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ABSTRACT In this study, we address the problem of chaotic synchronization over a noisy channel by
introducing a novel Deep Chaos Synchronization (DCS) system using a Convolutional Neural Network
(CNN). Conventional Deep Learning (DL) based communication strategies are extremely powerful but
training on large data sets is usually a difficult and time-consuming procedure. To tackle this challenge,
DCS does not require prior information or large data sets. In addition, we provide a novel Recurrent
Neural Network (RNN)-based chaotic synchronization system for comparative analysis. The results show
that the proposed DCS architecture is competitive with RNN-based synchronization in terms of robustness
against noise, convergence, and training. Hence, with these features, the DCS scheme will open the door
for a new class of modulator schemes and meet the robustness against noise, convergence, and training
requirements of the Ultra Reliable Low Latency Communications (URLLC) and Industrial Internet of
Things (IIoT).

INDEX TERMS Deep learning, chaotic synchronization, DCS, CNN, Lorenz system, RNN.

I. INTRODUCTION

SYNCHRONIZATION is a fundamental requirement for a
wide range of natural phenomena and new industrial

technologies [1]. This article focuses on designing a new
family of chaos-based receivers that benefit from the advan-
tages of Deep Learning (DL) techniques. Historically, since
the early 1980s, chaos-based communication started with
the implementation of electronic circuits exhibiting chaotic
behavior [2]. The second fundamental step towards chaos-
based communication systems was in 1990. Pecora and
Carroll discovered that synchronization can be achieved by
coupling two chaotic systems with a common signal [3].
After that, several innovative systems have been proposed
employing other outstanding features of chaotic waveforms.
These waveforms are wide band, nonlinear, noise-like, non-
periodic, and hypersensitive to initial conditions [4]. They
also have excellent correlation properties and a simple pro-
duction process. Thus, chaotic waveforms could be used in
a vast spectrum of applications. They are major candidates
for multi-user spread-spectrum schemes because of their
wideband characteristics [5]–[8]. In addition to the spread-
spectrum applications, numerous chaos based modulations

have been proposed for use in digital wireless communi-
cations because of their robustness against the destructive
effects of jamming and fading channels [9]. Moreover, many
studies have been done on Low Probability of Interception
(LPI) features [10] and chaos-based secure communication
schemes [11].
In [12], the authors classified secure chaos-based tech-

niques into four generations. The first three generations
were based on continuous chaotic synchronization in which
the bandwidth efficiency was very low. The fourth genera-
tion, called impulsive methods, employed impulsive chaotic
synchronization to solve the low bandwidth efficiency draw-
back. The main design challenge of chaos-based secure
schemes is how to deliver a secret message over a pub-
lic channel using a transceiver structure that shows strong
noise rejection capabilities. Several attempts made to design
robust digital and analog chaos-based secure communication
systems [13], [14]. In general, traditional studies of chaos
synchronization rely on the fact that the equations of chaotic
systems are known beforehand. This assumption is not real-
istic for practical chaotic systems in which only one or some
observational signals are available [15].
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Many recent studies have demonstrated the capability of
ML-based approaches for modeling chaotic systems whose
equations of motion are unknown. A special approach known
as “reservoir computing” caused considerable progress in
model-free prediction of chaotic systems [16], [17]. It is
currently an active research area that uses natural poten-
tials of Recurrent Neural Networks (RNNs). Reservoir
computing has been widely used in the modeling of tem-
poral processes. Also, reservoir computing has employed
successfully in several practical applications, e.g., speech
recognition, handwriting recognition, robot motor control,
and financial forecasting [18]. More importantly, by transmit-
ting just one scalar signal, synchronization can be obtained
between well-trained reservoir computers. This technique can
also extract Lyapunov exponents and captures the dynamics
of a chaotic system [19].
On the other hand, labeling is a difficult and time-

consuming process in some practical scenarios, such as
chaos-based communications. To tackle this challenge, in
our paper we proposed a self-supervised (untrained) struc-
ture for a chaos-based receiver. This new design is based on
the DIP (Deep Image Prior [20]) approach to achieve a self-
supervised configuration. To this aim, we employ a modern
version of Generative Adversarial Networks (GANs), known
as Deep Convolutional Generative Adversarial Networks
(DCGANs), which have a feed-forward structure [21]. Such
a design benefits from advantages of conventional DCGANs
and self-supervised nature of the DIP approach. Because
of these features, the proposed design leads to a high-
performance self-supervised structure that relies less on the
input data.
The results of this article can be extended to a wide range

of applications, from health monitoring, and chaos-based
security, to human behavior analysis and pattern studies in
dynamic social networks [22]–[25]. The proposed model is
flexible for use in a variety of applications with different
requirements. It can be used to achieve real-time synchro-
nization in applications that are vulnerable to timing and
delay such as control of heart fibrillation. Chaotic condi-
tions of the human heart cause arrhythmia and it can lead
to death if left uncontrolled [26]–[28]. To retain a normal
heart rhythm, accurate timing can be obtained using the
proposed synchronization scheme. On the other hand, there
is a lot of evidence that chaotic synchronization provides
valuable information and a deeper understanding of physi-
ological mechanisms underlying the brain [29]. When the
timing is not the main challenge, de-noising features of
the proposed approach can be exploited. Thus, it can be
used for noise reduction in practical chaotic signals such as
Electroencephalography (EEG), Electromyography (EMG),
and other chaotic physiological signals [30]–[32].

A. BASIC DEFINITIONS
Synchronisation gives a conception of high correlations
between connected systems. In its elementary definition, syn-
chronisation points out to the tendency to have the same

dynamical behaviour. In the context of communications, a
local copy of chaotic signals can be recreated in the receiver
side using appropriate synchronization circuitry. This is the
most popular approach in coherent receivers, for recover-
ing the original chaotic samples from the received noisy
signals [33]. These recovered samples enters a correlator
as a reference signal for data detection. The Bit Error Rate
(BER) performance of these receivers depends on the “close-
ness” of the reference to the original chaotic samples. Using
these receivers have some significant advantages over non-
coherent receivers in terms of data rate, noise performance,
and bandwidth efficiency. However, all the above advan-
tages can be attained provided that the synchronization is
preserved, Otherwise, all these advantages will be lost [34].
To gain a robust chaotic synchronization organization and

excellent noise performance, several synchronization policies
and various designs for the receivers are reported in the
literature. Essential concepts of chaotic synchronization are
explained in [3] by finding some effective applications to
secure chaos-based communications. In a coupled Lorenz
system as a remarkable synchronization scheme [35], [36],
two identical chaotic generators are synchronized using a
shared drive signal. This type of synchronization is stable
and robust to perturbations in the drive signal [37], [38].
In this article, chaotic map selection and other impor-

tant design decisions are based on the intended applications.
These applications are associated with several important
issues such as latency, power consumption, and security [39].
The Lorenz map, as a high dimensional chaotic map, has a
more complicated mathematical structure and high chaotic
complexity. One-dimensional chaotic maps are more suit-
able for applications with low latency requirements because
they need fewer computational operations. On the other
hand, simpler chaotic maps suffer from security limitations.
This drawback is due to the limited chaotic range, low
chaotic complexity, and higher dynamic behavior degradation
rate [40]. In a chaotic masking communication scheme, the
robustness to channel noise is a determining measure [41]. In
this case, the original message is added to a chaotic signal.
At the receiver side, the chaotic signal is subtracted from the
received signal to retrieve the original data. In order to mask
the original message, this signal should be generally much
weaker than the state variable of the transmitter’s chaotic
system, and thus the message signal is vulnerable to chan-
nel noise. In this situation with high-security requirements,
the Lorenz map can be a good choice. In [42] the authors
have compared the Lorenz system with a Rössler system and
it is shown that in the Lorenz case, even for rather strong
noise, the complete synchronization is preserved.
In this study, we assume that the received signal is cor-

rupted by Additive White Gaussian Noise (AWGN). This
assumption has the following advantages:
1) Tractability: Noise effects are very important in

chaotic synchronization because of the sensitivity of chaotic
systems. In fact, a small noise may lead to insta-
bility and synchronization error [43]. This assumption
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assists in detailed problem tracking by avoiding calculation
complexity.
2) Necessity: Noise must be considered because it exists

always before any other effects of the communication chan-
nel. Other destructive effects could be modeled as serial filter
blocks after the noise block [33].
3) Generality: The relative performance of different com-

munication schemes determined using the AWGN channel
model remains valid under real channel models, i.e., systems
under fading conditions generally follow the same trend as
in the AWGN channels [33], [44], and [45].

B. BACKGROUND AND MOTIVATIONS
To cope with the destructive effects of the noise and
distortion, several noise reduction methods have been rec-
ommended for chaotic signals, such as the local projection
approach and lifting wavelet transform [46], [47]. This issue
is even more challenging when the chaotic parameters or
initial conditions are unknown. In this case, there are efforts
to approximate the noise-free trajectory by estimation of the
parameters and initial conditions [48]–[50]. However, in most
of the reported works, the chaotic signal cannot be recov-
ered precisely. On the other hand, since noise and chaos
have similar spectral behaviour, regular frequency domain
filtering degrades the signal of interest [51].
Recently, DL-based techniques have attracted great atten-

tion because of effectiveness in data-driven analysis of
nonlinear dynamics [52]–[55]. Among these, Recurrent
Neural Network (RNN) is frequently used to learn complex
dynamics from the input data [16], [56]–[58]. Unfortunately,
classical RNN methods suffer from vanishing gradients and
tendency to take into account only short-term dependen-
cies [59]. In [60], the authors compared the prediction
performance of the RNN and Long-Short Term Memory
(LSTM) in the presence of noise. They showed that when
LSTM was trained on noisy data, it reduced the noise con-
tribution in the prediction process. This feature can be used
for noise reduction goals. However, when LSTM was trained
on clean data it became susceptible to perturbations in the
input data.
In a surprising new article [20], Deep Image Prior (DIP)

method is suggested for image de-noising and inpainting
using DCGANs [21]. In DIP, a deep convolutional neural
network generator such as DCGAN is initialized with some
random weights and these weights should be optimized in
such a way that force the network to generate an image
that resembles the target image as much as possible. This
procedure does not use any prior information, or training
on large data sets. Motivated by the potentials of the DIP
method [20], this article presents some approaches to take
advantages of the DL in order to promote the capabilities of
the existing chaos-based communication systems.

C. CONTRIBUTIONS
This article is the first to introduce DL-based chaotic
synchronization along with some approaches to improve

trainable and untrained systems. In chaotic synchroniza-
tion and other communication systems, large data sets and
labeled data are not available. In addition, for a reasonable
performance in regular DNN-based structures, learning and
testing steps must be performed for the same channel real-
ization results in a lot of overhead due to learning [61].
Innovative aspects of this article are briefly itemized below:

• As the main achievement, we introduce a Deep
Chaos Synchronization system (DCS) that needs no data
set. The proposed DCS benefits from the inherent secu-
rity of the chaotic signals and advantages of DNNs.
Moreover, it can offer a low synchronization error, espe-
cially for longer sequences. The above-mentioned features
make DCS an appealing candidate for use in chaos-based
Code Division Multiple Access (CDMA) systems [62],
encrypted data transmission [63], [64], Ultra-Reliable Low
Latency Communications (URLLC) [65], Industrial Internet
of Things (IIoT) [65], and Wireless Sensor Networks
(WSNs) [66], [67].

• In addition, we suggest a trainable RNN-based synchro-
nization structure gains de-noising properties of the sequence
to sequence RNN, as a special arrangement of the RNNs
family for comparison with our proposed DCS approach.
We accepted the traditional RNN as a well-known train-
able approach since it can give a measure for the de-noising
strength of the proposed method. Depending on the intended
application, each has its own benefits and can be used.
In order to initial condition estimation, we offer a

Genetic Algorithm (GA)-based approach, which gives a
suitable reconstruction of the transmitted signals. A cor-
rect estimation is vital in chaotic synchronization because
of their sensitivity to the initial condition. With accurate
initial conditions, the slave system can be synchronized
with the master system almost instantaneously, thereby
eliminating the problem of transients. This technique can
still keep synchronization where the largest conditional
Lyapunov exponent is positive and other strategies cannot be
synchronized [35].
In order to select a proper map among various chaotic

maps, we tested several chaotic maps as the DCS system
input. We found a tractable trade-off between processing time
and noise robustness. In other words, we show that using
the Rössler map [40] and discrete-time Henon map [70],
the processing time reduced. The average amplitude error
between the recovered drive signal and the original signal
shows that the Lorenz map is superior to other maps from
a noise robustness point of view.
The rest of this article is organized as follows: In

Section II, the basics of the Lorenz map and some other
chaotic maps are investigated. Also, the employed initial
condition estimation method is described in this Section.
Moreover, some basic information about DCGANs, the
structure of the proposed transmitter/receiver, and other
information related to the DCS system is presented in
Section II. In Section III, the RNN-based synchroniza-
tion system is introduced for comparison with our DCS
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FIGURE 1. DCS model based on DCGAN as the generative model.

method. In Section IV, simulation results and discussions
are presented. The conclusions are explained in Section V.

II. DCS MODEL
In this section, the basics of the Lorenz chaotic synchroniza-
tion system are revisited and then the offered Deep Chaos
Synchronization model is presented.

A. CONVENTIONAL LORENZ SYSTEM
Consider the following conventional Lorenz system of
Equations [1]:

ẋ = ρ(y− x),

ẏ = rx− y− xz,

ż = xy− βz, (1)

where x, y, and z are the state variables at the drive (Master)
subsystem and ρ, r, and β are control parameters. When
these parameters are chosen as ρ = 10, r = 28, and β = 8/3
the equations lead to chaotic dynamics while the initial con-
ditions shape the chaotic behavior [3]. At the receiver side,
the received noisy signal can be written as:

μ(t) = x(t)+ ζ(t), (2)

where μ(t) is a given noisy observation, ζ(t) is Additive
White Gaussian Noise with zero-mean and power spectral
density σ 2

n . The response (Slave) uses the μ(t) as driver, in
order to reconstruct Lorenz state variables yr and zr:

ẏr = rμ− yr − μzr,

żr = μyr − βzr. (3)

We presume that all control parameters ρ, r, and β of
the master sub-system are known at the receiver side. The
initial values of the master subsystem are (x0, y0, z0) and
the slave subsystem is initiated similarly, except that we do
not know one of the initial values (x0). In a Lorenz system
starting from two slightly different initial states (x0, y0, z0)
and (xr0, yr0, zr0), the trajectories diverge from each other. At
the end of this section, a GA-based solution to this challenge
is presented.

B. COMPARISON WITH OTHER CHAOTIC MAPS
In addition to the Lorenz system, there are many other
chaotic systems that generate chaos and can be utilized
in communication systems. For example, Rössler systems
can be decomposed into stable drive-response sub-systems
to produce a robust synchronization [40]. Moreover, sev-
eral discrete-time maps, such as the Henon map, are also
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decomposable into synchronizing sub-systems without the
burden of solving differential equations [70]. In Section IV,
we discuss the merits and demerits of using these systems.
To investigate the effect of different maps on de-noising
performance of the DCS system, we first adopt a signal
from the Rössler system as input [40]:

ẋ = ωy− z,

ẏ = ωx+ 0.15y,

ż = 0.4 + z(x− 8.5), (4)

with ω = 0.95, and another chaotic signal from discrete-time
Henon system [70]:

x[n+ 1] = 1 + y[n] − z[n]x2[n],

y[n+ 1] = bx[n],

z[n+ 1] = z[n] − 0.5 + βx2[n], (5)

with b = 0.25, and β = 0.279.

C. PROPOSED DCGAN-BASED RECEIVER
In this study, motivated by the appealing factors of the
DIP model [20], the one-dimensional arrangement of DIP is
implemented using a DCGAN. In particular, we adapt the
input and output of the DIP model and use it as a base-
line which we term the Deep Chaos Synchronization. The
receiver of the DCS is composed of three stages, as shown in
Fig. 1. The implementation steps of the DCS are illustrated
in Algorithm 1.
In the first stage, a less noisy signal is achieved from

the DIP method. When the objective is to generate data
identical to a target distribution, a Generative Adversarial
Network (GAN) provides data from a similar distribution
efficiently [68]. However, GANs are unstable to train and
this regularly generates nonsensical outputs.
DCGAN is one of the attempts to scale up GANs using

CNNs. Compared to conventional GANs, spatial pooling
functions are replaced with convolutional layers, allowing
the DCGAN to learn its own spatial downsampling. Also,
DCGAN adopts Batch Normalization (BN) which stabilizes
learning by normalizing the input to each unit to have zero
mean and unit variance. Moreover, ReLU activation functions
are considered for all layers. The RMSProp optimizer is used
as a variant of the traditional gradient descent method that
adopts a momentum parameter for faster convergence of the
training process.
In the second stage, we offer a GA-based approach in

order to estimate the initial condition using the achieved
clear signal from the previous stage. An accurate initial state
estimation results in a proper reconstruction of the original
signal.
In the final stage, the estimated initial value enters the

response sub-system in order to reconstruct Lorenz attrac-
tors. By doing the above mentioned three stages the inherent
advantages of a chaotic system are combined with the noise
reduction capability of the DIP so as to have remarkable

Algorithm 1: DCS Receiver Pseudo-Code
1: Initialize:

Observed Noisy Sequence μ, Random vector w;
2: DCGAN pseudo-code:

2-1: Generator (μ)
- 1D Convolution Transpose ();
- Batch Normalization ();
- Relu ();
- Tanh (); (At the end of Layers)

2-2: Discriminator (Input random vector k)
- 1D Convolution transpose ();
- Batch Normalization ();
- IRelu ();

2-3: DCGAN training loop ()
- Draw training example from the μ and w;
- Generate a network G(w, k);
- Network training using (6):
w = RMSprop(G(w, k), LR,MOM);

- Update loss;
Output = Network(w);

3: DIP Output ():
- Solving (6) using GD method;
χ = G∗(w, k);

4: Initial condition estimation (χ, x̂):
- GA based calculation of the x0;

5: Reconstruction of xr, yr, zr
6: End

performance. However, the complexity increases in compar-
ison with the conventional Lorenz synchronization system,
but compared to RNN-based designs, DCS needs no labeled
data or large data set. Moreover, no need to send train signals
result in a lot of overhead reduction.
As shown in Fig. 1, the DCS receiver is implemented using

a DCGAN located at the input of the response subsystem. We
aim to tackle the inverse problem of de-noising a drive signal
x(t) ∈ R

N which has been transmitted on a communication
channel with Gaussian noise ζ(t) ∈ R

N . Therefore, given a
noisy observation μ(t), the basic idea is to reproduce a sig-
nal χ(t) that is similar to x(t). To implement the DCGAN,
We need to configure and organize the three blocks: 1) the
generator, 2) the discriminator, and 3) the training process.
The discriminator can be implemented by successive convo-
lutional layers, BN layers, and Relu activation functions. In
each of the convolutional layers, we downsample the spa-
tial dimension of the input. The generator of the DCGAN
consists of a sequence of transpose convolutional layers that
upsample the input random sample to generate an artificial
signal. A DCGAN can be trained in the same way as a regu-
lar GAN. Different from the conventional DCGAN models,
in the DIP approach, we optimize the “random weights” to
force the network to produce an output similar to the target.
Therefore, G(k,w) is the output of DCGAN with weights w
and latent vector k. In other words, instead of minimizing
‖χ − μ‖2, the network optimization problem of the DCS
can be formulated as:

w∗ = argmin
w

‖G(k,w)− μ‖2, (6)
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where μ ∈ R
N is the observed noisy signal and G(k,w∗) = χ

is the output clean sequence. This non-convex optimization
problem can be solved easily using Gradient Descend (GD)
method. As an alternative optimization strategy, we can reg-
ularize the network using a two stages optimization, which
has shown converges better than simple Mean Squared Error
(MSE) optimization [69], [71]. Therefore, we first train the
adversarial network using a noisy sequence μ, an RMSProp
optimizer, and the loss function in (6). Then, this problem
can be solved through a simple GD algorithm to obtain the
final solution.

D. INITIAL CONDITION ESTIMATION USING GA
The chaotic trajectory reproduction is extremely susceptible
to the initial conditions. On the other hand, in most practical
scenarios, the initial conditions are hard to measure precisely.
So, as a reasonable assumption, we assume that we have only
the upper and lower bounds for initial conditions. After an
effectively initial condition estimation, we can get a noise-
free signal, and the slave system can follow the dynamics
of the master system almost instantaneously, thereby elimi-
nating the issue of transients. With these advantages, initial
condition estimation is one of the hot topics in chaos-based
studies. Some articles have emphasized that when alternative
synchronization techniques fail, this approach can achieve
synchronization [72]–[76]. For example, in [47], [73] some
heuristic algorithms are employed to initial state estimation
and robustness of the chaotic synchronization to noise.
In this article, in order to initial condition estimation, we

offer a simple GA-based method that provides an excel-
lent reconstruction of the transmitted signal. The GA-based
optimization is a convenient tool for non-linear problems
that are not appropriate for analytical optimization methods.
In addition, GA approach is fit for solving complex multi-
variable problems, for example, where we would like to
estimate several chaotic parameters and initial conditions. In
the literature different methods have been proposed for initial
condition estimation, e.g., Differential evolution algorithm-
based methods [56], or Hybrid Mehta-heuristic methods [57].
Since the main idea behind this study is to implement an
untrained structure for chaos-based receivers and our main
focus is not on the precise parameters and initial value
estimation, we select the GA to simplify the implementation.
We focus on the simultaneous start property and the secu-

rity aspects of the initial condition estimation method [71].
The simultaneous start property is important in the syn-
chronization of two coupled discrete-time systems, because
it enables us to obtain real-time synchronization without
transient time. The receiver can start de-noising process
after receiving the first sample. In other words, because
the receiver gains deep learning structures, it is inherently
predictive, and after receiving the first sample, it can predict
the next samples. In the synchronization model presented,
if the response sub-system knows the initial conditions of
the transmitter, or estimates them accurately, it can make a
copy of the transmitted signal without the need for additional

signaling. From a security point of view, when the adversary
network has access to the wireless medium and public sam-
ples x0, we can secure the DCS system by sharing y0 and
z0 with legal users as private keys. We can use any of the
transmitters outputs x0, y0, and z0 for signal transmission or
security purposes. Estimating other variables imposes time
and computational load and without loss of generality, we
take a single variable case x0 to decrease the computational
complexity.
In our setting, equal parameters ρ, r, and β are considered

for the drive and response systems because the synchroniza-
tion between them is stable provided that the parameters are
identical. Here, (x0, y0, z0) and (xr0, yr0, zr0) are the initial
states of the drive and response systems, respectively. We
have adopted the x component to operate as a drive signal
and it is also assumed that the receiver does not know the
initial state of the x component (i.e., x0) correctly and only
knows the upper and lower bounds of it. To cope with the
above-mentioned trajectory divergence phenomenon, in [73],
the authors recommended a piece-wise estimation for each
segment of the observed signal. Mathematically, initial state
estimation in such a problem reduces to the optimization of
the following objective function:

argmin
x0

[
fobj(x0) = 1

Ts

Ts∑
t=1

(
x̂(t)− χ(t)

)2

]
, (7)

where x0 is initial condition of the x component, for the
Lorenz map. The idea is to minimize the objective func-
tion fobj(x0) given by the mean-squared error between a
candidate chaotic signal solution x̂(t) and the output of the
above mentioned neural network χ(t). If an initial popula-
tion is determined for (x0), the solution will be found by
an iterative approach such as GA. The initial population can
be modified based on some rules such as selection, muta-
tion, and crossover to achieve the optimal solution [77]. In
particular, we use a decimal representation of genes in the
range [0 0.1], uniform mutation, and one-point crossover. It
is necessary to notice that here we determine the accuracy
of our estimates by the initial population definition. In other
words, the larger the initial population, the higher the accu-
racy of estimation, and accordingly the reconstructed signal
x̂ will be closer to the primary signal x. Iterative solving
of the system of equations in (1) can give the best solu-
tion x̂(t). This can be performed in Python with the help of
scipy.integrate.odeint function. Ultimately, we can
reconstruct Lorenz attractors yr and zr at the receiver side
using parameters and the estimated initial condition.

III. TRAINABLE RNN-BASED SYNCHRONIZATION
MODEL
In this section, we introduce a trainable RNN-based syn-
chronization scheme for comparative investigation. Fig. 2
illustrates the suggested model. It is noted that since the DCS
is the first self-supervised chaotic synchronization system,
the performance comparison cannot be provided with other
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FIGURE 2. Trainable RNN-based synchronization System.

self-supervised systems. Therefore, the comparison with the
RNN-based synchronization system can provide a general
measure of de-noising power of them, although, they belong
to the two different training classes.
A standard RNN includes of a hidden layer h and an

output χ works on an input sequence x= x(1), . . . , x(T). The
hidden state h(t) is updated at each time step as follows:

h(t + 1) = ψ(x(t), h(t)), (8)

where ψ is a non-linear activation function, such as a logistic
sigmoid function. An RNN learns a probability distribution
over a sequence by being trained to predict the next sym-
bol in a sequence. The output at each time step t is the
conditional distribution p(x(t+ 1)|x(t), . . . , x(1)). From this
learned distribution, it can sample a different sequence by
iteratively sampling. The RNN is a remarkable tool for learn-
ing complex dynamics and, at the same time, has a lot of
noise reduction capabilities. It is also proper for Natural
Language Processing (NLP) and signal prediction problems.
Among these capabilities, we focus on the de-noising poten-
tials of the Encoder-Decoder sequence to sequence RNNs
as a special structure of the RNNs family. It consists of
two RNNs, one of them encodes a sequence into a fixed-
length vector and the second RNN decodes the vector into
another sequence [78]. In the RNN-based signal prediction
problem, the model predicts the next sequence given a
previous sequence of vectors. This will enable us to generate
a new sequence, one vector at a time. The architecture of
the de-noising problem is similar to the prediction process,
except that the signal given to the input of encoder is noisy,
and the desired output of the decoder should be a clear sig-
nal. We adopt a newer version of dynamic RNN functions,
known as Gated Recurrent Unit (GRU), which realizes the
RNN for us [79]. GRU has no output gate and incorporates
the input and previous gates into an update gate. This new
gate manages how much the internal state is combined with
a candidate activation.
We select GRU because it requires less computation while

provides comparable results with LSTM. In addition, GRU
can be easily implemented by GRUCell in TensorFlow.
Different GRU structures are supported by TensorFlow in the
tf.nn.rnn_cell module [80], [81]. Fig. 3 illustrates the
arrangement of the stacked GRU sequence to sequence RNN.
The G is the value of the hidden output of the encoder in

the last time step. We should repeat this value as an input

FIGURE 3. The stacked GRU sequence to sequence RNN structure.

to the further RNN to make it remember the context of the
present at all moments when predicting the future. We have
now defined the RNN and should train the model using an
optimizer. The input and output neuron’s dimensions should
be m = d = 1 because the number of input train and test
sequences are one ntrain = ntest = 1. We consider a super-
vised framework and generate two sequences of the noisy
chaotic samples with length T as train and test signals. In
the meantime, we keep their noise-free version (or target)
for final evaluation. In this framework, we train the model
showing the train sequence and reading a prediction from the
output neurons in the test phase. Even with a corrupted test
signal, this prediction is close to the ground truth [57]. The
RNN is trained to suppress the contributions from the noisy
observations and minimize the following objective function
using an ADAM optimizer [82]:

L =
N∑
t=1

1

2
(μ(t)− χ(t))2. (9)

Here,

χ(t + 1) = ψσ (μ(t + 1),G(t)), (10)

where h(t) ∈ R
N are the internal states, N is the number

of memory units, and χ(t) is the predicted/de-noised signal.
ψσ denotes the RNN trained against noise with a standard
deviation σ . In order to reconstruct Lorenz attractors, χ
enters the initial condition estimation block. After initial state
estimation, the desired attractors can easily re-produced by
the Lorenz circuit.

IV. SIMULATION RESULTS
In this section, a number of simulations are consid-
ered for a comparative analysis of the DCS, RNN-based

VOLUME 1, 2020 1577



MOBINI AND KADDOUM: DEEP CHAOS SYNCHRONIZATION

TABLE 1. List of the Parameters.

TABLE 2. GA Parameters.

synchronization, and traditional Lorenz coupled system
in (3). The considered parameters are listed in Table 1.
Many methods have been proposed to implement chaotic

trajectories in python. We solve the Lorenz equations, using
scipy.integrate.odeint function according to the
method presented in [83]. This function integrates the system
ofOrdinaryDifferential Equations (ODE) and returns the solu-
tion. We produce 1024 data points with a time step = 0.1. It is
presumed that all control parameters of the master sub-system
are known at the receiver side. To produce chaos dynamics,
the control parameters are selected as ρ = 10, r = 28, and
β = 8/3. The initial values of the master subsystem are
(x0, y0, z0) = (0.1, 0.1, 0.1) and the slave subsystem is the
same, except for one of the values (x0), which is assumed to
be unknown and must be estimated. To this aim, we offer the
GA-based initial condition estimationmethod. The parameters
of the GA-based approach are listed in Table 2.

A. DE-NOISING PERFORMANCE
We can easily make the RNN model using NumPy and
TensorFlow packages to produce a clear signal from a noisy
observation. This ability comes from that the RNN tends to
weaken the contribution of the noise and captures its own
learned dynamics. Fig. 4 shows the convergence curve of
the RNN, in which the loss is plotted versus the number of
iterations during the training process. In this simulation, the
RNN is trained at σ 2

n = 0.3 while is tested at σ 2
n = 0.5. If

σ 2
n is set at a big value, the RNN might learn nothing but

the noise. On the other hand, if the training σ 2
n is low, the

RNN can only learn the clean signal. For a proper training σ 2
n

value must help the RNN to learn both types of samples. The

FIGURE 4. Optimizing iterations during the training of RNN.

FIGURE 5. (a) Target and de-noised signal (χ) by RNN (b) Target and de-noised
signal (χ) by DCS.

proposed RNN-based system can be trained at a specific and
proper noise condition, while operating throughout the range.
during the training stage, we employ ADAM optimizer to
minimize the loss function presented in (9). One can see that
the RNN converges to the best case after several iterations.
This demonstrates that the training phase not only imposes
computational complexity, but also can be time consuming
for the receiver and results in a lot of overhead.
Fig. 5 (a) compares the target (x) and de-noised (χ) sig-

nals. In order to facilitate visual comparison, the first 250
samples of these signals are plotted. The RNN model follows
the target dynamics, but the synchronization is degraded after
about 200 time steps. In other words, the RNN is not able to
capture the dynamics of the drive signal and its error signal
has a large domain. Therefore, it is necessary to re-train the
receiver after the above time. Re-training process consumes
time and other resources, and results in high computational
complexity. In contrast, as shown in Fig. 5 (b), the DCS
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FIGURE 6. Comparison between de-nosing error x(t) − χ(t) of the RNN and DCS.

model, which is implemented using Torch and TensorFlow
libraries, follows the driving dynamics perfectly.
Fig. 6 shows de-noising error, i.e., (x(t) − χ(t)) of the

DCS compared with the RNN system in the same scale. We
observe that, although the DCS does not use pre-training, it
follows dynamics of the target signal and the error amplitude
remains fixed over time.
Fig. 7 (a) plots the average amplitude error of the DCS for

different number of iterations. The average amplitude error
converges to the best case rapidly after about 600 iterations.
Fig. 7 (b) shows the average amplitude error between the
recovered drive signal and the original signal for different
values of σ 2

n . As illustrated in this figure, for large noise
values,when the number of iterations increases to 800, the error
becomes very small. Increase the number of iterations from
800 to 2000 has a negligible impact on the error performance.
In Fig. 7 (c), the robustness of the DCS system is measured for
different chaotic maps. Execution time of the DCS algorithm
is also measured for each of the maps. The average amplitude
error between the recovered signal and the original signal
shows that even for a rather strong noise, the Lorenz map is
more robust. However, when we use the Rössler and Henon
maps presented in (4) and (5), the processing time is reduced
by 20% and 25%, respectively. The Lorenz map has a more
complicated structure and high chaotic complexity, while the
Rössler and Henon maps are faster and more suitable for
applications with low latency requirements such as URLLC
and IIoT. On the other hand, simpler chaotic maps suffer from
security limitations, and the Lorenz map is more suitable
for applications such as synchronization in extremely noisy
channels and secure communications. According to the above
discussion, future systems shouldmake different compromises
to meet their requirements.

B. SYNCHRONIZATION ERROR COMPARISON
The following simulations deal with the output signals of
the response system. Fig. 8 show a comparison between the
output of the traditional Lorenz coupled system in (3) and the
proposed DCS. Fig. 8 (a) shows the master signal z(t) and
reconstructed attractor zr(t) using the traditional system. The

FIGURE 7. (a) DCS convergence. (b) Effect of increasing the number of iterations.
(c) A comparison among the noise performance of the Lorenz, Rössler, and Henon
maps.

parameters in the transmitter and receiver of the conventional
system are the same. We assume that in the receiver, the
initial state of (x0) is a random number in the range [0, 0.1].
Fig. 8 (b) shows the reconstructed attractor zr(t) by the DCS.
The amplitude of the synchronization error is very small
because of the noise reduction and initial state estimation in
DCS, and the synchronization is more persistent over time.
Fig. 9 presents z(t) − zr(t) as the synchronization error

criterion. To make the visual comparison easier, error signals
are plotted over a smaller time span. In comparison with the
traditional coupled Lorenz system and the RNN-based syn-
chronization system, the DCS model conserves the dynamics
of the master signal while it has a very small error amplitude.
Because the visual comparison may not be accurate, in

another experiment we measured the average synchroniza-
tion error for the above mentioned span (t = 250) and for
different values of the noise power. The results are shown in
the Table 3. Observe that the DCS method is always superior
to the other two methods.
More exactly, consider a scenario, where a chaotic signal

with 1024 samples generated, and portions of the signal
with specified lengths are randomly selected for transmission
and performance evaluation. We repeated this experiment ten
times for each determined length and calculated the average
synchronization error.
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FIGURE 8. Master signal z(t) and reconstructed signal in (a) conventional system
(b) DCS.

FIGURE 9. Comparison between synchronization error of the different systems
for σ2

n = 0.5.

As shown in Fig. 10, the DCS system has a competitive
performance with the RNN-based system and even works
better for signals with T > 250. Furthermore, in this fig-
ure, both proposed systems have been compared with the
evolutionary de-noising method presented in [73]. To make
a fair comparison, GA-based initial condition estimation is
used for all of them, according to the values in Table 2.
because of the benefits of neural networks, both of the

TABLE 3. Average Synchronization Error of Different Methods for Different Noise

Values.

FIGURE 10. Comparison between synchronization error of the different systems
for σ2

n = 0.5.

proposed systems are more robust than the evolutionary de-
noising method that only uses initial condition estimation,
specifically when T > 250. It is important to note that
we have deliberately selected large noise and high pertur-
bation of the initial values in this experiment so that the
performance of the various methods is visually distinguish-
able. Adjusting parameters like the initial population and
mutation rate in GA can counteract these damaging effects
and eliminate synchronization errors.

V. CONCLUSION
This article presents the first attempt of using DL in chaos-
based communication systems with providing an excellent
synchronization between two coupled Lorenz systems. The
results showed that the DCS reduces the synchronization
error compared to the traditional systems and RNN-based
approach. Moreover, the proposed DCS is easy to imple-
ment since it does not require training on large data sets.
Thus, it can be used in coherent wireless communication
scenarios where users or mobile units are generally hard
to train. Practical implementations of DCS-based applica-
tions, e.g., chaos-based CDMA systems and low latency
communications is an interesting topic for future researches.
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