔼 [∑𝜋𝜋𝑛𝑛∗,𝑡𝑡 − 𝜋𝜋𝑛𝑛,𝑡𝑡

𝑇𝑇𝐻𝐻

𝑡𝑡=1

] ,                   (26) 

where 𝑇𝑇𝐻𝐻  indicates the time horizon over which the MAB 
algorithm was conducted. 𝜋𝜋𝑛𝑛∗,𝑡𝑡 is the reward of the optimal 
arm selected by an oracle algorithm, and 𝜋𝜋𝑛𝑛,𝑡𝑡 is the arms’ 
reward selected by the MAB algorithm. For the proposed 
two-stage MAB algorithm, 𝑇𝑇𝐻𝐻  is not an absolute value, but it 
depends on the value of 𝐸𝐸𝑉𝑉Min where the MAB algorithm 
should be terminated, i.e., 𝑇𝑇𝐻𝐻(𝐸𝐸𝑉𝑉Min). For worst case 
scenario, its total regret bound can be written as follows: 

ℛ𝑇𝑇𝑇𝑇𝐿𝐿−𝐿𝐿𝑡𝑡𝑆𝑆𝑆𝑆𝑒𝑒 𝑀𝑀𝑀𝑀𝑀𝑀 = max(ℛBC−UCB,ℛ𝐿𝐿𝑖𝑖𝑛𝑛𝐿𝐿𝑆𝑆𝑀𝑀−𝑉𝑉𝑀𝑀),         (27) 

where ℛBC−UCB is the regret bound of its first stage while 
ℛ𝐿𝐿𝑖𝑖𝑛𝑛𝐿𝐿𝑆𝑆𝑀𝑀−𝑉𝑉𝑀𝑀 is the regret bound of the second stage. 

For the proposed BC-UCB stage, its regret bound is like 
that belongs to the UCB-BV2 algorithm given in [40]. Based 
on the analysis given there, this regret bound is expressed as 
follows: 

ℛ𝑀𝑀𝑆𝑆−𝐿𝐿𝑆𝑆𝑀𝑀 ≤ (
𝜂𝜂𝑛𝑛∗𝑟𝑟

𝜂𝜂𝑛𝑛∗𝑐𝑐
(𝐸𝐸𝑉𝑉Min + 1) − 𝜂𝜂𝑛𝑛∗𝑐𝑐 𝔼𝔼(𝑇𝑇𝐻𝐻(𝐸𝐸𝑉𝑉Min)))

+ (𝜂𝜂𝑛𝑛∗𝑟𝑟 𝔼𝔼(𝑇𝑇𝐻𝐻(𝐸𝐸𝑉𝑉Min)) − 𝔼𝔼 [ ∑ Ψ𝑉𝑉𝑛𝑛,𝑡𝑡 

𝑇𝑇𝐻𝐻(𝐸𝐸𝑉𝑉Min)

𝑡𝑡=1

])  , (28) 

where 𝜂𝜂𝑛𝑛∗
𝑟𝑟  is the mean reward, i.e., UAV data rate, 

corresponding to the optimal location, and 𝜂𝜂𝑛𝑛∗
𝑐𝑐  is its 

corresponding UAV energy cost. After deducing the value of 
𝔼𝔼(𝑇𝑇𝐻𝐻(𝐸𝐸𝑉𝑉Min)) detailed in [40], the regret bound is found to 
be as follows: 

ℛ𝑀𝑀𝑆𝑆−𝐿𝐿𝑆𝑆𝑀𝑀 ≤ 𝒪𝒪 (√ln(𝐸𝐸𝑉𝑉Min)) ,                  (29) 

where 𝒪𝒪 notation represents the order.  
For LinUCB-VA, the regret bound of basic LinUCB 

algorithm is deduced in [41] as follows:  

ℛ𝐿𝐿𝑖𝑖𝑛𝑛𝐿𝐿𝑆𝑆𝑀𝑀 ≤ 𝒪𝒪 (√𝑇𝑇𝐻𝐻𝑏𝑏 ln3(Δ𝑇𝑇𝐻𝐻ln(𝑇𝑇𝐻𝐻)/Ω)) ,        (30) 

where the total number of available arms is represented by Δ. 
For the proposed LinUCB-VA, the same regret bound is 
applied except that Δ is replaced by |ℳ𝐿𝐿𝑆𝑆𝑡𝑡𝑆𝑆𝐿𝐿𝑛𝑛|, which is the 
cardinality of all available LEO-Sats in the LEO-SatCon as a 
worst-case scenario. Also, 𝑇𝑇𝐻𝐻  should be replaced by 
𝑇𝑇𝐻𝐻(𝐸𝐸𝑉𝑉Min). Thus, ℛ𝐿𝐿𝑖𝑖𝑛𝑛𝐿𝐿𝑆𝑆𝑀𝑀−𝑉𝑉𝑀𝑀 can be written as follows: 

ℛ𝐿𝐿𝑖𝑖𝑛𝑛𝐿𝐿𝑆𝑆𝑀𝑀−𝑉𝑉𝑀𝑀 ≤ 

𝒪𝒪 (√𝑇𝑇𝐻𝐻(𝐸𝐸𝑉𝑉Min)𝑏𝑏 ln3 (
|ℳ𝐿𝐿𝑆𝑆𝑡𝑡𝑆𝑆𝐿𝐿𝑛𝑛|𝑇𝑇𝐻𝐻(𝐸𝐸𝑉𝑉Min)ln(𝑇𝑇𝐻𝐻(𝐸𝐸𝑉𝑉Min))

Ω )) . (31)  

TABLE I 
 SIMULATION PARAMETERS 

Parameter Value 

γ𝑉𝑉𝑛𝑛and 𝛾𝛾0 Randomly generated in the range of 
[0, γ0] and 0.3780 [18] 

𝐾𝐾𝑛𝑛 Uniformly random in the range [1, 25] 

𝑃𝑃𝑡𝑡𝐺𝐺 and 𝑃𝑃𝑡𝑡𝑉𝑉 1 and 10 Watt 

𝑅𝑅𝑒𝑒, ℎ𝑁𝑁 and ℎ𝑉𝑉 6371 Km, 1000 Km and 100m [18] 

𝜃𝜃0 and  𝑖𝑖  10°and 60° [18] 

𝜔𝜔𝐸𝐸 and 𝜔𝜔𝐿𝐿  7.3e-5 and 9.977e-04 [36] 

𝑍𝑍 10 dB [36] 

𝐺𝐺 15 dB [36] 

𝜎𝜎0 -174 + 10log10(𝑊𝑊) + 7 [4] 

𝑊𝑊𝑉𝑉 60 MHz 

𝑊𝑊𝑟𝑟𝑉𝑉𝑛𝑛,𝑡𝑡 Randomly generated in the range of 
[0,  𝑊𝑊𝐿𝐿𝑟𝑟𝑆𝑆𝐿𝐿],  𝑊𝑊𝐿𝐿𝑟𝑟𝑆𝑆𝐿𝐿 = 20 MHz 

 
𝑃𝑃𝑓𝑓 ,𝑃𝑃ℎ, and 𝑃𝑃𝑐𝑐 4, 2, and 1 Watt [18] 

𝐿𝐿𝑉𝑉 and |𝐿𝐿𝑟𝑟𝑉𝑉|  20 m/sec and 780 m/sec [35] 

𝑓𝑓𝐷𝐷max 6.1452 KHz [35] 

Ω 0.2 

𝑓𝑓𝐺𝐺 and 𝑓𝑓𝑉𝑉 2.4 GHz and 2 GHz 

𝛼𝛼𝐿𝐿𝐿𝐿𝐿𝐿 and 𝛼𝛼𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿 0.1 and 21 dB [34] 

𝑎𝑎 and 𝑏𝑏 4.88 and 0.429 [34] 

𝐸𝐸𝑉𝑉Min and 𝐶𝐶𝑉𝑉Max 100 and 10,000 

𝑇𝑇𝑇𝑇𝑛𝑛 Randomly generated in the range of 
[0,10 Gbps] 

As both ℛ𝑀𝑀𝑆𝑆−𝐿𝐿𝑆𝑆𝑀𝑀 and ℛ𝐿𝐿𝑖𝑖𝑛𝑛𝐿𝐿𝑆𝑆𝑀𝑀−𝑉𝑉𝑀𝑀 are of 𝒪𝒪(√ln(𝐸𝐸𝑉𝑉Min)), 
we can conclude that the regret bound of the proposed two-
stage MAB approach is of 𝒪𝒪(√ln(𝐸𝐸𝑉𝑉Min)). 

V. Numerical Analysis 
To prove the effectiveness of the proposed two-stage MAB 

approach, extensive numerical simulations were performed. 
The locations of GDs are randomly distributed with arbitrary 
γ𝑉𝑉𝑛𝑛 values in the range [0, 𝛾𝛾0]. The number of GDs per 
location is randomly allocated in the range [1, 25]. The LEO-
SatCon contains several numbers of LEO-Sats at altitude of 
1000 Km with orbital inclination angle of 60° and 𝜃𝜃0 of  10°. 
The LEO-Sat speed is set to 8000 m/sec while UAV speed is 
set to 20 m/sec at an altitude of 100 m. Other important 
simulation parameters are listed in Table 1.  

A. Performance of UTP 
In this section of numerical analysis, we evaluate the 

effectiveness of the proposed BC-MAB in optimizing the 
UAV trajectory against the distributed locations while setting 
the number of LEO-Sats equals 4. As a benchmark, we 
provide the upper bound of the UAV data rate performance, 
which corresponds to scenario where the UAV consistently 
chooses the location with the highest possible rate. We also 
simulate the performance of the naive UCB without BC.  
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FIGURE 4. Average UAV data rate against the number of locations. 

 

 
FIGURE 5. Average UAV energy consumption against number of 
locations.  

 

  FIGURE 6. Average UAV energy efficiency against the number of 
locations. 
 
Lastly, we examine the approach where the UAV chooses its 
next location on its trajectory at random, i.e., “Rand” scheme. 

Figure 4 shows the average UAV data rate in [Mpbs] 
against the number of distributed locations ranging from 4 to 
49 locations. As the number of locations increases, the 
average UAV data rate of the upper bound, BC-UCB and 

UCB schemes are slightly increased due to the high chance 
of finding locations with higher data rates. On the other hand, 
Rand scheme shows constant UAV data rate despite the 
tested number of locations due to the randomly selected 
location.  As shown by this figure, UCB has almost the same 
data rate performance as upper bound performance because 
it aims to select the arm, i.e., location, maximizing the 
achievable UAV data rate through the successive online 
training. However, as the proposed BC-UCB compromises 
between UAV achievable data rate and its energy cost when 
selecting the next location, it has lower average data rate 
performance than UCB and upper bound. As Rand scheme 
selects the locations at random, it has the lowest data rate 
performance, and it is constant despite the tested number of 
locations. From Fig. 4 and at 𝑛𝑛 = 4, UAV average data rate 
of upper bound, UCB, BC-UCB and Rand selection are 61.3 
Mbps, 61.2 Mbps, 49.59 Mbps, and 39.69 Mbps, 
respectively. These values become 75 Mbps, 74.51 Mbps, 
72.7 Mbps, and 39.69 Mbps, when 𝑛𝑛 = 49, respectively. 

Figure 5 shows the UAV energy consumption in joule 
against the number of locations. As the number of locations 
is increasing, the energy efficiency performances of all 
schemes are decreasing. This is because more locations are 
distributed with nearer inter distances which reduces the 
UAV flying energy consumptions. Moreover, for both BC-
UCB and UCB algorithms, as the number of locations 
increases, the UAV data rate increases as given in Fig. 4, 
which also contributes to lowering the hovering time and the 
hovering energy consumption as given in (6). The proposed 
BC-UCB has the lowest energy consumption performance 
while Rand selection has the highest one. This comes from 
the budget constraint functionality of the proposed algorithm 
which enables it to highly reducing UAV’s energy 
consumption over the other schemes involved in the 
comparison. From Fig. 5 and at 𝑛𝑛 = 4, the UAV energy 
consumption of BC-UCB, UCB and Rand schemes are 0.093 
J, 4.4 J, and 5.31 J, respectively. These values become 0.2 J, 
3.1 J, and 4.65 J, when 𝑛𝑛 = 49, respectively. 

Figure 6 illustrates the average energy efficiency of UAVs 
in Mbps/J, which is evaluated by dividing the UAV data rate 
by its energy consumption. As the number of locations 
increases, the UAV energy efficiency of all the compared 
schemes shows an upward trend, primarily driven by the 
boost or constant in case of using Rand selection in UAV data 
rate and a reduction in energy consumption. Among the 
schemes compared, the proposed BC-UCB stands out with 
the highest energy efficiency performance, while the Rand 
scheme lags behind with the lowest energy efficiency. At 𝑛𝑛 =
4 locations, the use of the BC-UCB scheme results in 
approximately 3.82 times and 7.13 times higher UAV energy 
efficiency compared to the use of the UCB and Rand 
schemes, respectively. These values grow to 15.1 and 42.6 
times, respectively, as the number of locations expands. 

B. Performance of LEO-Sat Selection  
In this part of numerical analysis, we study the 

performance of LEO-Sat selection against the number of 
LEO-Sats using 25 locations. As there is no approach 
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proposed in literature for UAV-centric LEO-Sat 
handover/selection to the best of our knowledge, the 
performance of the proposed LinUCB-VA is compared with 
the state-of-the-art LEO-Sat handover/selection schemes that 
maximize a specific LEO-Sat feature like MEA, MRP, MBW 
and MRVT approaches stated in [24][25]. Optimal 
performance is also given, where it exhaustively searches all 
available LEO-Sats ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 and selects the one maximizes 
(15). Indeed, it gives the best performance of (15) but at the 
expense of a bunch of overhead. This overhead comes from 
the need to communicate with all LEO-Sats in 
ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 individually before selecting the best one at every time 
𝑡𝑡 while considering ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 is time updatable. 

Figure 7 shows the average data rate of the LEO-UAV link 
against the available number of LEO-Sats ranging from 2 to 
20. The average LEO-UAV data rate of all compared 
schemes, except MRVT, increases when increasing the 
number of LEO-Sats because of the increasing chance of 
finding out a LEO-Sat with higher LEO-UAV link speed. 
From this figure, MBW has the best performance as LEO-Sat 
bandwidth has the dominant effect in deciding the data rate. 
In contrast, MRVT delivers the lowest performance, and this 
performance remains almost constant. This is attributed to 
the fact that a LEO-Sat with the maximum remaining visible 
time is typically the one that has just entered UAV visibility. 
This LEO-Sat often has the smallest elevation angle, 
resulting in the lowest achievable data rate, as depicted in 
Fig. 7. Moreover, as the remining visible time has no effect 
on the LEO-UAV data rate, it remains constant despite the 
number of used LEO-Sats. The optimal performance does not 
guarantee the highest average data rate performance due to 
its dual objective of maximizing the product of data rate and 
remaining visible time. Meanwhile, the proposed LinUCB-
VA scheme demonstrates comparable average data rate 
performance to that achieved by MBW and it is even better 
than the optimal scheme. This comes from considering all 
LEO-Sat features when selecting the most appropriate one. 
Furthermore, it is interesting to highlight that MRP 
demonstrates superior average data rate performance 
compared to MEA. This comes from considering various 
crucial parameters related to LEO-UAV communication 
links, including antenna gain, operating frequency, path loss, 
and other factors in addition to the elevation angle as outlined 
in (7). For the case of two LEO-Sats, the average data rates 
for the optimal, proposed LinUCB-VA, MRP, MEA, MBW, 
and MRVT schemes are 65.54 Mbps, 66.7 Mbps, 57.6 Mbps, 
57.3 Mbps, 68 Mbps, and 55.12 Mbps, respectively. These 
values increase to 82.8 Mbps, 85 Mbps, 63.7 Mbps, 61.7 
Mbps, 87 Mbps, and 55.13 Mbps when using 20 LEO-Sats. 

Figure 8 demonstrates the remaining visible time in sec of 
the selected LEO-Sat against the number of used LEO-Sats. 
As expected MRVT demonstrates the highest performance as 
it always selects the LEO-Sat with the highest remaining 
visible time. Also, its performance is increasing when 
increasing the number of LEO-Sats due to the high chance of 
finding out a LEO-Sat with a higher remining visible time. 
As the policies of both optimal and the proposed LinUCB-
VA schemes are based on maximizing the remaining visible  

 
FIGURE 7.  Average LEO-Sat data rate against the number of LEO-Sats. 

 

 
FIGURE 8. Remaining LEO-Sat visible time against the number of LEO-
Sats. 

 
FIGURE 9.  Total uploaded data against the number of LEO-Sats. 
 

time when selecting a LEO-Sat, they demonstrate a 
comparable performance to MRVT. As MBW is mainly 
based on maximizing the LEO-Sat available bandwidth and 
has no policy regarding its remaining visible time, it has a 
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constant performance. It is important to notice that the 
performances of both MRP and MEA are declining when 
raising the number of LEO-Sats. This comes from the fact 
that LEO-Sats with higher elevation angles have lower 
remaining visible time and vice versa. Thus, as we increase 
the number of LEO-Sats, a LEO-Sat with a higher elevation 
angle will be selected results in a lower remaining visible 
time. As MEA is only based on the elevation angle in its 
LEO-Sat selection, it shows the lowest remaining visible 
time performance. It is even lower than MRP, which is based 
on many other factors besides the elevation angle. From Fig. 
8 and for two LEO-Sats, the LEO-Sat remaining visible time 
for the optimal, proposed LinUCB-VA, MRP, MEA, MBW, 
and MRVT schemes are 99.2 sec, 96 sec, 80.45 sec, 77.45 
sec, 86 sec, and 105.04 sec, respectively. These values turn 
to be 114.82 sec, 108.5 sec, 57 sec, 49.21 sec, 86 sec, and 
122.54 sec when using 20 LEO-Sats. 

Figure 9 gives the performance of total uploaded data in 
Gbit, which is equal to the multiplication of average data rate 
and the remaining visible time of the selected LEO-Sat, as 
the main objective of (15). The optimal scheme demonstrates 
the best performance due to its brute search policy, but at the 
expense of intensive overhead as previously explained. The 
proposed LinUCB-VA shows a comparable performance of 
the optimal performance by only observing the reward of the 
previously selected LEO-Sats in addition to the current 
features of the candidate LEO-Sats as given in Algorithm 1 
without any need for exhaustively searching all available 
LEO-Sats. Moreover, it is noticed that MBW and MRVT 
have better performances than MEA and MRP, because 
MBW and MRVT have predominant effects on maximizing 
the achievable data rate and the remaining visible time, 
respectively. As the data rate has a higher effect than the 
remining visible time on maximizing (15), MBW has better 
performance than MRVT. Finally, as MRP includes the 
effect of elevation angle in addition to other crucial factors 
affecting the LEO-UAV link, it has better performance than 
MEA which maximizes the elevation angle alone. Also, both 
are decreasing, affected by their remaining visible time 
performances given in Fig. 8. From Fig. 9 and for the case of 
two LEO-Sats, the total uploaded data for the optimal, 
proposed LinUCB-VA, MRP, MEA, MBW, and MRVT 
schemes are 6.5 Gbit, 6.4 Gbit, 4.64 Gbit, 4.44 Gbit, 5.85 
Gbit, and 5.79 Gbit, respectively. These values turn to be 
9.51 Gbit, 9.23 Gbit, 3.63 Gbit, 3.04 Gbit, 7.48 Gbit, and 6.76 
Gbit when using 20 LEO-Sats. 

C.  Complexity Analysis 
The complexity of the proposed two-stage MAB 

approach comes from the complexity of the proposed BC-
UCB and the LinUCB-VA algorithms. For BC-UCB, its 
computational complexity comes from selecting location 
maximizes its policy and updating its associated parameters 
with computational complexity of 𝒪𝒪(𝑁𝑁 + 1), which is equal 
to that belonging to the naive UCB as stated in [3]. For the 
proposed LinUCB-VA, its computational complexity is like 
the computational complexity of LinUCB algorithm 
presented in [21] [41], which is of order 𝒪𝒪 (𝑏𝑏2|ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡|), 

where 𝑏𝑏 is a small number. For communication overhead, the 
proposed LinUCB-VA algorithm only needs to communicate 
with the selected LEO-Sat at each time 𝑡𝑡 with complexity 
𝒪𝒪(1). Compared to the other benchmark schemes, i.e., MRP, 
MBW, MEA, and MRVT and the optimal policy, their 
computational complexity is of order 𝒪𝒪 (|ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡|) coming 
from selecting the LEO-Sat maximizes their own criterion. 
However, they suffer from high communication overhead as 
they need to communicate with all visible LEO-Sats ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 
before selecting the best one at each time 𝑡𝑡 based on their 
policies. In this context, the communication overhead is the 
most dominant as it is related to communication protocol 
delays. Thus, we can conclude that the proposed LinUCB-
VA algorithm reduces the communication overhead by 
almost |ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡| while obtaining a comparable performance 
to the optimal policy and highly advanced over other 
benchmarks.   

For the point of implementation cost in actual 
deployment, both algorithms BC-UCB and LinUCB-VA are 
implemented in the UAV as it is the player of both MAB 
models. However, as given in the above-mentioned 
complexity analysis, both algorithms have linear 
computational complexities with 𝑁𝑁 and |ℳ𝑉𝑉𝑛𝑛∗ ,𝑡𝑡|. Thus, in 
actual deployment, both algorithms will be implemented 
using a low-cost micro-controller located in the UAV. Based 
on the proposed algorithms, this micro-controller decides the 
UAV next location and the selected LEO-Sat at each time 
step. This autonomous implementation will greatly reduce 
the communication overhead and latency, which is more 
appropriate for post-disaster rescue applications, where time 
is an important factor.  

D.  Limitations of The Proposed Approach 
In the scenes of integrating LEO-Sats with UAVs in the 

proposed SAGIN, the proposed approach has the following 
limitations. 1) LEO-Sats handovers were not considered in 
the current paper, where we only assumed LEO-Sat selection 
based on maximum LEO-UAV achievable rate and long 
LEO-Sat visible time to reduce frequent LEO-UAV 
handovers. However, the impact of LEO-UAV handovers on 
the overall system delay performance should be investigated. 
2) It is assumed that the LEO-Sats’ features vector 𝐲𝐲𝑟𝑟𝑉𝑉𝑛𝑛∗ ,𝑡𝑡 
should be carefully estimated at each location 𝑛𝑛 and time step 
𝑡𝑡. The error in this estimated vector will affect the 
performance of the proposed scheme. 3) The integration of 
LEO-Sats into the overall SAGIN framework may pose 
technical limitations. That is different LEO-Sat management 
and communication protocols, frequencies, or standards may 
need to be considered, and interoperability issues could arise. 
All these current limitations and others will be the subject of 
our future investigations. 

VI. Conclusion 
In this paper, we have investigated the problem of joint 

UTP and LEO-Sat selection in SAGIN. The optimization 
problem of this problem was formulated under its constraints 
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of limited UAV battery budget and LEO-Sat features. To 
address this highly dynamic problem, an online learning 
approach in the form of a two-stage MAB model was 
proposed. In the first MAB stage, the energy aware UTP was 
modeled as a BC-MAB game, and the BC-UCB algorithm 
was proposed to implement it. In the second MAB stage, 
LEO-Sat selection was modeled as CMAB-VA game, and 
LinUCB-VA was proposed to realize it. By the means of 
numerical simulations. We proved the effectiveness of the 
proposed BC-UCB and LinUCB-VA over other benchmarks. 
In this context, the proposed BC-UCB showed better energy 
efficiency performance than naive UCB with the same 
computational complexity. Also, the proposed LinUCB-VA 
had a comparable performance to the optimal policy with 
much lower computational complexity and outperformed all 
other LEO-Sat selection schemes. 

APPENDIX A  
In this derivation, we adopt the methodology presented in 

[36], but we focus on the LEO-UAV scenario rather than the 
LEO-GD scenario described in [36]. As the following 
derivation is general for any LEO-Sat 𝑚𝑚 and UAV location 
𝑛𝑛, we omit the subscript 𝑚𝑚𝑉𝑉𝑛𝑛 in the derivation for notation 
simplicity. Based on Fig. 2, we can formulate the subsequent 
equation: 

cos(𝜃𝜃𝑡𝑡 + γ𝑡𝑡) = (
𝑅𝑅𝑒𝑒 + ℎ𝑉𝑉
𝑅𝑅𝑒𝑒 + ℎ𝐿𝐿

) cos(𝜃𝜃𝑡𝑡).            (32) 

The expansion of the left-hand side will lead to the following 
equation:  

tan(𝜃𝜃𝑡𝑡) =
cos(γ𝑡𝑡) − (𝑅𝑅𝑒𝑒 + ℎ𝑉𝑉

𝑅𝑅𝑒𝑒 + ℎ𝐿𝐿
)

sin(γ𝑡𝑡)
.                (33) 

To determine γ𝑡𝑡, let us consider the trace angle and the 
coverage area of the LEO-Sat as illustrated in Fig. 3 and by 
referencing the cosine law, it can be inferred that [36]: 

cos(γ𝑡𝑡) = cos(𝜓𝜓𝑡𝑡) cos(γ𝑉𝑉𝑛𝑛).                 (34) 

  Then, 

γ𝑡𝑡 = cos−1(cos(𝜓𝜓𝑡𝑡 ) cos(γ𝑉𝑉𝑛𝑛)) .               (35) 

In this regard, 𝑇𝑇
𝑇𝑇𝑡𝑡

|𝜓𝜓𝑡𝑡| represents the angular velocity of the 
LEO-Sat in the Earth centered fixed frame, i.e., 𝜔𝜔. This can 
be formulated as: 

|𝜓𝜓𝑡𝑡| = ∫𝜔𝜔 𝑇𝑇𝑡𝑡 ,                           (36) 

where  

𝜔𝜔 ≈ 𝜔𝜔𝐿𝐿 − 𝜔𝜔𝐸𝐸 cos(𝑖𝑖).                              (37) 

Consequently, 𝜓𝜓𝑡𝑡 can be expressed as follows [36]: 

𝜓𝜓𝑡𝑡 = −(𝜔𝜔𝐿𝐿 − 𝜔𝜔𝐸𝐸 cos(𝑖𝑖))𝑡𝑡 + 𝜓𝜓0.                   (38) 

 By substituting (38) in (35),  

γ𝑡𝑡 = cos−1(cos((𝜔𝜔𝐸𝐸 cos(𝑖𝑖) −𝜔𝜔𝐿𝐿)𝑡𝑡 + 𝜓𝜓0) cos(γ𝑉𝑉𝑛𝑛)) . (39) 

By inserting (39) in (33) allows us to infer (9).  
Additionally, from (34), and by setting 𝑡𝑡 = 0, 𝜓𝜓0 can be 

written as follows: 

𝜓𝜓0 = cos−1 (
cos(𝛾𝛾0)

cos(γ𝑉𝑉𝑛𝑛)
) ,                  (40) 

where 𝛾𝛾0 is the angle related to the onset of LEO-Sat 
visibility. Recall (32), and setting 𝑡𝑡 = 0, then 𝜃𝜃𝑡𝑡 = 𝜃𝜃0 and 𝛾𝛾0 
can be expressed as follows: 

 𝛾𝛾0 = cos−1 ((𝑉𝑉𝑒𝑒+ℎ𝑉𝑉
𝑉𝑉𝑒𝑒+ℎ𝑆𝑆

) cos(𝜃𝜃0)) − 𝜃𝜃0.          (41)  

From (41), it is noted that 𝛾𝛾0is fixed for a certain value of 𝜃𝜃0 
as it is only based on geometrical values 𝑅𝑅𝑒𝑒 , ℎ𝑉𝑉 and ℎ𝐿𝐿.  
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