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ABSTRACT Some of the most serious security threats facing computer networks involve malware. To
prevent malware-related damage, administrators must swiftly identify and remove the infected machines
that may reside in their networks. However, many malware families have domain generation algo-
rithms (DGAs) to avoid detection. A DGA is a technique in which the domain name is changed frequently
to hide the callback communication from the infected machine to the command-and-control server. In
this article, we propose an approach for estimating the randomness of domain names by superficially
analyzing their character strings. This approach is based on the following observations: human-generated
benign domain names tend to reflect the intent of their domain registrants, such as an organization,
product, or content. In contrast, dynamically generated malicious domain names consist of meaningless
character strings because conflicts with already registered domain names must be avoided; hence, there
are discernible differences in the strings of dynamically generated and human-generated domain names.
Notably, our approach does not require any prior knowledge about DGAs. Our evaluation indicates that
the proposed approach is capable of achieving recall and precision as high as 0.9960 and 0.9029, respec-
tively, when used with labeled datasets. Additionally, this approach has proven to be highly effective for
datasets collected via a campus network. Thus, these results suggest that malware-infected machines can
be swiftly identified and removed from networks using DNS queries for detected malicious domains as
triggers.

INDEX TERMS Domain generation algorithm, domain name system, malware, network security.

I. INTRODUCTION

SOME of the most serious security threats facing
computer networks involve malware. Most commonly,

cybercriminals control malware-infected machines through a
command-and-control server (C&C) and use these machines
to undertake malicious activities such as stealing confiden-
tial information, spreading malware to additional machines,
and phishing within an organization. According to a recent
McAfee report [1], over 300,000 new forms of malware and
their variants are created each day, and the global annual
cost of malware-related cybercrime may be as much as

$600 billion. Thus, the establishment of security mecha-
nisms to protect networks against malware encroachments is
imperative.
To prevent malware-related damage, administrators need

to swiftly identify and remove the infected machines that
may reside in their networks. However, many malware fam-
ilies have domain generation algorithms (DGAs) to avoid
detection [2]. A DGA is a technique in which the domain
name is changed frequently to hide the callback communi-
cation from the infected machine to the C&C. Specifically,
DGA malware dynamically generates and then attempts to
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resolve domain names. The domain name that returns the
correct response is considered the C&C. Since the lifetimes
of the domain names generated for callbacks are extremely
short, it is difficult for conventional security appliances that
monitor communication with known malicious domains to
detect callbacks caused by DGA malware.
Previously, deep packet inspection (DPI), which surveys

packet payloads, has been used to strengthen protections
against malware encroachments [3], [4]. However, in a
cybersecurity report [5], Cisco noted that over 50% of
Internet communications are encrypted and that approxi-
mately 70% of all malware programs encrypt their com-
munications. Thus, the share of future communications
amenable to DPI analysis will be reduced to a negligible
subset, in inverse proportion to the fraction of encrypted
communications.
In this article, we aim to identify dynamically generated

domains from massive domain name system (DNS) queries
to detect the callbacks of DGA malware. We focus on queried
domain names for the DNSs because name resolution is
an unencrypted interaction that always occurs prior to mal-
ware communication. Since the malicious domains generated
by DGA malware have extremely short lifetimes, the main
problem is the limitations of the available features for identi-
fying these domains. Therefore, we propose an approach for
estimating the randomness of domain names by superficially
analyzing their character strings. Note that natural language
processing techniques cannot be directly applied to the super-
ficial analysis of domain names because domain names are
short, unstructured, and unsegmented character strings. This
approach is based on the following observations: human-
generated benign domain names tend to reflect the intent of
their domain registrants, such as an organization, product, or
content. In contrast, dynamically generated malicious domain
names consist of meaningless character strings because con-
flicts with already registered domain names must be avoided;
hence, there are discernible differences in the strings of
dynamically generated and human-generated domain names.
Actually, the major DGA malware such as Emotet, Mirai,
and Ramnit that caused a pandemic crisis has this charac-
teristic in domain names [6], [7]. Notably, some previous
studies have used a similar approach to discern distinctions
between benign and malicious domains by considering the
differences in character strings [8]. These studies employ
machine learning (ML) or deep learning (DL) algorithms
with training datasets to examine the nature of domain
names.
Typical ML- and DL-based methods assume that the

training dataset will exhibit the same characteristics as
the actual dataset. However, substantial differences between
training and actual datasets often arise for a variety of
reasons, including the impossibility of preparing exhaus-
tive datasets covering all events, the presence of strong
biases in datasets observed as functions of time or space,
and temporal variations in the trends exhibited by observed
datasets. This phenomenon of divergence between datasets,

which is known as concept drift [9], may prevent ML-
and DL-based detection methods from achieving their full
theoretical performance. Moreover, the task of aggregating
correctly labeled datasets is unwieldy and cumbersome in
practice [10]. In contrast, our approach does not require prior
dataset training to distinguish between benign and malicious
domains and thus prevents the possible impact of concept
drift.
Our evaluation indicates that the proposed approach is

capable of achieving recall and precisions as high as 0.9960
and 0.9029, respectively, when used with labeled datasets.
Additionally, this approach has proven to be highly effective
for datasets collected via campus networks. Taken together,
these results suggest that malware-infected machines can
be swiftly identified and removed from networks using
DNS queries for detected malicious domains as triggers.
Our approach contributes to dramatically improving network
security by providing a technique to address various malware
encroachment. The motivation, novelty, and contribution of
this study can be summarized as follows.

• Motivation: We aim to identify dynamically generated
domains from massive DNS queries to detect the call-
backs of DGA malware. However, ML- and DL-based
detection methods have been prevented from exhibiting
their full potential performance levels because of the
following problems: the cumbersome task of assign-
ing labels to datasets and the phenomenon of concept
drift, i.e., the discrepancies between training and actual
datasets.

• Novelty: We propose a superficial analysis approach for
identifying malicious domain names generated by DGA
malware. A key point to emphasize is that our approach
requires no prior information whatsoever regarding
DGAs. Instead, it distinguishes between benign and
malicious domains by determining whether or not a
character string is meaningful. This dramatically miti-
gates the dataset-related problems that degrade detection
performance levels.

• Contribution: In the experiments conducted as part
of this study, our approach achieved recall and
precision as high as 0.9960 and 0.9029 when used
with labeled datasets. We also demonstrated its
effectiveness in practical network operation. Taken
together, these results suggest that malware-infected
machines can be swiftly identified and removed from
networks.

The remainder of this article is organized as follows.
In Section II, we review the related studies and discuss
their limitations. In Section III, to identify DGA-generated
malicious domains, we propose an approach for estimating
the randomness of domain names by superficially analyz-
ing their character strings. Then, Section IV describes the
experiments conducted to analyze the effectiveness of our
proposed approach for detecting the callbacks of DGA mal-
ware. Finally, we summarize our conclusions and future work
in Section V.
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FIGURE 1. Callback communication between DGA malware and C&C.

II. BACKGROUND
Computer networks are vulnerable to malware hazards due
to their interconnectivity and reachability. Thus, the research
community has expressed strong ongoing interest to develop
adequate defense solutions. We begin this section by describ-
ing the details of DGA malware; then, we introduce studies
on detecting various malware and note their limitations.

A. DGA MALWARE
Malware programs such as Conficker and Kraken, which
have caused considerable worldwide damage, implement
DGAs as one aspect of their capabilities. Moreover,
researchers have found improper codes embedded in web-
sites and Web-based advertisements that are designed to
promote the spread of such malware programs over broad
target areas [11], [12].
Figure 1 schematically depicts callbacks implemented by

DGA malware. In this figure, communications labeled Q are
requests for name resolution from a DGA malware to a recur-
sive DNS server (RDNS), while communications labeled R
are responses to these requests. Here, we assume that DGA-
generated domain names, being the capability of a C&C,
are preregistered in an authoritative DNS server (ADNS).
First, the malware dynamically generates multiple domain
names, such as d8wgr9gpa7.com, fpeqbiwxfx.edu,
and gxwx123nrs.net, based on its DGA and directs DNS
queries regarding these domain names to the RDNS in the
network to which the malware itself belongs. Upon receiv-
ing a query, the RDNS returns the address assigned to the
domain name if it is registered in the ADNSs or a nonexist-
ing domain (NXDOMAIN) response if it is not. Finally, any
domain, e.g., gxwx123nrs.net in this figure, that corre-
sponds to an affirmative DNS response is assumed to be the

C&C, and the malware attempts callbacks for the address
assigned to that domain.
The objective of the DGA is to establish highly avail-

able communication channels between the malware and the
C&C. One result of this process is that communication bar-
riers based on blacklists are easily avoided by changing
C&C domains. Furthermore, communications from within
the network to the outside span a wide range of destina-
tion addresses and are thus difficult to detect such that these
communications are not restricted by firewalls. A key point
note is that by using identical DGAs, the malware and the
C&C do not need to exchange any information whatsoever
to change the domain name.

B. RELATED WORK
Studies that focus on producing more sophisticated
blacklists are frequently conducted and constitute the
core of network threat defense strategies. For example,
Soldo et al. [13] proposed a method for significantly
enhancing the performance of blacklists based on previous
attack logs provided by multiple contributors. Meanwhile,
Freudiger et al. [14] improved the confidentiality of this
method by sharing attack logs through peer-to-peer commu-
nications. Špaček et al. [15], [16] developed a DNS firewall
system that blocks communications from a protected network
to malicious domains on an outside network. This system
uses DNS response policy zone (RPZ) technology [17] for
advanced domain blacklisting. Unfortunately, malware fam-
ilies with DGAs are capable of avoiding blacklist-based
detection by frequently changing the domain of their C&C.
In another study, Gu et al. [18] implemented BotHunter,

a DPI-based passive network monitoring system that mod-
els typical malware behavior and interprets communications
exhibiting strong associations with such behavior as evidence
of malware contamination. Other reports have discussed
efforts to improve the performance of DPI-based detec-
tion [19], [20]. However, the fraction of all communications
amenable to DPI analysis has dwindled to negligible levels
in inverse proportion to the role played by encryption on the
Internet. This scenario has motivated a focus on the resolu-
tion of domain names, which are not affected by encryption,
as a source of information for detecting malware.
Bilge et al. [21] developed a domain reputation system

named Exposure that passively measures features from DNS
traffic. Examples of such features include the number of
addresses assigned to a domain, the lifetime of a domain,
and the length of a domain name. This system uses a super-
vised learning algorithm, and its accuracy generally depends
on the quantity and quality of training datasets. However,
the malicious domains of DGA malware commonly return
NXDOMAIN responses and have extremely short lifetimes,
which make it difficult to secure a sufficiently robust training
dataset.
Rahbarinia et al. [22] developed a system called Segugio

that finds unknown malicious domains based on their
co-occurrence relation with known malicious domains in

VOLUME 1, 2020 1839



SATOH et al.: SUPERFICIAL ANALYSIS APPROACH FOR IDENTIFYING MALICIOUS DOMAIN NAMES GENERATED BY DGA MALWARE

DNS queries. Segugio is based on the following insights:
(1) infected machines in the same malware family tend to
communicate with the same malicious domain group and
(2) uninfected machines have no reason to communicate with
malicious domains. However, for DGA malware, the tempo-
rary malicious domains used for callbacks have extremely
short lifetimes, and the domains that co-occur with tempo-
rary malicious domains may not actually exist. Consequently,
the system is not sufficient to detect the callbacks of DGA
malware.
Berger et al. [23] developed a system called DNSMap that

discovers potentially compromised machines based on DNS
traffic. DNSMap identifies suspicious agile DNS mappings,
i.e., mappings characterized by rapidly changing domain
names and/or addresses, which are often used by the C&C.
Meanwhile, Wang et al. [24] deployed a system called DBod,
which classifies and detects DGA malware based on the
analytical results of DNS query behavior. Specifically, since
machines contaminated by the same malware family tend
to generate a large number of identical DNS queries by
the same DGA, their queries also tend to exhibit a sim-
ilar domain scope and distribution. Thus, DBod exploits
these similarities for classification and detection. However,
since the two systems require the observation of an enor-
mous amount of extensive DNS traffic, their operation is
limited to large-scale networks such as Internet service
providers (ISPs).
Plohmann et al. [25] revealed the DGA landscape by

reverse-engineering 43 malware families, and Zago et al. [26]
provided a mature dataset with analysis results for over 30
million domains generated by 50 malware families. Based on
those results, other previous studies have attempted to dis-
tinguish between benign and malicious domains using only
their character strings in manners similar to our approach.
Truong and Cheng [27] proposed a technique that learns
and predicts character patterns using bigram models with
supervised learning algorithms, and Anderson et al. [28]
extended this technique using character-level models with
long short-term memory (LSTM) networks. Qiao et al. [29]
combined LSTM networks with attention mechanisms to give
proper weight values to the characters in domain names.
Li et al. [30] implemented a framework for classification,
detection, and prediction by combining multiple ML and
DL algorithms. In addition, Vinayakumar et al. [8] com-
pared the performance of various ML and DL algorithms
in detecting DGA-generated malicious domains. These tech-
niques are based on the existence of discernible bias in the
rules for generating malicious domain names and thus need
to learn the bias in advance by analyzing both benign and
malicious datasets.
Such ML- and DL-based detection methods have two dis-

advantages. First, the task of aggregating labeled datasets
is unwieldy and cumbersome in practice [10]. Based on
an analysis of the latest studies, Sivaguru et al. [31]
raised doubts about the practical utility of DGA classifiers,
which use whitelists and blacklists as datasets. Their

TABLE 1. Examples of domain names generated by DGA malware.

study concluded that because whitelisted domains are not
sufficiently representative of the benign domains observed
in actual networks, datasets in which labels are assigned by
analyses, such as in the work of Yu et al. [32], yield results
that are superior to those obtained using whitelists. However,
because benign domains are specific to particular networks,
the task of labeling them requires a deep audit and analysis
of communications in those networks, which is an extremely
time-consuming process in itself. A second drawback is
the phenomenon of concept drift [9] between datasets, i.e.,
discrepancies between training datasets and actual target
datasets. Typical ML- and DL-based methods assume that the
training datasets exhibit the same characteristics as the actual
datasets. However, substantial differences between training
and actual datasets arise in many cases for a variety of
reasons, including the impossibility of preparing exhaustive
datasets covering all events, the presence of strong biases in
datasets observed as functions of time or space, and tem-
poral variation in the trends exhibited by observed datasets.
These differences may prevent ML- and DL-based detection
methods from achieving their full theoretical performance
levels. Learning under concept drift is one field of grow-
ing interest [33], [34]. In particular, concept drift frequently
arises in security-related datasets due to changes in malware
activities. For example, Pendlebury et al. [35] considered
the classification of Android malware and reported that the
expected accuracy levels were difficult to attain in real-world
environments.
Several studies have focused specifically on collecting

DNS datasets that alleviate the bias caused by various factors.
For example, Kountouras et al. [36] implemented a system
called Thales, that creates massive amounts of malicious
domain names by distilling multiple freely available sources.
Pearce et al. [37] developed a scalable, accurate, and ethical
system, called Iris, that measures global name resolution and
uses active manipulation to track the trends of domain names
that evolve over time. Unfortunately, these systems can-
not capture DGA-generated domains, which have extremely
short lifetimes; hence, they require further improvements to
handle DGAs.

III. PROPOSAL
In this article, we aim to identify malware-generated mali-
cious domains from massive DNS queries. Table 1 shows
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some examples of domain names generated by DGA mal-
ware. One challenge is that malicious domains in DGA
malware survive only for extremely brief periods of time,
which effectively restricts the set of features available for
domain classification. The extensive observation of DNS
traffic alleviates the restrictions on available features, but this
effect clearly depends on the observed network scale. We
address these problems by proposing an approach for iden-
tifying dynamically generated domains based on superficial
analysis of those character strings. Note that natural language
processing techniques cannot be directly applied to the super-
ficial analysis of domain names because domain names are
short, unstructured, and unsegmented character strings. This
approach is based on the following observations: human-
generated benign domain names tend to reflect the intent of
their domain registrants, such as an organization, product, or
content. In contrast, dynamically generated malicious domain
names consist of meaningless character strings because con-
flicts with already registered domain names must be avoided;
hence, there are discernible differences in the strings of
dynamically generated and human-generated domain names.
Actually, the major DGA malware such as Emotet, Mirai, and
Ramnit that caused a pandemic crisis has this characteristic
in domain names [6], [7].
Notably, the idea of using randomization to facilitate mal-

ware detection is not novel. Indeed, several studies based on
this strategy have been reported [27], [28], [29], [30], [38],
[39]. For example, Lin and Lee [38] proposed a method
for decrypting malware communications for tracebacks to
cybercriminals, while Wahab et al. [39] proposed a method
for detecting compromised virtual machines by monitoring
behavior at the hypervisor level. Other studies [27], [28],
[29], [30] have attempted to apply ML or DL algorithms to
distinguish between benign and malicious domains by noting
the differences in character strings in the same manner as the
approach proposed here. However, the cumbersome task of
assigning labels to datasets and the discrepancies that arise
between training and actual datasets have thus far prevented
ML- and DL-based detection methods from exhibiting their
full potential performance levels. A key point to emphasize
is that our approach requires no prior information what-
soever regarding DGAs. Instead, it distinguishes between
benign and malicious domains by determining whether or
not a character string is meaningful. This approach mitigates
dataset-related problems that degrade detection performance
levels.
Figure 2 shows an overview of our proposed approach,

which has four steps: (1) noise reduction, (2) subdomain
selection, (3) dictionary-based estimation, and (4) Web-
search-based estimation. In the following sections, we
describe each of these steps in detail.
This proposed approach was initially introduced in our

previous work [40]. In this article, we considerably extend
the previous study by further enhancing the sophistication
of each function, evaluating the approach from various per-
spectives through experiments, extensively discussing the

FIGURE 2. Overview of the proposed approach for identifying malicious domain
names based on superficial analysis of their character strings.

experimental results, and comparing our approach with
several published methods. Overall, this article presents a
substantial evidence to demonstrate the effectiveness of our
approach.

A. NOISE REDUCTION
A query log for the input of our approach is a record of
DNS queries for name resolution to RDNSs from machines
on a network. Figure 3 shows an example of a query log
for an RDNS with address 192.168.0.1, where lines labeled
Q are requests for name resolution while lines labeled R
are responses to these requests. As noted in Section II-A,
a change in a callback destination by DGA malware is
commonly accompanied by NXDOMAIN messages as the
result of forward lookup. Thus, by restricting attention to
specific DNS queries that meet both request of forward
lookup and response of NXDOMAIN message, we can
substantially reduce the number of domains requiring iden-
tification as either benign or malicious. Specifically, the
underlined domain names, i.e., www.kyutech.ac.jp and
mail.comsoc.org, are selected in this figure.
The first step is to identify benign domains via com-

parison with whitelists. The domains included in whitelists
are those used by specific applications or services that
cause massive NXDOMAIN messages, such as endpoint
antivirus software and DNS-based lists (DNSBL). For
example, as the name implies, DNSBL is a domain
database that queries entries through the DNS proto-
col [41]. To investigate the domains kyutech.ac.jp and
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FIGURE 3. Example of a query log for an RDNS.

comsoc.org via Spamhaus, which is one of DNSBL
services, a machine would attempt name resolution for
the domain kyutech.ac.jp.sbl.spamhaus.org and
comsoc.org.sbl.spamhaus.org. Since the domain
names contain specific character strings in their high lev-
els, they can be identified by a simple comparison. Next,
domain names that violate DNS specifications are deemed
to be the result of misconfiguration and are discarded [42].
The remaining domain names are considered possible DGA-
generated name and are passed to subsequent functional units
for further analysis.

B. SUBDOMAIN SELECTION
To efficiently identify domains, this step selects the subdo-
main di with the longest string from domain d, where i is an
index of the subdomain level. For example, when domain d
is xjjjvqpoh.com.ai, the largest string is xjjjvqpoh
of sub-domain d3. This step leverages the observations that
DGAs generate relatively long domain names because con-
flicts with already registered domain names must be avoided
and short domain names are more likely to be occupied by
legitimate organizations.

C. DICTIONARY-BASED ESTIMATION
This step initially splits the subdomain di string into a word
group w using dictionaries. The randomness of subdomain
di is estimated from the features of word group w. If the
result indicates that subdomain di is a meaningful string of
characters, then domain d, which contains this subdomain,
is determined to be a human-generated benign domain.
Six dictionaries are used for this step: one is an English

dictionary and a corpus collected via Web crawling; the
other five dictionaries are created by adding French, German,
Russian, Spanish, and Japanese dictionaries. Considering the
domain notation, we replace nonalphabetic representations
with alphabetic representations in the dictionaries for these
languages.

The subdomain di string is split into a word set w based
on two conditions: (1) the number of words is the min-
imum, whereas the length of words is the maximum and
(2) preference is given to words that are in the dictionary by
differentiating with extreme selectivity using the following
equation:

F(di) = arg max
w∈W(di)

1

n

n∏

j=1

P(
wj

)

P(
wj

) =
{

1
(
wj ∈ D

)

1/|D||wj| (
wj �∈ D

) (1)

where W(di) is the set of all candidate segmentations
of subdomain di, w is the candidate group of words
w1, . . . ,wj, . . . ,wn, |wj| is the length of word wj, and |D| is
the total number of words in dictionary D. Furthermore,
P(wj) is the selectivity of word wj, which is based on
whether word wj is in dictionary D. The above first and
second conditions correspond mainly to the 1/n and P(wj)
parts of this equation. This step selects the best result from
the segmentations produced by the six dictionaries. If the
result shows that n = 1, i.e., if sub-domain di is included in
dictionary D, then domain d is determined to be benign.
Since a human-generated domain string is characterized by

a small number of long words, we estimate the randomness
of subdomain di as follows:

yα =
n∑

k=1

ukLk(w) (2)

where uk is a weight on function Lk(w), which rearranges
words in descending order based on length and then gives
the length of the k-th word in set w. For example, when word
group w consists of kyutech, local, domain, and name,
L2(w) and L4(w) output 6 and 4, which are the character
lengths of domain and name. Note that the words that
are not in the dictionary are assigned a length of 0. If the
condition yα > thα is satisfied, then domain d is determined
to be benign.
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TABLE 2. Differences between Web search results for benign and malicious
subdomain strings.

D. WEB-SEARCH-BASED ESTIMATION
To compensate for dictionary deficiencies, this step esti-
mates the randomness of a subdomain di by referring to
the Web search result. Domain names that use languages
without dictionaries, proper nouns, acronyms, initialisms, or
Punycodes [43], for instance, cannot be identified as benign
or malicious by the dictionary-based lexical analysis.
This step queries the Web search engine based on two

conditions: (1) an exact match to the subdomain di string
and (2) candidates for the thβ -th and subsequent Web pages
to reduce the difference between the number of displayed
hits and the number of actual Web pages. An example of
such a query is shown below:

str = “di”&num = thβ (3)

Here, str indicates the character string di to be searched.
The double quotes are an operator that returns Web pages
that contain an exact match to the character string di, while
num is an operator that returns the candidates for the thβ -th
and subsequent Web pages. The ampersand symbol refers
to the logical product of two operations. Note that char-
acter string di must be decoded beforehand when it is
represented by Punycode, such as xn-1lq68wkwbj6u and
xn-sjqw6xkwbgyd9ay88l.
Table 2 shows the differences between the Web search

results for the benign and malicious subdomain strings.
As is evident from the table, this metric reflects the
benign and malicious nature of each domain. If the result-
ing number of Web pages associated with the string
exceeds the threshold, yβ > thβ , then domain d is deter-
mined to be a human-generated benign domain; otherwise,
domain d is considered a dynamically generated malicious
domain.
This step dramatically mitigates the requirement for

dictionaries in the previous step, dictionary-based estima-
tion. This is because domain names in minor languages
are identified by referring to the Web search result. For
example, in a Japanese organization, our approach will
ensure sufficient performance levels by only preparing
Japanese and English dictionaries in the previous step.
Meanwhile, this step is an extremely time-consuming pro-
cess because of its reliance on the Web search results.

TABLE 3. Specifications of the machine used for implementation.

Our strategy for addressing this issue is to substantially
reduce the number of input domains for this last step
by gradually identifying benign and malicious domains
via the previous three steps, thereby yielding a major
improvement in computational cost without a degradation in
accuracy.

IV. EVALUATION
This section presents evidence to support the effectiveness
of the proposed approach in detecting callbacks caused by
DGA malware. We verify the identification accuracy of this
approach from various perspectives and then extensively
discuss its effectiveness and limitations in practical oper-
ation. Finally, we clarify the functional differences between
our approach and other published methods via qualitative
comparisons.

A. EXPERIMENTAL SETUP FOR LABELED DATASETS
For comparison with the proposed approach, we imple-
mented three techniques for identifying malicious domains
from only the domain name string based on [27], [28],
and [29]. The specifications of the machine used for imple-
mentation are given in Table 3. The first technique uses
bigram modeling with ML algorithms, whereas the second
technique uses character-level domain modeling with DL
algorithms. The third technique gives proper weight values
to the character-level modeling by using attention mech-
anisms. Unlike our approach, these three implementations
require training processes with datasets for identification.
Table 4 shows the datasets of benign and malicious

domains used in our experiments. The malicious domains
were generated by 19 types of DGAs, such as ChinAd,
Conficker, Locky, NewGOZ, Nymaim, and Ramnit, whose
algorithms were inferred through binary analysis [44]. The
benign domains were the top 1,000,000 domains provided by
Alexa [45]. For the training datasets of the three implemen-
tations, we randomly extracted 5% of the benign domains
and 15% of the malicious domains. The remaining domains
were used as the testing datasets. In the evaluation process,
these benign and malicious datasets were used instead of
DNS queries measured from operating networks because a
strict comparison between our approach and the three other
implementations would be difficult without correctly labeled
domains. Furthermore, we disabled the first step, noise reduc-
tion, in our approach because these datasets did not have any
information about DNS response.
In the proposed approach, we set the number of processes

for parallelization to 10 because the processing for each input
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TABLE 4. Numbers of benign and malicious domains in the datasets.

TABLE 5. Experimental results.

domain is completely independent. Additionally, we used
words registered in the corpora [46], [47] and Aspell [48]
as the dictionaries for the third step. Their total number of
words was 8,000,000. The other parameters were set to the
following values based on our experience: u1 = 2, u2 = 1,
u3 = 0.25, thα = 15, and thβ = 50. A large value was used
for yβ based on the Web search results of yahoo.com and
bing.com. The parameter optimization will be addressed
in future work.

B. IDENTIFICATION ACCURACY FOR LABELED
DATASETS
Two common metrics are employed to characterize the ability
to identify benign and malicious domains: recall is the ratio
of the number of correctly predicted malicious domains to
the total number of actual malicious domains, and precision
is the ratio of the number of correctly predicted malicious
domains to the total number of predicted malicious domains.
The experimental results are presented in Table 5. These

results indicate that our approach provides the highest level
of performance, with recall and precision of 0.9960 and
0.9029, respectively. The other three implementations have
lower recall and precision levels for the following reasons.
First, the size of the training datasets was insufficient, and
the features were biased. Second, identifying benign and
malicious domains from character patterns alone has lim-
itations. Our approach could conceivably eliminate these
factors, which lower the accuracy levels, because it does
not require prior knowledge of the training datasets and
instead identifies domain names by superficially analyzing
their character strings.
The numbers of misidentified domains are presented in

Table 6. Our approach had a notably high identification abil-
ity for the 14 malware types, whereas Alexa, Conficker,
Nymaim, Proslikefan, Pykspa, and Vawtrak had notable
numbers of misidentifications. Specifically, the numbers of
misidentified domains were 5189 and 102 for Alexa and
Conficker, respectively.
We then checked the domain names generated by

Conficker, which had random strings with lengths of 4
to 12 characters, and found that only domain names with
5 or fewer characters were misidentified. Specifically, the

domains were misidentified because the approach could not
distinguish between a benign domain containing an ini-
tialism or acronym and a dynamically generated malicious
domain when the length of the domain name was short. In
Nymaim, Proslikefan, Pykspa, and Vawtrak, the misiden-
tification of domains resulted from randomly generated
strings with approximately 6 characters that were meaning-
ful words. Examples of such domains are wouled.biz,
olleman.com, and docket.com.

Four types of misidentification occurred in Alexa:
(a) domain names containing initialisms or acronyms,
(b) domain names transcribed from nonalphabetic charac-
ters to alphabetic characters, (c) domain names with multiple
numeric characters, and (d) domain names with random char-
acters. The cause of the misidentification for the domains in
(a) was the same as that for the Conficker dataset, whereas
the domains in (b) and (c) were misidentified because
such names were not included in the dictionaries. The
domains in (d), such as 3lqjnuhra3xf585jgtkhk71e
xuhu6yrkna.com and ctxxgxdnhctxxgxdnh.xyz,
were incorrectly identified as malicious by our approach,
which focused solely on the character string of the domain
name.
The evaluation results confirmed that the proposed

approach achieves the highest accuracy despite the lack of
advanced training: the recall and precision of our method
reached 0.9960 and 0.9029, respectively.

C. EXPERIMENTAL SETUP FOR DNS QUERIES
COLLECTED VIA CAMPUS NETWORKS
Figure 4 shows the layout of our campus network, which
has two class B address blocks. This network consists of one
core network, 135 access networks managed by 30 depart-
ments, and three wireless networks. We have managed only
the core and wireless networks, including the connection
points to the access networks. The total number of media
access control (MAC) addresses observed at their connec-
tion points was approximately 9500. A total of 470 access
points are placed in the three wireless networks that geo-
graphically cover most of our campus. The machines of more
than 6000 employees and students, in addition to numerous
visitors, routinely connect to the three wireless networks.
The total number of machines connected to the three wire-
less networks was 6500 at a given point in time: 43% of
them were iOS, 28% were Windows, 22% were Android,
and 7% were macOS. As expected, there are no details of
the 135 access networks outside our management areas. The
dataset used for the experiments comprises DNS queries
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TABLE 6. Numbers of misidentified domains in the datasets.

FIGURE 4. Layout of our campus network.

TABLE 7. Representative domain names included in whitelists.

observed on three RDNSs in the campus network during the
one-month period beginning on December 1, 2019, which
total approximately 65 GB in size. Among them, 3,304,505
queries satisfied both request of forward lookup and response
of NXDOMAIN message.
For the parameters in our approach, we used values

equivalent to those used for the evaluations discussed in
Section IV-A. Meanwhile, we enabled the first step, noise
reduction. This step has whitelists in which the total number
of domains is 537, and some representative domains found
in the whitelists are listed in Table 7. Because our campus
network incorporates several operational mail servers, each
of which has a spam filtering tool, domains accessed in the

process of identifying spam are whitelisted. Other whitelisted
domains include those of our institution itself and domains
arising in inquiries made by security products or antivirus
software. Notably, such domains result in a massive number
of NXDOMAIN messages. In addition, we have registered
the top 500 domains provided by Alexa with the whitelists to
shorten the calculation time by excluding frequently accessed
domains.

D. IDENTIFICATION ACCURACY FOR DNS QUERIES
COLLECTED VIA CAMPUS NETWORKS
Table 8 shows the relationships among the number of input
queries, number of unique domains, and calculation time for
each step of our approach. The calculation time was 9.338
seconds for noise reduction, 9.338 seconds for subdomain
selection, 20.665 seconds for dictionary-based estimation,
and 12228.100 seconds for Web-search-based estimation.
Thus, our approach was able to completely analyze a dataset
with a total of 3,304,505 queries in 12267.521 seconds.
Notably, the last step is an extremely time-consuming process
because of its reliance on the results of Web searches. Our
strategy for addressing this issue is to substantially reduce
the number of input domains for the last step by focus-
ing only on DNS queries that meet both request of forward
lookup and response of NXDOMAIN message by gradually
identifying benign and malicious domains via the previous
three steps and by caching the search results for the same
strings. The results show a major improvement in compu-
tational cost, thereby demonstrating the ability to handle
massive DNS queries.
In this evaluation, 46954 queries were determined

to be malicious by our approach, and these queries
were mainly categorized into four types in terms of
their causes. The first group comprised 6520 queries
for 5006 unique domains that were dynamically gener-
ated by malware-infected machines. Examples of these
queried domains are umh7hqoxhrv3-0dmhzfk4.com,
e6hmegdcjm-me4rtxlpqd-xh.com, and wmsbujwmn
lxcin54wn9jxw5jewq.com. The reasons for consid-
ering these domains as truly malicious are as follows:
the domains consisting of meaningless character strings
were queried by specific machines, and these queries were
observed during a long time period without their causative
communications.
The second group comprised 22714 queries with 6143

unique domains caused by Chrome or Chromium browsers.
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TABLE 8. Relationship between the number of input queries, number of unique domains, and calculation time for each step in our approach.

TABLE 9. Qualitative comparison of our work with other well-known detection methods.

After startup, this type of Web browser sends a few DNS
queries for three random-looking domains to check whether
NXDOMAIN responses are hijacked in a particular network.
In most cases, these queries are considered benign by the
first step of noise reduction because their domains have the
institutional suffix, e.g., tyznhcicwa.kyutech.ac.jp,
or no suffix at all, e.g., tyznhcicwa. However, our
performance levels are degraded when the domain search list
is not overwritten via the dynamic host configuration proto-
col (DHCP) [49], specifically, when a machine connects to
our campus network through virtual private network (VPN)
tunneling and then a Chrome browser runs on the machine.
In that scenario, if the domain search list of the machine set
to example.com is not updated, the machine issues queries
for domain names such as tyznhcicwa.example.com,
jxutrrw.example.com, and nlcngpby.example.
com. As a result, our approach falsely detects such
queries as malicious because of the lack of a superficial
difference.
The third group comprised 14221 queries for 218 unique

domains associated with mail services. A mail server with
an installed spam filtering tool, such as SpamAssassin,
verifies the legitimacy of the sender through forward and
reverse lookup. However, in some cases, NXDOMAIN
responses are returned due to their name resolution being
undefined at ADNSs. Examples of these queried domains
are net6-ip35.linkbg.com, 188x235x148x209.
static-business.saratov.ertelecom.ru, and
static-ip-227-53-148-203.rev.dyxnet.com.
Note that the domains with an embedded IP address
cannot be accurately identified from dictionary-based and
Web-search-based analytical results because the embedded
format must be interpreted.
The last group comprised 3499 queries with 21 unique

domains due to various services. As a concrete example,
some queries for domains such as tracking services, cloud
services, and video distribution services, were erroneously

detected. These causes are considered to be service down or
misconfiguration.
The above three types of misidentification problems

may be avoided by improving the noise reduction step.
Specifically, the second and third groups were associated
with unique query patterns and specific query sources, and
some domain names in the last group had fixed character
strings. We confirmed that over 95% of the errors were
excluded by adding a filtering process based on those char-
acteristics. Consequently, these results suggest the proposed
approach achieves a high level of effectiveness for datasets
collected via campus networks.

E. QUALITATIVE COMPARISON
Table 9 presents a qualitative comparison of the proposed
approach and the ten previously published methods, which
are representative examples of blacklist-based detection [13],
DPI-based detection [18], reputation-based detection [21],
behavior-based detection [22], [23], [24], ML-based detec-
tion [27], and DL-based detection [28], [29], [30]. In this
comparison, we focus on the following five items: (1) DGA
malware detection performance, (2) the ability to detect
malware in real time, (3) robustness to encryption, (4) depen-
dence on network scale, and (5) the need for training in
advance using datasets or other prior knowledge. These items
are chosen to compare detection performance and operational
limitations, which are the practical issues of each method
discussed in Section II-B, IV-B, and IV-D. Items (1) and (2)
correspond to detection performance, items (3) and (4) to
operational limitations, and item (5) to both of them. The
evaluations conducted thus far indicate that our approach can
detect the callbacks of DGA malware with high accuracy
despite the lack of advance training and that the method is
effective in actual operating networks. Meanwhile, ML- and
DL-based methods [27], [28], [29], [30] are unable to exhibit
high performance levels when the training datasets are insuf-
ficient in size and their features are biased. The performance
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of our approach is not affected by the encryption commonly
used to protect communications on the Internet because
the method considers only DNS queries. Moreover, in con-
trast to the DNSMap of Berger et al. [23] and DBod of
Wang et al. [24], our approach does not require observations
from large-scale networks, such as ISPs. One drawback is
the reliance on the results of Web searches, which makes
the process of distinguishing between benign and malicious
domains time consuming. Our strategy for addressing this
issue is to substantially reduce the number of input domains
for the fourth step, Web-search-based estimation, by grad-
ually identifying benign and malicious domains via the
previous three steps, thereby yielding a major improvement
in computational cost without a degradation in accuracy.
The importance of encrypted communications in networks

has spurred efforts to standardize protocols such as DNS over
TLS (DoT) [50], which encapsulates DNS queries and their
responses inside TLS communications to prevent eavesdrop-
ping and tampering. However, the only information required
to distinguish between benign and malicious domains by
our approach is the character strings of the domain names.
Consequently, our approach is capable of operating solely
referring to the system logs recorded by RDNSs and is thus
entirely unaffected by DoT encryption.
In ML- and DL-based methods, the most important pro-

cess for maintaining high performance levels is to ensure
the training models are continuously updated while pay-
ing appropriate attention to concept drift [51]. Concept drift
causes changes in the statistical properties predicted by a
training model over time and leads to performance degra-
dation. However, the task of aggregating strictly labeled
datasets to update the model is unwieldy and cumbersome
in practice. Our approach does not require prior dataset
training, which means it is not susceptible to concept drift.
Meanwhile, the approach includes a somewhat volatile met-
ric because it relies on a Web search for each domain name
in the fourth step, Web-search-based estimation. Despite this
limitation, since DGA-generated domain names, which have
extremely short lifetimes, are subject to search for only a
short time period, the approach is able to detect malicious
domains without being affected by search engine trends.
Over the past decade, a considerable number of arti-

cle have been devoted to the study of adversarial machine
learning [52], which exploits the vulnerability of ML-
or DL-based methods to avoid detection. For example,
Peck et al. [53] implemented CharBot, a simplistic character-
based DGA that generates malicious domain names by
randomly modifying two characters in well-known benign
domain names, and Yun et al. [54] implemented Khaos, a
novel DGA with high antidetection ability based on neu-
ral language models and Wasserstein generative adversarial
networks. Unfortunately, the typical methods, which rely
only on the learning results of domain names to make deci-
sions, are inherently vulnerable to adversarial attacks by such
DGAs; in contrast, our approach is highly resistant to such
attacks because there is no learning process. Notably, our

approach is not secure against all types of DGA malware.
For example, in [55], Sood and Zeadally referred to Rovnix,
which generates malicious domain names by concatenating
specific words in a list. Such malicious domains have similar
strings to benign domains, and, unfortunately, our approach
cannot detect them. Examples of Rovnix-generated domain
names in the literature, including accelerateactress.
in.net and accelerateaccountant.in.net, are
all identified as benign by the third step, dictionary-based
estimation. Our approach significantly reduces the threat of
major DGAs while ineffective against wordlist-based DGAs,
leaving room for improvement in this respect. To solve this
problem, as noted in the work of Pereira et al. [56] and
Highnam et al. [57], it is necessary to consider the relations
among words in the strings of domain names. However, these
studies are now in the stage of embarking on ML- and DL-
based detection with training datasets, and they still have not
reached the stage of eliminating the dataset-related problems
such as concept drift. As one of the first work to put for-
ward DGA detection considering concept drift, we believe
that this article holds important implications in guiding these
studies to the next step in the future.
Despite the aforementioned problems, the proposed

approach is more accurate than other methods and it also
has high versatility because it is based solely on the charac-
ter strings of domain names and does not require a learning
process. Therefore, we expect that this approach will help
to dramatically improve the performance of other published
studies if it is incorporated into their techniques.

V. CONCLUSION
In this article, to identify dynamically generated malicious
domains, we proposed an approach for estimating the ran-
domness of domain names by superficially analyzing their
character strings. This approach is based on the following
observations: human-generated benign domain names tend
to reflect the intent of their domain registrants, such as an
organization, product, or content. In contrast, dynamically
generated malicious domain names consist of meaningless
character strings because conflicts with already registered
domain names must be avoided; hence, there are dis-
cernible differences in the strings of dynamically generated
and human-generated domain names. The concept of using
randomization to facilitate malware detection has been advo-
cated in previous studies, whereas our approach distinguishes
between benign and malicious domains using only the char-
acter string of the domain name and does not require any
prior knowledge about DGAs.
In the experiments conducted as part of this study,

the results showed that our approach could achieve recall
and precision as high as 0.9960 and 0.9029, respectively,
when used with labeled datasets. We also achieved a high
level of effectiveness for datasets collected via a campus
network. Taken together, these results suggest that malware-
infected machines can be swiftly identified and removed
from networks using DNS queries for detected malicious
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domains as triggers. Our approach contributes to dramatically
improving network security by providing the ability to
address various malware encroachments.
The novel characteristics of our strategy have ensured

three levels of effectiveness. First, because our approach
is capable of operating solely by referring to the system
logs recorded by RDNSs, its applicability is not restricted
to networks with unencrypted communications. Second, in
contrast to ML- and DL-based detection techniques, our
approach eliminates the problem of datasets characterized
by concept drift, which facilitates the retention of high
performance levels. Finally, our approach may be used in
a wide variety of scenarios because of its high versatility.
Indeed, we expect it to be possible to incorporate certain
aspects of our approach into other published methods to
substantially improve their malware detection performance.
In our future work, we intend to evaluate the efficacy of

the proposed approach for communications observed over
long time periods in large-scale networks. We also hope
to investigate the resulting impact on their malware detec-
tion performance by combining our technique with other
methods.
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