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ABSTRACT Direct digital synthesis (DDS) architectures are becoming more prevalent as modern digital-
to-analog converter (DAC) and programmable logic devices evolve to support higher bandwidths. The
DDS architecture provides the benefit of digital control but at a cost of generating spurious content in
the spectrum. The generated spurious content may cause intermodulation distortion preventing proper
demodulation of the received signal. The distortion may also interfere with the neighboring frequency
bands. This article presents the various DDS architectures and explores the DDS architecture which pro-
vides the most digital reconfigurability with the lowest spurious content. End-to-end analytical equations,
numerical and mathematical models are developed to determine the location and power levels of spurs.
Afterwards, the analytical equations, numerical and mathematical models are shown to be consistent with
the experimental data. A developer can use the information to design a DDS architecture that meets their
minimum requirements.

INDEX TERMS Direct digital synthesis, frequency synthesizers, DDS, signal synthesizer, digital synthe-
sizer, FPGA, spurious emission, bandwidth, quantization, mathematical analysis, frequency spectrum.

I. INTRODUCTION

SIGNAL generation architectures have evolved from hav-
ing an analog architecture to a digital architecture. The

digital architecture provides the flexibility of signal gen-
eration that is limited with an analog architecture, and
engineers have started to make the transition to such architec-
ture [1]. Signal generation using an all-digital architecture
is also called direct digital synthesis, and the DDS archi-
tecture has been adopted by various industries. Broadband
communication systems, automatic test equipment (ATE),
radar and jammers are some types of products using DDS
architectures [2].
The DDS architecture has been used in various broad-

band communication applications. The architecture is being
used in cable television (CATV) to transmit multiple types
of content, such as video and data, over a fiber-optic
network [3], [4]. Multiple channels of quadrature amplitude
modulation (QAM) signals are produced to deliver content.
The flexibility of the DDS also offers CATV operators the
ability to have a single frequency translation from baseband

to radio frequency (RF). On cellular networks, such as 4G
long-term evolution (LTE), the DDS architecture is used
to generate quadrature-based signals with multiple types
of modulation [5]. This eliminates the need for frequency
multipliers or separate I/Q channels, thus reducing the cost
of the device [5]. Also, the DDS architecture is able to uti-
lize beamforming capability by controlling the timing of the
RF samples [6].
ATE also employs the DDS architecture in frequency gen-

erators or synthesizers [7], [8]. The architecture provides the
capability of programmability of the output frequency by
changing the rate of phase accumulation at a given sampling
rate. This eliminates a need for additional analog circuitry
to support high bandwidth of signal generation.
Radar systems require waveforms with high fidelity to be

transmitted and received [9]. The systems use the DDS archi-
tecture to generate a linear frequency modulated (LFM) chirp
signal. The programmability feature provides an additional
benefit of configuring the waveform parameters without
needing to redesigning the hardware. The DDS architecture

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 1, 2020 1647

HTTPS://ORCID.ORG/0000-0001-6228-4748
HTTPS://ORCID.ORG/0000-0003-1104-0414


PATEL AND MARTIN: END-TO-END DIRECT DIGITAL SYNTHESIS SIMULATION AND MATHEMATICAL MODEL

is also able to control the timing of the RF samples which
provides beamforming capability [6].
Electronic warfare (EW) systems use the DDS architec-

ture for electronic jamming and spoofing [10]. The DDS
architecture is used to rapidly tune to a specified frequency
and generate a sinusoidal signal. It can generate a wide-band
signal to completely drown out the entire spectrum. Also,
the architecture can rebroadcast a legitimate user’s signal to
provide a spoofing capability.
Using a DDS architecture with a high-speed DAC may

provide the required flexibility for future-proof signal gen-
eration architecture [1]. DDS allows for digital control of
frequency and phase in subnano-hertz and subnano-degrees,
respectively. Even though DDS allows for precise control,
analog components may introduce variations to the gener-
ated signal, such as frequency drift. Due to analog component
aging, system calibration is needed to compensate for these
variations. The DDS architecture reduces the number of
analog components used. When used as a quadrature synthe-
sizer, DDS eliminates the delays between the in-phase and
quadrature (I/Q) channels. Finally, the entire DDS can be
controlled digitally thus giving software-defined capability
to the system. In an operational system, the ability to dynam-
ically update signals may drastically reduce modernization
costs and development time.
The contributions of this article are as follows. (i) A DDS

simulation or numerical model is developed using a DDS
architecture that provides the most software-defined flexibil-
ity with the least amount of generated spurs in the spectrum.
The DDS simulation model incorporates phase and ampli-
tude quantization. This section also compares the simulation
model with the experimental data to determine consistency.
(ii) A mathematical model is developed to explain any abnor-
mal behavior caused by quantization of the DDS simulation
model. A mathematical model is able to aid the developer
in determining the location and power level of the spurs
that can not be easily attained by analytical equations. (iii)
Analytical equations for the phase quantization are formed to
determine the location and power level of the spurs from the
DDS simulation and mathematical models. (iv) The results
from the analytical equations are compared with the phase
quantized data from the DDS simulation and mathemati-
cal models. Thus, the four contributions form a chain of:
numerical model → mathematical model → analytical equa-
tions → numerical and mathematical analysis. To the best of
our knowledge, such modeling and analysis has never been
performed for the DDS before.
This article is organized as follows. Section II summa-

rizes the functionality and spur performance of various DDS
architectures. Section III describes the modeling process.
The section also elaborates on the technical limitation of
the current generation of microprocessors and how software
is able to overcome such limitations. Section IV describes
the entire DDS simulation model with phase and amplitude
quantization. Section V covers the entire mathematical model
with phase and amplitude quantization. Section VI describes

the analytical equations derived from the mathematical
model. The analytical equations are used to determine the
location and power levels of the in-band spurious emis-
sions. Section VII compares the results from the analytical
equations with the data from the DDS simulation model.
Section VIII presents the conclusion.

II. SYSTEM MODELS
Various types of DDS architectures have been researched.
The performance of each architecture differs in spectral
purity. Lack of spectral purity would cause the desired sig-
nal to degrade in total power, the generation of in-band
spurious content. This poses a problem for low power and
timing applications such as global navigation satellite system
(GNSS). Additional loss of total power of an already weak
signal would cause acquisition problems for the receiver. The
generation of in-band spurious content would cause correla-
tion problems with the receiver because the spurs would be
within the bandwidth of the signal.
There are six major types of DDS architectures:

Pulse Output, Fractional Divider, Triangle Output, Sine
Output, Phase Interpolation, and Wheatley Random Jittering
Injection. The performance of each architecture varies and
this will impact the spectral purity of the signal. Each
architecture requires a combination of analog and digital
components. Minimizing the amount of analog components
in the architecture increases the software-defined capability
of the overall system. For this reason, the Sine Output DDS
architecture is the primary focus and is discussed further in
current and later sections.

A. PULSE OUTPUT DDS
The Pulse Output architecture, as shown in Figure 1(a), is
the simplest of the six DDS architectures [11] and the most
versatile in generating different kinds of waves at a specific
carrier frequency (fc). It consists of an accumulator with j-
bits of resolution. For every sampling clock frequency (fs),
φstep is added onto the previous value. The Pulse Output
architecture produces pulses, square, and sawtooth waves at
fc is described as

fc = φstep

2j
· fs. (1)

The square wave is generated by the most significant bit
(MSB) of the output of the storage register. The saw-
tooth wave is generated by the resulting value of the
accumulator [12]. The accumulator output is expressed by

R(n) = mod
(
φstep · n, 2j

)
. (2)

The pulses are generated by the overflow flag from the
adder in the accumulator. The overflow flag is set when the
value of the accumulator exceeds j-bits. Since there is an
abrupt change in energy, high frequency content is generated
thus causing large in-band spurious emissions to be gener-
ated [13], [14]. Out of all six architectures, the Pulse Output
architecture has the most in-band spurious content and phase
jitter [11].
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FIGURE 1. DDS architectures [11].

B. FRACTIONAL DIVIDER DDS
The Fractional Divider architecture, as shown in Figure 1(b),
is a modified version of the Pulse Output architecture. The
clock of the accumulator is controlled by a clock divider
circuit. The clock divider circuit regulates the clock to deter-
mine when the accumulator will perform its addition process.
The Fractional Divider architecture produces pulses at fc and
is described as

fc = fs

n+
(

φstep

2j

) . (3)

Pulses are generated with this architecture. As a result,
the amount of in-band spurious content is equivalent to the
Pulse Output architecture, but the phase jitter is less due to
being able have fractional control over the accumulator [11].

C. SINE OUTPUT DDS
The Sine Output architecture, as shown in Figure 1(c), pro-
duces a sinusoidal wave. The phase of the signal is produced
from the accumulator and is described by

fc = φstep

2j
· fs, (4)

R(n) = mod
(
φstep · n, 2j

)
. (5)

The phase is used as an address for the sine look-up table
(LUT) [15]. The quantized form of a sinusoidal wave is
stored in the LUT [16]. As a result, a signal is produced
which resembles the ideal form of a sinusoidal wave and

described by [17]

y(n) = sin

(
2 · π · R(n)

2j

)
. (6)

Any quantization effects are caused by the bit resolution
of the accumulator and the stored sinusoidal wave in the
LUT. The quantization effects will vary the magnitude of
the in-band spurious emissions, but the amount of phase
jitter is the same as the Pulse Output and Triangle Output
architectures.
This architecture relies on a LUT and DAC, and these two

components are the cause of the quantization effects. The
total number of values, and the size of the values govern the
overall size of the LUT. The DAC restricts the maximum
size of the values in the LUT. The phase resolution deter-
mines the number of values inside the LUT. The higher the
phase resolution, the larger a LUT is required. In a micropro-
cessor, microcontroller, programmable logic device (PLD),
or application-specific integrated circuits (ASIC), memory
resources are finite. Therefore, the dimensions of the LUT
are constrained to what resources are available on the chip.
This limitation causes the signal to be amplitude and phase
quantized, thus causing in-band spurious emissions to be
generated.

D. TRIANGLE OUTPUT DDS
The Triangle Output architecture, as shown in Figure 1(d),
produces a triangle wave. Unlike the pulsed architectures,
the Triangle Output architecture requires a DAC to convert
digital values into an analog representation form. Like the
prior architectures, the accumulator is used to calculate phase
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of the signal. The MSB of the phase is stripped from the
resulting value and used to determine if the remaining bits
should be complimented. As a result, the values will grad-
ually increase and decrease over time. The Triangle Output
architecture produces a triangle wave at fc where

fc = φstep

2j
· fs. (7)

Unlike the Pulse Output architecture, there is a gradual
change in value. As a result, the in-band spurious emis-
sions are less in magnitude, but the amount of phase jitter
is the same as the Pulse Output architecture.

E. PHASE INTERPOLATION DDS
The Phase Interpolation architecture, as shown in Figure 1(e),
uses external analog components such as voltage controlled
oscillator (VCO) and a phase detector. The VCO is used as
a phase lock loop (PLL) to provide feedback to the divider
loop, which controls the clock to the accumulator. The phase
detector allows for greater reduction in phase jitter and in-
band spurious emissions compared to other architectures.

F. WHEATLEY RANDOM JITTERING INJECTION DDS
The Wheatley Random Jittering Injection architecture, as
shown in Figure 1(f), uses a dithering technique to reduce the
amount of in-band spurious content. The dithering technique
injects uniformly distributed values from 0 to φstep − 1 into
the signal causing the periodicity of the phase deviation
patterns to be destroyed [18]. Since noise is being injected
into the signal, the overall noise floor and phase jitter are
increased.

III. END-TO-END MODELING OVERVIEW
The Sine Output DDS was selected because it produces
the minimum number and power of spurs in the spectrum,
and provides the most flexibility to incorporate software-
defined capability. Using the Sine Output DDS architecture,
a DDS simulation and mathematical models are developed
in a simulation environment. The models help understand
the quantization error caused by truncation of the phase and
amplitude of a signal. Having both models in a simulation
environment allows for a closer examination of the signal
generation process. Reference [13] documents the results of
the DDS simulation model, and it is comparable to the results
from the experimental data from a hardware device using a
DDS architecture. The noise floor of the test equipment is
higher than the simulated model, therefore many low power
signals will not be seen on the test equipment. The models
developed in the simulation environment provide a better
platform to analyze quantization error.
There are two sections in the DDS simulation model. The

first section analyzes the effects of phase quantization of
the signal. The second section analyzes the effects of ampli-
tude quantization of the signal. The mathematical model
analytically describes the entire DDS simulation model.

Designing a DDS simulation model with a 64-bit numer-
ically controlled oscillator (NCO) on a system with a 64-bit
Intel processor poses a problem because the model uses
a combination of double-precision floating-point and 64-bit
integer values. Traditionally, Intel-based processors use the
IEEE-754 standard to represent a floating-point number. In
the standard, the MSB is the sign bit of the number, while
the next 11 bits are for the exponent. The final 52 bits least
significant bits (LSBs) are the normalized mantissa [19]. The
word size of the mantissa restricts the numerical precision
of a number.
Software applications overcome this limitation by dis-

tributing the value into multiple registers on the processor.
Each register is calculated independently and the outputs are
added together [20]. This functionality is available in the
Fixed-Point Designer toolbox of Mathworks MATLAB, but
the implementation details are proprietary. For this effort, the
NCO in the DDS simulation model will use the MATLAB
toolbox. In the mathematical model, the signal generation of
the cosine signal utilizes the MATLAB toolbox to provide
precision beyond the IEEE-754 standard limitation.

IV. DDS SIMULATION MODEL
The DDS simulation model is a representation of the algo-
rithm implemented in a hardware device. The simulation
model allows for the developer to rapidly characterize the
DDS architecture with phase and amplitude quantization.

A. PHASE QUANTIZATION
The NCO generates the phase of the signal. The NCO con-
sists of a 64-bit accumulator (j = 64), and resolution of the
NCO represents 1

2j
of a phase cycle of the signal. The step

size of the accumulating rate generates the phase at a given
frequency of the signal and is expressed by

φstep = round

(
2j · fc

fs

)
, for fc ≤ fs

2
. (8)

The round operation minimizes the amount of phase error
that is introduced, and the equation to determine the
maximum phase error in radians is expressed by

φstepError = 2 · π · 2−j−1. (9)

The resulting phase is expressed in cycles that is normal-
ized from 0 to 2j − 1 and is expressed by

xphase[n] = n · φstep, for 0 ≤ n ≤ 2j − 1. (10)

Afterwards, the phase is quantized to the appropriate word
size (k = word size). The phase is right shifted until the
top k bits are remaining. The floor operation truncates the
value once it has been shifted. The resulting quantized phase
wraps at 2k for the read only memory (ROM), which will
be discussed later, and is expressed by

xqphase[n] = mod

(
floor

(
xphase[n]

2j−k

)
, 2k

)
,

for j ≥ k. (11)
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FIGURE 2. Stem plot of ROM of a single period cosine wave.

FIGURE 3. Stem plot of ysignal incrementing at 2·π
16 radians.

Using Equation (9) with the accumulator of the NCO being
64 bits (j = 64), the error in phase is minuscule. Therefore,
Equation (11) is simplified to a close approximation form of

xqphase[n] = mod

(
floor

(
2k · fc · n

fs

)
, 2k

)
,

for fc ≤ fs
2

, n ≥ 0. (12)

A ROM is used to store one period of a cosine signal with
a sample length of 2k. The period of the cosine signal is
normalized and expressed by [21], [22]

xrom[n] = cos

(
2 · π · n

2k

)
, for 0 ≤ n ≤ 2k − 1. (13)

Figure 2 shows the values from Equation (13), and these
values are stored in a ROM.
The modulo operation in Equation (11) bounds the values

within the sample size of the ROM, shown in Figure 2. The
signal is generated by picking out points from Equation (13)
by using Equation (11) as the index, and this is expressed by

ysignal[n] = xrom[xqphase[n]]. (14)

Figure 3 shows ysignal over 40 samples (n) with the phase
incrementing by a value of 1, which is equivalent to 1

16 of a
period or 2·π

16 radians. Figure 4 shows the phase incrementing
twice as large, or at 4·π

16 radians, over the same number of
samples as Figure 3.

FIGURE 4. Stem plot of ysignal incrementing at 4·π
16 radians.

B. AMPLITUDE QUANTIZATION
The previous section did not consider the amplitude quanti-
zation of the values inside the ROM, Equation (13). In this
section, the amplitude values of the signal are quantized or
fixed-point, and the ROM consists of quantized values.
The type of number representation (s), number of integer

bits (r) and number of fractional bits (q) define a fixed-point
value. The type of number representation determines if the
value is either unsigned or 2’s complement. If the value is
an unsigned number, 0 is used otherwise 1 is used. The total
word size, stored in ROM, of the fixed-point value is

B = s+ r + q. (15)

The base-10 floating point cosine value from Equation (13)
is converted to an integer form for storing in a ROM. First,
the floating point value is converted to a base-2 or binary
form. Next, the decimal point of the binary form is shifted
right by the specified fractional bits (q). Finally, the value
is rounded such that the signal is zero mean centered. This
process is expressed by

xqrom[n] = round
(
2q · xrom[n]

)
, for q ≥ 0. (16)

The phase of the signal, which is wrapped at 2k or 2 · π , is
used to look up the amplitude of the desired in the ROM
and is expressed by

yqsignal[n] = xqrom
[
xqphase[n]

]
. (17)

The signal, from Equation (17), is quantized in phase and
amplitude. Quantization causes spurious content to appear
in the spectrum. The spurious content may potentially cause
intermodulation distortion to the desired signal. A mathemat-
ical model is useful to explain these types of unpredictable
behavior, as shown in Figure 5.

V. MATHEMATICAL MODEL
A mathematical model is used to analytically explain the
functionality of the DDS simulation model. Also, it allows
for an easier explanation of any kind of unpredictable
behavior in the signal generation process.
Equation (18) is used to generate a cosine signal in the

continuous time domain. A scale factor (Xm) is used to scale
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FIGURE 5. Spectral plot of signal with spurs.

the cosine signal to the appropriate amplitude. fc is the carrier
frequency, and t is time. In the digital domain, each point
in a cosine signal is generated at a specific interval. This
specific interval is a sampling frequency (fsl). The equations
for the continuous and discrete signal generation of a cosine
signal are

x(t) = Xm · cos(2 · π · fc · t), for t ≥ 0, (18)

x[n] = Xm · cos
(

2 · π · fc · 1

fsl
· n

)
, for n ≥ 0. (19)

The phase resolution is restricted to the number of phase
bits (k), therefore the values of the cosine signal must be
increments of 1

2k
. The sampling rate is expressed by

fsl = fc · 2k, for k ≥ 0. (20)

Equation (20) is substituted into Equation (19) as
expressed by

x[n] = Xm · cos
(

2 · π · n
2k

)
, for n ≥ 0, k ≥ 0, (21)

and the total energy in x[n] is expressed by

esl =
N−1∑
n=0

|x[n]|2. (22)

The amplitude of the cosine signal is quantized by the
total number of bits (B). The quantized sample is calculated
by taking the base-10 number and converting it to a 2’s
complement binary number (b). The MSB is the sign bit
(b0), where the value is multiplied by a negative one. The
remaining bits are multiplied by the power of two raised to
the location i of the bit and summed together. Next, this result
is added together with previous operation and multiplied
with a scale factor. The result is a quantized sample base-10
number, and is expressed by

x̃[n] = Xm ·
(

−b0 +
B∑
i=1

bi · 2−i
)

. (23)

The cosine signal is quantized by adding the individual sam-
ples with an quanitization error offset, and the value is scaled
by a scale factor (Xm). The quantization error offset takes

FIGURE 6. Upsampling of signal.

the difference between the true sample from the quantized
sample is expressed by

εA[n] = x̃[n] − x[n],{
−Xm·2−B

2 < εA ≤ Xm·2−B
2 , for rounding.

−Xm · 2−B < εA ≤ 0, for truncation.
(24)

Once the quantization error offset is calculated it is added
to the true samples, and is expressed by

xA[n] = x[n] + εA[n]. (25)

For complete in-depth discussion on amplitude quantization,
please see Reference [23].
Once the cosine signal is generated, and amplitude has

been quantized, up and down sampling rates are calcu-
lated based on the phase resolution, sampling and carrier
frequency parameters. This will adjust the cosine signal to
the final sampling and carrier frequency. The upsampling
(μ) to downsampling (ν) ratio is reduced to an irreducible
fraction, and becomes sampling frequency at intermediate
frequency (IF) (fsl) and the sampling frequency at RF (fsh)
of the signal. This is expressed by

μ

ν
= fsh

fsl
. (26)

Upsampling and downsampling the signal with the zero-
order-hold (ZOH) operation mimics the phase quantization
implemented in the DDS simulation model. The ZOH opera-
tion is used with the upsampling rate is applied to the cosine
signal in two stages. The first stage is to insert zeros to the
signal as expressed by Equation (27) and shown in Figure 6.

xu[n] =
{
xA[n/μ], n = 0, ±μ, ±2μ, . . .

0, otherwise
(27)

The total energy of the signal after being upsampled is
the same as the original because upsampling inserts zeros
in-between the samples. The second stage convolves an
impulse response signal from Equation (28) with the upsam-
pled signal from Equation (27). Figure 7 shows the resulting
signal.

hZOH[n] = rect

(
n− 0.5 · μ

μ

)
(28)

xZOH[n] = xu[n] ∗ hZOH[n] (29)
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FIGURE 7. Zero-order hold of signal.

FIGURE 8. Downsampling of signal.

ZOH operation replicates the individual samples by μ

causing an increase in total energy and is expressed by

eZOH = μ ·
N−1∑
n=0

|x[n]|2. (30)

After the ZOH operation, the signal is downsampled without
any kind of pre-filtering. It is expressed by Equation (31) and
shown in Figure 8. The downsampling operation causes the
step widths to become non-uniform, as shown in Figure 8.
The total energy of the signal can be approximated by using
Equation (32).

xsignal[n] = xZOH[n · ν] (31)

es = μ

ν
·
N−1∑
n=0

|x[n]|2. (32)

VI. RESULTS OF DDS AND MATHEMATICAL MODEL
QUANTIZATION EFFECTS AND MATHEMATICAL
SOLUTION
Figure 9 shows the spectral plot of Equation (21). The total
energy of the signal is focused on the carrier signal. When
the signal is upsampled by using Equation (27), the new
sampling frequency is the upsampled rate multiplied by the
original sampling frequency. The results of the upsampling
causes the spectrum to be replicated by multiples of the orig-
inal sampling frequency. This causes spurs to be generated
in the spectrum and is expressed by

xsup[xsi] = xsi · fc · 2k, for xsi > 0. (33)

FIGURE 9. Spectral plot of baseband signal.

FIGURE 10. Spectral plot of upsampled baseband signal.

FIGURE 11. Spectral plot of ZOH signal.

where xsi is the index of the spur from 0 Hz, and shown in
Figure 10. The mirror image is centered around the original
sampling frequency, and the upsampling operation does not
add any kind of energy of the signal. It can be calculated
by taking the absolute value of the summed data points in
the spectral domain, and the result value is divided by the
total number of samples as expressed by

e = 1

N
·

N∑
k=0

|X[k]|2. (34)

Afterwards, the signal is goes through a ZOH operation,
where a rect function with the length of the upsampled
rate is convolved with the incoming signal, as described
in Equation (28) and Equation (29). The power of the spurs
are reduced over frequency. The approximate location is
expressed by Equation (33) and the power of each spur is
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FIGURE 12. Spectral plot of downsampled ZOH signal.

FIGURE 13. Example 1 of periodic signal.

expressed by

pdBc[xsi] = −20 · log10
(
xsi · 2k

)
, for xsi > 0. (35)

The downsampling operation is applied causing the sig-
nal to be irregular as shown in Figure 8. This irregularity
causes additional in-band spurs to be generated as shown
in Figure 12, and the location of each spur is expressed by
taking the greatest common divisor (GCD) of fsh and fsl as
shown in Equation (36).

xsdown[xsi] = xsi · GCD
(
fc · 2k · μ

ν
, fc · 2k

)
,

for xsi > 0 (36)

The power of the spurs is uncertain because of the
irregularity of the signal caused by the downsampling
operation. The power of the carrier, in milliwatts, can be

FIGURE 14. Example 2 of periodic and non-periodic signals.

approximated by

pcar = X2
m

2
. (37)

Regularity of the signal is certain when fs is divisible by
fc · 2k. Figures 13(a) and 13(b) show the time and spectral
plots of a signal. The plots show periodicity which causes
spurious emissions to be generated at every fc · 2k Hz with
k = 5, fc = 2500 Hz, and fs = 240, 000 Hz. Figure 14 shows
when periodicity does not exist with k = 5, fc = 3000 Hz,
and fs = 240, 000 Hz. Before the downsample operation,
Figure 14(b) shows the spur is present at 192, 000 Hz.
After the downsample operation, Figure 14(c) shows the spur
aliased to 48, 000 Hz. The downsample operation causes
frequency folding to occur and the spur from the second
Nyquist zone is aliased into the first.
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FIGURE 15. Fixed fc and varying phase resolution.

Figure 15 shows the results between the mathematical
solution and the DDS simulation model. The phase resolu-
tion is varied between 1 and 16 bits, and the fc is set to
3000 Hz for Figures 15(a) and 15(b). Figure 15(a) shows
the location of the first spur with respect to the phase resolu-
tion. Figure 15(b) shows the amplitude of the first spur with
respect to the phase resolution. The phase resolution is set
to 5 bits and fc is varied throughout the first Nyquist zone
for Figures 16(a) and 16(b). Figure 16(a) shows the location
of the first spur with respect to fc. Figure 16(b) shows the
amplitude of the first spur with respect to fc. There are small
discrepancies between the DDS simulation and mathemati-
cal models on Figures 15(b) and 16(b). This is because of
numerical precision error of the computational program.

VII. QUANTIZATION ERROR EFFECT
Figures 17, 18, and 19 show the effects of quantization of
phase and amplitude on the carrier signal and the spurious
content. Figures 17(a) and 19(a) show the quantization error
when the signal is periodic, and Figures 17(b) and 19(b)
show the quantization error when the signal is non-periodic.
The signal is periodic when fs is divisible by fc ·2k, otherwise
the signal is considered non-periodic. Simulation models
varied the phase and amplitude quantization range from 2
bits to 16 bits. The phase quantization figures are compared
between simulation and mathematical models. The mathe-
matical models are derived from equation from Section V.
The amplitude quantization figures are compared between
simulation and mathematical models from [24].

FIGURE 16. Fixed phase resolution and varying fc .

FIGURE 17. Phase quantization error.

Figures 17(a) and 17(b) show phase quantization effects on
a periodic and non-periodic carrier signal between the DDS
simulation and mathematical models. The figures show the
sum of individual spur power throughout the entire spectrum
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FIGURE 18. Total spur power between DDS simulation and mathematical models.

FIGURE 19. Amplitude quantization error.

for a specific phase resolution. Equations (35) and (37) are
used to determine the mathematical model and to compare
against the DDS simulation model. The increase in total
power for the spurs could potentially cause intermodulation
distortion [13]. Any small discrepancies between the DDS
simulation and mathematical models are attributed to the
numerical precision error.
Figure 18 shows phase quantization effects on the sum

of the individual spur power throughout the entire spectrum
across various frequencies for a specific phase resolution.
Equations (35) and (37) are used to determine the mathe-
matical model and to compare against the DDS simulation
model. The DDS simulation and mathematical models are
closely matched. Any small discrepancies between the DDS
simulation and mathematical models are attributed to the
numerical precision error of the computational program.

Figures 19(a) and 19(b) shows amplitude quantization
effects on the periodic and non-periodic carrier signal and
its spurs. The plots show that periodicity of the signal do
not have an effect on the power of the spurs. Amplitude
quantization affects the amplitude of the carrier and spurs.
The carrier power still follows Equation (37). Equation (38)
is used to determine the mathematical model of the spurs
from amplitude quantization [24]. Any differences between
the DDS simulation and mathematical models are attributed
to numerical precision error.

pdB[k] = 10 · log10
(

2−k·2

12

)
, for k > 0. (38)

VIII. CONCLUSION
This article investigates the phase quantization effects numer-
ically and mathematically for the Sine Output DDS architec-
ture. Various DDS architectures are examined, and the Sine
Output DDS architecture provided the most flexibility to
incorporate software-defined capability. The architecture also
provides flexibility in generating a wide variety of waveforms
and controlling the number of spurious emissions in the spec-
trum. These spurious emissions may cause intermodulation
interference with the generated signal. Being able to deter-
mine the location and power level of the spurious emission
allows the developer to design an architecture that meets
their minimum requirements.
The amount of control over the spurious emissions is

limited by the number of resources available on a micro-
processor, microcontroller, PLD, or Application-Specific
Integrated Circuits (ASIC). Amplitude and phase quantiza-
tion effects are generated by limiting the dimension of the
LUT. The maximum size of the column for the LUT is
restricted to the resolution of the DAC, and this restriction
of size causes amplitude quantization. The number of rows
in the LUT determines the resolution of phase and causes
phase quantization.
A simulation model is used to replicate the implementation

of the Sine Output DDS architecture inside a digital device.
The mathematical model is developed to analytically explain
the functionality of the simulation model. The developer can
use both models to see the effects of signal generation by
varying parameters. In this article, the mathematical model
was used to derive analytical equations to determine the
location and power of the spurious emissions.
Spurious emissions are generated by the DDS when phase

and amplitude are quantized. Phase quantization depends on
the carrier frequency and the phase resolution. The amount of
spurious content is increased when the sampling frequency
at RF and not divisible by the sampling frequency at IF
because of frequency folding from other Nyquist zones. The
mathematical model is used to determine the power level
of these spurs before the frequency folding occurs. When
the sampling frequency at RF and divisible by the sampling
frequency at IF, the spurs appear at every multiple of the
sampling frequency at IF, and the power of spurs is a multiple
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of the phase resolution. This information can be used by the
developer to minimize any kind of intermodulation distortion
to the generated signal or in the neighboring bands.
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