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ABSTRACT As a specific category of artificial intelligence (AI), generative artificial intelligence (GenAI)
generates new content that resembles what humans create. The rapid development of GenAI systems has
created a huge amount of new data on the Internet, posing new challenges to current computing and
communication frameworks. Currently, GenAI services rely on the traditional cloud computing framework
due to the need for large computation resources. However, such services will encounter high latency because
of data transmission and a high volume of user requests. On the other hand, edge-cloud computing can
provide adequate computation power and low latency at the same time through the collaboration between
edges and the cloud. Thus, it is attractive to build GenAI systems at scale by leveraging the edge-cloud
computing paradigm. In this overview paper, we review recent developments in GenAI and edge-cloud
computing, respectively. Then, we use two exemplary GenAI applications to discuss technical challenges
in scaling up their solutions using edge-cloud collaborative systems. Finally, we list design considerations
for training and deploying GenAI systems at scale and point out future research directions.

INDEX TERMS Artificial intelligence, AI-generated content, edge-cloud computing, distributed system,
lightweight models, Metaverse, artificial intelligence of things.

I. INTRODUCTION

GENERATIVE AI (GenAI) has emerged as a ground-
breaking field to realize artificial general intelligence

(AGI) by integrating machine learning and creative content
generation. It is a specific category of AI that aims to
autonomously generate new content that imitates the content
created by humans in different modalities, including images
[42, 94], audio [101, 100], text [32, 13], and even 3D objects
[81, 87]. With the rapid development of GenAI, various
applications, such as text-to-image generation [68, 116], text-
to-speech (TTS) synthesis [65, 144], chatbot [1, 79], and
AI-empowered mixed reality (MR) [98, 137], have been
widely used by consumers. Recently, GenAI models rely
on deep neural networks, such as generative adversarial
networks (GANs) [39] and large language models (LLMs)
[10] because of the higher complexity of the generative tasks.
As a result, such GenAI models have huge model sizes
and are computationally demanding, a powerful centralized
computation infrastructure (i.e., cloud server) is required to
process requests from users. Thus, users may experience
high latency if the cloud experiences a high volume of
traffic. Such limitations hinder the applicability of GenAI

to applications with low latency requirements. Besides, the
heavy computation in a cloud consumes a significant amount
of energy. The overly centralized computing framework is
eco-unfriendly, unsustainable, and cost-inefficient.

In recent years, the proliferation of mobile devices and
the exponential growth of data-intensive applications have
spurred the development of edge-cloud computing solu-
tions. Edge-cloud computing takes advantage of powerful
computation resources in cloud servers and efficient data
management and communication in edge servers. It has
emerged as a promising solution for consumer-based AI
applications and edge intelligence. For example, several large
AI models are deployed with the edge-cloud computing sys-
tem [93, 134]. Compared to traditional cloud computing and
multi-access edge computing (MEC), edge-cloud computing
can exploit more computation resources and achieve lower
latency through the collaboration between clouds and edges.

GenAI poses unprecedented challenges to scalable com-
puting systems and the need for edge-cloud computing
because of three main reasons: 1) a significant amount of
data generated, 2) consumer-centric applications, and 3) high
cost to maintain centralized GenAI services. First, compared
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FIGURE 1: The significant amount of data generated in the
AIGC era poses an unprecedented challenge in computer
networks.

to discriminative AI, GenAI produces a significant amount
of multimedia content, or so-called AI-generated content
(AIGC), in different modalities, such as audio, images, text,
etc. Fig. 1 shows the evolution of different phases in con-
tent creation. Compared to professionally-generated content
(PGC) and user-generated content (UGC), GenAI created
much more data on the Internet. As a result, transmission
latency becomes a serious challenge in GenAI services. Al-
though latency is a common challenge of deploying models
at the edge, it is even more so in the context of GenAI due
to a much larger data amount.

The second challenge is the unique application domain
of GenAI. Currently, most GenAI services target consumer-
centric applications. In addition, many applications require
real-time interactions, such as the chatbots. It makes more
sense to place the computation system closer to users instead
of relying on a centralized computation infrastructure to
process all user requests. In addition, edge-cloud computing
can preserve more privacy for users by storing their data only
on local servers or user devices. Deploying GenAI services
closer to the users by adopting an edge-cloud computing
paradigm can improve efficiency and data privacy.

Third, the required resources to run GenAI services are
huge. For example, ChatGPT by OpenAI1 is one of the most
popular GenAI services recently. It is a chatbot used to inter-
actively answer users’ questions in human-like responses. It
processed more than 13 million daily requests in January
2023 [133]. Although the exact computing infrastructure
used by the ChatGPT service is not publicly available, we
can estimate the cost to run the service each day based
on the model architecture of GPT-3 [10], the generative
model to support the ChatGPT service. GPT-3 is an LLM
containing 175 billion parameters, which requires more than
350 GB of RAM and VRAM to run the model. To deploy
such a large model with minimum latency, a distributed
parallel computing system with at least 2,048 GPUs is
required [133, 10] to handle user inputs. Relying solely
on the computation power in the cloud would lead to high
latency when the request volume is high. In addition, its daily

1https://openai.com/blog/chatgpt

electricity charge is estimated to be around $600,000 using
NVIDIA A100 GPUs; not to mention the training of GPT-3,
which requires 108 times computation and more than 105

iterations. It is neither cost-efficient nor feasible to deploy
such a service entirely on the cloud servers.

Due to the above-mentioned three emerging challenges,
the collaboration of edge and cloud computing resources will
mitigate the burden of cloud servers, especially under the
high volume of requests, or “at scale”. In this paper, we
examine four important aspects of deploying GenAI under
edge-cloud computing: 1) computation and data offloading,
2) low latency, 3) personalization, and 4) privacy. Our main
contributions are summarized below:

• Provision of a comprehensive overview of recent de-
velopments in both GenAI models and edge-cloud
computing;

• Identification of technical challenges in training and
deploying large-scale GenAI services using today’s
solution;

• Presentation of design considerations for training and
deploying GenAI that target computational efficiency
(i.e., lower power consumption), low latency, personal-
ization, and privacy;

• Visualization of two large-scale GenAI applications as
concrete examples to support our discussion;

• Future research directions on GenAI systems based on
edge-cloud computing.

The rest of this paper is organized as below. A comparison
of this work and related previous overview papers is made
in Sec. II. Sec. III introduces the background of GenAI and
defines the scope for “GenAI at scale”. Reviews on recent
developments of GenAI models and edge-cloud computing
are conducted in Sec. IV. Two application scenarios are
envisioned in Sec. V. Technical challenges in training and
deploying GenAI systems at scale with current distributed
systems are examined in Sec. VI. Design considerations to
address them with edge-cloud computing are elaborated in
Sec. VII. Finally, future directions are pointed out in Sec.
VIII, and concluding remarks are given in Sec. IX.

II. COMPARISON WITH RELATED WORK
We summarize related overview papers and compare them
with this work in Table. 1. This work is the first one devoted
to GenAI services in the edge-cloud computing paradigm,
and it includes network design considerations and guidance
for future research.

A. OVERVIEW ON GENERATIVE AI
After the release of ChatGPT at the end of 2022, interest in
GenAI increased rapidly, and a number of survey or overview
papers on GenAI have been published [12, 133, 142]. Some
focus on how GenAI models can be applied to different
applications, such as audio diffusion [144], text-to-image
generation [143], and multimodality [115] applications. Nev-
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TABLE 1: Comparison between our work and other related survey and overview papers.

Year Reference Contributions GenAI Edge Intelligence System Design

2020 [110]
Introduce communication-efficient techniques from both algorithmic
and system perspectives.

x v v

2021 [84]
Introduce communication-efficient techniques from both algorithmic
and system perspectives.

x v x

2022 [139]
Summarize major research efforts where machine learning systems
have been deployed at the edge of computer networks.

x v x

2023 [142]
Review fundamental GenAI techniques and applications in different
modalities.

v x x

2023 [12]
Survey on the basic components of GenAI, recent advances, and
applications of uni-modality and multi-modality GenAI models.

v x x

2023 [136]
Deployment of AIGC network and mobile applications via collabora-
tive edge-cloud infrastructure.

v v x

2023 Ours

Review on both GenAI models and edge intelligence; point out
challenges and bottlenecks in current GenAI services; propose design
considerations to address the issues; provide future directions on how
edge-cloud computing can benefit GenAI..

v v v

ertheless, most of them are concerned with the algorithmic
aspect of GenAI. Here, we study technical challenges related
to the deployment of the entire GenAI systems at scale and
propose a practical cloud-edge computing solution.

B. OVERVIEW ON EDGE INTELLIGENCE
There are plenty of survey and overview papers on AI
in edge-cloud computing, or so-called “edge intelligence”.
Most of them consider discriminative AI tasks, where the
systems only need to make binary decisions. For example,
one important topic for security is how to apply edge
intelligence in surveillance cameras [139, 50, 84, 110]. Other
emerging edge intelligence applications include unmanned
autonomous vehicles (UAV) [82] and the Internet of Things
(IoT) [34]. The latter has long been an important field since
the 5G and wireless networks arrived. A roadmap about the
integration of edge-cloud computing and AI is given in [23].

GenAI has become a new application domain of AI tech-
nology in recent years. It poses emerging challenges, includ-
ing a huge amount of machine-created content, large model
sizes and power consumption, and low latency requirements
in real-time applications, such as GenAI for gaming. It is a
critical problem since the amount of transmitted content is
much more than discriminant AI tasks. To the best of our
knowledge, [136] is the only work that addressed GenAI
at the edge. However, it focused on the review of existing
papers. In this work, we not only provide a comprehensive
review of recent developments of GenAI and edge-cloud
computing but also have an in-depth discussion on many
related issues, including technical challenges, design con-
siderations, exemplary applications, and future technology
outlook of GenAI deployment at scale using the edge-cloud
platform.

III. BACKGROUND
A. BRIEF HISTORY OF GENERATIVE AI
Before discussing the necessity of deploying scalable GenAI
services at the edge today, we present a brief history of
GenAI, which can be roughly divided into the following four
stages:

• 1950 ∼ 1990: Expert systems;
• 1990 ∼ 2020: Deep neural networks;
• 2020 ∼ 2023: Proprietary cloud computing;
• 2023 ∼ - : Public edge-cloud computing.

When the concept of AI was introduced in the earliest
stage (1950 ∼ 1990), people were fascinated by the GenAI
idea since it could model human-like interactions. Compared
to discriminative AI, where only low-dimensional decision
vectors were predicted, the GenAI technology was not ma-
ture enough to offer powerful GenAI services at that time.
Most human-like interactions were configured in the form of
rule-based expert systems [52] and/or template fillings [3].

Through persistent efforts over the three decades in the
second stage (1990s ∼ 2020s), deep neural networks became
more powerful and popular. Researchers applied them to
GenAI and had several breakthroughs [39]. However, since
GenAI was still in the development and prototyping stage by
the research community, its scalability was not a concern.

Recently, several commercial companies have started
to develop their own GenAI services using large lan-
guage/image/video models and proprietary data. The perfor-
mance of such services is impressive due to the adopted large
model sizes and a huge amount of training data. The services
are typically deployed on cloud computing systems with
powerful computation resources. Proprietary GenAI systems
have concerns in various aspects such as privacy, power
consumption, and model efficiency. First, since most services
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are closed-sourced and proprietary, user privacy protection
cannot be well enforced. The model development process
and the final developed models are not transparent. Second,
the power consumption of cloud servers for running deep
neural networks and transformers [123] is high. Third, since
all computations are conducted in centralized computing
facilities, long physical distances between data sources and
end users tend to yield high latency. Real-time applications
are difficult to achieve.

GenAI has entered the commercial usage stage with large
exposure to the general public. Due to the proliferation of
mobile and edge devices, the data sources and computation
should be placed as close to the user as possible to reduce
communication latency and improve user privacy. We envi-
sion the next stage of GenAI should be open-sourced services
that adopt an edge-cloud computing paradigm. To accom-
modate an increasing number of daily users, scalability and
sustainability are serious technical and business issues in
deploying future GenAI services. In this paper, we target
such accessible, affordable, and sustainable GenAI services,
providing feasible solutions to domain-specific GenAI appli-
cations.

B. DEFINITION OF GENERATIVE AI AT SCALE
As the load to certain services increases, the services should
maintain a constant response time in the face of this in-
creased workload because new nodes are added to the cluster,
and new server instances are run. Such a data service
is called a scalable one. When the services fail to meet
the requirements in a centralized cloud cluster, the edge-
cloud computing paradigm can provide significant benefits in
time, computation, and power efficiency. To understand how
GenAI services work at scale in the edge-cloud paradigm,
we must examine the available computation power, network
speed, number of concurrent connections or users, and
latency requirements, as discussed below.

a) Memory. A modern cloud computing infrastructure
often contains thousands of GPUs as computing power. Each
GPU’s video RAM (VRAM) can range from 32 to 80 GB.
Thus, the total number of memory available is at the scale
of 100TB. An LLM, LLaMA, containing 7B ∼ 65B model
parameters require 28GB ∼ 260GB of VRAM to process
an inference request. In other words, the cloud server can
only handle ∼ 4,000 requests at once, even using the most
lightweight model. However, usually, for a cloud server, there
will be as many as 500,000 concurrent requests, which are
much more than what it can process in real-time. Then, any
GenAI models that require more than 200MB of memory
during inference demand distributed processing at scale.

b) Network Bandwidth & Concurrent Connections.
One unique characteristic of GenAI services is the output
dimensions. Their output dimensions are much larger than
discriminative AI services since the latter only outputs
low-dimensional decision vectors. For example, the output
dimension can be up to 1920×1080, equivalent to 6MB of

data in image generation tasks, while the output dimension
is between 96kbps ∼ 160kbps in audio synthesis tasks.
The transmitted AI-generated content can easily exceed the
network bandwidth of a centralized cluster. Any GenAI
models that transmit generated content exceed the network
bandwidth, where

output bitrate × # of connections ≥ bandwidth,

demand distributed processing at scale.
c) Computation & Latency. For real-time applications,

such as dialogue agents and Metaverse with AI-generated
scenes, latency is one of the top priorities. Latency is also
closely related to the computation power and the number
of FLOPs. For example, a 90fps frame rate is required to
avoid dizziness in the Metaverse, meaning that the compu-
tation resources should be powerful enough to generate the
content in 1/90 second. Considering using A100 GPUs, the
computation power is 312 teraFLOPs per second. To meet
the 90 fps requirement, the model needs to have a number
of FLOPs lower than 3.5 teraFLOPs to achieve real-time
interactions.

These requirements should be jointly considered, and one
will affect the other. For example, the number of concurrent
connections will affect the required network bandwidth and
latency; the number of model parameters to fit in the com-
putation infrastructure will affect the number of concurrent
connections.

IV. RECENT DEVELOPMENTS IN GENERATIVE AI AND
EDGE-CLOUD COMPUTING
A. GENERATIVE AI
With the explosion of ChatGPT, GenAI has become a hot
topic. GenAI is an AI technology that can generate various
multimedia content [88, 46, 115]. Fig. 2 shows some real-
world applications of GenAI, including images, texts, audio,
graphics, and even 3D objects. The historical development of
generative AI can be roughly divided into three eras: 1) the
Variational Autoencoder (VAE) and Generative Adversarial
Network (GAN) era (2014-2017), 2) the Transformer era
(2018-2019), and 3) the large model era (2020-present) [35].
Three popular architectures for GenAI models are shown in
Fig. 3.

a) Variational Autoencoder (VAE). The Variational Au-
toencoder (VAE) was first proposed in [62]. It has several
variations [131, 38, 141, 4] to improve the quality of the
generated content [120, 67], adjust to different levels of
supervision [36], and improve the inference efficiency [112].
VAEs are probabilistic generative models. Their encoder and
decoder correspond to two neural networks. The encoder
maps an input to a vector in a latent space, while the decoder
maps a latent vector back to the input space to generate
an output. In the training stage, the network parameters
are optimized so that the output is as close as possible
to the input. Adding noise to latent vectors makes the
decoder produce multiple output samples that have the same
distribution as input samples.
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(a) Image outpainting3. (b) Image captioning. (c) Chatbot1.

(d) Text-to-speech (TTS) (e) AI art. (f) Metaverse.

FIGURE 2: Six illustrative applications of GenAI models: a) image outpainting, b) image captioning, c) chatbot, d) text-
to-speech, e) AI art, and f) Metaverse.

b) Generative Adversarial Network (GAN). Similar to
VAE, Generative Adversarial Networks (GANs) [39] need
two networks in the training stage but keep only one in the
inference stage [129, 89, 49, 21]. The two networks are a
generator and a discriminator. Through a training process
[44, 53], the generator generates better and better fake data
that are getting closer to real data in the distribution to fool
the discriminator. On the other hand, the discriminator is
used to differentiate real and fake data as much as possible.
The generator and discriminator are trained by solving a min-
max optimization problem:

min
G

max
D

V (G,D) = E
x∼real

[logD(x)]

+ E
G(z)∼fake

[1− logD(G(z))],

where G(∗) and D(∗) denotes the generator and discrimi-
nator, respectively. Its capability improves along the training
process. Gradually, they reach an equilibrium status where
fake and real data are so close that they cannot be easily
differentiated. Then, the training stage is completed.

c) Transformers. Natural language generation (NLG)
models aim to generate human-like textual responses. There
are several common applications, such as neural machine
translation [17, 114], question answering [20, 138], and
document summarization [124, 85]. Such models are also
called language models (LMs) [130]. In recent years, trans-
formers [123] with self-attention mechanisms have made
major breakthroughs in establishing powerful LMs [45, 59,

118, 78, 107]. Transformers have replaced the long short-
term memory (LSTM) [48] as the preferred LM architecture
and set off a new wave of large language models (LLMs)
[75, 56, 145, 27]. They often adopt an encoder-decoder
architecture, as shown in Fig. 3 (c). While the encoder
adopts a bi-directional information propagation process to
understand the input text, the decoder in most transformer
architectures generates words one by one. Such a decoder
is also called the autoregressive decoder. With the advent of
transformers, generative models are getting larger and larger.
Over the past two years, attempts have been made to combine
a wide variety of models to create larger and more powerful
models. They offer impressive performance in various fields
[41]. Due to the large model sizes of GenAI models, they
are deployed on the cloud nowadays. That is, models are
trained at the training stage and run at the inference stage
in cloud servers. Users send requests to the cloud server for
content generation. Then, the generated content is sent back
to users.

d) Online Services & Scalability. However, due to the
long distance between users and the cloud, the above-
mentioned framework is not scalable. It has a higher gen-
eration latency, which hinders specific applications such
as augmented reality (AR) / virtual reality (VR) / mixed
reality (MR). Furthermore, with the rapid growth of GenAI
services, the amount of AI-generated data on the Internet has
increased significantly (see Fig. 1). Some GenAI web-based
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(a) Variational Auto-encoder (VAE).

(b) Generative Adversarial Network (GAN).

(c) Transformers.

FIGURE 3: Architectures of three popular GenAI model
categories: VAE, GAN, and Transformers.

services, such as mid-journey2 and DALL-E3, have a large
number of users per day. Most GenAI services are not free
since the required computation is costly due to high power
consumption. Latency can be another major concern once
the service becomes popular with growing user requests.

It is worthwhile to emphasize that user feedback is impor-
tant for model fine-tuning. In other words, there are interac-
tions between the cloud and the edges. Besides, collaboration
among users is important for training a more robust and
diverse system. Edge-cloud computing provides a natural
solution to build GenAI systems at scale. Yet, to the best
of our knowledge, there is no research addressing how a
distributed system should be designed to accommodate the
computation, transmission, and exchange of a huge amount
of AIGC data. This motivates us to explore this topic and
write this overview paper.

B. EDGE-CLOUD COMPUTING
There are three basic paradigms for implementing large-
scale computing systems. They are: 1) cloud computing, 2)
multi-access edge computing (MEC), or previously mobile-
edge computing, and 3) edge-cloud computing, as shown
in Fig. 4. Among the three, cloud computing carries out
computationally demanding projects using a large number
of online servers to serve many remote users. The cloud has
much larger computing resources than a local site. Moving

2https://www.midjourney.com/
3https://openai.com/blog/dall-e-introducing-outpainting

TABLE 2: Comparison of hardware and performance spec-
ifications of three computational resources, namely cloud
servers, edge servers, and user devices.

Resources Cloud Servers Edge Servers User Devices

Memory >24TB ∼500GB <64GB

Dist Storage >25PB <1PB <10TB

Latency (RTTs) 30 ∼ 50 ms <10ms -

Power (per year) >2,000TWh ∼7,500KWh ∼600KWh

Concurrent
Connections

>500,000 ∼1,000 1

compute-intensive tasks to the cloud has been an efficient
way of data processing. The concept of cloud computing
was introduced in the early 60s [37, 113]. It has made rapid
progress in the last several decades and has become a mature
business service model. Examples include: Amazon Web
Services (AWS)4, Microsoft Azure5, Google Cloud Platform
(GCP)6, IBM Cloud7, Salesforce8, etc.

As the computational power of mobile devices increases
and wireless networks become accessible at almost any
place, multi-access edge computing (MEC) provides com-
puting, storage, and bandwidth closer to users. MEC tends
to allocate more computing tasks to the edge than the
cloud. Computation can be performed near data sources
on edge devices. Edge computing has become more im-
portant nowadays, as pointed out in a few studies, e.g.,
[28, 80, 109, 11, 29]. The MEC framework primarily relies
on edge devices, which have limited resources. In addition,
the MEC framework greatly relies on caching to improve the
latency. Thus, its performance is not good for computation-
ally demanding tasks.

As the demand for real-time processing, low-latency
communication, and efficient data management increases,
the edge-cloud computing paradigm emerges as a new
and attractive solution. By combining the power of cloud
computing with the proximity and responsiveness of edge
devices, edge-cloud computing aims to bridge the gap be-
tween latency and scalability. Since it has lower latency,
it is suitable for real-time applications such as AR/VR/MR
[147, 31], object tracking and detection [99, 122], etc. Since
it can utilize computational resources at both the cloud and
edges, it has more flexibility in load balancing to yield a
more scalable solution. Moreover, user data and privacy can
be better preserved by edge-cloud computing [91].

The hardware and performance specifications of three
computational resources (namely, cloud servers, edge
servers, and user devices) are compared in Table 2. As shown
in the table, cloud servers have the highest resources in

4http://aws.amazon.com/ec2
5http://www.microsoft.com/azure
6https://cloud.google.com/
7https://www.ibm.com/cloud
8https://www.salesforce.com/
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FIGURE 4: Three basic computing paradigms in support of large-scale computing systems.

terms of computational memory and data storage capacity.
At the same time, they have the highest power consumption
and the largest number of concurrent connections. Their
latency is also the highest since they are far from users. It is
beneficial to shift some computation loads from cloud servers
to edge servers and user devices to balance the computa-
tional load and reduce latency in various applications. The
load-balancing idea is also called offloading. Computation
offloading [33, 51] and data offloading [150, 47] are two
key concepts in edge-cloud computing.

The AI tasks suitable for edge servers and cloud servers
are shown in Fig. 5. Due to rich computation resources,
cloud servers can store and run large models to process high-
level tasks. In contrast, edge devices are mainly responsible
for low-level pre-processing tasks. Due to the emergence of
5G/IoT, AIGC enters a new era. That is, it is no longer
sufficient to conduct all computations and store all data
in a centralized cloud server or data center. Similarly, AI
computation with edge servers and user devices is also not
practical in building a scalable system as AIGC data grows
fast.

Some large deep-learning AI models are difficult to deploy
at the edges. Recently, a green learning methodology [66]
has been proposed as an alternative to deep learning. Green
learning AI models have much smaller model sizes, signif-
icantly lower computational complexity in terms of FLOPs
(Floating Point Operations), faster inference time, and less
power consumption demand. As a result, green-learning
AI models open a new door for edge servers and even
user devices in offloading cloud servers. Hybrid deep- and
green-learning solutions match the edge-cloud computing
paradigm well. That is, GenAI has a unique mission to
process low-level data and aggregate high-level abstractions

to generate creative content. GenAI can benefit the most from
the collaboration of edge and cloud servers.

Recently, Meta announced a supercomputing cluster with
very rich computational resources9. It can perform five ex-
aflops (billion billion calculations per second) using a total of
16,000 NVIDIA A100 GPUs to train state-of-the-art GenAI
models. Servers are connected by an NVIDIA Quantum
InfiniBand fabric network with a bandwidth of 16 Tb/s to
ensure low latency in data synchronization. However, this
computational scale is not affordable for most companies and
academic institutions. Thus, how to design scalable GenAI
systems using a reasonable computing cluster to perform
similar tasks is of great interest. We put hope in edge-cloud
computing since it can leverage expandable computation
resources that are under-utilized and closer to users.

The deployment of GenAI systems on the edge-cloud
computing platform is shown in Fig. 6. Since the training
of GenAI models is most computationally heavy, it is still
conducted in cloud servers. The training is usually done
offline and asynchronous. The deployment of trained GenAI
models for the AIGC tasks can be placed as close to users as
possible to lower latency. Edge servers can be used to fine-
tune GenAI models, train personalized models, preserve user
privacy, and serve as an interface between edges and cloud
servers. It is ideal to have several edge servers to handle
individual tasks separately. More details about the design
considerations will be discussed in Sec. VII.

V. TWO EXEMPLARY SERVICES
In this section, we present two exemplary GenAI services as
concrete examples to demonstrate how to deploy GenAI in
the edge-cloud computing environment. In particular, these
services demand low latency and will have a large number of

9https://ai.facebook.com/blog/ai-rsc/
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FIGURE 5: Roles and suitable applications for edge nodes and cloud nodes in edge-cloud computing.

FIGURE 6: Implementation of GenAI systems with the edge-
cloud computing paradigm.

users when the technologies become mature and the markets
are ready. Scalability-based edge-cloud computing is critical
to their successful deployment. They are, a) Metaverse sys-
tem, which is a performance- and latency-centric application,
and b) artificial intelligence of things (AIoT), which is a
personalization- and privacy-centric application. Details of
GenAI model deployment in the cloud and edges are given
separately below.

A. METAVERSE SYSTEM
Metaverse is one of the most important applications in
GenAI. With the development of GenAI, most of the gen-
erated scenes rely on machine learning models. Metaverse
requires an extremely low latency to make the transition
smoother in order to avoid dizziness. However, high-quality
rendering is time-consuming, and virtual reality (VR) gog-
gles are resource-constrained. Generating satisfactory scenes
and meeting the low latency requirement with resource-

constrained edge devices is the key to the success of the
Metaverse system. Apparently, its solutions at scale demand
the close collaboration of the computation resources at the
edges and the cloud.

In the Metaverse system, every user should be placed in
a single virtual environment. As a result, a huge map will
be required to be generated. Edge-cloud computing can be
a latency-efficient solution for Metaverse applications. For
example, as illustrated in Fig. 7, the entire map is stored
in the centralized data center that can be shared among
all users. Then, the locations, angles, and other parameters
can be collected by user devices and transmitted through
a wireless network [55]. The cloud computing clusters are
also responsible for generating the scenes and rendering the
results. The compressed scenes will be sent back to the
users. At the user end, a lightweight decoder and renderer are
deployed to display the scenes based on the corresponding
viewpoints of the users. As a result, such a system design
can reduce the latency significantly since the computation-
heavy parts are taken care of using powerful computation
infrastructure. In addition, the amount of data transmitted
in the communication systems is minimized. The users will
send the request to the GenAI models in the cloud, and the
compressed scenes will be transmitted back to the users.

Edge servers are a fundamental component in the Meta-
verse system [73]. They serve a similar role as in the content
delivery network (CDN) to distribute content based on
geographical locations and share the computation load in the
cloud server. Users in the same locations will be connected
to the same edge server. Once a user sends a request to the
Metaverse system to generate the local scene, it is transmitted
through the edge servers and cached. Other users in the same
location can access the cached scenes in the edge servers
to further reduce the latency. Computation resources in the
edge servers should also be leveraged. For example, they
can be helpful in compressing and decompressing the scenes
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FIGURE 7: Illustration of exemplary service of the Metaverse system with GenAI under edge-cloud computing.

generated in the cloud server. As a result, not only the latency
can be reduced, but also the quality of the generated scenes
is improved.

B. ARTIFICIAL INTELLIGENCE OF THINGS
Artificial Intelligence of Things (AIoT) is an emerging ap-
plication to combine artificial intelligence (AI) technologies
in the Internet of Things (IoT) systems [146]. Through the
integration of AI and ubiquitous wireless networking infras-
tructure, one can build AIoT systems where the end devices
have certain intelligence in data processing and analytics.
GenAI can be further exploited to facilitate a broader range
of applications. For example, a voiced assistant can interact
with users in applications such as autonomous driving, smart
cities, and smart homes, where fluent human speech has to be
automatically generated from multiple information sources,
which is often in the form of text data.

To implement AIoT with edge-cloud computing (say,
voiced assistant applications), we need to consider privacy,
personalization, and data synchronization [16]. Users may
collect data to train more relevant personalized GenAI mod-
els. Training a simple GenAI model with acceptable perfor-
mance on user devices is desired. Then, model parameters of
multiple users can be sent to cloud servers to be integrated
to build a more advanced GenAI model through federated
learning [86, 58] or split learning [106, 149]. In addition,

data can be constantly collected from the end devices to en-
sure the information in GenAI models is up-to-date. Online
optimization [72, 132] supports GenAI model training with
streams of data on the fly. User devices can be synchronized
with advanced GenAI models through firmware updates. As
a result, the whole system can benefit from a larger pool of
training data from users via federated or split learning while
user data privacy can be well protected.

The hierarchy in edge-cloud computing can be utilized for
more efficient GenAI model deployment. For example, large,
middle-size, and lightweight models can be placed in cloud
servers, edge serves, and user devices, respectively. Different
resolutions of the models can be achieved through knowledge
distillation [126, 40] and model parameter pruning [104, 55].
Grouping users with the same computation facility can
further reduce the computation. Different edge and cloud
servers can be specialized to process different applications
efficiently. Personalization can be considered to optimize end
devices according to user behavior. The personalization fine-
tuning on the user devices is generally efficient due to the
deployment of lightweight models.

VI. TECHNICAL CHALLENGES
There are technical challenges in training and deploying
GenAI services at scale. The major ones include: 1) in-
creased output dimensions, 2) growth in model sizes, 3)
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FIGURE 8: Illustration of exemplary service of the AIoT system with GenAI in the edge-cloud computing environment.

power consumption, 4) latency, and 5) infrastructure reli-
ability. They are summarized below to demonstrate the need
for good resource coordination between edges and the cloud
with edge-cloud computing.

A. INCREASED OUTPUT DIMENSIONS
GenAI is a specific category of AI that creates new content
in multimedia formats, such as audio, images, or texts. Com-
pared to discriminative AI, the output dimensions of GenAI
are much larger, posing a new challenge in transmitting a
high volume of data. For example, for discriminative AI,
the outputs are usually a low-dimensional vector, say, the
decision vector. They can be easily transmitted even with
a large number of requests. In contrast, it is challenging
to transmit a high volume of multimedia data from the
cloud center to users for GenAI services. Data compression
techniques [127] are needed in GenAI. In addition, GenAI
usually has a larger model size than discriminative AI. The
former often demands Transformers [123], while the latter
may adopt convolutional neural networks. Consequently,
GenAI demands more computational resources, including
hardware costs and power consumption. Thus, designing
an efficient edge-cloud GenAI system at scale is a unique
challenge.

B. GROWTH IN MODEL SIZES
In order to achieve better performance in various applica-
tions, GenAI systems adopt larger models with more model
parameters and computation over time. The growth rate of

FIGURE 9: The development of generative LLMs and their
model sizes as a function of time. The vertical axis is in
log scale. Models in the figure include GPT-2 [96], T5 [97],
Turing-NLG [111], GPT-3 [10], LaMDA [119], MT-NLG
[111], and PaLM [18].

their model sizes is an exponential function of time [57]
as shown in Fig. 9. Specifically, the model sizes of neural
GenAI models double every 6 months as reported in [12].
This is called “Moore’s Law for GenAI”. In contrast, the
computation power of CPUs and GPUs only doubles every
two years in the semiconductor manufacturing industry.
If the trend continues, the demand for computation will
surpass its supply in the near future. Unless there is a
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(a) Cloud Computing.

(b) Multi-access Edge Computing (MEC).

(c) Edge-cloud Computing.

FIGURE 10: Illustration of latency in different computation
frameworks.

major breakthrough in supply, its limitation will hinder the
future growth of GenAI systems. Thus, how to train and run
GenAI systems through collaboration between the cloud and
edges efficiently has become an urgent issue for the entire
community to tackle.

C. POWER CONSUMPTION
Power consumption is a major concern in cloud computing
[135, 83]. The centralized computation infrastructure con-
sumes a significant amount of electricity in running user
requests as well as training large models. Fig. 3 compares
power consumption, carbon emission, and cloud compu-
tational cost in training large GenAI models for different
modalities. The power consumption of GenAI services is
even greater than simply training GenAI models since they
need to process millions of requests per day from the users.

Power consumption and carbon emission are closely re-
lated to the number of floating point operations (FLOPs).
More FLOPs imply higher carbon emissions and electricity
bills. For example, the GPT-3 model, the backbone of
ChatGPT, demands 1023 FLOPs in one training iteration
and 1015 FLOPs in inference. Since the power efficiency
of CPUs/GPUs in modern computation facilities is around
1010 FLOPs/sec-watt, it will demand 27.78 kWh (105 Joule)

to process a single request. Apparently, GenAI services are
not scalable. Furthermore, they are eco-unfriendly, unsus-
tainable, and cost-inefficient. To achieve sustainability with
large-scale GenAI services, alternative Green solutions under
the edge-cloud computing paradigm are essential.

D. LATENCY
For real-time GenAI applications such as VR and gaming,
it is of uttermost importance to reduce latency. The latency
calculation in three different computing frameworks is il-
lustrated in Fig. 10. It is the time between a request sent
and its response received at the user end. It is determined
by uplink transmission time, inference time, and downlink
transmission time; namely,

latency = tUL + tinference + tDL,

where tUL, tinference, and tDL denote uplink transmission time,
inference time, and downlink transmission time, respec-
tively. In the cloud computing framework, the latency comes
from the long uplink transmission time tUL and downlink
transmission time tDL. since the computation resources are
placed far from the users. In MEC, the transmission delay
is reduced since the processing units are placed closer
to the users. However, the computation resources in edge
servers are not as powerful as the ones in the cloud servers.
Thus, the inference time, tinference will be much longer,
especially for computation-intensive applications, such as
GenAI services. In edge-cloud computing, tasks are divided
efficiently between the edge and cloud servers. Thus, the
overall inference delay can be reduced by leveraging both
computation resources in edge and cloud servers. In addition,
the transmission delay is also reduced since the connection
between edge servers and the cloud is much faster than from
the user end.

For GenAI applications, their inference time can be longer
than that of other applications due to larger model sizes and
more computations required by GenAI models. Furthermore,
the output of GenAI services can be multimedia AIGC.
Transmission of multimedia data such as video will demand
a longer downlink transmission time tDL than text data. We
can reduce tDL by allocating multimedia generation tasks
to edge servers. Again, the development of green-learning-
based GenAI models are in urgent need.

E. INFRASTRUCTURE RELIABILITY
Cloud servers need a large number of GPUs to handle user
requests at scale. As mentioned before, Meta has just started
a supercomputing center with 16,000 NVIDIA A100 GPUs
to support their GenAI services. It is unrealistic to set up
such powerful but costly infrastructures in many sites glob-
ally. Furthermore, such a huge single-site infrastructure is
vulnerable to physical and/or cyberspace attacks. Distributed
computing with multiple lightweight cloud servers and much
more edge servers will offer a more robust AI computational
infrastructure in the future.
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TABLE 3: Comparison of power consumption, carbon emission, and cloud computational cost in the training of large
GenAI models in different modalities.

Model Modality Hardware Power (watts) Hours Energy Comsumption (kWh) CO2e (lbs)

WaveGAN [24] Audio P100 GPU x1 250 96 24 19.63

GANSynth [30] Audio V100 GPU x1 300 108 32.4 26.5

FloWaveNet [60] Audio V100 GPU x1 300 272 81.6 66.74

BigGAN [9] Image V100 GPU x1 300 3,072 921.3 753.54

Stable Diffusion [102] Image V100 GPU x1 300 2,184 655 535.72

GPT-2 [96] Text TPUv3 x 32 - 168 2.8× 104 2.39× 104

GPT-3 [10] Text V100 GPU x10,000 - 355 1.29× 106 1.1× 106

GLaM [92] Text TPUv4s - - 4.56× 105 8× 104

VII. SYSTEM DESIGN CONSIDERATIONS
Design considerations for providing GenAI services at scale
using edge-cloud computing are examined in this section.
Training and deployment of GenAI services should be
considered separately. For the training of GenAI models,
a larger amount of computational resources and training
data are needed. Key considerations include: 1) computation
offloading, 2) personalization, 3) privacy, and 4) information
recency. After models are trained, it is desired to deploy them
on user devices for lower latency and power consumption.
There are three main considerations: 1) lightweight models,
2) minimizing latency through edge-cloud collaboration, and
3) multi-modality content generation and interface. First,
lightweight models are essential because of limited resources
on edge servers and user devices. Second, by properly
dividing the inference tasks to edges and the cloud, inference
latency can be largely reduced through edge-cloud collab-
oration. Third, multimedia content will become the main
media for humans to acquire information, as evidenced by
the popularity of videos on the Internet nowadays. Multi-
modality content generation and interface at edges should
be considered carefully. Fig. 11 summarizes the design
considerations for providing GenAI services at scale.

A. TRAINING
Since the training of large-scale GenAI models is costly, we
need to consider the following issues.

a) Computation offloading. This is an important concept
in edge-cloud computing and collaboration. It means that we
need to fully utilize computation resources in the cloud and
edges. Traditional cloud computing puts all computational
loads in a centralized cluster. Users might experience long
latency if the resources in the cloud cannot meet the require-
ments of sudden heavy service requests. Furthermore, the
computational cost to train large GenAI models is extremely
high. It may take days or weeks to train large models. Thus,
computation offloading has to be considered when training
GenAI systems under the edge-cloud computing paradigm.

Most GenAI services adopt deep neural networks (DNNs)
as models. DNNs consist of multiple layers. To balance
computation loads in training DNNs, we can decouple the

FIGURE 11: The roadmap of designing GenAI services
at scale. Computation offloading, latency, privacy, and data
offloading are the major considerations.

training procedure. [77] illustrates how DNNs can be trained
by different workers in parallelism, as shown in Fig. 12.
Such an idea can be leveraged in edge-cloud computing,
where the user devices, edge servers, and the cloud serve
as different workers. Thus, in edge-cloud computing, data
does not need to be entirely transmitted to the cloud server,
and the training does not need to take place entirely in the
cloud. Instead, different layers can be trained by different
computational facilities (e.g. user devices, edge servers, and
the cloud server). For example, as shown in Fig. 12 (a),
deeper layers are farthest from users, and they can be
trained in the cloud. Gradients are propagated to edge servers
to train middle layers. Gradients are propagated again to
user devices. Finally, shallow layers are closest to users,
and their parameters can be trained on user devices. As a
result, system optimization can be carried out through the
collaboration of user devices, edge servers, and the cloud
server. Only the gradient information has to be transmitted
in such a design. Another idea is to decouple the training
data as shown in Fig. 12 (b). Smaller DNNs can be trained
in parallel by leveraging data parallelism. Then, multiple
smaller models can be integrated through federated learning.
Finally, a hybrid solution exploiting both model parallelism
and data parallelism can be explored as well as shown
in Fig. 12 (c). Under the GenAI context, such parallelism
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(a) Model parallelism. (b) Data parallelism. (c) Hybrid parallelism.

FIGURE 12: Three parallelism for computation and data offloading in DNN model training [77].

FIGURE 13: Personalization of GenAI services.

and collaboration between edges and the cloud are even
more important. Computation and data offloading should be
carefully designed in large-scale GenAI services.

b) Personalization. Edge-cloud computing can provide
personalized GenAI models. While training a GenAI model
requires a large amount of data, personalization can be
achieved by fine-tuning the trained model with a small
amount of user data. The collaboration between edges and
the cloud for personalized services is depicted in Fig. 13.
First, an advanced GenAI model, called the foundation
model, should be trained in the cloud with common data. In
this step, the trained foundation model can handle general
requests. To achieve personalization, personal data, such as
user logs and metadata, are collected from user devices
and sent to edge servers. The foundation model is also
placed in edge servers for personalization. Then, a fine-
tuning technique can be developed to shift the model domain
from a generic one to a user-specific one using personal
data. Typically, fine-tuning requires much fewer computation
resources, and it can be entirely conducted in edge servers.

c) Privacy. Privacy is a major concern in GenAI services
to prevent personal information from being disclosed to
other users and companies. It is particularly important in the
context of GenAI services since generated content is difficult

FIGURE 14: Privacy preservation through federated learn-
ing.

to control. One solution to privacy is the use of federated
learning, as shown in Fig. 14. The core concept is to share the
model parameters among users instead of sharing personal
data. Users will have their own models stored in user devices
or edge servers based on applications. The models are trained
based on user data. Information exchange among users is
through aggregating user models in the cloud. That is, all
trained user models are transmitted from edges to the cloud,
where small user models are combined to train an advanced
large model. Finally, the model parameters of the advanced
model will be synchronized with user models for the next
round of training. By sharing model parameters in federated
learning, GenAI services can preserve user privacy while
collecting relevant information from users.

Besides federated learning, split learning [5, 106, 149]
offers a powerful solution to data privacy preservation when
training GenAI models in a distributed setting. Instead of
passing model parameters as done in federated learning, split
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FIGURE 15: Online optimization in edge-cloud computing.

learning shares the gradients among different sections of the
models that are trained by different clients independently.
Thus, no other clients can access the original raw data. In
such a way, models can be optimized with the arrival of new
data samples, while data privacy is preserved at the same
time, in an edge-cloud collaborative fashion.

d) Information Recency. Keeping the information up-
dated is one of the main challenges to GenAI services. For
example, chatbots need the most updated information to
offer a better user experience. On the other hand, training
GenAI models is time-consuming and inefficient. Incremen-
tal learning is needed. However, it is not easy to implement
in neural network models. Online optimization with edge-
cloud computing is an alternative way to keep the services
updated. This is illustrated in Fig. 15. Usually, it contains two
models - an online model and an offline model. The online
model is stored in the cloud server for the most updated
information by adopting online optimization. At the same
time, a smaller offline model is placed in the edge servers
for low latency inference and cloud online model offloading.
Online and offline models are synchronized periodically to
ensure that edge intelligence is also up-to-date.

B. DEPLOYMENT
Three design considerations in deploying GenAI services are
elaborated below.

a) Lightweight Models. Deploying GenAI models on
edge servers and user devices can lower latency in user-
centric applications. Large GenAI models cannot be de-
ployed on user devices due to their large model sizes and
high power consumption. Lightweight GenAI models, as
summarized in Fig. 16 are more suitable. For example,

knowledge distillation can fit into edge-cloud computing
well. With knowledge distillation, the knowledge learned in a
huge teacher model is transferred to a smaller student model.
Thus, the teacher model can be trained and stored in the
cloud server while the student model is distilled from the
teacher model in the edge servers and, then, stored in user
devices. Model pruning adopts a similar concept to train a
smaller model from a large model, which takes place in edge
servers. Other techniques include quantization and model
compression. They can reduce the model sizes effectively
without the collaboration between the cloud and edges.

Recently, there has been an increasing number of research
focusing on developing lightweight GenAI models. LLaMA
[121] reduces the number of model parameters in LLMs to
as small as 7 billion using a self-instruct training technique
called Alpaca [117]. Lightweight GenAI models encourage
the development of mobile- or web-based applications on
user devices, such as WebLLM10. The small model sizes
also alleviate the burden in caching-based communication
networks. Latency is also largely reduced due to lower
computation and transmission delay. Research in develop-
ing lightweight GenAI models demonstrates the urgency
to reduce the ridiculously large models while still having
comparable performance.

b) Minimizing latency through edge-cloud collabo-
ration. When deploying GenAI models, it is desirable to
minimize the latency through the collaboration between edge
and cloud servers as illustrated in Fig. 10. First, transmission
latency is largely reduced due to the introduction of edge
servers [14]. In general, applications are sped up 20 times
while reducing energy consumption by 5% [19]. Further-

10https://mlc.ai/web-llm/
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FIGURE 16: Existing technologies to obtain lightweight GenAI models.

more, an optimized strategy to divide the computation tasks
among edges and the cloud can reduce the inference latency.
This is critical to scalable and efficient model deployment.

We attempt to analyze the inference latency of GenAI
models in the edge-cloud computing system by proposing
clear instructions on how the tasks should be divided among
edges and the cloud below. To estimate the inference latency,
edge and cloud servers can be modeled as M/M/c queues
since most servers adopt parallel computing using GPUs.
Each inference request can be modeled as a customer in the
queue. There are two important parameters to specify for
each inference job:

• FLOPs (F) governs the service rate of the server. A
higher FLOPs indicate a longer service time under the
same computation resources.

• Memory Usage (U) governs the number of parallel
jobs to be run at the server. A higher memory usage
will lead to fewer concurrent jobs.

At the server end, there are three important parameters:

• GPU Memory (G) controls how many jobs can be run
simultaneously.

• Computation Power (P) controls the service rate.
• Concurrent Connections (N) controls the arrival rate.

We can specify an M/M/c queue as:

c = G \ U, λ = N, µ = P \ F,
where λ is the arrival rate and µ is the service rate. For
example, LLaMA is a powerful task generation model. The
smallest model contains 7B parameters. It will consume
about 28GB of memory during inference. Inference of
LLaMA-7B will require around 13.1 GFLOPs. Suppose the
cloud server is equipped with 100 NVIDIA A100 GPUs,

and the edge server is equipped with 8 NVIDIA V100
GPUs. Each A100 GPU has 80GB of memory, and it can
process 312T FLOPs per second. Each V100 GPU has 32GB
memory, and it can process 120T FLOPs per second. The
cloud server has an arrival rate of 1,000, while the edge
server has an arrival rate of 20. Then, the cloud server can
be modeled as an M/M/285 queue with λ = 1000 and
µ = 23816, and the edge server can be modeled as an M/M/9
queue with λ = 20 and µ = 9160. As a result, the cloud
server has a higher server utilization to be able to handle
multiple concurrent jobs efficiently. On the other hand, the
edge servers have a lower arrival rate and work load so it is
efficient to process jobs sequentially.

Furthermore, the average service time W in the M/M/c
queue can be written as

W =
1

µ
+

C(c, λ
µ )

cµ− λ
,

where

C(c,
λ

µ
) =

1

1 + (1− λ
cµ )

µcc!
λc Σc−1

k=0
λk

µkk!

is referred to as Erlang’s C formula. The inference latency
of an edge server is bottlenecked by its service rate 1

µ .
Consequently, to minimize the overall inference latency,
tasks with lower FLOPs but higher memory usage, such as
preprocessing tasks, should be distributed to edges, and tasks
with higher FLOPs but lower memory usage, such as deep
neural networks, should be distributed to the cloud.

c) Multi-modality Content Generation and Interface.
Image captioning and text-to-image generation are two ex-
amples of multi-modality content generation and interface.
To implement multi-modality content generation, we need a
joint embedding space to connect two different modalities.
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CLIP [95] is a well-known multi-modality GenAI model.
It learns a joint multi-modal latent space for language and
vision through contrastive pre-training. We elaborate on how
such a framework can be efficiently deployed under the
edge-cloud computing paradigm. The multi-modality models
usually consist of three modules: 1) the input module, 2)
the generation model, and 3) the output module. The first
and third modules are more relevant to users, and they do
not require as many computational resources as the second
module. Thus, we can place the input/output modules in
edge servers or user devices to avoid transmitting generated
content. The main generation module is deployed in the
cloud server since it requires more computation resources.

VIII. FUTURE RESEARCH DIRECTIONS
It is important to think beyond the current GenAI service
framework in proposing future research directions. Some
promising topics are given in this section.

A. GENERIC VERSUS DOMAIN-SPECIFIC GENERATIVE
AI MODELS
As one of the most famous GenAI services nowadays,
ChatGPT provides a generic GenAI model at the expense
of a large model size and a high running cost. It may be
advantageous to trade breadth for depth of generated content
to lower the service cost and enhance the quality of services.
That is, instead of handling general questions, it is more
efficient to train GenAI models in a specific domain. In
addition to parameter efficiency in training domain-specific
models, domain-specific applications imply more homoge-
neous data and users. As a result, under the edge-cloud
computing paradigm, it is more likely to adopt caching [64]
to further improve efficiency. Examples of domain-specific
applications include healthcare, financial advice, etc., where
the accuracy of generated content is the top priority in some
application domains.

B. DECOMPOSITION OF LARGE LANGUAGE MODELS
ChatGPT is a large language model (LLM) built upon large
pre-trained transformers for generative tasks. It does not
leverage the tool of knowledge graphs (KGs), where knowl-
edge is stored in a graph-structured format. It is appealing
to decompose a large language model into smaller ones that
have an interface with domain-specific KGs. This decom-
position is expected to lower the complexity of the GenAI
system for cost reduction. The resulting AIGC services can
be more transparent and scalable. Furthermore, personaliza-
tion is easier to offer with the help of KGs [105]. That
is, generic KGs are stored in the cloud, while personalized
KGs are stored in local servers or user devices. In addition,
edge and cloud servers can collaborate in a way that the
reasoning tasks using LLMs are processed in the cloud
with more computational resources, while the edge servers
are responsible for natural language understanding (NLU)

and natural language generation (NLG) with constrained
resources.

C. QUALITY AIGC ASSURANCE
The quality assessment of the generated content, i.e., how
similar are they to the human-generated content, is an im-
portant future research topic. Such quality assurance modules
can be easily deployed at user devices as the filter of the
content generated in the cloud. The quality assurance module
can be trained collaboratively with the GenAI models in
the cloud to improve the performance capability [74]. We
may have different considerations against different AIGC
modalities. Two examples are given below.

a) Visual Content. One may use common sense to
evaluate the quality of generated visual content. For example,
a picture with a person riding a horse is more natural than
the opposite. Generated content that contradicts common
sense tends to look strange to users. Sensitive content,
copyright content, and trademarks should also be avoided
in the generated content [148, 25, 26]. Automatic detection
[43, 63] of strange and/or forbidden AIGC is still an open
problem. Furthermore, deepfake images can be a security
concern for some applications. A lightweight deep fake
detection solution [15] has been developed to address this
concern.

b) Textual Content. The quality of generated texts can
be evaluated at three levels: grammatical correctness, read-
ability, and factual correctness. Coherency and conciseness
are criteria for readability. They are more difficult to eval-
uate than grammatical errors. Mis/disinformation is already
common over the Internet. It will be even easier to generate
a large amount of fake news for malicious purposes with the
GenAI service.

D. GREEN GENERATIVE AI MODELS
To address the high carbon footprint yielded by huge deep
learning networks, green learning [66] has been proposed
as an alternative learning paradigm in recent years. A green
learning model is characterized by its low carbon footprint,
lightweight model, low computational complexity, and log-
ical transparency. In addition, unlike deep neural networks,
which require end-to-end optimization, green learning mod-
els are modularized and can be optimized separately. Such
a characteristic is particularly appealing under edge-cloud
collaboration as individual modules can be optimized at
the user devices with minimum memory requirement and
carbon footprint. Green GenAI models have been explored
in the last several years, e.g., NITES [70], TGHop [71],
Pager [6], GENHOP [69]. These models are very attractive
at the edges. They can also be implemented in cloud servers
to reduce carbon footprints and save electricity bills. More
efforts along this line are needed.

16 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2023.3320646

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



E. ATTACKS AND DEFENSE
Attacks and defenses are important in computer networks
and AI models. From the communication perspective, since
most of the computations are conducted in the cloud servers,
user data will be transmitted from user devices to edges,
then finally to clouds. In addition, the generated content
will be sent back to the users. In such a process, the data
will travel through many computers and networks, increasing
the risk of backdoor attacks on the models or the data.
It is important to design a defense mechanism [8] for the
generated content, such as data encryption [76], to prevent
any attack during transmission. From the model perspective,
the generated content can be manipulated to yield harmful
outcomes [108, 22]. Such an attack on the GenAI models
is called an adversarial attack. Thus, detecting adversarial
attacks and improving the robustness and trustworthiness of
GenAI models are essential.

F. HIERARCHICAL KNOWLEDGE SYSTEM
“Does GenAI have the intelligence to understand user re-
quests?” There has been a heated debate for a while about
how GenAI models understand user inputs and react to
them. However, like humans, there is no intelligent agents
can be built without a knowledge system. In the world of
computers, knowledge systems are usually represented as
knowledge graphs (KGs) [54], which store knowledge in a
graph format. To achieve artificial general intelligence (AGI),
a mechanism for the models to communicate with KGs
is required and demands further investigation [140, 125].
KGs are usually stored as databases and can interact with
GenAI models efficiently. In addition, the agent in the cloud
and the agent on the user devices may not need the same
degree of the knowledge system due to the different hardware
specifications. Cloud agents can serve as “teacher models”
and are equipped with more universal knowledge, while
edge agents usually only need to focus on a specific and
customized task so the knowledge system can be efficiently
distilled and learn from the teacher models [105, 128]. Such
a hierarchical knowledge system is important to achieve AGI,
especially under the edge-cloud computing paradigm.

G. COLLABORATION AMONG DIFFERENT AGENCIES
It is a unique characteristic of edge-cloud computing to
achieve user and data privacy and data collaboration in model
training at the same time. Such a characteristic is especially
crucial for several specific application domains that cherish
these two requirements. For example, one practical applica-
tion domain is for the public sector [2]. While under different
bureaus, the data are confidential and cannot be shared
among each other. However, it is very often that collaboration
between different bureaus is required for training a better
GenAI system in the public sector. Other examples are
GenAI for education [7] and GenAI for hospitals [61]. While
the data among different institutions should not be shared
with each other, common knowledge can be exchanged

through an edge-cloud collaboration paradigm. These are
the practical examples for the future application domains
for GenAI under edge-cloud computing.

H. BIAS AND FAIRNESS
Bias and fairness have been important topics in AI research
[103, 90] for a long time. They are even more important
for GenAI since the generated multimedia content might
be affected by the bias more easily than discriminative AI.
The bias factors include cultural differences, differences in
application domains, etc. They may come from differences in
large training corpora collected and stored in the cloud and
in distributed training data collected by user devices from
different population groups. For example, the chatbot might
be trained primarily on English data in the cloud, and, as
a result, it has a bias against low-resource languages with
poorer performance. Healthcare-oriented GenAI is particu-
larly concerned with issues of bias and fairness since the
corresponding professional services have high liability and
demand high accuracy. Through edge cloud collaboration
[139], it is possible to mitigate the bias and fairness issue
in GenAI since the information is shared among cloud and
edge servers, which allows a broader range of data sources.

IX. CONCLUSION
The training and deployment of GenAI services at scale
pose a new challenge to the design of modern edge-cloud
computational systems due to extremely large model sizes,
increased output dimensions, heavy power consumption, and
potential latency caused by a lack of computational and
network resources. Two illustrative GenAI services were
envisioned to show the importance of developing GenAI
systems at scale on the one hand and validate the challenging
claims on the other hand in this work. Afterward, an in-
depth discussion on various design considerations of GenAI
services over current communication systems were given. It
was concluded that a desired design has to balance compu-
tational resources between edges and cloud servers and con-
sider latency, data privacy, and personalization. Specifically,
federated and split learning, where small GenAI models are
trained at edges, while large GenAI models are trained at
the cloud by combining a large number of small models, are
expected to play important roles. As a result, most inference
tasks can be distributed at edges. Finally, we point out several
future research directions, such as domain-specific GenAI
models, decomposition of large language models, green
GenAI models, quality AIGC assurance, attacks and defense
in edge-cloud computing, hierarchical knowledge system,
collaboration between different, and bias and fairness of
GenAI.
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