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ABSTRACT As virtual reality (VR) applications become popular, the desire to enable high-quality,
lightweight, and mobile VR can potentially be achieved by performing the VR rendering and encoding
computations at the edge and streaming the rendered video to the VR glasses. However, if the rendering
has to be performed after the edge gets to know of the user’s new head and body position, the ultra-low
latency requirements of VR will not be met by the roundtrip delay. In this article, we introduce edge
intelligence, wherein the edge can predict, pre-render and cache the VR video in advance, to be streamed
to the user VR glasses as soon as needed. The edge-based predictive pre-rendering approach can address
the challenging six Degrees of Freedom (6DoF) VR content. Compared to 360-degree videos and 3DoF
(head motion only) VR, 6DoF VR supports both head and body motion, thus not only viewing direction
but also viewing position can change. Hence, our proposed VR edge intelligence comprises of predicting
both the head and body motions of a user accurately using past head and body motion traces. In this
article, we develop a multi-task long short-term memory (LSTM) model for body motion prediction and
a multi-layer perceptron (MLP) model for head motion prediction. We implement the deep learning-based
motion prediction models and validate their accuracy and effectiveness using a dataset of over 840,000
samples for head and body motion.

INDEX TERMS Virtual reality, video streaming, six degrees of freedom (6DoF), edge computing, edge
intelligence, motion prediction.

I. INTRODUCTION

VIRTUAL reality (VR) systems have triggered enor-
mous interest over the last few years in various fields

including entertainment, enterprise, education, manufactur-
ing, transportation, etc. However, several key hurdles need
to be overcome for businesses and consumers to get fully
on board with VR technology [1]: cheaper price and com-
pelling content, and, most importantly, a truly mobile VR
experience. Of particular interest is how to develop mobile
(wireless and lightweight) head-mounted displays (HMDs),
and how to enable VR experience on the mobile HMDs using
bandwidth-constrained mobile networks, while satisfying the
ultra-low latency requirements.
Currently, there are several categories of HMDs [2]: PC

VR, standalone VR, and mobile VR. Specifically, PC VR has
high visual quality with rich graphics contents as well as high
frame rate, but the HMD is usually tethered with PC [3], [4];
standalone VR HMD has a built-in processor and is mobile,

but may have relative low-quality graphics and low refresh
rate [5], [6]; mobile VR is with a smartphone inside, leading
to a heavy HMD to wear [7], [8]. Therefore, current HMDs
still cannot offer us a lightweight, mobile, and high-quality
VR experience. To solve this problem, we propose an edge
computing based solution. By performing the rendering on an
edge computing node and streaming videos to users, we can
complete the heavy computational tasks on the edge com-
puting node and thus enable mobile VR with lightweight VR
glasses. The most challenging part of this solution is ultra-
high bandwidth and ultra-low latency requirements, since
streaming 360-degree video causes tremendous bandwidth
consumption and good VR user experiences require ultra-low
latency (<20ms) [9], [10].
Specifically, the total end-to-end latency of edge comput-

ing based VR system includes the following parts: time to
transmit sensor data from HMD to edge computing node,
time to render (and encode) on the edge node, time to
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FIGURE 1. Illustration of rendering and streaming pipeline to show how our
predictive pre-rendering approach reduces latency: (a) Without encoding and
decoding; (b) With encoding and decoding.

transmit rendered video from the edge computing node to
HMD, and time to (decode and) display the view on the
HMD. The encoding and decoding are optional according to
the specific application design. Once the user moves his/her
head or body position, high-quality VR requires this end-
to-end latency as less than 20ms [9], [10] to avoid motion
sickness. For the edge computing based VR system, it is
extremely challenging to meet this requirement.
Motivated by the ultra-low latency requirement challenge,

in this article, we introduce edge intelligence for mobile VR,
wherein the edge can predict, pre-render and cache the VR
video in advance, to be streamed to the user VR glasses
as soon as needed. Specifically, we consider six Degrees of
Freedom (6DoF) VR experiences, which support both the
head and body motions, thus both the viewing direction and
viewing position can change. Hence, in order to pre-render
the view, edge intelligence is needed to predict both the
head and body motions of a user accurately. By predicting
head and body motion of users in the near future with edge
intelligence, we can do a predictive pre-rendering on the
edge computing node and then stream (even pre-deliver)
the predicted view to the HMD. The difference between
stream and pre-deliver is that stream means holding the
pre-rendered frame until determining whether prediction is
‘correct’ or not using the actual motion, while pre-deliver
refers to sending the pre-rendered frame immediately to the
user without this determination. Note that both stream and
pre-deliver choices can significantly reduce latency: one does
pre-rendering and the other does both pre-rendering and pre-
delivery. The latter reduces more latency than the former but
(i) needs a technique on HMD to buffer the predicted view
and determine whether the predicted viewing position and
direction are correct; (ii) transmits extra content when the
prediction is inaccurate, leading to more bandwidth con-
sumption. Hence, we adopt the former method, where the
latency can be significantly reduced since the pre-rendered
view will be transmitted if the predicted viewing position
and direction are ‘correct’ (i.e., the error is less than a given
ultra-low value); otherwise, latency remains the same with
traditional streaming method because the actual view will
be rendered and transmitted to the HMD. Fig. 1 illustrates
the latency reduced by our pre-rendering approach com-
pared to the traditional approach, in terms of rendering and

FIGURE 2. Field of view (FOV) in a 360-degree view.

streaming pipeline (from edge computing node to HMD).
The key to achieving this efficient edge-based predictive
pre-rendering approach is predicting body and head motion
in advance accurately, and then pre-rendering the predicted
view accordingly.
In our earlier work [11], we proposed techniques for head

motion prediction in 360-degree videos and three Degrees
of Freedom (3DoF) VR applications. In this work, we
address the more challenging 6DoF VR content. Compared
to 360-degree videos and 3DoF (head motion only) VR,
6DoF VR supports both head and body motions, thus not
only viewing direction but also viewing position changes.
Hence, our proposed VR edge intelligence has to comprise
of predicting both the head and body motions of a user accu-
rately using past head and body motion traces. Specifically,
for head motion prediction in 360-degree videos and 3DoF
VR, a certain prediction error is allowed, because the error
can be handled by delivering a larger field of view (FOV)
with high quality or rendering larger FOV. Note that FOV
is around 90◦ × 90◦ for Samsung Gear VR and 110◦ × 110◦
for HTC Vive while the 360-degree view is 360◦ × 180◦ in
size (as is shown in Fig. 2). Compared to 360-degree videos
and 3DoF VR, the motion prediction in 6DoF VR is much
more challenging, where the body motion prediction needs
high precision to pre-render the user’s view (otherwise may
cause dizzy feeling). For 360-degree videos and 3DoF VR,
the 360-degree view at a time point is known and unchanged
by any head motion, but for 6DoF VR it can be totally dif-
ferent due to the body motion. Therefore, this article will
explore the feasibility of doing motion prediction with high
precision in 6DoF VR using edge intelligence, and its main
contributions can be summarized as follows:

• For 6DoF VR applications, we propose a new edge-
based predictive pre-rendering approach involving both
body and head motion prediction, in order to enable
high-quality, lightweight, and mobile VR with low
latency.

• We develop a prediction method using edge intelligence
to predict where a user will be standing (i.e., viewing
position) and looking into (i.e., viewing direction) in the
360-degree view based on their past behavior. Using
a dataset of real head and body motion traces from
VR applications, we show the feasibility of our multi-
task long short-term memory (LSTM) model for body

VOLUME 1, 2020 1675



HOU AND DEY: MOTION PREDICTION AND PRE-RENDERING AT EDGE TO ENABLE ULTRA-LOW LATENCY MOBILE 6DoF EXPERIENCES

motion prediction and multi-layer perceptron (MLP)
model for head motion prediction with high precision.

• We propose a FOV selection technique for pre-rendering
a larger FOV to further reduce head motion prediction
error, and a motion error determination technique as the
system mechanism of our edge-based predictive pre-
rendering approach.

• To the best of our knowledge, we are the first to come
up with this edge-based predictive pre-rendering idea
using edge intelligence for 6DoF VR applications and
show good results on a real motion trace dataset in the
VR applications. We demonstrate the potential of our
approach with high accuracy of head and body motion
prediction.

Note that a preliminary version of our work has been pub-
lished in [12], where we reported on edge-based predictive
single-task models for head (MLP model) and body (LSTM
model) motions, and some preliminary results. In this arti-
cle, we develop (i) a new multi-task LSTM model for body
motion prediction to reduce body motion prediction error,
(ii) head and body motion prediction based FOV selection
for pre-rendering, such that the selected FOV minimizes the
effects of motion prediction error while also minimizing the
selected FOV size, and (iii) motion error determination as
the system mechanism of our edge-based predictive pre-
rendering approach. Note that the methodology proposed in
this article applies to single-user scenarios, and we plan to
further study more complex multi-user scenarios as part of
future work.
The rest of this article is organized as follows. Section II

reviews related work. Section III presents a system overview
and problem definition. Section IV describes our dataset.
The methodology for head and body motion prediction is
described in Section V. We present our experimental results
in Section VI and conclude our work in Section VII.

II. RELATED WORK
In this section, we review current work in the following
topics related to our research.
Enable High-Quality Mobile VR: Some recent stud-

ies [13]–[17] explore solutions to enable lightweight and
mobile VR experiences, and improve the performance of the
current VR system. To provide high-quality VR on a mobile
device, [13] presents a pre-rendering and caching design
called FlashBack, which pre-renders all possible views for
different positions as well as orientations at each 3D grid
point with a density of 2-5cm, stores them on a local cache,
and delivers frames on demand according to current position
and orientations. This method may lead to high inaccuracy
and overwhelming storage overhead of pre-caching all possi-
ble views (e.g., 50GB for an app). Reference [14] introduces
a parallel rendering and streaming mechanism to reduce the
add-on streaming latency, by pipelining the rendering, encod-
ing, transmission, and decoding procedures. This method
focuses on minimizing streaming latency, thus the latency for
rendering part remains the same as the traditional rendering

method. Reference [15] presents a collaborative rendering
method to reduce overall rendering latency by offloading
costly background rendering to an edge computing node and
only performing foreground rendering on the mobile device.
In contrast, our method proposes to pre-render based on
head and body motion predictions, reducing the latency of
rendering more drastically. To reduce latency needed, [16]
proposes to stream VR scenes containing only the user’s
FOV and a latency-adaptive margin area around the FOV.
Reference [17] aims to address the ultra-high bandwidth
challenge in high-quality mobile VR by adaptively reusing
the redundant VR pixels across multiple VR frames. The rea-
son these two methods cannot be applied to our scenario is
that [16] cannot address 6DoF VR content and [17] reduces
network transmission latency to some extent but also brings
the larger rendering latency.
Human Motion Prediction: Learning statistical models of

human motion are challenging due to the stochastic nature
of human movement to explore the environment, and many
works [18]–[22] propose methods to address it. Based on
classical mechanics, there are some studies [18]–[20] show-
ing the efficiency of linear acceleration model (Lin-A) by
doing motion prediction or estimation with an assump-
tion of linear acceleration, especially in a small time
interval (e.g., order of tens of milliseconds). Reference [18]
describes a good performance of a simple first-order linear
motion model for tracking human limb segment orienta-
tion, and [19], [20] reveal acceptable results when employing
the linear model as a baseline to predict human trajectory.
Meanwhile, deep learning approaches [19]–[22] for human
body prediction have also achieved remarkable accomplish-
ments. Specifically, [19], [20] propose their LSTM models
to predict human future trajectories, but their models aim to
learn general human movement from a massive number of
videos and the corresponding precision of predicted position
does not achieve the requirement of pre-rendering in VR
scenarios. References [21], [22] propose various recurrent
neural network (RNN) models for human motion prediction
to learn human kinematics from skeletal data. But these mod-
els are designed to learn the patterns from a series of skeletal
data and cannot be applied to our VR scenarios directly.
Moreover, [11], [23]–[25] also explore the feasibility

of doing head motion prediction, however, head motion
prediction in 6DoF is quite different than 360-degree video
(3DoF), since in the latter, for each time point, the whole
360-degree view displayed for viewers is fixed and more
regularity and pattern exist in their viewing directions. By
learning viewers’ traces, for 3DoF applications, the models
can well predict the viewing position since at a certain time
point, there are always some areas attracting most attention
and viewers are more likely to look at them. Head motion
in 6DoF is more difficult to predict because both position
and viewing direction may continuously change, and there is
a much larger virtual space to explore for users. Therefore,
the above approaches cannot be used to address our sce-
nario: we aim to explore the high-precision human body
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FIGURE 3. System overview.

and head motion prediction in 6DoF VR applications for
pre-rendering.
Multi-Task Learning: Multi-task learning aims to improve

learning efficiency and prediction accuracy for each task,
compared to training a separate model for each task.
Some recent studies [26]–[28] explore solutions to improve
prediction accuracy by learning multiple tasks from a shared
representation, and formulate the multi-task learning prob-
lems which involve joint learning of various regression
and classification tasks with different units and scales.
Reference [26] shows that a shared representation with multi-
task learning can improve accuracy on depth regression and
instance segmentation over separately trained single tasks
because of cues from other tasks. Reference [27] presents
that multi-task learning benefits and achieves better results
compared with single-task models on event detection in
social media by doing text analysis with Twitter datasets.
Reference [28] proposes a multi-task RNN for simultane-
ous recognition of surgical gestures with kinematic signals,
and demonstrates that the recognition performance improves
with the multi-task learning model compared with single-task
models. The reason why we cannot use above methods for
body motion is that most of these methods [26], [28] address
computer vision recognition problem instead of predicting
variables ahead of time and [27] considers event detection
based on texts in social media which also cannot be applied
to body motion prediction scenario. Our proposed multi-task
model distinguishes from the above methods by address-
ing the real-time body motion prediction problem using real
motion traces in the VR scenario and aiming for an ultra-low
prediction error.

III. SYSTEM OVERVIEW
In this section, we describe our system overview. In Fig. 3,
a user’s head motion, body motion as well as other con-
trolling commands will firstly be sent to the edge, which
performs the edge-based predictive pre-rendering approach.
Based on the past few seconds of head motion, body motion
and control data received from the user, the edge device

will do three things: (i) perform motion prediction (motion
prediction); (ii) do pre-render based on the predicted viewing
position and direction (motion decision and pre-rendering);
(iii) cache the predicted frames in advance. Later, if the pre-
dicted viewing position and direction are ‘correct’ (i.e., the
error is less than a given ultra-low value), the cached pre-
dicted frames can be streamed from the edge device to the
HMD and displayed on HMD immediately; otherwise, the
actual view will be rendered by the edge device and trans-
mitted to the HMD. For the former case, latency needed will
be significantly reduced since the view is pre-rendered and
cached on the edge computing node before it is needed; for
the latter, latency remains the same with the conventional
method of streaming from the edge computing node. Note
that although the controller can affect the rendered frame
by pointing at a certain place to teleport in virtual space,
we do not need to predict for the new location triggered
by the controller, as in this case, users will expect much
larger latency than 20ms. We will describe motion prediction,
FOV selection, and motion error determination (highlighted
in green in Fig. 3) with more details in Section V.
Note that the edge device can be either a Mobile Edge

Computing node (MEC) in the mobile radio access or core
network, or a Local Edge Computing node (LEC) located
in the user premises or even his/her mobile device, con-
necting to the HMD through WiFi or WiGig. While each
of the above choices has tradeoffs, this article will not
specifically address these tradeoffs and select either MEC
or LEC. Instead, we focus on developing accurate head and
body motion prediction techniques, which can be used for
the edge-based predictive pre-rendering approach shown in
Fig. 3, and will apply to either of the edge device options.
Problem Statement: In each time point, the user can have

a specific viewing position and viewing direction, corre-
sponding to the body and head motion. Given previous and
current viewing directions and viewing positions, our goal
is to predict viewing direction and position for the next time
point. After rendering pixels based on predicted viewing
position and direction, frames can be further encoded to
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TABLE 1. Notations used.

a video and delivered to users. Specifically, we describe
the problem formulation for motion prediction below. The
notations used in our approach are described in Table 1.

A. PROBLEM FORMULATION
Trajectory Sequence: Spatiotemporal point qt is a tuple of
time stamp t, viewing position b, and viewing direction h,
i.e., qt = (t, b, h). The trajectory sequence from time point
tw to time point tw+n−1 is a spatiotemporal point sequence,
which can be denoted as S(tw, tt+n−1) = qtwqtw+1 . . . qtw+n−1 .
Thus, the problem can be formulated as follows:
- Input: a trajectory sequence from time point tw to time
point tw+n−1, i.e., S(tw, tt+n−1) = qtwqtw+1 . . . qtw+n−1 ;

- Output: predicted spatiotemporal point q̂tw+n at time
point tw+n;

In this article, we aim to predict the viewing position b
and viewing direction h for the next time point using current
and previous viewing positions and directions.

B. TIME ANALYSIS
In this subsection, we give an analysis of the time taken for
the various tasks of our proposed edge-based predictive pre-
rendering method, as shown in Table 2. Specifically, we can
see that the latency for transmission from HMD to the edge
and from edge to HMD depends on the distance between
them. Since we predict the user view 11ms in advance (1
frame ahead, assuming 90 frames/second), we have adequate
time to (i) predict motion and do FOV selection (i.e., < 1ms,
which is described in details in Section VI-D) and (ii) pre-
render the predicted view (i.e., 5ms−10ms) in advance with

TABLE 2. Time needed for different procedures.

no additional latency, hence satisfying the ultra-low latency
requirement of 6DoF VR immersive experiences. The round-
trip transmission latency, latency of rendering, latency of
encoding, and latency of decoding can be denoted as RTT ,
Trendering, Tencoding, and Tdecoding respectively.

As for the conventional method, the latency without
motion prediction and pre-rendering is

RTT + Trendering + Tencoding + Tdecoding,

where the lower boundary and upper boundary of latency
are RTT + 11ms and RTT + 21ms respectively. Thus, given
added round-trip transmission latency of around 9ms, the
end-to-end latency for conventional method is 20ms−30ms.
For our proposed edge-based predictive pre-rendering

approach, the latency with ‘correct’ motion prediction is

RTT + Tencoding + Tdecoding,

where the lower boundary and upper boundary of latency are
RTT + 6ms and RTT + 11ms respectively. Otherwise, when
the motion prediction is not ‘correct’, the latency is the
same with conventional method. Thus, given added round-
trip transmission latency of around 9ms, the end-to-end
latency for the proposed edge-based predictive pre-rendering
approach is 15ms−20ms with ‘correct’ motion prediction and
20ms− 30ms with ‘incorrect’ motion prediction. We present
experimental results in Section VI which shows high accu-
racy of our proposed motion prediction techniques, achieving
‘correct’ motion predictions in most of the time points during
6DoF VR applications.

IV. DATASET AND ITS CHARACTERISTICS
In this section, we first describe the dataset we use and then
show characteristics of the dataset using certain metrics we
define.

A. DATASET
To investigate head and body prediction in 6DoF VR appli-
cations, we conduct our study on a real motion trace dataset
we collected from 20 users using HTC Vive to experience
two 6DoF VR applications called Virtual Museum [29] and
Virtual Rome [30] in our laboratory. The system setup will
be described in Section VI-A. The trace consists of 840,000
sample points of head and body motion data collected from
the users. Fig. 4(a)(b) show the illustration of the two vir-
tual applications, where Virtual Museum has three exhibition
rooms and Virtual Rome contains larger space including dif-
ferent courtyards and halls. The walkable area is restricted
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FIGURE 4. Illustration of two virtual applications and other settings: (a) Virtual Museum and (b) Virtual Rome; (c) Boundary of walkable area, and coordinates for head and
body motions.

TABLE 3. Experimental settings for different sessions in the Virtual Museum and

Virtual Rome.

by the size of the tracked space in the room and constrained
to a fixed regular shape. Users can explore each virtual space
by walking in the walkable area or teleporting by pointing
at a place with a controller. The top subplot in Fig. 4(c)
uses light blue lines to show the boundary of the walkable
area in the VR. As shown in Table 3, we set three sessions
respectively for each application: (i) in session 1, users are
given rough guidance of taking a stroll about the room at the
beginning of the session, without a controller in their hand;
(ii) in session 2, users walk around freely in the room, with-
out a controller in their hand; (iii) in session 3, users walk
around freely in the room and have a controller in their
hand; the controller allows them to teleport to any position
in virtual space by pointing at that place, and the position
of the walkable area in VR also changes accordingly.
Motion traces include the user ID, session timestamp, euler

angles for the head pose (pitch α, yaw β, roll γ ), and position
for body pose (x, y, z). The session timestamp refers to the
time counted since application launches in milliseconds, and
timestamps appear each 11ms (corresponding to 90Hz, which
is the refresh rate of HTC Vive). The middle and bottom
subplots of Fig. 4(c) exhibit the coordinates for head pose
using euler angles and for body pose using position.

B. DATASET CHARACTERISTICS
To depict key characteristics of the head motion and view-
point changes in the dataset quantitatively, we offer the
following definitions.
Head Motion Vector: The corresponding head poses at

time points t1 and t2 (where t1 < t2) are denoted by
(α(t1), β(t1), γ (t1)) and (α(t2), β(t2), γ (t2)) respectively.
Head motion vector (�α,�β,�γ ) = (α(t2)−α(t1), β(t2)−
β(t1), γ (t2) − γ (t1)).
Head Motion Speed: Head motion speed �vhead is defined

as the angular distance the head moved divided by time, i.e.,
�vhead = (vα, vβ, vγ ) = ( �α

t2−t1 ,
�β
t2−t1 ,

�γ
t2−t1 ).

TABLE 4. Description of variables.

FIGURE 5. CDF of motion speed for different sessions: (a)(b)(c) for body motion;
(d)(e)(f) for head motion.

Body Motion Vector: The corresponding body poses
at time points t1 and t2 (where t1 < t2) are denoted
by (x(t1), y(t1), z(t1)) and (x(t2), y(t2), z(t2)) respectively.
Body motion vector (�x,�y,�z) = (x(t2) − x(t1), y(t2) −
y(t1), z(t2) − z(t1)).
Body Motion Speed: Body motion speed �vbody is defined

as the distance the body moved divided by time, i.e., �vbody =
(vx, vy, vz) = ( �x

t2−t1 ,
�y
t2−t1 , �z

t2−t1 ), and the value of it is

vbody = ∣

∣�vbody
∣

∣ =
√

vx2 + vy2 + vz2. (1)

Table 4 presents the description of variables. Apart from
measured variables in the dataset, for each sample point,
we can obtain the derived variables including head motion
speed and body motion speed using definitions above. In
Fig. 5, we plot the cumulative distribution function (CDF)
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FIGURE 6. Motion speed obtained before and after the preprocessing step: (a)(b)(c) for body motion; (d)(e)(f) for head motion.

of body motion speed in each axis (i.e., vx, vy, vz) and
head motion speed in each axis (i.e., vα, vβ, vγ ) for dif-
ferent sessions. We can see that (i) over 95% of vx, vy, vz
are less than 0.8m/s, 0.8 m/s, and 0.15 m/s respec-
tively, and around 90% of vα, vβ, vγ are less than 30◦/s,
100◦/s, and 25◦/s respectively; (ii) for the body motion
speed distribution, the speed in each session is as follow
from high to low: RM1>VM1>RM2>VM2>VM3>RM3;
and (iii) for the head motion speed distribution, the
speed in each session is as follow from low to high:
VM1<RM1<RM2&VM2<RM3&VM3. Thus among six
sessions of two applications, there are more body motion
and less head motion in Session 1 (i.e., RM1, VM1) while
less body motion and more head motion in Session 3 (i.e.,
RM3, VM3).

V. OUR APPROACH
In this section, we describe our proposed approach of
preprocessing and modeling for head and body motion
predictions.

A. PREPROCESSING
We aim to remove noise within head and body motion in
the preprocessing step. We first calculate head motion speed
and body motion speed for each time point. Fig. 6 presents
the body motion and head motion speed in x, y, z, α, β, γ -
axis respectively for a sample in the motion trace of one
user in the Virtual Museum application. The blue line in
each subplot shows there can be at times significant noise
in each of motion speed, due to sensor noise and other
measuring errors from HTC Vive HMD and base stations.
This noise is identifiable since the speed cannot change
so rapidly and intensively within several milliseconds. To
remove the noise in body motion and head motion, we pro-
pose to use the Savitzky-Golay filter method [31] because
of its high accuracy and efficiency. This filter approximates
(using least-square fitting) the underlying function within
the moving window by a polynomial of a higher order. The
blue and red lines in Fig. 6 show the speed before and after
the preprocessing step. We can see the noise is significantly
reduced after preprocessing step.

FIGURE 7. (a) LSTM model and (b) MLP model used for motion prediction.

B. PREDICTIVE MODELING
To represent motion features, we select 60 time points as the
prediction time window (i.e., predict head and body speed
according to speed traces in the latest 60 time points), since
it achieves better performance than 40, 50, 70, 80, 90 time
points based on our experiments. For training the model, we
choose a simple representation for motion as a 1×60 vector,
where each element equals to i when the speed is i at that
time point, and the dimension of 60 corresponds to 60 time
points.

1) SINGLE-TASK MODEL

We investigate a LSTM model as well as an MLP model to
be trained for single task separately, where the single task
refers to prediction for body motion speed in each axis (i.e.,
x, y, or z-axis) or head motion speed in each axis (i.e., α, β,

or γ -axis).
LSTM Model: Inspired by the success of the RNN

Encoder-Decoder in modeling sequential data [32] and good
performance of LSTM to capture transition regularities of
human movements since they have memory to learn the
temporal dependence between observations [19], [33], we
implement an Encoder-Decoder LSTM model which can
learn general body motion as well as head motion patterns,
and predict the future viewing direction and position based
on the past traces. Fig. 7(a) shows the LSTM model we
designed and used in our training, where first and second
LSTM layers both consist of 60 LSTM units, and the fully
connected layer contains 1 interconnected node. Note the
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FIGURE 8. The structure of LSTM unit.

interconnected node refers to the general neuron-like pro-
cessing unit a = φ(

∑

j wjxj + b), where xj are the inputs to
the unit, wj are the weights, b is the bias, φ is the nonlinear
activation function, and a is the unit’s activation [34].

Our Encoder-Decoder LSTM model predicts what the
motion speed will be for next time point, given the previous
sequence of motion speed. The outputs are the values of
predicted speed for next time point. Note that the settings
including 60 LSTM units and 60 time points as window
length are selected during experiments and proved to be
good by empirical results. For the head and body motion
prediction, we use the mean square error (MSE) as our loss
function:

Loss = 1

|Ntrain|
∑

y∈Strain

L
∑

t=1

(

yt − ŷt
)2

, (2)

where |Ntrain| is the number of total time steps of all tra-
jectories on the train set Strain, and L is the total length of
each corresponding trajectories. The proposed LSTM model
learns parameters by minimizing the mean square error.
Specifically, encoder and decoder sections work as fol-

lows. Given the input sequence X = (x1, . . . , xt, . . . , xT)

with xt ∈ R
n, where n is the number of driving series (e.g.,

dimension of feature representation), the encoder learns a
mapping from xt to ht with

ht = f (ht−1, xt), (3)

where ht ∈ R
m is the hidden state of the encoder at time

t, m is the size of the hidden state, and f is a non-linear
activation function of LSTM unit. As shown in Fig. 8, each
LSTM unit has (i) a memory cell with the cell state st, and
(ii) three sigmoid gates to control the access to memory cell
(forget gate ft, input gate it and output gate ot). We follow
the LSTM structure from [32], [35]:

ft = σ
(

Wf
[

ht−1; xt
] + bf

)

, (4)

it = σ
(

Wi
[

ht−1; xt
] + bi

)

, (5)

ot = σ
(

Wo
[

ht−1; xt
] + bo

)

, (6)

st = ft � st−1 + it �
(

tanh
(

Ws
[

ht−1; xt
] + bs

))

, (7)

ht = ot � tanh(st), (8)

where [ht−1; xt] ∈ R
m+n is a concatenation of the previous

hidden state ht−1 and current input xt. Wf , Wi, Wo,
Ws ∈ R

m×(m+n) as well as bf , bi, bo, bs ∈ R
m are

parameters to learn. Notations of σ and � are the logis-
tic sigmoid function and element-wise multiplication. After
reading the end of input sequence sequentially and updating
the hidden state as above, the hidden state of LSTM is a sum-
mary (i.e., encoded vector c) of the whole input sequence.
Subsequently, the decoder is trained to generate the target
sequence (y1, . . . , yt, . . . , yT) by predicting yt given hidden
state dt of LSTM units in decoder at timestep t. Note that
yt ∈ R, and dt ∈ R

p, where p is the size of the hidden state
in decoder. The update of hidden state is denoted by

dt = f (dt−1, yt−1, c). (9)

Since the nonlinear function is the LSTM unit function,
similarly, dt can be updated as:

f ′t = σ
(

W′
f

[

dt−1; yt−1; c
] + b′

f

)

, (10)

i′t = σ
(

W′
i

[

dt−1; yt−1; c
] + b′

i

)

, (11)

o′
t = σ

(

W′
o
[

dt−1; yt−1; c
] + b′

o
)

, (12)

s′t = f ′t � s′t−1 + i′t
�(

tanh
(

W′
s
[

dt−1; yt−1; c
] + b′

s
))

, (13)

dt = o′
t � tanh

(

s′t
)

, (14)

where [dt−1; yt−1; c] ∈ R
p+m+1 is a concatenation of the

previous hidden state dt−1, decoder input yt−1, and encoded
vector c. W′

f , W
′
i , W

′
o, W

′
s ∈ R

p×(p+m+1) as well as b′
f , b

′
i,

b′
o, b

′
s ∈ R

p are parameters to learn. Subsequently, the output
of the decoder is further fed to the fully connected layer.
MLP Model: Apart from the LSTM model, we propose

to use an MLP [34] model presented in Fig. 7(b) to do
motion prediction. Using the same representation and loss
function described above, this model takes the motion speed
during the latest 60 time points as input to predict the
motion speed for next time point. The MLP model contains
two fully-connected layers with 60 and 1 interconnected
nodes respectively for training. The MLP model also learns
parameters by minimizing the mean square error.
We build up single-task models including LSTM and

MLP models for body motion and head motion speed
in x, y, z, α, β, γ -axis respectively. Given the current and
previous speed traces, our predictive models can predict the
speed for next time point and thus predict the viewing posi-
tion b and viewing direction h for next time point (described
in Section III-A).

2) MULTI-TASK MODEL

Motivated by achieving better body motion prediction to
reduce the potential adverse effect on user experience caused
by prediction error, we explore more models to predict
body motion more accurately. Since single-task models in
Section V-B1 predict body motion speed of each axis sep-
arately (using the information in one axis), we explore
multi-task models to take advantage of body motion speed
in all three axes to predict the body motion for each axis.
We investigate a multi-task LSTM model as well as a multi-
task MLP model, sharing some layers to determine common
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FIGURE 9. Multi-task LSTM model for body motion prediction.

FIGURE 10. Multi-task MLP model for body motion prediction.

features between multiple tasks, where each task refers to
the prediction for body motion speed in each axis (i.e., x, y,
or z-axis).
Multi-Task LSTM Model: We implement a multi-task

LSTM model that can learn a shared representation for body
motion pattern, and predict the body motion speed (corre-
sponding to viewing position) for the next time point based
on the past traces. Fig. 9 shows our proposed multi-task
LSTM model that we have designed and used for training,
where the first three LSTM layers after the three motion fea-
tures layers consist of 60, 60, and 60 LSTM units (Fig. 8)
respectively, and the three fully-connected layers after a con-
catenate layer contain 1, 1, and 1 interconnected node. Our
multi-task LSTM model predicts what the body motion speed
in x, y and z-axis will be for the next time point, given the
previous sequence of the body motion speed. The outputs
are the values of predicted speed (i.e., vx, vy, vz) for the next
time point. Note that the settings including 60 LSTM units
and 60 time points as window length are selected during
experiments and proved to be good by empirical results. For
the body motion prediction, we define the multi-task loss
function as the weighted linear sum of the losses for each
individual task:

Ltotal =
∑

i

wiLi, (15)

where wi is the weight for individual task i and Li is the
single task loss function for individual task i (defined as
the MSE, which is described before in the LSTM model
Section V-B1). Specifically, as shown in Fig. 9, tasks 1,
2, and 3 refer to the prediction for body motion speed
in x, y, and z-axis respectively. In our training, we use
w1 = w2 = w3 = 0.333 as the task weight setting based on
good empirical performance and following theoretical obser-
vation. Specifically, for body motion prediction, the distance
between actual body motion and predicted motion can be

defined as

d =
√

dx2 + dy2 + dz2, (16)

where dx, dy, dz are the distance between actual body motion
and predicted body motion in the x, y, z-axis respectively.
Thus, the theoretical observation is that with the setting of
w1 = w2 = w3, minimizing the multi-task learning loss func-
tion for body motion prediction is equivalent to minimizing
the square of distance d between the actual viewing position
(obtained from body motion) and predicted viewing position.
Note that the proposed multi-task LSTM and MLP models
learn parameters by minimizing the multi-task loss function.
Note that we have considered and conducted experiments
to models of sharing LSTM layer and fully-connected layer
between x, y, and z, but their performances are worse than
the performance of our proposed model (Fig. 9).
Multi-Task MLP Model: Apart from the multi-task LSTM

model, we also implement a multi-task MLP model for
comparison to do body motion prediction. Using the same
representation and multi-task loss function described above,
this model also takes the body motion speed during the lat-
est 60 time points in x, y, z-axis as input to predict the body
motion speed in the next time point. Our proposed multi-
task MLP model has a similar structure like the multi-task
LSTM model, shown in Fig. 10, where the first three fully-
connected layers after the three motion feature layers consist
of 60, 60, and 60 interconnected nodes respectively, and the
three fully-connected layers after a concatenate layer contain
1, 1, and 1 interconnected node. The multi-task MLP model
predicts what the body motion speed in x, y, and z-axis will
be for the next time point, given the previous sequence of
the body motion. The outputs are values of predicted speed
(i.e., vx, vy, vz) for the next time point.
Given the current and previous speed traces, we build up

our multi-task models including multi-task LSTM and multi-
task MLP models to predict the body motion speed in three
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FIGURE 11. Selected FOV for two different types of relative positions between
predicted FOV and actual FOV: (a) to address dα and dβ , (b) to address dγ .

axes for the next time point and thus predict the viewing
position b for the next time point (described in Section III-A).

C. FOV SELECTION
After predicting body and head motion, we propose a slid-
ing window based FOV selection method for pre-rendering,
such that the selected FOV minimizes the effects of motion
prediction error while also minimizing the selected FOV
size. This method is also head motion prediction based
since it selects the FOV size according to the estimated
prediction error calculated by recent head motion prediction
errors. Note that the method can only be applied to address
head motion error since body motion prediction error can
only be reduced by exploring better prediction models
with higher precision (e.g., multi-task models presented in
Section V-B2). Fig. 11 shows several different types of rela-
tive positions between predicted FOV and actual FOV, where
blue square, orange square, and dashed green rectangle repre-
sent the actual FOV, predicted FOV, and pre-rendered larger
FOV. The size of FOV is determined by the kind of HMD
device, represented as the horizontal FOV of θh times ver-
tical FOV of θv (e.g., 90◦ × 90◦ for Samsung Gear VR,
110◦ × 110◦ for HTC Vive).
Fig. 11(a) exhibits the angular distance between the actual

and predicted FOVs in α and β-axis as dα and dβ , with no
angular distance in the γ -axis. We can see that the actual
FOV can be covered by the pre-rendered larger FOV via
increasing the horizontal FOV to θh + 2dβ and the vertical
FOV to θv+2dα . Fig. 11(b) demonstrates the angular distance
between the actual and predicted FOVs in the γ -axis as dγ

without any angular distance in α and β-axis. The actual
FOV can be covered by the pre-rendered larger FOV via
increasing the horizontal FOV to θh + 2d2 and the vertical
FOV to θv + 2d1. Since d1 ≤ dγ and d2 ≤ dγ (due to
Pythagoras theorem [36]) shown in Fig. 11(b), in this case,
we can select a larger FOV by increasing the horizontal FOV
to θh + 2dγ and the vertical FOV to θv + 2dγ . This is the
minimal increase in FOV size compared to predicted FOV
such that it minimizes adverse effects due to head motion
prediction error. Therefore, by selecting a larger FOV of θh+
2dβ + 2dγ as horizontal FOV and θv+ 2dα + 2dγ as vertical

FOV, the actual FOV can be completely covered, eliminating
the adverse effect of head motion prediction error. The new
selected horizontal FOV θ ′

h and vertical FOV θ ′
v can be

represented as follows in Equations (17) and (18):

θ ′
h = θh + 2dβ + 2dγ , (17)

θ ′
v = θv + 2dα + 2dγ . (18)

Note that when performing the FOV selection task before
pre-rendering the view, the exact head motion prediction
error for the next frame is unknown. Hence, in our sliding
window based FOV selection method, we propose to use a
sliding window of nw frames and nw denotes the sliding
window size. Then we define the estimated value of dα , dβ ,
dγ (i.e., d̂α , d̂β , d̂γ ) as the average head motion prediction
error dα , dβ , dγ of the past nw frames (i.e., frames in the
sliding window) so as to calculate the new selected horizontal
FOV θ ′

h and vertical FOV θ ′
v.

D. PREDICTION ERROR DETERMINATION
In Fig. 3, when the head and body motion, as well as
the controlling command, arrive at the edge device, the
actual motion can be obtained immediately after the motion
decision and there will be a prediction error determination
comparing the actual motion with the prediction motion.
We will see whether the head motion and body motion
prediction error is within the thresholds using the follow-
ing steps. For head motion, since we pre-render a larger
FOV than actual FOV to reduce the effect of head motion
prediction error. The determination of dHead ≤ εH will be
achieved by checking whether |d̂α −dα|, |d̂β −dβ |, |d̂γ −dγ |
are all within a given threshold ε1. For body motion, the
determination of dBody ≤ εB will be achieved by checking
whether dx, dy, dz are all within a given threshold ε2. To
be sure that the actual view always within the pre-rendered
view, the thresholds should be selected as low as possible.
However, this will increase the probability of error determi-
nation, and hence doing the rendering and encoding again
live, thereby increasing latency. On the other hand, setting
this threshold too large may cause that the extreme case (e.g.,
having large head motion prediction error) cannot be effi-
ciently identified. We empirically discuss different choices
of given thresholds ε1, ε2 in Sections VI-C, VI-D, and VI-E.

VI. EXPERIMENTAL RESULTS
In this section, we describe our system setup, evaluation
metrics, and experimental results.

A. SYSTEM SETUP AND DATASET
The system setup of our experiments is shown in Fig. 12,
where the rendering edge device is an Intel Core i7 Quad-
Core processor with GeForce RTX 2060. It is equipped with
a WiGig card connecting with the HTC Vive’s link box
using a cable. This link box is within the user’s room and
transmits rendered frames in a video format from the ren-
dering edge device to the HMD. On the user side, there are
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FIGURE 12. System setup.

TABLE 5. Dataset statistics

the link box and two HTC lighthouse base stations in the
room. Users were wearing an HTC Vive HMD equipped with
Vive wireless adaptor [37] and using a controller if needed.
Note the wireless adaptor and link box aim to transmit and
receive the rendered frames using WiGig communications,
while the HTC lighthouse base stations are set for captur-
ing 6DoF motions (e.g., including head and body motion).
The walkable area is around 3 m × 3 m of free space in
our experiments, which cannot exceed 4.5 m × 4.5 m since
the maximum distance between base stations is 5m [38].
All head and body motions on HMD were captured accu-
rately using this HTC Lighthouse tracking system while the
controller detected the user’s controlling commands. For a
software implementation, we implement our proposed tech-
niques based on SteamVR SDK [39], OpenVR SDK [40] as
well as the Unity game engine [41] for data collection, and
use Keras [42] in Python for motion prediction.
We use 80% of the dataset for training the prediction

model, and 20% for testing, ensuring the test data is from
viewers which are different than those in training data.
Table 5 presents the number of samples used as training
data and testing data for each type of session of the two
applications Virtual Museum and Virtual Rome (described
in Section IV and listed in Table 3). Moreover, in our exper-
iments, proposed single-task LSTM and single-task MLP
models learn parameters by minimizing mean square error,
and training is terminated after 50 epochs in our experiments,
while proposed multi-task LSTM and multi-task MLP models
learn parameters by minimizing multi-task loss function and
training is terminated after 20 and 50 epochs respectively
with a batch size of 32.

B. EVALUATION METRICS AND BASELINES
Evaluation Metrics: We choose several popular metrics in
sequential modeling to evaluate the performance on our
prediction task.

TABLE 6. Body motion prediction for Virtual Museum.

• Root Mean Square Error (RMSE):

RMSE =
√

√

√

√

1

|Ntest|
∑

y∈Stest

L
∑

t=1

(

yt − ŷt
)2

, (19)

• Mean Absolute Error (MAE):

MAE = 1

|Ntest|
∑

y∈Stest

L
∑

t=1

(

yt − ŷt
)

, (20)

where |Ntest| is the number of total time steps of all
trajectories on the test set Stest.
Baselines:We consider the following baselines to compare

against the performance of our proposed model:
• Linear Acceleration Model (Lin-A): Following the work
of [18]–[20], we compare against this linear regression
model, which extrapolates trajectories with an assump-
tion of linear acceleration. The Lin-A model employs
the motion speed of the latest 3 time points to predict
the expected motion speed.

• Equal Acceleration Model (Eql-A): The Eql-A model is
our modified version of Lin-A, where we assume the
acceleration is approximately equal during a small time
interval (e.g., 22ms). The advantage of this modification
is as follows: by employing a smaller number of time
points, the acceleration estimated may approach more
the actual value for the following 11ms, than is achieved
by the Lin-A model. We implement the Eql-A model
using motion speed of the latest 2 time points to predict
the expected motion speed of the next time point.

C. PREDICTION ACCURACY
1) SINGLE-TASK MODEL

Tables 6, 7, 8, and 9 exhibit the results of our body motion
and head motion prediction for the two applications respec-
tively. Specifically, Tables 6 and 8 show the distance between
actual and predicted body position in x, y, z-axis (denoted
as dx, dy, dz), while Tables 7 and 9 present the angular dis-
tance between actual and predicted head pose in α, β, γ -axis
(denoted as dα, dβ, dγ ). Note that we use MSE as the loss
function when doing training. In each table, we compare
four models and can make the following observations:
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TABLE 7. Head motion prediction for Virtual Museum.

TABLE 8. Body motion prediction for Virtual Rome.

TABLE 9. Head motion prediction for Virtual Rome.

• Tables 6 and 8, which report on the accuracy of body
motion prediction, show that our LSTM model achieves
smallest RMSE in each session and smallestMAE inmost
sessionsexceptVM2compared toLin-A,Eql-A, andMLP
models. It demonstrates the effectiveness of using our
proposed LSTMmodel to predict body motion positions.

• Tables 7 and 9, which report on the accuracy of head
motion prediction, show that while the LSTM model has
smallest RMSE for session 1, the MLP model performs
better (results in smaller RMSE) than other three models
in sessions 2 and 3 for both the applications. Compared
to session 1 (where users take a stroll about the room
and have a relatively fixed trajectory), sessions 2 and
3 are more general and closer to normal 6DoF VR

FIGURE 13. Body motion prediction error using the LSTM model in the RM3
session.

scenario. Thus, we can see that MLP is a more feasible
model to do head motion prediction in general cases.

We can observe that (i) LSTM model achieves a better
performance in every session of body motion prediction and
session 1 of head motion prediction. These sessions have
a relatively small range (e.g., body motion speed is mostly
smaller than ±1m/s), gradual variation and more regularity.
(ii) MLP model performs better in sessions 2 and 3 of head
motion prediction. These two sessions have a large value
range (e.g., head motion can be up to ±300◦/s), quicker
variation and more frequent fluctuations (e.g., head motion
speed vβ has a large and abrupt change from −180◦/s to
200◦/s within 1s, shown in Fig. 6(e)). Note that although
RMSE of head motion prediction achieved by MLP model
is quite small, we still need to use proposed FOV selection
method to address the possible challenging case (the extreme
case where head motion prediction error is large) in head
motion prediction, and minimize effects of motion prediction
error while also minimizing selected FOV size.
Next, we study what the values of ε2 should be in

the prediction error determination technique (Section V-D),
where the prediction motion is compared with actual motion
when the head and body motion, as well as controlling com-
mand, arrive at the edge device. The determination of body
motion prediction error is checking whether dx, dy, dz are all
within a given threshold ε2. Fig. 13 presents the body motion
prediction error using the LSTM model in the RM3 session.
In Fig. 13, body motion prediction using the LSTM model
achieves that around 99.99% (i.e., 0.9999) of time points sat-
isfy the dx < 0.6 mm, dy < 0.7 mm, dz < 0.45 mm. Thus,
we can observe that if we set the given threshold ε2 as 1 mm,
less than 99.99% of time points can be determined as ‘cor-
rect’ for body motion prediction in the proposed system,
meaning that there is less than 1 frame on average among
10,000 pre-rendered frames will be ‘incorrect’ while the rest
of more than 9,999 pre-rendered frames will pass the body
motion error determination successfully.

2) MULTI-TASK MODEL

Fig. 14(a) and (b) exhibit the results of our body motion
prediction for two application sessions VM1 and VM3
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FIGURE 14. Body motion prediction error in VM1 and VM3 sessions comparing the multi-task LSTM model with other predictive models.

respectively. In each figure, we compare six models (single-
task and multi-task models) and can make the following
observations.

• Fig. 14(a) shows the RMSE of d for body motion
prediction error in VM1, where we can see the multi-
task LSTM model achieves 56.2%, 23.7%, 18.5%, 3.2%,
26.7% improvement compared to Lin-A, Eql-A, MLP,
LSTM, multi-task MLP models. Our proposed multi-
task LSTM model achieves the smallest RMSE of d
(i.e., 0.096 mm) compared to other models.

• Fig. 14(b) presents the RMSE of d for body motion
prediction error in VM3, where we can see the
multi-task LSTM model achieves 53.5%, 19.7%, 6.4%,
4.4%, 10.5% improvement compared to Lin-A, Eql-A,
MLP, LSTM, multi-task MLP models respectively. Our
proposed multi-task LSTM model achieves the smallest
RMSE of d (i.e., 0.046 mm) compared to other mod-
els. In Fig. 14(a)(b), the reason that the prediction error
for body motion in VM1 is larger than VM3 is that
users continuously walk without stopping by any place
in VM1 while they tend to have less body motion and
teleport to other place using the controller in VM3.

• Similarly, in other sessions such as RM3, for RMSE
of d for body motion prediction error, the multi-
task LSTM model achieves 46.6%, 11.9%, 37.5%,
1.3%, 5.9% improvement compared to Lin-A, Eql-A,
MLP, LSTM, multi-task MLP models. The multi-task
LSTM model still works better than other five mod-
els. Moreover, in some cases like VM2, the multi-task
LSTM model achieves the same RMSE of d for body
motion prediction error with LSTM model (i.e., multi-
task LSTM model has 54.1%, 19.3%, 8.0%, 0%, 6.2%
improvement in RMSE of d compared to Lin-A, Eql-A,
MLP, LSTM, multi-task MLP models). The multi-task
LSTM model has a smaller RMSE of dy (i.e., 0.042 mm)
compared to the LSTM model (i.e., 0.046 mm) as well
as a larger RMSE of dx and dz. To achieve the smallest
RMSE of d for body motion prediction error, in this
case, we can consider using multi-task LSTM model to
predict body motion in the y-axis and two single-task

LSTM models to predict body motion in the x and
z-axis, so that the RMSE of d for this combined mod-
els choice is 0.063 mm, smaller than 0.066 mm obtained
by single-task LSTM models as well as multi-task LSTM
model. Thus, we can always improve the performance
by combing three trained models (multi-task LSTM with
single-task LSTM models) if each of them has the small-
est RMSE of dx, dy, and dz to achieve the smallest
RMSE of d.

D. RUNTIMES
Training and Prediction Times: Next, we briefly discuss the
training times and inference times taken by our proposed
prediction models on the edge device selected (Intel Core i7
Quad-Core processor with GeForce RTX 2060). Note that
the training for a proposed model is done offline only once
for a session with the training samples for that session, and
the prediction (testing) is done online for new users, however
one frame ahead to predict motion in advance. Hence, the
training times do not affect the end-to-end latency of the
system. Since the prediction is done for the user’s head and
body motion one frame ahead in advance, the prediction
time as well as FOV selection time have to be less than 1ms
(presented in Table 2).
The training time can be different for each session

depending on the number of training samples used. In our
experiments, for RM3 (which has the largest training data
size among all sessions), the training times of one epoch
for each single-task LSTM and single-task MLP models are
around 150 seconds and 40 seconds respectively, while the
training times of one epoch for the multi-task LSTM and
multi-task MLP models are around 270 seconds and 45 sec-
onds respectively. Thus for RM3, the training times for each
single-task LSTM model and multi-task LSTM model are
around 2 hours and 1.5 hours respectively, while the training
times for each single-task MLP model and multi-task MLP
model are around 0.55 hours and 0.6 hours respectively.
The training times for all the other applications/sessions
are lower than RM3 (e.g., for VM1, the training time for
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FIGURE 15. Average estimated error in α, β, γ -axis caused by different choices of
sliding window size in RM1 and RM3 sessions.

each single/multi-task LSTM/MLP model is lower than 18
minutes).
The prediction (testing) times, on the other hand, only

marginally varies between different applications and ses-
sions. The average prediction times over all the application
sessions considered in our experiments are the following:
0.09ms for each single-task LSTM model, 0.04ms for each
single-task MLP model, 0.38ms for the multi-task LSTM
model, and 0.04 ms for the multi-task MLP model. The above
shows that our proposed head and body motion prediction
models can execute in real-time on the edge node, and since
they are well below the time of 1ms (described in the next
paragraph), the predictions are feasible to be performed in
advance for the user’s head and body motion of next time
point.
Total Times of Prediction and FOV Selection: Prediction

time consists of head and body motion predictions: head
motion prediction using three single-task MLP (i.e., 0.12 ms)
and body motion prediction using either option (a) multi-
task LSTM (i.e., 0.38 ms) or option (b) multi-task LSTM
combined with one or two single-task LSTM models (i.e.,
0.38+0.09 ms or 0.38+0.18 ms). Thus prediction time for
head and body motions is 0.5 ms – 0.68 ms. FOV selection
includes two parts: two simple addition operations to cal-
culate horizontal FOV and vertical FOV in Equations (17)
and (18), and three averaging operations to calculate the esti-
mated value of dα , dβ , dγ (i.e., d̂α , d̂β , d̂γ ) as the average
head motion prediction error dα , dβ , dγ of the past nw frames.
FOV selection can be achieved in 0.00016ms when nw = 5
(proved to be a good choice in Section VI-E). Thus, the total
times of prediction and FOV selection is within 1 ms.

E. FOV SELECTION
Next, we evaluate the performance of our proposed slid-
ing window based FOV selection method, described in
Section V-C. As mentioned before, a sliding window of nw
frames (nw denotes sliding window size) is used to estimate
and obtain the new dα, dβ, dγ , the new selected horizon-
tal FOV θ ′

h, and vertical FOV θ ′
v before pre-rendering. We

have described how to calculate the estimated value of dα ,
dβ , dγ (i.e., d̂α , d̂β , d̂γ ) in Section V-C. Fig. 15 shows the
absolute value of the average estimated error in each axis
(i.e., average |d̂α − dα|, |d̂β − dβ |, |d̂γ − dγ |) caused by dif-
ferent choices of sliding window size nw (ranging from 1

FIGURE 16. CDF of estimated error in α, β, γ -axis when the sliding window size
nw = 5 in RM1 and RM3 sessions.

to 20 frames) in RM1 and RM3 sessions. We can see that
the smallest average estimated error can be achieved when
nw = 5 in both the sessions. The average estimated error
can be as low as less than 5.5 × 10−3 degree in each axis,
showing the efficiency of our approach. By achieving the
low average estimated error, we can have a better estimation
of dα, dβ, dγ , so that can finally reduce the adverse effect
of head motion prediction error.
We also study what the values of ε1 should be in

the prediction error determination technique (Section V-D),
where the prediction motion is compared with actual motion
when the head and body motion, as well as controlling
command, arrive at the edge device. The determination of
head motion prediction error is checking whether |d̂α −
dα|, |d̂β − dβ |, |d̂γ − dγ | are all within a given threshold
ε1. Fig. 16 shows the CDF of estimated error in α, β, γ -
axis when the sliding window size nw = 5 in RM1 and
RM3 sessions respectively. Thus, we can observe that if a
given threshold ε1 is set as 1◦, the estimated errors in each
axis (i.e., |d̂α − dα|, |d̂β − dβ |, |d̂γ − dγ |) are smaller than
ε1 all the time for both RM1 and RM3 sessions, meaning
that the head motion prediction is always ‘correct’ in this
case.
For further performance evaluation, we compare our

proposed sliding window based FOV selection method
(Section V-D) with method (a) selected FOV is a fixed
larger FOV, and method (b) using predicted FOV as the
selected FOV. Specifically, for our proposed sliding win-
dow based FOV selection method, we use experimental
results that average estimated in α, β-axis are 4.8 × 10−3

and 5.5×10−3 degrees respectively, shown in Fig. 15.
For method (a), the fixed larger FOV has the size of
(110 + 60)◦ × (110 + 60)◦ to cover potential prediction
error within 30◦. For method (b), the selected FOV is
predicted FOV in size of 110◦ × 110◦. As for evaluation
metrics, we calculate (i) overlap of pre-rendered predicted
view with actual FOV (e.g., 110◦ × 110◦ for HTC Vive),
and (ii) overhead ratio for pre-rendering computation and
network bandwidth needed to transmit rendered FOV from
edge device to VR glasses, defined as the pre-rendering
view size divided by the actual FOV size. For instance,
when the pre-rendering view size is 120◦ × 120◦, the
overhead ratio for pre-rendering computation and network
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FIGURE 17. (a) Overlap of pre-rendered predicted view with actual FOV versus head
motion prediction error in α and β-axis, (b) Overhead ratio versus head motion
prediction error in α and β-axis.

bandwidth needed can be calculated as 1.19 according to
our definition.
As described in Section VI-C, our proposed sliding win-

dow based FOV selection method can address the extreme
cases where head motion prediction error is large. We com-
pare the above three methods when dealing with head motion
prediction error ranging from 0 to 30◦ in α and β-axis.
Fig. 17(a)(b) show the overlap of pre-rendered predicted
view with actual FOV and overhead ratio versus head motion
prediction error in the α and β-axis (the coordinate of head
motion shown in Fig. 4(c)). Note that when the x-axis of
Fig. 17(a)(b) equals to 10◦, we consider the situation of head
motion prediction error in α and β-axis (i.e., dα, dβ ) are both
10◦ and no head motion prediction error in the γ -axis (i.e.,
dγ ). In Fig. 17, we can see that our proposed sliding window
based FOV selection method achieves (i) the overlap with
actual FOV as high as 99.991% (which is close to 100%
achieved by method (a) and better than method (b)), and
(ii) the corresponding overhead ratio is always smaller than
method (a).
For example, in our experiments, we observe that when the

prediction errors in α and β-axis equal to 5◦, our proposed
sliding window based FOV selection method achieves an
overhead ratio of 1.19, compared to an overhead ratio of
2.39 for method (a), which corresponds to around 50%
reduction of overhead ratio and 47% saving of bitrates
(bandwidth needed) compared to method (a). Thus, the high
overlap with actual FOV and small overhead ratio illus-
trate that our proposed sliding window based FOV selection
method has a good user experience (almost no miss of
actual FOV) and low overhead ratio for pre-rendering com-
putation as well as network bandwidth needed to transmit
rendered FOV from edge device to VR glasses, compared to
methods (a) and (b).

F. EFFECT ON USER EXPERIENCE
To evaluate the effect on user experience caused by the
prediction error between the actual view and the predicted
view which will be pre-rendered and delivered to the user, we
propose following metric. Assume that we have two views
V1 and V2 in the RGB format. Firstly, we convert the RGB

FIGURE 18. (a) Actual user’s view; (b) Predicted user’s view with x-axis error
�x = 0.1m; (c) Idif obtained from views in (a) (b).

FIGURE 19. The average percentage of mismatched pixels for different models
during each session.

images (V1 and V2) to grayscale intensity images I1 and
I2 by eliminating the hue and saturation information while
retaining the luminance [43]. For each pixel i in the grayscale
intensity images, we calculate the difference between the two
intensity images, Idif , as follows.

Idif (i) =
{

I1(i) − I2(i), if I1(i) ≥ I2(i)
0, otherwise

(21)

Note that we set the Idif as 0 in the second case of
Equation (21), because otherwise the motion change of the
same object will be presented in Idif twice: positive and neg-
ative respectively. Thus we only keep the positive one (i.e.,
the first case in Equation (21)) to evaluate the difference
between the two views. Fig. 18 presents an example of two
views and the corresponding Idif . In Fig. 18(c), we can see
that most of pixels in the view have the intensity value of 0
while the residual pixels have intensity values larger than or
equal to 1. We define the percentage of mismatched pixels as

Rdif = Ndif
Nframe

, (22)

where Ndif represents the number of pixels which have dif-
ference in grayscale intensity and Nframe is the total number
of pixels per frame.
Fig. 19 illustrates the average percentage of mismatched

pixels caused by body motion prediction error. Due to the
large number for each session in the test dataset, we calculate
this value by doing body motion prediction and rendering
corresponding predicted as well as actual views for 300
randomly selected samples from test data for every session.
Fig. 19 demonstrates that compared to other models in each
session, our proposed multi-task LSTM and LSTM models
achieves less adverse effect on user experience caused by the
body prediction error (denoted with green and yellow bars).
Using the multi-task LSTM model, the average percentage
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FIGURE 20. The percentage of pixels having pixel difference for versus dx , dy , and dz .

FIGURE 21. The percentage of pixels versus time points achieved by the multi-task
LSTM model during VM2.

of mismatched pixels can be smaller than 1% in both VM3
and RM3 sessions.
Next, we define the percentage of pixels as

Rp = Np
Nframe

, (23)

whereNp represents the number of pixels andNframe is the total
number of pixels per frame.For eachpixel, it canhave avalueof
grayscale intensity difference in Idif (which equals to a integer
between 0 to 255). Apart from discussion in Section VI-C1,
by using this metric of the percentage of pixels, we further
study what the values of ε2 should be in the prediction error
determination technique (Section V-D), where the prediction
motion is compared with actual motion. The determination of
body motion prediction error is checking whether dx, dy, dz
are all within a given threshold ε2. Fig. 20 shows an example
of the percentage of pixel versus different dx, dy, and dz
in Virtual Museum application. We can observe that when
dx = 1 mm, dy = 1 mm, dz = 1 mm, the percentage of pixels
is more than 97%, 95%, 97% respectively corresponding to
pixel difference less than 3 (pixel difference = 0, 1, or 2),
which means ε2 = 1 mm can be a good choice for the body
prediction error determination.
Furthermore, for our proposed multi-task LSTM model,

we evaluate the adverse effect caused by body motion
prediction error using metric of the percentage of pixels.
Fig. 21 presents the percentage of pixels versus the time
points achieved by the multi-task LSTM model during the
VM2 session. We can see that most of the time, the per-
centage of pixels for pixel difference = 0 is larger than 96%
(equivalent to the average percentage of mismatched pixels

smaller than 4%). The average percentage of pixels for pixel
difference = 0, 1, 2, 3, 4, 5 equals to 97.43%, 2.49%, 0.03%,
0.009%, 0.006%, 0.002% respectively, illustrating that the
difference between actual view and predicted view is very
small. Thus, our proposed multi-task LSTM model performs
well in terms of small adverse effect caused by body motion
prediction error.

VII. CONCLUSION AND FUTURE WORK
In this article, we propose a head and body motion prediction
model for 6DoF VR applications, to enable predictive pre-
rendering using edge intelligence and thus address latency
challenge in edge computing-based 6DoF VR. We present a
multi-task LSTM model and an MLP model to learn general
head and body motion patterns and predict the future viewing
direction and position based on past traces. We also develop
a FOV selection technique for pre-rendering a larger FOV
to reduce head motion prediction error and the motion error
determination technique as part of the system mechanism.
Our method shows good performance on a real motion trace
dataset with high precision.
Our planned future work includes (i) further development

and evaluation of the proposed edge-based predictive pre-
rendering approach from latency perspectives, (ii) performing
subjective studies to understand and quantify user experi-
ence using our proposed approach, (iii) further experiments
predicting more time points and pre-delivering from edge to
HMD, and (iv) considering multiple users and more possi-
ble gaming effects of the controller in applications, so as
to address more challenging latency scenario. We consider
applying our approach to more VR applications to show the
feasibility of our approach. We also plan to study and develop
predictive models for hand motion obtained from controllers
to enable more complete 6DoF immersive experiences.
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