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ABSTRACT Due to the dramatic increase in wireless data traffic and the associated increase in energy
consumption, designing energy-efficient wireless networks with improved spectral efficiency is a pressing
concern. The focus of this article is the design of a green, highly energy-efficient cellular heterogeneous
network (HetNet) by taking advantage of multiple-input-multiple-output (MIMO) structure and deploy-
ment of small cells. We consider the downlink of a two-tier HetNet, in which multiple-antenna small
cells are coordinated to serve users. Even though the deployment of MIMO together with small cells
improves the communication system’s performance in terms of data rate and reliability, circuit energy
consumption in such a network is a critical issue. To address this, an energy-efficient antenna selection and
radio resource block assignment algorithm is proposed for the small cells, and a single radio-frequency
(RF) chain structure is considered for the massive MIMO macro base station. Then, while coordinating
transmissions between cells subject to user-centric clustering, an energy-efficient beamforming design and
power allocation optimization problem with respect to the quality of service requirement of users, trans-
mit power budget of base stations, and fronthaul capacity is formulated; the problem is solved using the
Dinkelbach method. Simulation results demonstrate the performance potential of our proposed algorithm
in terms of energy efficiency and spectral efficiency.

INDEX TERMS Multiple-input-multiple-output (MIMO) system, small cells, energy efficiency,
interference management, radio resource allocation, heterogeneous cellular networks (HetNets), coordinated
transmission.

I. INTRODUCTION

FIFTHGENERATION (5G) cellular systems are expected
to answer increasing capacity demands and quality of

service (QoS) requirements of mobile users. For exam-
ple, a seven-fold increase in global mobile data traffic is
forecast between 2017 and 2022 [1]. Moreover, in order
to make the global telecommunication network greener,
enhancing energy efficiency (EE) is also of very high
interest. 5G networks are expected to provide increases
in EE commensurate with their improvements to spectral
efficiency (SE) [2]. Multiple-input multiple-output (MIMO)
transceiver structures, small cell (SC) deployment, and

advanced interference mitigation techniques are the key
candidates to help enable the greener 5G network [3].
In particular, large-scale antenna arrays, also known as

massive MIMO, are of interest for 5G systems, due to sev-
eral beneficial features that arise from having many antenna
elements. These include increased SE and EE for no addi-
tional transmitted power, enabling the use of very simple
linear precoding methods, and robustness to fading and
interference [4], [5]. Massive MIMO transceivers are sup-
ported in the 3rd Generation Partnership Project (3GPP)
standards in Release 15 and above [6], [7]. Moreover,
massive MIMO transceivers have been commercialized
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and have already been implemented in practical cellular
systems [6], [8].
The combination of MIMO and small cells overlaying

larger ones forms a two-tier MIMO heterogeneous cellu-
lar network (HetNet), which can increase both SE and EE
significantly and meet 5G requirements, but also brings
new challenges. In practice, densification of cells causes
severe inter-cell interference, which restricts performance
gains and the commercial deployment of HetNets. To mit-
igate interference, increase the cell-edge throughput, and
enable the potential gains of HetNets, it is crucial to
utilize advanced signal processing techniques; coordinated
multipoint (CoMP) transmission and reception is a potential
solution [9], [10]. This technique has been introduced for
Long Term Evolution - Advanced (LTE-A) and standardized
by the 3GPP since Release 11 [11]. CoMP is considered to
be a fundamental technique in 5G networks [12], [13]. It
is also essential in the implementation of cell-free massive
MIMO [4, Ch. 7.4.3], [8], [14]. Qualcomm has implemented
a 5G CoMP testbed for high capacity and ultra-reliable com-
munications, the results of which have indicated that CoMP
is an important technology for 5G cellular networks [15].
The combination of small cells, CoMP, and massive MIMO
has been investigated for 5G in [16], where its effect on SE
has been discussed.
Deploying CoMP in HetNets adds complexity and signal-

ing overhead and heavily depends on the backhaul constraints
and density of SCs [17]. A cloud radio access network
(CRAN) or heterogeneous CRAN (H-CRAN) design is a
potential solution to handle these issues [18], [19]. The
CRAN architecture is composed of a baseband unit (BBU)
that performs baseband processing, connected by radio-over-
fiber to remote radio heads (RRHs) that act as distributed
transceivers. Radio resource allocation can be performed
jointly for the connected RRHs at the BBU. At the same
time, coordinated downlink transmission in a cluster of SCs
can mitigate the inter-cell interference within the cluster,
while precoding/beamforming of signals can mitigate intra-
cell interference between users. It is well accepted that
coordination should be localized to nearby cells/antennas,
as there are diminishing returns for increasing the antenna
set coordinated for each user, resulting in increasing pro-
cessing costs and fronthaul traffic approaching its capacity
limits.
Although CRANs are commonly envisioned under the

assumption of a fiber-based backhaul and/or fronthaul, some
network operators have also considered the use of a wire-
less backhaul/fronthaul instead, such as a millimeter-wave
mesh backhaul [13]. Even though a fiber-based fronthaul
is more reliable and has a much larger capacity, in some
environments it is not possible to deploy it. The deploy-
ment of fiber may also incur substantial costs for installation
or leasing, which smaller operators may be unwilling or
unable to contend with. In comparison, a wireless fron-
thaul is cheaper and more flexibly deployed (which also
aids cell densification), but has a much smaller and variable

capacity. Hence, when optimizing the performance of a
network, a limited fronthaul capacity should be accounted
for [20]. In [18] and [19], the available research and chal-
lenges of massive MIMO-enabled H-CRANs are surveyed,
and the issues of system architecture, spectral and energy
efficiency performance, and promising key techniques are
discussed.
In a HetNet, the joint optimization problem of allocat-

ing resources (e.g., antennas, power, etc.) under constraints
(e.g., on available transmit power, minimum user rates, etc.)
while also designing the precoding strategy is complex. Most
commonly, the allocation strategy approach is intended to
maximize the system sum rate or SE; [21]–[23] provide
just a few examples of different approaches to it. The EE
maximization (EEmax) problem is less commonly consid-
ered, but is of increasing importance in consideration of
the energy consumption and environmental impact of 5G
networks.

A. RELATED WORKS
In [24], an energy-efficient resource allocation problem has
been formulated for the downlink of an orthogonal frequency
division multiple access (OFDMA) H-CRAN. By consider-
ing the power constraints of RRHs and QoS requirements
of users, a non-convex optimization problem has been for-
mulated there to maximize EE. For inter-tier interference
mitigation, an enhanced soft fractional frequency reuse
method has been used. In [25], the authors have proposed
a joint resource block (RB) and power allocation algorithm
for OFDMA-based femtocell HetNets, where they aim to
maximize the weighted sum of the individual energy effi-
ciencies and the network energy efficiency. In [26], an
EEmax problem has been formulated as a multi-objective
optimization problem for subchannel assignment and power
allocation in an OFDMA HetNet. In [27], energy-efficient
beamforming design and power allocation for both macro
cells and SCs has been addressed considering user QoS
requirements and transmit power budget constraints. In [28],
base stations (BSs) cooperate with each other to jointly
design their linear precoders to maximize the network’s EE.
Block diagonalization (BD) [29] has been used for the pre-
coders, and both centralized and decentralized approaches
have been considered for the EEmax optimization problem.
To further increase the EE, the problem of joint BS selec-
tion/muting and precoder design has been considered as
well. The authors of [30] have studied energy-efficient trans-
mit power control for both cooperative and non-cooperative
regimes in MIMO HetNets, incorporating BS and antenna
activation control schemes. Reference [31] has investigated
joint antenna selection and spatial switching for QoS-
constrained EE maximization in a MIMO simultaneous
wireless information and power transfer (SWIPT) system.
It has considered a non-convex joint optimization problem
of eigenchannel assignment, power allocation, and active
receive antenna set selection. The authors of [32] have con-
sidered a problem of joint antenna selection and power
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allocation for a massive MIMO transmitter to maximize
EE. An effective iterative algorithm based on a Lagrangian
dual method was also proposed to solve the non-convex
problem.
The authors of [33] have proposed a framework to eval-

uate the spectral and energy efficiency for massive MIMO
HetNets that guarantees user QoS, mitigates interference,
and provides sufficient capacity for a wireless backhaul.
To solve the non-convex optimization problem, an algo-
rithm based on Lagrange duality and successive convex
approximation has been proposed. In [34], interference man-
agement and the power allocation problem have been jointly
considered for a MIMO non-orthogonal multiple access
(NOMA) HetNet. First, to cancel the inter-cluster and co-
tier interference, an interference alignment and coordinated
beamforming technique has been proposed for both macro
cells and SCs. Then, the cross-tier interference is managed
by optimizing the allocated power to the macro BS and
SC BSs to maximize the sum rate. Reference [35] has
investigated the resource optimization problem of NOMA
HetNets with SWIPT. By decoupling subchannel allocation
and power control, a low-complexity subchannel matching
algorithm has been designed. Then, an EEmax problem
was solved for optimal power allocation using Lagrangian
duality. The authors of [36] have considered the problem
of joint user association, carrier allocation, antenna selec-
tion, and power control in the uplink of a MIMO HetNet
to maximize the data rate of small cell users, by impos-
ing a maximum threshold on the cross-tier interference. By
decomposing the original problem into two subproblems
and finding an iterative solution, a locally optimal solu-
tion has been obtained. Reference [37] has investigated the
EEmax problem via a joint design of sub-channel assign-
ment, power control, and antenna selection for the uplink of
a multi-cell network. The problem was first formulated as
a multi-objective optimization problem and then converted
into a single objective optimization problem via the weighted
Tchebycheff method. To tackle the intractability, a subopti-
mal resource allocation algorithm based on the majorization
minimization approach has also been proposed.
For the resource allocation problem in HetNets, designing

efficient clustering methods and user association strategies
is essential for obtaining good system capacity and achiev-
ing interference management [38]. However, most of the
articles listed above assume that users have already been
associated with BSs. The authors of [39] have consid-
ered the joint optimization problem of user association,
subchannel allocation, and power allocation for downlink
transmission in a multi-cell multi-association (i.e., where
users may associate with more than one BS) OFDMA
HetNet, with single-input single-output (SISO) and single-
input multiple-output (SIMO) scenarios. By dividing the
weighted sum-rate maximization problem into two sub-
problems, a locally optimal solution has been obtained by
alternating between solving these two subproblems. A sim-
ilar approach has been followed by the authors of [40], for

which a deep reinforcement learning method has been uti-
lized to tackle the user association and resource allocation
optimization problem. In [41], a joint user association and
power allocation optimization problem has been tackled
using non-cooperative game theory in a relay-based ultra-
dense HetNet. To maximize the total rate of the users while
guaranteeing QoS requirements and throughput balance, the
proposed game has been divided into two sub-games and
an iterative algorithm has been implemented to perform the
sub-games in sequence and guarantee convergence.

B. PROBLEM DESCRIPTION
In this article, we study the network EE for the downlink
of a two-tier multi-carrier MIMO coordinated HetNet. The
network structure is quite similar to an H-CRAN, in that
a central processing node is assumed to collect CSI and
perform calculations related to precoding and resource allo-
cation; however, the transmit nodes are BSs and not simpler
RRHs. Frequency selectivity of the broadband channel is
addressed through the use of OFDMA, splitting up the broad-
band channel into narrowband frequency-flat subchannels.
Throughout most of this article, perfect CSI is assumed
to be available at the central processing node; a detailed
examination of imperfect CSI is left for future work. The
macro BS is equipped with a large-scale antenna array (i.e.,
massive MIMO), whereas each SC BS is equipped with
a few antennas. All users are assumed to have a single
receive antenna. Minimum data rate constraints are imposed
to ensure a degree of fairness of resource allocation to users.
Furthermore, since one of the performance limiting factors
of the network may be its limited-capacity fronthaul to send
user data and allocation decisions to the BSs, we consider
the capacity of the fronthaul as a constraint, as well as the
standard transmit power limits per BS. Since we have a two-
tier network, in which frequency is reused densely, inter-tier
and inter-cell interference may be severe without BS coordi-
nation. Therefore, we use coordinated beamforming within
our HetNet. The CoMP clusters are user-centric; that is, the
group of BSs chosen to coordinate for each user is cus-
tomized for that user (as opposed to, for example, several
fixed sets of nearby coordinated transmit nodes). To mitigate
interference from the SC tier, null-space projection beam-
forming similar to BD [29] is applied at the SCs, whereas
zero-forcing (ZF) beamforming is performed at the macro BS
to mitigate interference from it. The overall precoder design
problem is incorporated into the power allocation problem
when maximizing the EE.
In an EEmax problem, besides the radiated power used

to transmit data, additional power that is independent of the
data also contributes to the transmitter energy usage. For
example, the latter category includes power used by base-
band processing, mixers, digital-to-analog converters, filters,
etc. Also, power is consumed by the radio frequency (RF)
chain of each antenna used for the transmission. This means
that utilizing the most appropriate number of antennas for
the transmission can lead to higher EE. Antenna selection
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has also been used to improve the EE in [31], [32], [42].
Moreover, with the use of OFDMA, there arises the problem
of assigning users to different RBs on the various subchan-
nels; most related work only considers single-carrier systems.
Hence, overall we propose a low-complexity energy-efficient
joint antenna selection and RB allocation scheme for the SCs.
The selection is based on the Frobenius norm (F-norm) of
the user’s channel gains from the antennas of its serving cell,
taken over all antennas when doing antenna selection, and
over the selected active antennas when doing RB allocation.
At the macro BS, due to the use of massive MIMO,

the power dissipated in antenna RF chains could be signifi-
cantly higher in a traditional architecture with one RF chain
per antenna. Some works in the literature have proposed to
reduce massive MIMO hardware complexity by employing
hybrid analog-digital structures with fewer RF chains [43].
However, in this article, we instead adopt a single-RF-chain
transmitter structure that is based on load modulation instead
of voltage modulation [44], [45]. This structure requires no
mixer and only a single power amplifier (PA) outputting a
constant-envelope sinusoid, yet can still obtain the full spa-
tial multiplexing gain as the traditional transceiver structure.
We refer the reader to [44], [45] for more details.
5G and beyond cellular systems are evolving and getting

more complex. Hence, in this work, we incorporate the tech-
niques described earlier in the introduction together, so as to
provide a reasonable approximation to a realistic system. Our
reasons for the choice of these techniques to be combined
are the following:

• Massive MIMO is a key enabler for enhanced SE and
EE and part of the 5G standards;

• HetNets are commonly considered for improving
the network performance and reflect modern cellular
network layouts;

• CoMP reduces cell-edge and inter-cell interference
caused by cell densification and HetNet layouts;

• H-CRAN is a potential architecture to help enable
CoMP, and it is included in the standards;

• OFDMA is the preferred approach to enable high
bit-rate transmission on broadband frequency-selective
channels;

• Antenna selection can reduce the power consumption
by RF chains in the small cells;

• Antenna selection is not desirable in a massive MIMO
system (doing so may cause the transceiver to leave the
so-called “massive MIMO regime” [4]), so we consider
the load-modulated transceiver architecture instead for
its potential EE savings.

C. MAIN CONTRIBUTIONS
Our focus in this article is to maximize the EE of a MIMO-
enabled H-CRAN, which is a candidate architecture for 5G
systems [18], [46]. In an H-CRAN, we need to consider two
factors to achieve an acceptable and energy-efficient system
performance. First, due to the potential capacity constraint
of the fronthaul, to manage the interference CoMP should

be limited to the BSs near a given user. Hence, we consider
energy-efficient user-centric clustering and CoMP precoding
is performed at both the macro cell and SCs. Second, radio
resources (i.e., RBs and power) should be optimally allo-
cated to maximize EE. Therefore, in this article, a joint
RB allocation and antenna selection algorithm is proposed
and power allocation optimization is performed. To further
reduce power consumption, in addition to antenna selection
at the SCs, a load-modulated single-RF-chain structure is
also considered for the massive MIMO macro BS.
Overall, we can summarize our contributions as follows.
• While previous work in the literature considers the
EEmax problem in various scenarios, in our examina-
tion we combine the factors of massive and small-scale
MIMO in a two-tier HetNet, OFDMA, coordinated
beamforming, user-centric clustering, antenna selection
and RB assignment, transmit power constraints and allo-
cation, minimum data rate constraints, and fronthaul
capacity constraints, altogether at the same time. To
our knowledge, the examination of a system combin-
ing all these factors simultaneously has not been well
investigated in the literature. For example, [24]–[27]
do not consider antenna selection, [27], [28], [30]–[33]
consider single-carrier systems, while [31] and [32] are
also single-tier. A constrained fronthaul seems a partic-
ularly rare consideration for EEmax problems; none of
the above papers includes it. (While [33] does ensure
sufficient data rates are allocated to the backhaul for
the SCs, it does not set an explicit maximum constraint
on those rates.) Table 1 summarizes some of the related
work in the literature and compares it to the work in
this article.

• Our use of the single-RF-chain transceiver structure for
the massive MIMO macro BS is also relatively novel,
especially in the EEmax context. We formulate a power
consumption model for this type of transceiver, and
examine the EE both of the macro cell and the overall
network in comparison with a traditional transceiver
structure with one RF chain per antenna.

• We also propose a novel joint antenna selection and RB
allocation algorithm, for which we compare its com-
plexity and EE performance with other algorithms. For
the EEmax power optimization problem itself, our use
of coordinated beamforming with user-centric clustering
together with our choice of precoding allows the system
to be approximated by one in which users do not expe-
rience interference. This further allows the non-convex
problem to be reformulated into an equivalent feasible
convex one, which can be solved using the commonly-
used Dinkelbach method [47], [48]. We derive closed-
form expressions for the optimal power allocation using
the Lagrange dual decomposition method. Simulations
examine the no-interference approximation to show
when and how well it holds. We furthermore exam-
ine the effect of cell association bias on the EE in
our system. The results demonstrate that our overall
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TABLE 1. Summary of related work and comparison with our proposed approach.

proposed scheme is more energy efficient than the
reference schemes.

The remainder of this article is organized as follows. In
Section II we present the system model, describe the cell
association and user-centric clustering methodology used,
and outline the performance metrics of interest. This section
also contains the proposed power model for the single-RF-
chain transmitter. Section III describes the proposed antenna
selection and RB allocation algorithm, the precoding design,
and the EEmax problem formulation. The methodology and
algorithm to optimize the solution for the power allocation
problem are given in Section IV, and the simulation setup
and results are presented in Section V. Finally, we conclude
this article in Section VI.
Notation: Variables in italics denote scalars, whereas bold-

face uppercase and lowercase variables denote matrices and
vectors, respectively. A calligraphic variable denotes a set.

(·)T , (·)H , and (·)† denote the transpose, Hermitian transpose,
and Moore-Penrose pseudoinverse of a matrix, respectively.
In means the n× n identity matrix. ||A||F is the Frobenius
norm of a matrix A. �x� and �x� denote the floor and the
ceiling operators, respectively.

II. SYSTEM MODEL
A. CELLULAR NETWORK MODEL
We consider the downlink of a HetNet where a macro cell
containing a massive MIMO enabled macro BS with NM
antennas is densely overlaid with S SC BSs each equipped
with NS antennas. The total number of single-antenna users
served by all cells is NU . For simplicity, we assign s = 0
to the macro BS; then, the set of all BSs can be denoted as
S = {0, . . . , S}.
OFDMA is utilized in the network in order to convert

frequency-selective MIMO channels into a series of RBs on
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parallel frequency-flat fading subchannels. Each subchannel
is assumed to be quasi-static in time, meaning that the chan-
nel gains stay constant during each transmission, then change
independently for the next transmission. The total bandwidth
of the system is W and B RBs each with a bandwidth of
W0 = W/B are available in each scheduling interval.

In a dense HetNet deployment, interference is the primary
bottleneck that limits the system performance, especially for
users near the edges of cells. To address this problem, we use
a structure similar to a CRAN as a solution, with a central-
ized processing structure that is inherently suited to mitigate
interference through the use of CoMP. Specifically, we con-
sider coordinated beamforming, as it requires less overhead
data transfer on the capacity-constrained fronthaul. In CoMP,
a set of BSs that coordinate transmissions is often called a
cluster. Clusters can be fixed or dynamically changing over
time, but in both cases, they can potentially end up shifting
the interference problem from the cell edge to the cluster
edge (i.e., they cause users near the cluster edge to experience
the worst interference). To avoid this, we form user-centric
clusters; that is, the set of BSs that coordinate for each user
is customized for that user. Only nearby SCs coordinate for
any given user; it is unnecessary to cluster distant ones, since
they cause little interference, and doing so would contribute
needlessly to the overhead on the fronthaul. The macro BS
may also be part of the cluster. We discuss our clustering
method in more detail in the following subsection.

B. CELL ASSOCIATION AND USER-CENTRIC
CLUSTERING
The layout of our proposed clustered HetNet is shown
in Fig. 1. Joint optimization of user association to cells
and resource allocation would lead to an overall optimal
solution when aiming to maximize the EE of the system.
For example, the authors of [49] have proposed an algo-
rithm based on game theory to solve the joint problem
of user association, power allocation, and frequency sub-
band assignment. Their goal was to maximize a system
utility metric with typical constraints on the maximum
transmit power and the total number of RBs assigned.
Unfortunately, in problems like ours in which many parame-
ters need to be optimized while satisfying several constraints,
the non-convex joint optimization problem will become
so complicated that the optimal solution can only be
obtained by exhaustive search with an infeasibly large
computational load [50]. Thus, we instead decompose the
mixed-integer nonlinear programming problem into a series
of subproblems [51].
The problem of energy-efficient user association has been

recently discussed in the literature and several analytical and
heuristic algorithms have been proposed. However, most of
these schemes have made some simplifying assumption that
is not applicable to our problem. For example, the authors
of [52] have examined a user association optimization
problem to maximize both EE and SE along with a heuristic
solution method; however, they have assumed single-antenna

FIGURE 1. System layout of coordinated HetNet with clustered MIMO transceivers.
In this CRAN-based network, there is a massive MIMO macro BS with NM antennas
whose coverage is overlaid with several densely-deployed SC BSs each equipped with
NS antennas. Fronthaul links with limited capacity connect all BSs to the central
processing node, which coordinates user clustering, precoding, and resource
allocation for its connected BSs.

transmitters and equal power allocation between subcarriers.
By modifying the method of [52] for a multiple-antenna
scenario, though, it can be used as a benchmark for com-
parison with our proposed scheme, as discussed more in
Section V. In this article, we adopt a biased cell association
policy [53] along with user-centric clustering. Biased user
association leads to better load balancing [54], [55], but the
improvement in performance due to load balancing may not
completely compensate for the SINR degradation resulting
from associating with weaker BSs. Thus, the choice of the
bias factor to maximize EE is an important problem, which
will be examined in Section V.
Let the average received signal strength or channel qual-

ity (in dB) received from BS s by user n be denoted by
γs,n. The channel quality (along with the CSI in general)
can be measured using a reference signal. In FDD systems,
the users would measure the downlink channel and feed
back this information to the BSs. In TDD systems, the BSs
could measure uplink channels using reference signals sent
by users and then assuming channel reciprocity obtain CSI
for the downlink. γs,n is proportional to the maximum trans-
mit power available at BS s, and accounts for path loss and
shadowing, but not small-scale fading. We then define a bias
ϒs in dB in favor of BS s for load balancing purposes [56].
User n then associates with and is served by cell s∗n for
which

s∗n = arg max
s

{
γs,n + ϒs

}
(1)

For our user-centric clustering, each user will be served
by one BS in its cluster, while the remaining BSs in the
cluster perform coordinated beamforming for that user. We
follow a similar approach as in [23] to select BSs for the
cluster of each user. The cluster is based on the difference
of the average received signal strength. BSs whose signal
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strength is within ζc dB of the signal strength of the serving
BS s∗n for user n are selected for the cluster Sn for user n:

Sn = {l ∈ S|γs∗n,n − γl,n ≤ ζc
}

(2)

The value of the clustering threshold ζc should be chosen
such that the interference from BSs that are not included in
the cluster for user n is negligible. From (2) it is clear that in
general cell-center users will have fewer BSs in their clus-
ters than cell-edge users. There is some similarity between
our work and [27], in which an “interference zone” around
each SC is considered when forming clusters, to determine
whether the BS should be in a given cluster. The differ-
ence is that the clusters in [27] are therefore BS-centric,
whereas we perform user-centric clustering. Both the asso-
ciation bias and the clustering threshold can potentially also
be used for load balancing, to offload users to lightly-loaded
cells and/or avoid overloading in other cells. However, this
aspect is outside the scope of this work.
Let Ks (with cardinality Ks) denote the set of users that are

associated with and receive information from BS s, and let
Is (with cardinality Is) denote the users that are associated
with other BSs, but that have BS s as a member of their
cluster. Hence, BS s coordinates with other BSs to design
its precoding vectors such that it does not interfere with the
users in Is. Then, we define the set Ls = Ks ∪Is, including
all the users that have BS s in their cluster, with cardinality
Ls = Ks + Is.

C. PERFORMANCE METRICS
In a MU-MIMO system, several users can receive their data
at the same time in each RB, which causes different levels
of interference. The complex-valued baseband signal ys,n,b
received by user n served by BS s in RB b is expressed as

ys,n,b = √
�s,nhs,n,bfs,n,bxs,n,b

+
∑

i∈Ks\{n}

√
�s,nhs,n,bfs,i,bxs,i,b

+
∑

r∈S\{s}

∑

j∈Kr

√
�r,nhr,n,bfr,j,bxr,j,b + ns,n,b, (3)

where fs,n,b ∈ CNs×1 and xs,n,b are the complex-valued beam-
forming vector and data symbol from BS s to user n in RB
b, respectively (cf. [4]). We also define ts,b =∑n fs,n,bxs,n,b
as the transmitted signal vector from BS s on RB b. �s,n is
the large-scale signal power gain/attenuation between BS s
and user n, which includes path loss and log-normal shad-
owing. ns,n,b ∼ CN (0, σ 2) is the additive white Gaussian
noise (AWGN) at user n on RB b.

hs,n,b ∈ C1×Ns denotes the small-scale fading of the
MIMO channel vector between user n and the BS s for
RB b. hs,n,b is modeled as ∼ CN (0,Rs,n), which repre-
sents frequency-flat spatially-correlated Rayleigh fading on
each subchannel, where Rs,n is the spatial correlation matrix
between BS s and user n. The channel gains are indepen-
dent between users and for each RB b, though we assume
each RB has the same spatial correlation matrix for a given

s and n. For SCs, the antennas are assumed to be located
closer to the ground, so that SC channels experience a rich
scattering environment. As such, there is assumed to be no
spatial correlation between antennas, so Rs,n = INs for SCs.
In contrast, the macro BS antennas are assumed to be higher
up, such that scatterers are located only near the users (i.e.,
localized scattering). In this case, we model element (l,m)

of R0,n by [4, eq. (2.24)]:

exp

[

−2π jdH(l−m) sin(φ) − σ 2
φ

2
(2πdH(l−m) cos(φ))2

]

(4)

Equation (4) models a Gaussian spread of angles of depar-
ture of paths from the antenna array.1 In (4), dH is the
antenna spacing (in number of wavelengths), φ is the angle
(in radians) between the user and the antenna array, and σφ

(in radians) is the angular standard deviation (ASD) of the
multipath angles around the nominal angle φ. Equation (4)
is valid when the ASD is small, e.g., below π

12 radians (15°).
In (3), the summation in the second term is intra-cell

interference between users served by BS s, whereas the
double summation in the third term represents inter-cell
interference from BSs other than the one sending data to
user n. The goal of clustering is to reduce the magnitude
of the third term as much as possible, ideally such that it
becomes negligible.
In our network, resources are pooled and allocated cen-

trally, and CSI can be shared among connected BSs. Since
all BSs of any given cluster are connected to the cen-
tral node where processing is done, the channel and data
information of that cluster’s user is available at the central
node and resource allocation and precoding vector design
can be performed collaboratively for all clustered BSs.
The total sum data rate (in bits/s) is calculated as

C =
S∑

s=0

NU∑

n=1

B∑

b=1

δs,n,bcs,n,b, (5)

where cs,n,b, the throughput of user n that receives data from
BS s on RB b, is

cs,n,b = W0log2(1 + σs,n,b) (6)

δs,n,b is a binary user-BS association and RB assignment
indicator, which is equal to 1 if user n receives data from
BS s on RB b, and 0 otherwise. σs,n,b is the signal-to-
interference-plus-noise ratio (SINR) and ps,n,b is the power
allocated to the nth user from the sth BS on the bth RB.
We also denote N0 as the spectral density of the AWGN.
The SINR is expressed as in (7), shown at the bottom of
the next page (cf. [4]).

1. Note that we have inserted an additional minus sign at the start of
the exp term in (4), in comparison to [4, eq. (2.24)]. The equation in [4]
is for signals on the uplink. For the downlink, we add the minus sign to
obtain the phase reversal experienced by signals traveling in the opposite
direction.
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Since our goal is to maximize EE, defined as the sum rate
achieved per unit power consumed by the network equipment
(in bits/s/W, or equivalently bits/J) [4], it is also necessary
to define an accurate power model. The power consumed by
each transmission node s includes (radiated) transmit power,
dynamic circuit power, and static circuit power [57]:

Ps = 1

ηs

∑

n∈Ks

B∑

b=1

δs,n,bps,n,b + NsP
dyn
s + Pstas (8)

ηs is the efficiency of the PA, Pdyns is dynamic circuit power,
and Pstas is static circuit power. Dynamic power refers to the
power consumed in the RF chains connected to the antennas.
This includes the power consumption of circuitry such as
mixers, digital-to-analog converters, filters, etc. Static circuit
power is a constant term that includes power consumption
by other transceiver circuitry, e.g., baseband processing, etc.
In a traditional digital transceiver structure, there is an

RF chain connected to each of the transmit antennas. Thus,
dynamic circuit power is proportional to the number of trans-
mit antennas. Our goal is to develop strategies to decrease
consumed power and potentially increase the EE of the
network. For SC BSs, as they have relatively few transmit
antennas compared to the macro BS, by optimal transmit
antenna selection the number of antennas can be decreased
and higher EE is achievable. However, for massive MIMO,
antenna selection is not as viable of an option. Massive
MIMO systems need to have a large number of active anten-
nas to be in the so-called “massive MIMO regime” and obtain
its benefits (e.g., very narrow spatial beams, near-orthogonal
channels, etc. [4]). This number is typically around at least
an order of magnitude larger than the number of served
users per RB. Therefore, we instead utilize an alternative
structure called a single-RF-chain load-modulated transceiver
introduced in [44], [45].
In the load-modulated transceiver structure, as shown in

Fig. 2, each antenna is connected to a single common
PA via a load modulator. Each load modulator is a loss-
less, reciprocal, two-port network with adjustable complex
impedance parameters. Adjusting these parameters changes
the complex-valued current that flows to each antenna, and
thus determines the complex-valued symbol that is sent from
that antenna. Since the load modulator parameters can be set
independently for each antenna, this allows the transceiver
to support any arbitrary type of modulation and achieve the
full spatial multiplexing gain of the array. The PA outputs
a constant-envelope sinusoid. As such, the transceiver can
use a Class F PA, which can reach an efficiency of about
80% [60]. In order to protect the PA against reflected power,
a circulator and matching network are added between the PA

FIGURE 2. Single-RF-chain load-modulated massive MIMO transceiver
(cf. [45], [58], [59]).

and load modulators. Some slight variations in the design
are presented in [58] and [59].
Despite having only one RF chain, the load-modulated

transceiver can support an arbitrary number of users or
streams.2 All digital processing, such as channel coding and
precoding, is done at baseband. The output of the digital pro-
cessing block (e.g., the precoded signals ts,b from BS s) is
used to adjust the levels of the load modulators [59]. The load
modulators themselves can be implemented in various ways,
such as soft tuning through variable capacitors and/or varac-
tor diodes, or discrete tuning with PIN or Schotkky diodes,
micro-electro-mechanical systems, or distributed microstrip
transmission lines and switches [45], [59]. The authors
of [61] have compared a load-modulated transmitter with
another single-RF structure implemented using electronically
steerable parasitic array radiator (ESPAR) antennas. It was
shown that the load-modulated design reduced the power
consumption by 50 − 81% and yielded 5 − 42% smaller
bit error rates than the ESPAR-based scheme. A physical
implementation of a load-modulated transmitter with 4 anten-
nas was demonstrated in [62]. Overall, the single-RF-chain
transceiver has the potential for addressing the issues of
hardware complexity and EE of massive MIMO transmitters.
With a slight adjustment to the definition in (8), the

consumed power for downlink transmission of the single-
RF-chain massive MIMO macro BS transmitter can be
expressed as

P0 = 1

η0

∑

n∈K0

B∑

b=1

p0,n,b + Pdyn0 + Psta0 (9)

2. Restrictions on the number of supported users/streams therefore come
from the number of antennas and/or the precoding method, rather than the
number of RF chains.

σs,n,b = �s,nps,n,b
∣∣hs,n,bfs,n,b

∣∣2

W0N0 +∑i∈Ks\{n} �s,nps,i,b
∣∣hs,n,bfs,i,b

∣∣2 +∑r∈Sn\{s}
∑

j∈Kr
�r,npr,j,b

∣∣hr,n,bfr,j,b
∣∣2

(7)
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FIGURE 3. The overall block diagram of the system illustrating system architecture, components, and key functionalities.

TABLE 2. Ratio (in dB) of total average reflected power PR to power amplifier output
power Pa , for single-RF-chain transceiver as a function of number of antennas NM
and allowable distortion DN .

Similarly to as in (8), Pdyn0 is the average consumed non-
radiated power per antenna, whereas Psta0 is independent of
the number of antennas. The key difference is that Pdyn0
is dependent on NM rather than a constant. By using [44,
Fig. 8], we derive Table 2 to determine the dynamic con-
sumed power of the macro BS. The table and the referenced
figure show the total average power PR reflected back from
the load modulators for all antennas (due to impedance mis-
match) relative to the power Pa output by the PA. The
reflected power is dissipated by the resistor in the circu-
lator. This ratio is dependent on the number of antennas
and the amount of distortion allowed (due to clipping of
the signal). Interestingly, the reflected power decreases with
more antennas; this results from the impedance being more
likely to be matched due to the law of large numbers. We
assume any calculations required to adjust the load modula-
tor impedance parameters are included in Psta0 . We also note
again that η0 in (9) will be better in general than ηs in (8)
due to the use of a Class F PA.
Finally, the total EE for our proposed scenario can be

written as

ε � C
∑S

s=0 Ps
, (10)

where C is given in (5) and Ps is given in (8) and (9) for
the SC BSs and macro BS, respectively.
Fig. 3 shows the overall block diagram of the system.

III. RESOURCE ALLOCATION AND PRECODING DESIGN
A. RESOURCE BLOCK ASSIGNMENT AND ANTENNA
SELECTION FOR SMALL CELLS
The optimal RB assignment and antenna selection approach
is by exhaustive search, which rapidly grows in complex-
ity with the number of RBs, antennas, and users served
per SC. Hence, to reduce the computational complexity, we
propose a suboptimal low-complexity RB and antenna selec-
tion strategy. The main idea is to decouple the RB and
antenna selection into a two-part selection approach. First,
we investigate the transmit antenna selection strategy in our
MIMO-OFDMA system. Since different antennas may be
selected for different RBs, causing all antennas to be acti-
vated, the selection cannot be conducted in a per-subchannel
manner. Moreover, if any given antenna is selected, it should
be used for all RBs as it will result in higher rates with
no additional dynamic circuit power consumption. Hence,
transmit antenna selection should be performed for all RBs
together. RB assignment can then be conducted for each user
for the selected antenna set. We take a similar approach as
in [31], [42] and use an F-norm-based method to select
antennas for SCs. First we define arg sort↓j{Xj} to return the
sorted arguments/indices {j} corresponding to when the val-
ues {Xj} are sorted in descending order. Then, the antennas
are sorted according to

arg sort↓
j∈{1,2,...,NS}

{∥∥gs,j
∥∥2
F

}
, (11)

where gs,j is the jth column of a KsB× Ns channel matrix,
which represents the channel gain (including small-scale
fading, shadowing, and path loss) of the jth transmit antenna
for all users served by SC s across all RBs. A simi-
lar approach has been used in [31], in which acceptable
performance has been shown at lower complexity in compar-
ison to an exhaustive search. The idea behind using channel
F-norms for the selection is geared somewhat towards SE
rather than EE, in that the selection represents the antenna
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with the best mean squared channel gain, averaged over all
users and RBs. If the same single symbol was sent to all
users on all RBs, the chosen antenna would provide the best
SE. Nevertheless, it is also related to maximizing EE, in that
the SE would be the highest for a given amount of transmit
power (divided equally across users and RBs), or conversely
the lowest transmit power would be needed to achieve a
certain SE.
After sorting the antennas in descending order using the

F-norm-based method, the active transmit antenna set N sel
s

for cell s is selected from the first Nsels = �LsB̂/B� anten-
nas, where B̂ is the maximum number of RBs that can be
allocated to a user. The reasoning behind this value of Nsels
is that Nsels is also the number of degrees of freedom for
spatial multiplexing per RB. Thus, the maximum number of
single-antenna users that can be supported per RB by lin-
ear precoding is Nsels , or at most Nsels B users in total. BS
s has Ls users to support (either to serve data or to miti-
gate interference for), requiring Nsels B ≥ Ls, or Nsels ≥ Ls/B.
If users are to be allocated up to B̂ RBs each, that would
require at minimum Nsels ≥ LsB̂/B, or Nsels = �LsB̂/B�.
With the transmit antenna set selected for each SC, RBs

can then be allocated to the users. This is done jointly for
all BSs in light of coordinated beamfoming — if user n
is allocated an RB at its serving cell, user n must also be
accounted for on that RB at the other BSs in cluster n for
interference mitigation. Let the subset of users from Ls that
are allocated to RB b (either to receive data from BS s or to
mitigate interference for other cells) be denoted Ls,b, with
cardinality Ls,b. We can similarly define subsets of Ks and
Is as Ks,b and Is,b respectively, with cardinality Ks,b and
Is,b. Similar to the antenna selection, we use an F-norm-
based approach. First, we sort the BS-user-RB index triplets
according to

arg sort↓
(s,n,b), ∀s∈S, ∀n∈Ks, ∀b∈{1,...,B}

{∣∣∣∣h̃s,n,b
∣∣∣∣2
F

Nsels

}

, (12)

where h̃s,n,b ∈ C1×Nsels is the small-scale fading channel
vector to user n on RB b from the selected set of antennas
at its serving BS s. In the case of the macro BS, which
does not perform antenna selection, h̃0,n,b = h0,n,b and
Nsels = NM . We emphasize that the channel vector in (12)
includes only the small-scale fading component of the chan-
nel gains, i.e., the path loss and shadowing are normalized
out. This is to provide fairness3 to all users in an effort to
meet the minimum data rate constraints, so that users near
BSs are not allocated a disproportionately large number of
RBs to the detriment of cell-edge users. Each RB poten-
tially can be selected to serve data to any user, as long as
the total number of users Ls,b sharing any given RB b at
any SC s is at most Ûalc

s = Nsels , and the number of RBs

3. This has similarities to proportionally fair user scheduling [63], [64],
in that both give highest priority to users who have the best channel relative
to their average channel.

NRB,n allocated to user n is at most B̂. For the macro BS,
however, we impose an additional constraint. Due to the
abundance of transmit antennas for massive MIMO, with
NM � K0, there is essentially no limit to the number of
users that can be served on any one RB. However, allo-
cating too many users to one RB could put pressure on
the resources for interference mitigation at the SCs on that
RB. Hence, at the macro BS, we shall attempt to divide
users among the RBs as evenly as possible, with no more
than Ûsrv

0 = �(K0B̂/B)� users served on any given RB. The
two-part antenna and RB selection algorithm is outlined in
Algorithm 1. After antenna selection, RBs are allocated in
the order given by (12), but first ensuring that each user is
given at least one RB from its serving BS in phase 1. Then,
if B̂ > 1 and sufficient resources remain, additional RBs
will be allocated to the users in phase 2, in the order given
by (12).
Occasionally, the algorithm may run into corner cases

when assigning users to RBs. Users with large clusters
require the resource allocation at numerous BSs to be suffi-
ciently coordinated in order to avoid turning on antennas at
SC BSs. Specifically, an allocation spot must be available at
all BSs in the cluster on the same RB. In other words, each
user must be a member of Ls,b for some same value of b
for all BSs s in its cluster. If these large-cluster users end
up being allocated RBs near the end of the process, there
may be insufficient remaining resources at all BSs in the
user’s cluster on any one RB to allow for coordination in
the cluster. To deal with such corner cases if they occur, we
restart the allocation process (at line 6 in Alg. 1) with these
users at the start of the allocation order. The remaining users
are ordered as normal afterwards; since they require fewer
resources to be coordinated, they are easier to slot into the
remaining positions.
Obviously, there is a trade-off between the achievable sum

rate and power usage. As we have discussed, switching
off antennas will affect the spatial degrees of freedom in
the users’ channels (and thus the degrees available to the
precoder), as well as the maximum number of users that
can be served simultaneously per RB, which will lead to a
reduction in the achievable sum rate of the system. However,
activating fewer antennas will lead to less power consump-
tion, which is beneficial in terms of EE. This trade-off will
be investigated through simulations.

B. PRECODING VECTOR DESIGN
The design of the precoding scheme used for transmission
in a MU-MIMO system is an important factor in the result-
ing EE of the system. The objective of precoding in general
is to mitigate intra-cell interference between users of that
cell. When coordinated beamforming is used, it can also
mitigate intra-tier and inter-tier interference between BSs of
a cluster. To begin, we look at mitigating the interference
caused by SCs. For lower computational complexity, we
use linear precoding. Specifically, we consider the same
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Algorithm 1 Antenna Selection and Resource Block
Allocation
1: Initialize: NRB

k = 0, ∀k ∈ {1, 2, . . . ,NU};
Ls,b = ∅ and Ls,b = 0, ∀s ∈ S,∀b ∈ {1, 2, . . . ,B};
Ks,b = ∅ and Ks,b = 0, ∀s ∈ S,∀b ∈ {1, 2, . . . ,B};

2: Sort antennas based on decreasing F-norm across all subcarriers using
(11);

3: Find best Nsels antennas and store in N sel
s , ∀s ∈ S\{0};

4: Initialize: Ûsrv0 =�K0B̂/B�; Ûalcs =Nsels ,∀s ∈ S; i = 1; phase = 1;
5: Using channel F-norms, sort all BS-user-RB triplets (s, n, b) into

ordered set F as in (12);
6: while [∃(Ls,b < Ûalcs ) for any (s, b) pair] AND

[∃(NRB
k <B̂) for any k] AND F �=∅ do

7: chk_next = true;
8: while chk_next do
9: Get next best BS-user-RB triplet (s∗, n∗, b∗) = F(i);
10: if phase = 1 AND NRB

n∗ > 0 then
11: i = i+1;
12: if i > |F | then
13: i = 1; phase = 2;
14: end if
15: else chk_next = false;
16: end if
17: end while
18: C∗ = Sn∗ ; j = 1; test_alloc = true;
19: while test_alloc AND j ≤ |C∗| do
20: s = C∗(j);
21: if s = s∗ AND [(s > 0 AND Ls,b∗ ≥ Ûalcs ) OR

(s = 0 AND Ks,b∗ ≥ Ûsrvs )] then
22: test_alloc = false;
23: else if s �= s∗ AND Ls,b∗ ≥ Ûalcs AND Ks,b∗ > 0 then
24: test_alloc = false;
25: end if
26: j = j+1;
27: end while
28: if test_alloc then
29: Assign user n∗ to RB b∗, ∀s ∈ C∗;
30: Add n∗ to Ls,b∗ , ∀s ∈ C∗;
31: Ls,b∗ = Ls,b∗+1,∀s ∈ C∗;
32: Add n∗ to Ks∗,b∗ ;
33: Ks∗,b∗ = Ks∗,b∗+1;
34: NRB

n∗ = NRB
n∗ +1;

35: end if
36: F = F\F(i);
37: if phase = 1 AND {NRB

k > 0, ∀k} then
38: phase = 2;
39: end if
40: for j = 1 to |C∗| do
41: s = C∗(j);
42: if [Ls,b∗ = Ûalcs ] OR [s = 0 AND K0,b∗ = Ûsrv0 ] then
43: Fb∗ = {(s, n, b∗)}, ∀n ∈ {1, 2, . . . ,NU};
44: F = F\Fb∗ ;
45: end if
46: end for
47: if NRB

n∗ = B̂ then
48: Fn∗ = {(s∗, n∗, b)},∀b ∈ {1, 2, . . . ,B};
49: F = F\Fn∗ ;
50: end if
51: end while

52: Output: Ls,b,N sel
s ,Ks,b, ∀s ∈ S,∀b ∈ {1, 2, . . . ,B}.

type of null-space projection precoding as is used in BD
precoding [29] (described in more detail later). The BD tech-
nique can be considered as a generalization of zero-forcing
(ZF) precoding to the case where users have multiple anten-
nas. BD has been widely used in related literature [65]–[67];
the same null-space projection technique has also been used
in [22], [27], [68] in the context of single-antenna users,

as it is with our work herein.4 We have chosen null-space
projection since it has been shown (e.g., in [27]) that, while
null-space projection and the channel inversion technique
used in “classical” ZF precoding perform identically when
maximizing the sum rate of a MU-MIMO HetNet, when con-
sidering EE instead, using channel inversion for SCs results
in smaller EE in various cases, depending on how much
coordination there is within and between tiers of the HetNet.
The precoding is performed on a per-RB basis. With null-

space projection precoding, the transmit precoding vector of
each user is designed to lie in the null space of the channels
of all Ls,b − 1 other users in Ls,b. This means the precoding
vectors must satisfy [29]:

h̃s,n,bfs,i,b = 0, ∀(n, i) ∈ Ls,b such that n �= i, ∀(b, s)

(13)

Let H̃s,n,b ∈ C(Ls,b−1)×Nsels be a matrix that vertically con-
catenates the channel vectors for RB b of all users in Ls,b
except for user n:

H̃s,n,b =
[
h̃Ts,1,b · · · h̃Ts,n−1,b h̃Ts,n+1,b · · · h̃Ts,Ls,b,b

]T
(14)

We denote r̃s,n,b as the rank of that aggregate null space
and Ṽ0

s,n,b ∈ C
Nsels ×(Nsels −r̃s,n,b) as a set of orthonormal basis

vectors for that null space [29] (and thus the basis for fs,n,b).
The equivalent channel ḧs,n,b ∈ C

1×(Nsels −r̃s,n,b) for user n is
ḧs,n,b = h̃s,n,bṼ0

s,n,b, with λs,n,b = ||ḧs,n,b|| being its channel
gain. Hence, the signal received by user n from SC s on RB
b can be expressed as

ys,n,b = √�s,nps,n,bλs,n,bxs,n,b + ns,n,b (15)

To summarize, through the use of null-space projection
precoding, the precoding vectors are designed such that intra-
cell and intra-cluster interference is completely canceled, and
the MU-MIMO channels are decomposed into several equiv-
alent non-interfering single-user MIMO channels. In other
words, the first summation in both (3) and the denominator
of (7) becomes equal to 0, and for BSs that coordinate with
SC s, their contribution to the double summation in (3) and
the denominator of (7) also becomes equal to 0. In what
follows, we assume that through the design of the clusters,
the remaining portion of the double summation (i.e., the
remaining interference from uncoordinated BSs) is negligi-
ble. (We shall examine the effect of this assumption further
in the simulations to verify how well it holds.) Under the
assumption of no significant interference after precoding, the
SINR in (7) reduces to

σs,n,b = �s,nλ
2
s,n,b

W0N0
ps,n,b = χs,n,bps,n,b, (16)

4. As mentioned, BD has been defined for multiple-antenna users. The
technique is still valid for single-antenna users, although in such a case,
it is not particularly “block” diagonalization anymore, as the “block” ends
up being a scalar (i.e., of size 1 × 1). For the single-antenna case, we shall
therefore refer to it as null-space projection, to differentiate the technique
from “classical” ZF precoding, which instead uses channel inversion.
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where we define χs,n,b as the ratio of the equivalent sub-
channel power gain to the noise power on that subchannel.
At the macro BS, “classical” ZF precoding is performed

to mitigate interference both between macro users and to
users of SCs; the precoding is again done per RB. The
relatively simpler precoding (compared to null-space pro-
jection) is sufficient for the massive MIMO BS, since the
law of large numbers makes channel vectors to different
users near-orthogonal even without precoding [4]. First, we
define H̆0,b ∈ CL0,b×NM as the channel matrix that vertically
concatenates the small-scale fading portion of the channel
vectors for the users in K0,b, followed by the users in I0,b:

H̆0,b =
[
hT0,K0,b(1),b hT0,K0,b(2),b · · ·
hT0,K0,b(K0,b),b

hT0,I0,b(1),b · · ·hT0,I0,b(I0,b),b

]T

(17)

Then the ZF precoding vector can be found from [27]

F̆0,b = H̆†
0,b = H̆H

0,b

(
H̆0,bH̆H

0,b

)−1
(18)

Consider the first K0,b columns of F̆0,b, and let the nth
column of F̆0,b be denoted f̆0,n,b. The precoding vector f0,n,b

for user K0,b(n) (i.e., the nth user served by the macro BS
on RB b) is

f0,n,b = f̆0,n,b∥∥∥f̆0,n,b

∥∥∥
(19)

In this way, the interference from the macro BS has been
mitigated. Assuming as we did for the SCs that all remaining
interference is negligible, then the SINR for macro users
reduces to

σ0,n,b = �0,n
∣∣h0,n,bf0,n,b

∣∣2

W0N0
p0,n,b = χ0,n,bp0,n,b. (20)

C. POWER ALLOCATION
After antenna selection, RB allocation, and precoding vec-
tor calculation, the final stage to maximize EE is power
allocation. For compactness of notation, let p be a vector
containing all the power allocation variables {ps,n,b},∀s, n, b.
Then, the EEmax problem under minimum-rate constraints,
maximum fronthaul capacity limitations, and total transmit
power constraints is formulated as

max
p

W0
∑S

s=0
∑NU

n=1

∑B
b=1 δs,n,blog2

(
1 + χs,n,bps,n,b

)

∑S
s=0
∑NU

n=1

∑B
b=1

1
ηs

δs,n,bps,n,b +∑S
s=0 N

sel
s Pdyns +∑S

s=0 P
sta
s

(21a)

s.t.
B∑

b=1

cs,n,b ≥ κmin, ∀s ∈ S, ∀n ∈ Ks (21b)

NU∑

n=1

B∑

b=1

δs,n,bcs,n,b ≤ cs,limit, ∀s ∈ S (21c)

NU∑

n=1

B∑

b=1

δs,n,bps,n,b ≤ Pmax
s , ∀s ∈ S (21d)

ps,n,b ≥ 0 ∀s, n, b (21e)

cs,n,b is given by (6). Pmaxs is the maximum transmit power
of BS s. κmin is the minimum data rate guaranteed for users
and cs,limit is the maximum data rate that can be transferred
over the fronthaul links. Like in (12), Nsels = NM for the
macro BS. The constraints given by (21b) characterize the
minimum rate guaranteed for each user and the constraints
given by (21d) and (21e) represent the maximum transmit
power available at each BS. One of the performance limiting
factors of the network can be its limited fronthaul capacity,
which needs to be taken under consideration, and hence
has been included in our problem as the constraints given
by (21c). Our optimization problem is in fractional and non-
convex form, so we have used various methods adopted
from related literature to convert the problem to a convex
one and obtain optimal allocated power, as described in the
next section.

IV. SOLUTION OF THE OPTIMIZATION PROBLEM
Since the optimization problem defined in (21) is classi-
fied as nonlinear fractional programming, which results in
a nonconvex problem, there is no one standard method for
solving it. Our first step is to simplify the objective function
using techniques from nonlinear fractional programming.
Given that antenna selection and RB assignment have been
done, we will maximize EE by optimal power allocation.
We denote by ε∗ the maximum EE of the overall network,
expressed as

ε∗ = C(p∗)
P(p∗)

= max
p

C(p)

P(p)
, (22)

where p∗ is the optimal power allocation vector, and p is
any feasible solution of the problem in (21) that satisfies
the constraints given by (21b)-(21e). Following [47], we can
formulate an equivalent problem as follows:

max
p

{
C(p) − ε∗ P(p)

} = C
(
p∗)− ε∗ P

(
p∗) = 0 (23)

In other words, for any optimization problem with an
objective function in fractional form, there is an equivalent
optimization problem with an objective function in subtrac-
tive form that leads to the same solution. This has been
proven in [23]; see also [69, Appx. A]. Hence, we can con-
centrate on the equivalent problem in the rest of this article.
The equivalent problem can be formulated as

max
p

{C(p) − ε P(p)}
s.t. (21b)–(21e) (24)

Now we must find the optimal value of ε. Since ε∗ cannot
be obtained directly, an iterative algorithm (based on what is
known as the Dinkelbach method [47], which is commonly
used for EEmax problems [48]) is proposed, in which the
obtained solution ensures (23) is satisfied. Pseudocode for
the proposed algorithm is described in Algorithm 2.
The algorithm consists of an outer loop, which updates

the value of ε, and an inner loop, which updates C(p) and
P(p). Convergence to the optimal solution is guaranteed if
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TABLE 3. Computational complexity.

one is able to solve the inner problem. As ε(i+1) is updated
in each iteration i in the outer loop with C(p(i)) and P(p(i))

obtained in the last iteration, the value of ε converges towards
its maximum. Meanwhile, by solving the inner loop for a
given ε(i), the optimal power policy needed for the next loop
would be obtained, with the whole algorithm iterating until
all the values converge or some other stopping criterion (e.g.,
a maximum number of iterations) is reached.

A. SOLUTION OF THE INNER LOOP PROBLEM
The transformed problem can be expressed as in (24), with
ε replaced now by ε(i). The problem is now concave with
respect to optimization variable p. We derive the Lagrangian
function [70] of the problem as follows:

L(p,α,β,μ) =
S∑

s=0

NU∑

n=1

B∑

b=1

W0δs,n,blog2
(
1 + χs,n,bps,n,b

)

− ε(i)

(
S∑

s=0

NU∑

n=1

B∑

b=1

1

ηs
δs,n,bps,n,b+

S∑

s=0

Nsels Pdyns +
S∑

s=0

Pstas

)

+
S∑

s=0

∑

n∈Ks

αs,n

(
B∑

b=1

cs,n,b − κmin

)

+
S∑

s=0

βs

(

cs,limit −
NU∑

n=1

B∑

b=1

W0δs,n,blog2
(
1 + χs,n,bps,n,b

)
)

+
S∑

s=0

μs

(

Pmax
s −

NU∑

n=1

B∑

b=1

δs,n,bps,n,b

)

(25)

The vector μ contains the Lagrangian multipliers μs cor-
responding to the maximum transmit power limit for BS s
in (21d). α contains the Lagrangian multipliers αs,n asso-
ciated with the minimum rate constraints in (21b). Finally,
β contains the Lagrangian multipliers βs accounting for the
fronthaul capacity constraint for BS s in (21c).

For fixed α, β, μ, and ε, the problem can be solved uti-
lizing the Karush-Kuhn-Tucker (KKT) conditions [70], [71].
The optimal value of ps,n,b is then obtained by making the
partial derivatives of L with respect to ps,n,b equal to zero,
which yields a “water-filling” type of solution. We derive
the optimal power as:

p∗
s,n,b = max

(
w∗
s,n − 1

χs,n,b
, 0

)
, (26)

Algorithm 2 Dinkelbach Method for EE Maximization
1: Initialize the convergence threshold λth;
2: Set i = 1 and ε(1) = 0;
3: For initial ε(1), obtain C(p(1)) and P(p(1)) by solving the

problem in (24) using (26) and (27);
4: while [C(p(i)) − ε(i)P(p(i)) < λth] do
5: i = i+ 1;
6: (Inner Loop): Solve the resource allocation problem in

(24) using (26) and (27) with ε(i−1) to obtain the
optimal solution p∗(i);

7: ε(i) = C(p∗(i))

P(p∗(i))
;

8: end while
9: Output: p∗, ε∗, C, P.

where

w∗
s,n = W0

(
1 + αs,n − βs

)

ln 2
(
μs + ε(i)/ηs

) , (27)

and χs,n,b is given in (16) and (20). The values of p∗
s,n,b

are used to update the value of ε(i). Then, the subgradient
method can be used for updating the values of the Lagrange
multipliers in the outer loop; this method is guaranteed to
converge to the optimal Lagrange multipliers, as long as the
step size values are chosen to be sufficiently small [72].
When B̂ ≥ 1 and a user has been allocated more than

one RB, it can occur that after power optimization, some
of the user’s RBs may be allocated zero power. (This may
occur, for instance, if the user’s channel conditions on the
RB are particularly bad.) In such an event, we remove that
user’s assignment to that RB, then go back and recalculate
the precoding basis vectors for that RB in the user’s cluster.
The removal of a user from an RB means that the null
space becomes less constrained (i.e., it has higher rank),
potentially allowing the rates of other users to be increased.
After, Algorithm 2 is re-run to update the power allocation
for the users.

B. COMPUTATIONAL COMPLEXITY
The computational complexity of our scheme is given in
Table 3. For the first two rows, the complexity comes from
the F-norm calculations and sorting in (11) and (12). For the
antenna selection, finding the F-norm of a KsB × 1 vector
requires O(KsB) floating point operations (flops) [73], and
there are Ns such vectors per SC. Sorting the resulting Ns
F-norm values has a complexity of O(Ns log(Ns)) [74]. This
is done for each of the S SCs. Similarly, for RB selection,
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an F-norm is calculated for each {BS, user, RB} triplet of
the channel vectors for that triplet, which have length Nsels
for SC s and length NM for the macro cell. (The one extra
flop for normalization by Nsels or NM can be neglected.)
This has a total complexity of B[K0NM +∑S

s=1 KsN
sel
s ]. The

total BNU F-norm values are then sorted with complexity
BNU log(BNU).
The main complexity of the null-space projection

precoding at the SCs is from the singular value decom-
position used to find Ṽ0

s,n,b [29]. On each RB b, for each of
the Ks,b users served on that RB, singular value decom-
position is done on an (Ls,b − 1) × Nsels matrix. With
Nsels > (Ls,b − 1), this takes O((Nsels )2Ls,b) flops [73]. We
note, though, that the complexity may be smaller with a dif-
ferent choice of precoding. For the macro BS, the complexity
of precoding comes from calculating the matrix pseudoin-
verse in (18), for each RB. The matrix inversion in (18) can
be found efficiently by first performing an LU decomposi-
tion [73]. However, the whole psuedoinverse operation for
the L0,b × NM matrix can also be performed via LU [75],
Cholesky, or LDLH decompositions [76]. In each of these
cases, the decomposition causes the highest order complex-
ity of the operations involved; all three have complexity
O(NML2

0,b) [73].
Finally, the optimization problem acts on scalar values; its

complexity comes mostly from the triple sums in (21a) to cal-
culate ε, combined with the number of iterations of the outer
and inner loops, nouter and ninner, respectively. In calculating
the complexity of ε, it is clear that there are (S+1)NUB terms
in the triple sums in (21a) that must be found. However,
each cell s only has to deal with Ks out of the NU users;
the remaining terms will be zeros. In total, there will be
B
∑S

s=0 Ks = BNU non-zero terms. Since each non-zero term
operates on scalars, each takes O(1) complexity to calcu-
late. Then, the BNU non-zero terms must be added together.
Hence, updating the value of ε has complexity O(BNU). For
the power waterfilling of (26)-(27), there are a total of NU
terms of w∗

s,n and BNU power terms p∗
s,n,b that are relevant to

be calculated; the system does not need to calculate power
allocated by BS s to users not served by that BS. These terms
again operate on scalar values. Hence, the power waterfilling
update also has complexity order O(BNU). These updates
are performed over a total number nouter×ninner iterations of
the outer and inner loops combined, making the total com-
plexity of the power optimization O(nouterninnerBNU). The
number of loop iterations depends on the stopping criteria
of the loops (for example, the value of λth). However, it is
known that the Dinkelbach method converges superlinearly
to find the optimal value of ε, and the inner loop problem,
being convex, can be solved in polynomial time with the
number of variables and constraints [48].
For comparison with our scheme, the optimal antenna/RB

selection method would be an exhaustive search. Each pos-
sible permutation of RB assignments to users and number of
active antennas per BS would be examined, with precoding
and power allocation calculations done for each permutation

the same as for our scheme. Unfortunately, the complexity
of an exhaustive search is quite difficult to enumerate analyt-
ically. The number of permutations for the joint antenna/RB
selection depends on the number of antennas at each BS
and which BSs are in the cluster for each user. However,
we have been able to determine upper and lower bounds for
the number of permutations.
Upper Bound: Each user has only its own serving BS as

its cluster. This upper bound is tight; it is the exact maxi-
mum possible permutations that an exhaustive search might
ever potentially have to check. This scenario is equivalent
to no coordination occurring between BSs, and results in
the largest possible number of permutations. In this case,
the antenna/RB selection at each BS is independent. Hence,
the number of permutations for the network is the product
of the permutations at each BS. If BS s serves Ks users,
then by using generating functions [77], the total possible
number of antenna/RB selections is:

⎧
⎨

⎩
K0!
[
zK0
]( NM∑

i=0

zi

i!

)B⎫⎬

⎭

×
S∏

s=1

⎧
⎪⎨

⎪⎩

Ns∑

Nsels =1

(
Ns
Nsels

)
Ks!
[
zNs
]
⎛

⎝
Nsels∑

i=0

zi

i!

⎞

⎠

B
⎫
⎪⎬

⎪⎭
(28)

In the above, the notation [zn]f (z) represents the coefficient
on the zn term in the polynomial f (z) [77]. We can also
express

∑N
i=0 z

i/i! as a formal power series a(z) =∑∞
i=0 aiz

i,
where ai = 1/i! for 0 ≤ i ≤ N and ai = 0 for i > N. If we
then define the power series c(z) =∑∞

i=0 ciz
i = (a(z))B, the

coefficients ci can be found in terms of ai. Specifically, the
desired coefficient cm for m ≥ 1 is given recursively by [78]:

c0 = aB0 , (29)

cm = [
zm
]
(

N∑

i=0

zi

i!

)B

= 1

a0m

m∑

i=1

((B+1)i− m)aicm−i. (30)

Lower Bound: Every BS is in every user’s cluster. This
lower bound is loose, as here we also ignore the cases where
a BS can sometimes serve more users on a given RB, pro-
vided that no other BS serves users on that RB. (Hence, there
would be no interference on that RB that requires coordi-
nation.) The number of permutations in this scenario is the
same as for joint transmission, where each BS sends a use-
ful signal to its coordinated users instead of just performing
coordinated beamforming. For this scenario, it is equivalent
to consider that RBs for all NU users are assigned at one
location, since assigning an RB to a user at one BS removes
the same resource from being available at all other BSs. It
therefore ends up being the BS with the fewest active anten-
nas that determines the number of possible permutations
for the whole network; the fewer antennas that are active,
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TABLE 4. Simulation parameters.

k

the fewer permutations there are. Let Ňsel = mins∈S Nsels
denote the smallest number of active antennas at any BS.
For the smallest number of permutations, this BS must also
have the smallest total number of antennas of any BS, i.e.,
Ň = mins∈S Ns. Then, the number of permutations is [77]:

Ň∑

Ňsel=1

(
Ň

Ňsel

)
NU!

[
zNU
]
⎛

⎝
Ňsel∑

i=0

zi

i!

⎞

⎠

B

(31)

We lastly note that our scheme is scalable to an arbitrary
network size, since the complexity is dependent only on
the local coordinated transmit nodes rather than the entire
network.

V. SYSTEM SETUP AND NUMERICAL RESULTS
A. SYSTEM SETUP AND PARAMETERS
In this section, we evaluate the performance of the proposed
algorithm through simulations. The default parameters are as
follows unless otherwise stated. Most of the system param-
eters are based on the recommendations in [79]. The radius
of the macro cell R0 is assumed to be 289 m (i.e., 500/

√
3,

which corresponds to an inter-site distance of 500 m in a
hexagonal macro BS layout). S = 10 SC BSs are placed
deterministically and evenly spaced in angle on a circle of
radius 249 m centered at the macro BS. The radius Rs of each
SC is assumed to be 40 m. The massive MIMO macro BS
has NM = 100 antennas, whereas each SC BS is equipped
with NS = 8 antennas. We assume half-wavelength spac-
ing for the antenna elements, i.e., dH = 1

2 in (4). The total

number of users NU is 200, from which � 2NU
3S � are uniformly

distributed over the area of each SC, while the remainder are
uniformly distributed over the entire area of the macro cell.
Additionally, there is a circular exclusion zone around each
BS, inside of which no users may be placed. The radius of
this zone is Rx,0 = 35 m for the macro BS and Rx,s = 10 m
for the SCs. The path loss from the macro BS to a user is
given by 128.1 + 37.6 log10(d) dB and the path loss from
the SC BSs to a user is determined by 140.7+36.7 log10(d)
dB (with distance d in km). In particular, the propagation
parameters are from [79, Tab. A.2.1.1.2-3], the cell radii
are from [79, Tab. A.2.1.1-1], the user distribution setup
is from [79, Tab. A.2.1.1.2-4], and the power values and
bandwidth are from [24], [25], [80]. For small-scale spatial
correlation for the macro BS, we assume the ASD σφ = π

18
radians (10◦) in (4) [4], [81]. It should be noted that these
system parameters are merely chosen to demonstrate the EE
performance in an example and can easily be modified to
any other values depending on the specific scenario under
consideration.
The association bias ϒs for each SC is set to 3 dB, while

the bias for the macro BS is 0 dB. These values make a
user who is located on an SC edge the nearest to the macro
BS approximately equally likely to associate with the macro
BS or with that SC. Each user is assigned a maximum of
B̂ = 1 RB. The Monte Carlo method with 500 drops of
users and 1000 channel realizations for each user drop is
used to obtain numerical results. Other parameters used in
the simulations are listed in Table 4; these values are similar
to those used in related work.
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B. ANALYTICAL RESULTS
In this subsection, we analytically approximate the gains in
EE that are possible by some of the methods used in our
system. Due to all the various methods combined in the
system, it is unfortunately infeasible to analytically charac-
terize the system as a whole. We therefore focus on two of
the tractable portions of the system. First, we characterize
the effect of utilizing the load-modulated single-RF chain
architecture at the macro BS on the macro tier EE. Then,
we approximate the effect of antenna selection at the SCs
on the EE.

1) EFFECT OF TRANSCEIVER STRUCTURE ON EE

To begin, we consider two similar macro BS transceivers,
one with a traditional voltage-modulated massive MIMO
structure, and one with the load-modulated single-RF chain
structure. Since the transceivers otherwise are similar,
from (5)-(7), if the channel gains, resource allocation, and
radiated transmit power Ptx = ∑

n∈K
∑B

b=1 pn,b are the
same, the resulting sum rate will be the same in both cases.
Thus, only the non-radiated dynamic per-antenna power con-
sumption Pdyn and the PA efficiency η of the macro BS
change between the two structures. To show the effect of the
load-modulated structure on the macro tier EE, we calculate
εlm
εvm

as

εlm

εvm
=

Clm
Plm
Cvm
Pvm

=
1

ηvm
Ptx + NMP

dyn
vm + Psta

1
ηlm
Ptx + Pdynlm + Psta

(32)

We note that, based on Table 2, the value of Pdynlm is pro-
portional to the output power of the power amplifier Pa (or
equally, the input power to the load modulator array), and
thus can be seen as a function of the transmit power. (That
is, Pa = PR + Ptx, where PR = Pdynlm is the power dissipated
in the circulator resistor.) Hence, we can express Pdynlm as
c × Ptx, where c is some constant. Since PR

Pa
depends on

both NM and DN , the value of c differs for each number of
antennas and distortion amount. For example, for NM = 100
and DN = 10−6, c = 0.2902.
By using Table 2, assuming various numbers of trans-

mit antennas, and utilizing the parameters given in previous
subsection, we derive Fig. 4. This figure depicts the benefit
of deploying the load-modulated single-RF chain massive
MIMO macro BS on the EE of the system. As can be
seen, by increasing the number of antennas, the gain εlm

εvm
increases significantly, which demonstrates the benefit of
the load-modulated structure for systems with many anten-
nas. Moreover, for Ptx larger than about 20 W, the ratio for
the EE gain converges to ηlm

ηvm(1+cηlm)
and the curves become

almost flat, such that the asymptotic value depends on the
value of c.

2) EFFECT OF SC ANTENNA SELECTION ON EE

To examine the effect of antenna selection at the SCs on
the EE, we focus solely on the SC tier. In this case, we

FIGURE 4. Gain in EE from using load-modulated structure at macro BS (relative to
EE with voltage-modulated structure) vs. transmitted power Ptx , with varying antenna
array sizes NM ; distortion DN = 10−6.

assume that the macro BS is either part of the cluster
for the SC users so that it provides no interference to
those users, or its interference power is below the clus-
tering threshold, and so its interference may be neglected
when considered in aggregate with the other interfering
SC BSs.
For the analysis, we will draw on the some of the results

using stochastic geometry modeling of cellular networks
(e.g., [55], [82]–[84]). For simplicity and tractability, we
assume that the SC BS layout can be modeled by a homo-
geneous Poisson point process (PPP) �s having intensity
λs, wherein the BS locations are distributed uniformly over
the plane. The users are located according to an indepen-
dent homogeneous PPP �u with intensity λu. We further
assume a) that every served user at every BS is assigned
the same power p, with Ksp ≤ Pmax

s , b) that supported
users are distributed approximately evenly across the RBs,
so Ks,b, Is,b, and Ls,b are the same for every cell and RB,
and c) that the system is interference-limited, so that the
noise power is negligible. This provides a lower bound on
the performance; naturally, the performance would be better
by optimizing the power allocation and by better assign-
ing users to RBs. (For example, in the latter case, users
that are part of Is for BS s could be largely assigned to
their own separate RBs, to avoid removing degrees of free-
dom for beamforming for the users in Ks.) The inclusion
of log-normal shadowing with zero mean and standard devi-
ation σshadow has the effect of scaling the intensity λs by
a factor of exp(2(

σshadow ln(10)
10αs

)2) [83], where αs is the path
loss exponent. However, it is interesting to note that the
SINR and SE (and thereby the EE) of the system under the
stated assumptions is known to be independent of the value
of λs [82], [83].
Under the above conditions, the SINR for one user n

served on a given RB b by BS s from (7), when null-space
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projection precoding is used at the BSs, can be expressed as:

σs,n,b = �s,np
∣∣hs,n,bfs,n,b

∣∣2

∑
r∈Sn\{s}

∑
j∈Kr

�r,np
∣∣hr,n,bfr,j,b

∣∣2

= d−αs
s,n gs,n

∑
r∈�s\{s} d

−αs
r,n gr,n

, (33)

where ds,n (dr,n) denotes the distance between BS s (r) and
user n, αs is the path loss exponent, and gs,n = |hs,n,bfs,n,b|2
and gr,n =∑j∈Kr

|hr,n,bfr,j,b|2 represent the precoded chan-
nel power gain for user n from the serving BS s and an
interfering BS r, respectively. As seen, the specific value of
p cancels out.

It is known that if a BS has Nsels active antennas, the ele-
ments of hs,n,b are independent and distributed ∼ CN (0, 1)

(i.e., Rayleigh fading), and the precoding vector fs,n,b for
user n is orthogonal to the channels of Ls,b − 1 users
supported on RB b at BS s (such as with ZF or null-
space projection precoding), then the precoded channel
power gain is a Gamma-distributed random variable such
that gs,n ∼ �(Nsels −Ls,b+1, 1) [84], [85]. Meanwhile, the
precoding at other BSs that are not part of the cluster for
user n is independent of the interfering channel to user n. As
such, a single beam from the interfering BS r has a power
gain distributed ∼ �(1, 1), and the sum of Kr beams from
BS r, i.e., gr,n, has a power gain distributed ∼ �(Kr, 1) [85].

Given the PPP model and the association scheme described
by (1), it is straightforward to see that if a user associates
with the SC tier, it will associate with the closest SC BS.
Furthermore, from the clustering scheme described by (2),
if a BS is part of a cluster for user n, its received reference
signal strength will be within ζc dB of the received refer-
ence signal strength from the serving BS s, or numerically,
Prefr ≥ 10−ζc/10Prefs . As previously stated, the reference sig-
nal strength is assumed to be proportional to the maximum
signal power available at the BS, which is the same for
all SC BSs. Moreover, the path loss for BS r is given by
d−αs
r,n . Hence, if BS r is part of the cluster for user n, then
Pmax
s d−αs

r,n ≥ 10−ζc/10Pmax
s d−αs

s,n . Rearranging, we find that
the cluster for a given user will consist of all BSs where

dr,n ≤ �ds,n, where � = 10ζc/(10αs). (34)

Lemma 1: In the PPP model, the mean number of users
supported by a BS (either served or part of their cluster) is

E[Ls] = �2λu/λs. (35)

Proof: See the Appendix.
The achievable rate of a user is given by W0 log2(1 +

σs,n,b). Since the signals precoded at a given BS do
not interfere between the users served by that BS (due
to null-space projection precoding), nor do the signals
interfere between RBs, the sum rate of SC s is simply∑

n,b W0 log2(1 + σs,n,b). The mean SE of a user, i.e.,
Eσs,n,b [ log(1 + σs,n,b)], can theoretically be found follow-
ing the methodology found in [83] for fading that follows a

κ-μ distribution. (A Gamma distribution �(k, θ) with shape
parameter k and scale parameter θ is a special case of the
κ-μ distribution in [83], where κ = 0, m = μ = k, and
θ1 = θ2 = θ .) Unfortunately, we have found that for our
proposed system, the final integral for Ez[ log(1+z)] is non-
convergent. Therefore, we will rely instead on a simulation
of the PPP model.
For the PPP simulation, we simulate 200000 realizations

of a PPP, within a square region containing on average 10000
points. In each realization, the distance of the points to
the origin (center of the square) is measured. The closest
point to the origin is set as the serving BS. Each point is
assigned a Gamma-distributed value representing the pre-
coded channel power gain for that BS. As described earlier,
the shape parameter for the serving BS is Nsels − Ls,b+1,
whereas it is Ks,b for interfering BSs; the scale parameter
is 1 for all BSs. Using the point distances and power gain
values, the SINR for a user located at the origin is cal-
culated according to (33). The mean EE for a small cell
is then found by

∑
n,b W0 log2(1 + σs,n,b)/Ps, where Ps is

given by (8).
We consider a few different scenarios in terms of served

and clustered user loads. To begin, based on our full cel-
lular model, if there were the default 200 users distributed
within the area of the macrocell, this would correspond on
average to 13 users served per SC. For the PPP model,
if ζc is set to 25 dB, from (35), with λu/λs = 13 users
served per SC, there would on average be Ls = 300 sup-
ported users per SC. (In the PPP model, some of these
would correspond to users located in other macrocells.) So,
on average there would be Ls,b = 300/50 = 6 users sup-
ported per RB. 13 out of the 300 are served users, but
there are 50 RBs they could be assigned to. We assume
for this scenario that there is at most one served user per
RB at all SCs. Hence, there is only a 13/50 probability that
an interfering SC will be transmitting power on the same
RB as the typical user at the origin. Consequently, in this
scenario we scale the measured interference by a factor of
13/50.
In the remaining scenarios, we take a more generic

approach. For the second scenario, we assume that there are
4 supported users on each RB, out of which 1 is served
(Ks,b = 1,Ls,b = 4). In the third scenario, 2 users are
assumed to be served per RB, with one additional user
supported (Ks,b = 2,Ls,b = 3). Finally, we consider a no-
clustering case where Ks,b = Ls,b = 4. For all scenarios,
although the value of λs has no impact on the EE, for the
purposes of the simulations, we set λs = 1.62×10−4 m−2.
This corresponds to an intensity yielding on average 10 SC
BSs located within a hexagonal macrocell with an inter-
site distance of 500 m (the same SC BS density as for
our simulated network layout), scaled by a factor of 3.5
to account for log-normal shadowing with a standard devi-
ation of σshadow = 10 dB and a path loss exponent of
αs = 3.67. Other relevant parameters are the same as in
Table 4.
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FIGURE 5. Gain in energy efficiency by antenna selection, relative to when all antennas are active, vs. normalized power allocated per user (Ksp/Pmax
s ), with Ns = 8.

(a) Ks = 13, Ls = 300. (b) Ks,b = 1, Ls,b = 4. (c) Ks,b = 2, Ls,b = 3. (d) Ks,b = Ls,b = 4.

In Fig. 5, we examine the gain in EE that is possible
due to antenna selection. The gain is the EE achieved when
the specified number Nsels of SC antennas are activated per
cell, relative to when all Ns = 8 antennas are active. As
seen, significant gains are possible; Fig. 5(c) in particular
displays gains of over 25%. As expected, the gain is the
highest when the amount of power allocated to each user is
the lowest. In this situation, changing the dynamic potion
of the consumed power has the relatively largest effect on
the overall reduction in the value of Ps, and thus the gain in
EE. We also note that there is in general an optimal number
of antennas to activate to maximize the EE gain. If too few
antennas are active, the loss of available spatial multiplexing
gain can cause the drop in SE to become larger relative to
the drop in consumed power. In some cases, the system
can even see a loss in EE compared to when all antennas
are active, as observed in Figs. 5(a) and 5(d). However,
one cannot draw a specific conclusion on the exact optimal
number of antennas to activate from these results. To start,
the allocation of users to RBs also has a significant effect
on how many antennas it is possible to turn off. Thus, the
specific allocation of RBs to users would also impact the
optimal number of active antennas. The relationship between
the two factors is far from straightforward. Furthermore,
these results are for the equivalent of activating Nsels antennas
at random, whereas our scheme selects the best Nsels antennas
out of Ns to activate.

C. SIMULATION RESULTS
1) EFFECT OF CLUSTERING THRESHOLD ON EE & SE

One of the key factors in user-centric cluster formation is
the clustering threshold ζc. The value of ζc affects which
BSs are clustered and sets the level where the interference
from non-clustered BSs is considered negligible. We show
the impact of ζc on the EE and SE (normalized to the total
system bandwidth) of our proposed scheme in Fig. 6. We also
modify the scheme proposed in [52] and compare its result-
ing EE and SE with those of our user association method.

To this end, we define Pheurs,n as

Pheurs,n = Ploads,n + NsP
dyn
s + Pstas , (36)

where

Ploads,n = Pmax
s
B

[
κmin

W0 log2(1+�s,n)

]
(37)

and

�s,n = �s,nPmaxs

B
(
Ĩests,n +W0N0

) (38)

�s,n is the estimated average SINR (per RB) for user n if
it associates with BS s, under the assumptions that all BSs
transmit at maximum power, the power is divided equally
among subcarriers, and user n is the only user served on its
RB. In modifying the scheme in [52] for use with clusters,
we define the cluster S̃n for user n prior to association as the
set of BSs that provide an average received signal strength
within ζc dB of the strongest. Ĩests,n =∑s̃∈S\S̃n �s̃,nP

max
s̃ /B is

the estimated average total interference (per RB) experienced
by UE n if it associates with BS s. Ploads,n is the estimated
load-dependent power consumption of BS s per RB; if ideal
RF circuitry with 100% power efficiency was assumed, this
would be equivalent to the estimated transmitted power per
RB if user n associates with BS s. User n is associated with
and served by the BS s with the smallest value of Pheurs,n .
Fig. 6 shows both the estimated EE and SE and the actual

EE and SE for our proposed method. For the sake of brevity
and legibility, only the actual EE and SE are depicted for the
modified method from [52]. The estimated values are calcu-
lated by the optimization algorithm assuming no interference,
using the SINRs in (16) and (20). The actual values use the
power and precoding results from the optimization and the
true SINR in (7), accounting for the residual interference.
From the figure it is clear that by increasing ζc, the differ-

ence between the estimated and the actual curves decreases,
since more BSs are included in each cluster and more
interference is mitigated. For ζc greater than 25 dB, the
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FIGURE 6. EE and SE (estimated and actual) of our proposed method vs. clustering
threshold ζc , with NU = 200 and ϒs = 3 dB for SC BSs equipped with NS = 8
antennas (of which only a subset are active) and a macro BS equipped with NM = 100
antennas. Actual EE and SE for modified method proposed in [52] are depicted for
comparison.

actual EE decreases, meaning including more BSs per clus-
ter degrades the EE. This is due to more antennas needing
to be activated at the SC BSs to support BS coordination
for the larger clusters. Thus, even though the estimated EE
and SE become closer to the actual values for higher ζc,
increasing ζc further has a detrimental effect on the actual
performance. Hence, we use ζc = 25 dB for the remainder
of this article.
As can be seen, our proposed method outperforms the

method modified from [52] for both EE and SE. As our
proposed method performs better while having less computa-
tional complexity, it is a better solution for user association.
Finally, please note that the EE and SE values reported
hereafter are the actual values, not estimated ones.

2) PERFORMANCE COMPARISON OF OUR PROPOSED
METHOD WITH EXHAUSTIVE SEARCH

Here, we compare the performance of our antenna selec-
tion and RB allocation algorithm with that of an exhaustive
search. Since the exhaustive search complexity rapidly grows
with the variables involved, we have considered a simpler
network; besides the macro BS, only 1 SC BS equipped
with 4 antennas is used, and 6 users (3 per BS) are
served on 5 RBs. In this scenario, the EE of the exhaus-
tive search is 15.2 Mbits/s/W, whereas our algorithm yields
14.1 Mbits/s/W, about 7% lower. However, the exhaus-
tive search checks 125020 to 198125 permutations5 of
antenna/RB selections, the exact number depending on the
size of each user’s cluster. Precoding and power allocation
calculations are done for each permutation, whereas our algo-
rithm only does this once, with some additional calculation
and sorting of channel F-norms. Therefore, our algorithm’s

5. These numbers are exact empiric values calculated numerically, rather
than the lower and upper bounds given by (28) and (31), respectively.
(However, we also note (31), being a tight bound, gives the same upper
value of 198125 permutations.)

FIGURE 7. Total EE of HetNet and EE of macro and small cell HetNet tiers vs.
association bias ϒs for small cells for ζc = 25 dB and with NU = 200. SC BSs are
equipped with NS = 8 antennas (of which only a subset are active) and the macro BS
is equipped with NM = 100 antennas.

complexity in this scenario is a tiny fraction of the exhaus-
tive search complexity; that fraction would be even smaller
in a larger network.

3) EFFECT OF ASSOCIATION BIAS ON EE OF MACRO
AND SC TIERS AND ON TOTAL EE OF HETNET

Fig. 7 shows the comparison of the EE performance for
the total HetNet, and for the macro and SC tiers separately,
when the association bias ϒs for the SCs changes. ϒ0, the
association bias for the macro BS, stays constant at 0 dB,
so increasing ϒs means more emphasis is given to SCs and
more users are served by SCs.
As expected, by increasing ϒs up to 3 dB, the EE of

the SCs increases. The cause stems from the higher priority
given to SCs that results in more users being served by them,
while activating a minimal necessary number of antennas.
However, with further increases to ϒs, even more users are
served by SCs, such that more antennas need to be activated.
This leads to EE degradation. On the other hand, since larger
ϒs means fewer users are served by the macro BS, the macro
cell EE decreases.
Interestingly, changing ϒs from −3 dB to +9 dB yields

little change in the total EE; the EE changes by only about
±2% from its mean value of 38.3 Mbits/s/W over that range.
This is due to the trade-off between the need to activate more
antennas at the SCs, which leads to higher dynamic power
consumption, versus serving users with lower total radiated
transmit power, since in general the users will be closer to
the SC BSs.
Although serving more users by the macro BS seems more

energy-efficient for the macro cell, using an association bias
in favor of the SCs leads to transferring the traffic load to
the comparatively lightly-loaded SCs. Offloading users to the
SCs leaves more resources available for macro users. Thus,
if we were to consider a scenario with higher mobility users,
who would prefer to be served by the macro BS, offload-
ing the traffic to SCs would provide those users with more
resources, so increasing ϒs could also lead to an increase in
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FIGURE 8. Comparison of convergence in (actual) EE between proposed scheme
and other reference algorithms (shown in legend) vs. number of iterations. SC BSs are
equipped with NS = 8 antennas (of which only a subset are active) and the macro BS
is equipped with NM = 100 antennas; ζc = 25 dB, NU = 200 and ϒs = 3 dB.

the macro BS EE. However, the case of highly mobile users
is outside the scope of this article.

4) COMPARISON OF CONVERGENCE RATE OF
PROPOSED METHOD WITH REFERENCE SCHEMES

The convergence of the EE of our proposed scheme is illus-
trated in Fig. 8. Since there is no comparable scheme in
the literature that combines all our considered factors and
constraints, to evaluate the EE performance of our proposed
scheme, an equal power allocation algorithm and a sequen-
tial RB assignment scheme are chosen as baseline algorithms
for comparison. These algorithms are also used as bench-
marks in [24]. For the equal power allocation algorithm,
the maximum transmit power is used, which is equally allo-
cated between users, and in the sequential RB assignment
scheme, RBs are allocated to users sequentially. Furthermore,
to compare with an algorithm similar to our own, we have
also modified and combined the schemes proposed in [24]
and [27]. This combined scheme follows a similar beam-
forming approach as in [27] (therein called EE ZF), while
using the the power allocation and RB assignment algorithm
from [24] modified to be applicable to multiple-antenna BSs.
Just as in [24] and [27], no antenna selection is considered
for the combined scheme, but for a fair comparison, the
constraints have been modified to match ours and the single-
RF-chain structure is assumed for massive MIMO. We also
compare the EE performance of our scheme with no antenna
selection for SCs and a conventional transceiver structure for
the massive MIMO macro BS.
As can be seen, even though the computational complex-

ity is higher in our proposed algorithm, it converges within
3 iterations of the outer loop, and the convergence speed is
acceptable when compared with the reference algorithms.
Moreover, as discussed in the computational complexity
subsection (Section IV-B), the complexity of our proposed
method is proportional to the number of outer loop iterations.

Hence, the fast convergence rate of our method demonstrates
acceptable complexity. We also note that by optimizing the
initial points and step sizes used for updating the values
of the Lagrangian multipliers in the subgradient method, the
number of inner loop iterations can also be decreased, which
can lead to a further decrease in the computational complex-
ity. Furthermore, if in practice temporal correlation exists for
the channel gains, the optimal power allocation will also be
correlated in time. Thus, using the previous set of power val-
ues as an initialization point for the next calculation could
reduce required number of iterations even more.
As expected, our proposed scheme outperforms the other

algorithms: the EE is about 12% higher than the second-best
scheme of sequential RB allocation. This result shows the
impact of an effective and efficient RB allocation method
on the total EE of the system. The worst performance is for
equal power allocation, in which even though antenna selec-
tion, the single-RF-chain structure, and RB assignment are
considered, power is equally allocated between users regard-
less of their channel quality and minimum rate requirements.
Our proposed scheme provides about 6.4 times higher EE
than the equal power case. Based on this figure, we can
conclude that even though full power transmission increases
the SE significantly, it performs the worst from the EE per-
spective. Moreover, our proposed scheme outperforms the
combined schemes from [24] and [27], with about 37%
higher EE.
Without antenna selection, even though increasing the

number of active antennas enhances the SE, since more
power is consumed by each SC BS, the EE decreases.
Moreover, deploying a conventional transceiver structure at
the macro BS (with one RF chain per antenna) will lead
to higher consumption of dynamic power. Thus, the EE of
our proposed scheme but with a conventional macro BS
transceiver structure and with all SC antennas active is only
about twice that of the equal power case.

5) EFFECT OF NUMBER OF USERS ON EE AND SE

To evaluate the impact of the number of users on EE and
SE, we compare the performance of our proposed method
with three of the baseline schemes for varying numbers of
users NU in Fig. 9.

In all cases, both the EE and the SE increase approx-
imately linearly with the number of users. Our proposed
scheme provides significantly higher EE than the com-
bined schemes from [24] and [27]. There is gap in EE
performance between our scheme above that provided by the
reference combined schemes at lower NU , which increases
in magnitude as NU increases. This is primarily a result of
the decreased power consumption due to antenna selection,
which is the main difference between the two schemes. At the
same time, our proposed scheme provides only slightly lower
SE than the combined schemes of [24] and [27]. However,
we also note that the rate of growth in the gap appears to
stabilize at larger NU , with the size of the gap becoming
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FIGURE 9. EE and SE of proposed scheme and other reference algorithms (shown
in legend) vs. number of users NU . SC BSs are equipped with NS = 8 antennas (of
which only a subset are active) and the macro BS is equipped with NM = 100
antennas; ζc = 25 dB and ϒs = 3 dB.

closer to constant. This effect is a result of the system grad-
ually activating more antennas to enable resources for the
increasing user load, and therefore losing some of its advan-
tage in EE performance. Sequential RB allocation, having the
same kind of antenna selection, also has a similar gradually
decreasing slope for its EE.
As indicated earlier in Fig. 8, equal power allocation

has the worst EE performance, and as seen here its rate
of increase in EE with larger numbers of users is also
very small. As expected, the rate of increase in EE for our
proposed scheme with larger numbers of users is much larger
than that for equal power allocation. Even though antenna
selection has also been considered for equal power alloca-
tion, its large constant maximum transmit power dominates
the total consumed power. This causes the effect of changes
in the dynamic power to become negligibly small. Therefore,
even though higher numbers of users need more active anten-
nas at the SCs, almost no change in the slope of the EE and
SE for equal power allocation is visible as NU increases.

From the SE perspective, the SE of equal power allocation
is higher than that of our scheme, indicating that the excess
power is being used (somewhat inefficiently) to increase
bit rates. For sequential RB allocation, the rates of change
for both EE and SE are somewhat similar to those of our
proposed scheme, though said changes, as well as the EE
and SE themselves, end up being smaller. Moreover, while
the combined schemes from [24] and [27] provide higher SE
than our proposed method, the relatively small gain in SE of
the combined schemes over our method is much lower than
the gain in EE of our method over the combined schemes.
Thus, our proposed method is only trading off a small amount
of SE performance for a significant gain in EE performance,
compared to the combined schemes from [24] and [27].
Since the reference combined schemes do not use antenna

selection, they do not experience the same gradual decrease

FIGURE 10. Impact of fronthaul capacity on total EE, on EE of small cell and macro
tiers separately, and on SE. SC BSs are equipped with NS = 8 antennas (of which only
a subset are active) and the macro BS is equipped with NM = 100 antennas; NU = 60,
κmin = 1.28 Mbits/s, ζc = 25 dB, and ϒs = 3 dB.

in the slope of their EE performance as our proposed scheme.
We predict that the gap between our scheme and the refer-
ence combined schemes may be expected to decrease as NU
continues to grow. At some point at larger NU , our scheme
would be forced to activate all SC antennas. At this point,
the performance (and its slope) of our proposed scheme and
the combined schemes of [24] and [27] would likely become
about the same.

6) EFFECT OF FRONTHAUL CAPACITY ON EE AND SE

We now evaluate the effect of the fronthaul capacity, cs,limit,
on the EE and SE in Figs. 10 and 11. In previous figures, we
have assumed there was enough fronthaul capacity to serve
the users, but in these figures we limit fronthaul capacity to
investigate the effect of the constraints in (21c) in our EEmax
problem. For this purpose, we change the number of users to
NU = 60 and κmin to 1.28 Mbits/s.6 In Fig. 10, EE is depicted
vs. fronthaul capacity, where the pair of values on the x-axis
indicate (c0,limit, cs,limit), i.e., the fronthaul capacity for the
macro BS and for SC BSs, respectively.
First, at the far left we assign sufficient fronthaul capac-

ity for all BSs, such that all users can get their minimum
required rate. Next, the fronthaul capacity for the macro BS
is decreased. This leads to the macro BS becoming over-
loaded and it hence drops some of its users. All EE and
SE values decrease as a result. Third, we keep the sufficient
fronthaul capacity for the macro BS and decrease the fron-
thaul capacity of the SC BSs. In this case, the total EE, SC
EE, and SE all decrease even more, since the majority of
users in the network are SC users, many of whom are now
not receiving their minimum guaranteed rates. However, the
EE of the macro BS remains about the same as it was ini-
tially. Finally, we decrease cs,limit for all BSs. As expected,
the total EE and SE decreases even further with more users

6. These values are simply examples intended to ensure the constraints
in (21b) are also active, so we can examine their interaction with the
fronthaul capacity constraints.
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FIGURE 11. CDFs of instantaneous user rates for different pairs of
(c0,limit , cs,limit ) (Mbits/s). SC BSs are equipped with NS = 8 antennas (of which
only a subset are active) and the macro BS is equipped with NM = 100 antennas;
NU = 60, κmin = 1.28 Mbits/s, ζc = 25 dB, and ϒs = 3 dB.

receiving even smaller rates. However, the EEs of the macro
cell and SCs are about the same as for the (22.5, 40) case
and the (90, 10) case, respectively. Hence, whether or not a
tier is overloaded has little effect on the EE of the other tier.
Fig. 11 shows the CDFs of the instantaneous user rates for

the same (c0,limit, cs,limit) pairs as used in the previous figure.
The minimum required rate is indicated by the vertical dotted
line. As seen, when (c0,limit, cs,limit) = (90, 40) Mbits/s, all
the users get their minimum required rates. In comparison,
the worst performance is for the case when all fronthaul
capacities are too low to support the users, for which over
57% of the users don’t get their minimum required rates.
In the remaining two cases, about 30% to 35% of the users
don’t receive their minimum required rates.
A “breakpoint” can be seen in several of the curves at

about 1.5 Mbits/s, demonstrating a separation in performance
between macro and SC users if the fronthaul capacity of a
tier has been reached. Users of the overloaded tier contribute
to the portion of the CDF left of the breakpoint, whereas
users of the other tier contribute to the rightmost portion.
A vertical jump in the CDF can also be seen in some

curves right at the minimum rate of 1.28 Mbits/s. This indi-
cates that when a tier has not enough fronthaul capacity, the
system often attempts to deliver only the minimum required
rate to many users and no more than that minimum, due to
insufficient resources being available.

7) EFFECT OF IMPERFECT CSI ON EE AND SE

Imperfect CSI can have a notable impact on the performance
of cellular systems. Massive MIMO systems specifically may
experience errors in CSI due to pilot contamination [5], [86].
Our examined network layout has only the single massive
MIMO macro BS, so pilot contamination is not present.
Nevertheless, we wish to conduct a brief numerical exam-
ination of imperfect CSI in general. The model we have

adopted for imperfect CSI is given as [87], [88]:

hests,n,b = ςhs,n,b +
√

1 − ς2h̄s,n,b, (39)

where hests,n,b ∈ C1×Ns is the estimated (small-scale fading)
channel vector, hs,n,b ∈ C1×Ns is the actual channel vec-
tor (corresponding to perfect CSI), and h̄s,n,b ∈ C1×Ns ∼
CN (0, INs) is an independent error vector. The parameter
ς , where 0 ≤ ς ≤ 1, represents the reliability of the chan-
nel estimate. When ς = 0, there is a complete failure in
the channel estimation, whereas for ς = 1 the estimation is
perfect and the error component in (39) becomes zero.
In this model, since the small-scale fading vector is scaled

by the large-scale fading value
√

�s,n in (3) (which is still
assumed to be known perfectly), the error component will
be scaled by the same amount. Hence, the power of the error
will be around the same order of magnitude as the signal, but
scaled down by 1−ς2. In practice, in an interference-limited
system, errors in CSI would likely be due to interference
and/or pilot contamination, and variations in the error power
can be reasonably expected to be handled within the range of
values for ς in the model. (In comparison, the noise power
in our simulations is many orders of magnitude smaller.)
Meanwhile, the Gaussian distribution for the error compo-
nent of the model holds due to the central limit theorem
applying to the sum of many interfering signals in a practical
system.
Precoding techniques that null interference, like those we

use in this article, are known to be somewhat sensitive to
errors in CSI. As one example, [89] examines the case
of ZF precoding specifically within the context of massive
MIMO. To overcome this issue, a large body of work has
been done to design precoders that account for CSI error.
References [86] and [90] survey techniques designed to com-
bat pilot contamination; see also [4, Ch. 3]. More generally,
channel estimators and precoders can attempt to account for
the channel estimation error (e.g., [91]–[93]) and/or attempt
to bound its magnitude (e.g., [94], [95]). However, a more
in-depth examination of channel estimation and the design
of precoders robust to imperfect CSI are outside the scope
of the current work. Hence, herein we only examine the
robustness of our proposed scheme to channel estimation
error.
The EE/SE performance vs. (1−ς ) is depicted in Fig. 12.

We assume that the reliability of the estimate is the same
for all BSs. As can be seen, by decreasing ς both the
EE and SE decrease, which is expected as the decreased
CSI reliability/increased channel estimation error naturally
leads to the degradation of performance. The most signifi-
cant decrease occurs for equal power allocation. Since the
power allocation is not optimized, but rather divided equally
between users, there is no opportunity in that regard to mit-
igate interference by, for example, reducing the transmitted
power by only allocating enough power to certain users such
that they receive just their minimum guaranteed rates. Thus,
the primary source of interference mitigation is due to the
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FIGURE 12. EE and SE of proposed scheme and other reference algorithms shown
in legend vs. 1 − ς , where ς represents the CSI reliability. SC BSs are equipped with
NS = 8 antennas (of which only a subset are active) and the macro BS is equipped
with NM = 100 antennas; NU = 200, ζc = 25 dB, and ϒs = 3 dB. (a) Absolute values
of EE and SE. (b) Percentage loss in EE/SE performance, relative to having perfect CSI
(ς = 1).

precoding, and as already mentioned, the precoding can be
sensitive to CSI errors. Hence, for equal power allocation,
both the EE and SE drop by over half when the CSI reliability
drops from ς = 1 (perfect CSI) to ς = 0.5.

The decrease in SE of our proposed method is sharper than
for the remaining two reference schemes, indicating slightly
less robustness in SE toward channel estimation error in
our proposed method. However, the relative decrease in EE
of our proposed scheme is less than that of sequential RB
allocation for larger values of ς . Interestingly, the percentage
drops in EE and SE for our proposed scheme as ς decreases
are nearly identical, indicating a good trade-off between EE
and SE. For sequential RB allocation, the relative drop in
EE is faster than for SE, whereas for the combined schemes
of [24] and [27], the reverse is true.
Overall, all the examined schemes (other than equal power

allocation) see their degradation in performance start to
happen faster once ς decreases past about 0.95 to 0.9.
If the reliability of channel estimation can be kept above
ς = 0.9, then the degradation in performance will also be

fairly limited. In the case of our proposed algorithm, when
ς ≥ 0.9, both the EE and the SE lose no more than 10% in
performance compared to having perfect CSI.

VI. CONCLUSION
In this article, the energy-efficient deployment of MIMO
in SC HetNets has been considered. To achieve high EE,
MIMO and SC deployments need to be integrated with
well-designed interference mitigation and resource allocation
methods. To this end, we have proposed and investigated
the use of user-centric clustering and coordinated beam-
forming with null-space projection and ZF precoding to
mitigate interference in a HetNet. A single-RF-chain mas-
sive MIMO transceiver design for the macro cell and antenna
selection for the SCs have been proposed to reduce hard-
ware power consumption. We have furthermore designed a
joint antenna selection and RB allocation algorithm, fol-
lowed by a power optimization algorithm, to maximize the
system EE under the additional constraints of minimum guar-
anteed user rates and maximum fronthaul capacity limits.
The power allocation problem has been solved using the
Dinkelbach method. Simulation results have demonstrated
that our proposed methodology and algorithms ensure higher
EE than previously known benchmark algorithms, while
being significantly less complex than an exhaustive search.
The effect on the system EE and SE performance when
varying the clustering threshold, number of users, cell asso-
ciation bias, fronthaul capacity, and reliability of CSI has
been examined.
Future work on this topic may involve the addition of

user scheduling for even larger numbers of users request-
ing service, as well as the impact of user mobility on the
performance of the proposed scheme. Also, the current work
has mostly assumed perfect channel estimation. However, in
practical massive MIMO systems, imperfect CSI due to pilot
contamination [5], [86] is quite common. Therefore, future
work should account for its effects on the system and the
proposed scheme.

APPENDIX
PROOF FOR LEMMA 1
One may consider the PPPs �s and �u to be uniformly
distributed over the area A of a circle centered at the origin
o of the plane and having radius RA, where RA tends to
infinity. We consider the typical user u ∈ �u, who is served
by BS s ∈ �s. Without loss of generality, we may consider
this user to be located at the origin. The distribution of the
distance ds,u from the user to its serving BS, i.e., the nearest
point in �s, is [82]

fds,u(r) = 2πλsr exp
(
−πλsr

2
)

(40)

Meanwhile, the location of any other arbitrary BS r ∈
�s\{s} is independent of the location of s and uniformly
distributed over A. Therefore, the distribution of the distance
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dr,u between r and the origin is

fdr,u(r) = 2πr

πR2
A

= 2r

R2
A

(41)

Since u is served by s, dr,u must be larger than ds,u.
However, to be part of the cluster for u, from (34) we
have that dr,u can be no larger than �ds,u. Therefore,
the probability that an arbitrary BS r will be part of the
cluster for u (but not serve u), conditioned on ds,u, is
P
supp
u |ds,u = Edr,u [1(ds,u < dr,u ≤ �ds,u)|ds,u], where 1(x)

is an indicator function that equals 1 if x is true, and 0
otherwise.

P
supp
u |ds,u =

∫ ∞

0
1
(
ds,u < dr,u ≤ �ds,u

) · fdr,u(r)dr

=
∫ �ds,u

ds,u

2r

R2
A

dr = d2
s,u

(
�2 − 1

)

R2
A

(42)

Then, deconditioning on ds,u to obtain psuppu =
Eds,u [P

supp
u |ds,u]:

psuppu =
∫ ∞

0
P
supp
u |ds,u fds,u(r)dr

=
∫ ∞

0

r2
(
�2 − 1

)

R2
A

2πλsr exp
(
−πλsr

2
)
dr

=
(
�2 − 1

)

πλsR2
A

(43)

psuppu is the probability of supporting, but not serving,
some typical user u. (This would be a user in the set Is.)
However, there are a total of NU users uniformly distributed
over A, where NU is a Poisson-distributed random variable
with mean λuπR2

A. Each user is independently placed, mean-
ing the statistics for any given user are identical. (When
considering some other user, without loss of generality one
can relocate the origin of the infinite plane to that user’s loca-
tion and thus obtain the same probability.) Consequently, the
probability of supporting (but not serving) n out of NU users
is a binomial-distributed random variable:

P[Is = n|NU] =
(
NU
n

)(
psuppu

)n(1 − psuppu

)NU−n (44)

The mean value of Is is

E[Is] = ENU,n{P[Is = n|NU]} = ENU [En{P[Is = n|NU]}]
= ENU

[
NUp

supp
u

] = λuπR
2
Ap

supp
u

= λuπR
2
A

(
�2 − 1

)

πλsR2
A

=
(
�2 − 1

)λu

λs
(45)

The mean value of the number of served users per BS,
E[Ks], is known to be λu/λs [55]. Since Ks and Is are
disjoint, the mean number of supported users (served and
clustered) E[Ls] in Ls is just the sum of E[Ks] and E[Is].
Therefore:

E[Ls] = E[Ks] + E[Is]

=
(
�2 − 1

)λu

λs
+ λu

λs
= �2 λu

λs
, (46)

which completes the proof.
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