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ABSTRACT Algorithms are provided to build a large set of unique complex-valued orthogonal space-
time block codes (STBCs) from a known or standard STBC. A physical layer security (PLS) scheme is
proposed to take advantage of this set by alternating the STBC in use over a multiple-input single-output
(MISO) or multiple-input multiple-output (MIMO) communications link between base station (BS) and
user equipment (UE). A practical procedure is proposed and demonstrated to build individual STBCs from
the set without use of a lookup table. The sufficient statistic is given and proven to allow for maximal
ratio combining (MRC) by the intended receiver for all STBCs in the set. An algorithm is offered for the
UE to update the MRC matrix in use as the STBC alternates. Definitions are provided for cryptograms,
key residues (KRs), key residue classes (KRCs), and message and cryptogram residue classes pertaining
to STBC PLS schemes. These definitions are used to present analysis of the information-theoretic security
of the proposed PLS scheme to include message and key equivocation. Theoretical expected bit error
rate (BER) for a passive eavesdropper is proven and plotted along with Monte Carlo simulations for
confirmation. Discussion of different attack models is provided. Cost and attack complexity are compared
between the proposed scheme and two related techniques from the literature.

INDEX TERMS Cryptogram residue class, key equivocation, key residue class, message equivocation,
physical layer security, space-time block code.

I. INTRODUCTION

PHYSICAL layer security is currently a major area of
research for use with emergent 5G networks and as

a potential mitigation strategy towards quantum comput-
ing’s expected ability to rapidly break certain types of
cryptography [1]–[5]. In his pioneering work in this area
of research, Wyner introduced the wire-tap channel where
secrecy capacity was achieved assuming the signal received
over the wire-tap channel was a degraded version of that
received over the main channel [6]. Further research loos-
ened this assumption to allow for security without such
disparity between channels [7]. Many physical layer security
(PLS) approaches employ the use of forward error correcting
codes that may be randomized or punctured to provide secu-
rity [8]–[10]. Other common approaches over multiple-input
multiple-output (MIMO) channels include use of precoding
matrices or insertion of artificial noise [11]–[14]. Although

less common in the literature, this article employs the use
of space-time block codes (STBCs) to provide security as
in [15]–[17].
Whereas some PLS techniques do not require any form of

pre-shared secret [6], [12], there are a number of schemes
that do [16]–[19]. Many PLS approaches use the channel
state information (CSI), received signal strength indicator
(RSSI), or other main channel statistics to establish an
element of secrecy between the transmitter and intended
receiver [4], [15], [20], [21]. In [15], RSSI was used
as a secret key to seed a pseudorandom number gener-
ator (PRNG) used to generate phase rotations for each
transmit (TX) antenna of a MIMO system after encoding
with either the Alamouti STBC from [22] or the 3/4 rate
Octonion orthogonal STBC from [23]. Similarly in [16],
a pre-shared secret pseudorandom antipodal sequence was
applied across the TX antennas of a MIMO system after
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encoding with a real-valued orthogonal STBC. A gener-
alization and extension of this technique was presented
in [17] where a pre-shared secret STBC was drawn from
a set of complex-valued orthogonal STBCs. This article
extends [17] by building a much larger set of STBCs,
alternating the STBC after each use, and providing a
generic framework for analysis of similar STBC based PLS
schemes.
The contributions of this article are:
• to propose and design an alternating orthogonal STBC
PLS scheme for use over a multiple-input single-output
(MISO) or MIMO communications link in the presence
of passive eavesdropping,

• to provide new and updated algorithms from [17] to
build a much larger set of unique orthogonal STBCs
for use with the proposed PLS scheme,

• to offer a very practical technique to build individual
STBCs without storing the full set which could be pro-
hibitive, especially for low-storage devices, due to very
large set cardinalities,

• to provide and prove a sufficient statistic for maximal
ratio combining (MRC) for all STBCs in the set,

• to offer an algorithm for use by the intended receiver
to update the MRC matrix as the STBC alternates,

• to adapt nomenclature common to secrecy systems for
use with STBC PLS schemes,

• and to provide detailed theoretical analysis and discus-
sion of complexity cost of the proposed scheme.

The benefits of the STBC PLS techniques presented
in [15]–[17] carried forward to this work include no required
CSI at the transmitter, no transmission power diverted to arti-
ficial noise, no increase to transmit signal peak-to-average
power ratio (PAPR), full diversity for improved reception
over fading channels, and linear decoding complexity for
the intended receiver.
The remainder of this article is outlined as follows. In

Section II, the base code for this work is presented. In
Section III, details of two new set building algorithms are
provided. In Section IV, we demonstrate the process to
build individual STBCs from the set. In Section V, we
present the proposed PLS scheme. In Section VI, com-
mon nomenclature for secrecy systems is adapted to STBC
PLS schemes. In Section VII, information-theoretic secu-
rity of the proposed PLS scheme is analyzed along with
expected bit error rate (BER) for a passive eavesdropper
(aka “Eve”). In Section VIII, different attack models are
discussed, and a comparison of the cost and attack com-
plexity of our scheme to that of two related techniques
from the literature is given. In Section IX, we recap the
contents of this article. In Appendix A, updated algorithms
from [17] are included for completeness. In Appendix B,
a proof is provided for the MRC details presented in
Section V. In Appendix C, a tabular form key residue
(KR) is included for the chosen base code. Finally, in
Appendix D, a theoretical proof is given for Eve’s expected
BER.

II. BASE CODE
The base code employed in [17], referred to as single-pair
orthogonal 3-3-4 (SPO334) from this point forward, is a
complex orthogonal 3/4 rate STBC represented as

G =

⎡
⎢⎢⎣
s1 s2 s3

−s∗2 s∗1 0
−s∗3 0 s∗1

0 −s∗3 s∗2

⎤
⎥⎥⎦, (1)

consisting of three variations of three data symbols, s1
through s3, transmitted over four symbol time periods using
three TX antennas. The asterisk, (*), represents complex
conjugate operation.
The base code selected for this work, referred to as multi-

pair orthogonal 4-6-8 (MPO468) from this point forward, is
a complex orthogonal 6/8 rate STBC represented as

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 s2 s3 0
−s∗2 s∗1 0 s6
−s∗3 0 s∗1 −s5

0 −s∗3 s∗2 s4
s4 s5 s6 0

−s∗5 s∗4 0 s3
−s∗6 0 s∗4 −s2

0 −s∗6 s∗5 s1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

consisting of four variations of six data symbols, s1 through
s6, transmitted over eight symbol time periods using four
TX antennas. MPO468 is based upon a STBC constructed
in [24] but reordered to show how it extends SPO334. As
the code rate of these two STBCs is equivalent, moving to
the MPO468 STBC may not yield an advantage in terms of
capacity; however, the additional columns, rows, and data
symbols in MPO468 allow for a much larger set cardinality
leading to improved PLS.
The number of columns in G, denoted as c from this point

forward, is equal to the number of TX antennas employed
per codeword, where codeword refers to a single block of
encoded symbols as dictated by G. The number of rows in G,
denoted as r from this point forward, is equal to the num-
ber of symbol time periods used per codeword. Throughout
this article, the data symbol vector for this STBC refers to
s = [s1 s2 s3 s4 s5 s6]T , where T represents the transpose
operation. An extended data symbol vector, sext = [sT s†]T ,
is also referenced, where † represents the conjugate transpose
operation.

III. EXTENSION OF SET BUILDING ALGORITHMS
Although the six set building algorithms presented in [17]
are sufficient for SPO334, additional transformations are
possible for MPO468.

A. SYMBOL PERMUTATIONS
One reason why the algorithms in [17] are sufficient for
SPO334 is that the rows of G in (1) contain all

(3
2

)
combi-

nations of the three data symbols, where
(3

2

)
represents the

binomial coefficient 3 choose 2. With MPO468 however,
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r <
(6

3

)
; therefore, not all

(6
3

)
combinations of the six data

symbols appear in rows of G in (2). Thus a symbol per-
mutation algorithm is required to provide these additional
symbol combinations.
Example 1: A symbol permuted version of (2) that cannot

be built using algorithms from [17] alone is

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 s2 s3 0
−s∗2 s∗1 0 s5
−s∗3 0 s∗1 −s6

0 −s∗3 s∗2 s4
s4 s6 s5 0

−s∗6 s∗4 0 s3
−s∗5 0 s∗4 −s2

0 −s∗5 s∗6 s1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

which is built by swapping symbols s5 and s6.
Not all symbol permutations are permitted in order to

ensure uniqueness of codes within the set. An allowed sym-
bol permutations vector, denoted as vasp, is used for this
purpose within the symbol permutations algorithm. For any
given base STBC, vasp may be empirically derived by per-
forming each of the k! symbol permutations in lexicographic
order and recording the first of each set of permutations that
yields a new combination of symbols per row of G. Through
this process for MPO468,

vasp = [1 2 3 4 5 6 7 8 9 11 13 15 31 32 37]. (4)

Whereas 15 allowed symbol permutations, including the
original, are recorded in vasp, it can be shown that there
are k!

15 − 1 = 720
15 − 1 = 47 other permutations for each of

the entries in vasp that produces the same combination of
symbols per row.

B. SYMBOL NEGATIONS
A second reason why the algorithms presented in [17]
are sufficient for SPO334 is that orthogonality of any two
columns of G relies on a single pair of symbols that must
yield a zero inner product. By contrast, orthogonality of any
two columns for MPO468 relies on two pairs of symbols to
yield a zero inner product. To clarify, a symbol pair between
columns of G refers to the four symbol elements contained
in two rows consisting of two variations of two data sym-
bols. When variations are constrained to original, negative,
conjugate, or negative-conjugate data symbols, a single con-
jugate operator must appear between the two variations of
each symbol, and an odd number of negatives must appear
among the four symbol elements in order for the symbol pair
to yield a zero inner product. Thus, there are 32 possible
conjugation and negation combinations for any given symbol
pair that yield a zero inner product. Each of these combi-
nations results in a conjugate relationship between the two
variations of one symbol and a negative-conjugate relation-
ship between the two variations of the other symbol. These
symbol pair relationships are important when defining KRs
in Section VI-B.

Example 2: Two of the 32 combinations yielding a zero
inner product for the symbol pair that exists between columns
one and two in (1) and (2) are

[
s1 s2

−s∗2 s∗1

]
and (5a)

[
s1 −s∗2−s2 −s∗1

]
. (5b)

With only a single symbol pair of concern to maintain
orthogonality between any two columns of SPO334, the
algorithms in [17] cycle through all “compatible” methods of
zeroing the inner product for each symbol pair. We use the
term compatible to highlight the fact that symbol pairs are
not independent of one another when any symbol belongs
to more than one pair. Due to the number of symbols per
row of G, it can be seen that each of the three symbols on
the top row of SPO334 belong to two symbol pairs whereas
the remaining symbols in the matrix belong to only one. By
contrast, every symbol within the MPO468 STBC belongs
to two symbol pairs. With two pairs of concern to main-
tain orthogonality between any two columns of MPO468, a
symbol negation algorithm is required to more finely affect
the relationships within each symbol pair.
Example 3: A symbol negated version of (2) that cannot

be built using algorithms from [17] alone is

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−s1 s2 s3 0
−s∗2 −s∗1 0 s6
−s∗3 0 −s∗1 −s5

0 −s∗3 s∗2 s4
s4 s5 s6 0

−s∗5 s∗4 0 s3
−s∗6 0 s∗4 −s2

0 −s∗6 s∗5 −s1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

which is built by negating all variations of symbol s1.
For the symbol negation algorithm, it is important to note,

based upon the initial base STBC in use, which data sym-
bols may be negated, individually or concurrently, without
resulting in duplicate codes. An allowed symbol negations
vector, denoted as vasn, is used for this purpose within the
symbol negations algorithm. As previously explained for
SPO334, the symbol negation algorithm is unnecessary; thus,
to prevent building duplicate codes, vasn is empty for that
base code. Conversely, symmetry within the MPO468 code
allows for a few combinations of symbols to be permitted
for use with this algorithm. For instance, symbols s1 and s2
represent one combination whereas symbols s4 and s5 repre-
sent another. When negated individually or concurrently, and
in combination with particular row and column negations,
the permitted symbol combinations allow for any combina-
tion of data symbols to be negated. The choice as to which
combination of symbols to permit with this algorithm is up
to the user; however, whereas the same set of STBCs is built
either way, the indexing of the set is slightly different.
On the contrary, there are other symbol combinations, e.g.,

s1 and s4, that are not permitted with the MPO468 base code.
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Algorithm 6 Symbol Permutations

Inputs: S {Input set of STBCs},
PCi {# of populated codes in input S},
Asyms {Symbols record array},
vasp {Allowed symbol permutations vector},
sext {Extended data symbol vector}

Outputs: S {Output set of STBCs},
PCo {# of populated codes in output S},
Asyms {Updated symbols record array}

1: Kperms = perms(k) {Symbol permutations array}
2: PCo = PCi · |vasp|

{Operation limit = |vasp|}
3: for it = 1 to |vasp| − 1 do
4: for m = 1 to PCi do
5: S(: , : ,PCi · it + m) = S(: , : ,m)

{Initialize STBC}
6: [ ∼, vkpi] = sort(Asyms(m, :))

{vkpi holds indices of sorted symbol permutation}
7: vkp = Kperms(vasp(it + 1), vkpi)

{Symbol permutation vector}
8: if vkp == [1 . . . k] then
9: Asyms(PCi · it + m, :) = [1 . . . k]

{Update symbols record array}
10: vkp = vkpi

{Reassign symbol permutation vector}
11: else
12: Asyms(PCi · it + m, :) = Kperms(vasp(it + 1), :)

{Update symbols record array}
13: end if

14: for ri = 1 to r do
15: for ci = 1 to c do
16: if S(ri, ci,m) �= 0 then
17: j = symbol index of S(ri, ci,m)

{e.g. j = 2 for S(ri, ci,m) == s2, s∗2, etc.}
18: if vkp(j) �= j then
19: if S(ri, ci,m) is negated then
20: n = −1

{Permuted symbol must be negated}
21: else
22: n = 1
23: end if
24: if S(ri, ci,m) is conjugated then
25: g = 1

{Permuted symbol must be
conjugated}

26: else
27: g = 0
28: end if
29: S(ri, ci,PCi · it + m) =

n · sext(vkp(j) + g · k)
30: end if
31: end if
32: end for
33: end for
34: end for
35: end for
36: return S, PCo, Asyms

Due to this fact, it is important to keep track of the symbols
to be negated if symbol permutation is performed prior to
symbol negation. In this case, the permutation applied within
the symbol permutation algorithm is used to permute the
chosen symbol combination for use with the symbol negation
algorithm.
Example 4: A group of STBCs is built by performing

symbol permutation prior to symbol negation. Within the
symbol permutation algorithm, all original s2 symbols are
replaced with s3, all original s3 symbols with s4, and all
original s4 symbols with s2. Thus, if the chosen combination
of symbols for use with the symbol negation algorithm is s1
and s2, i.e., vasn = [1 2], then the permuted combination of
symbols becomes s1 and s3, i.e., vpsn = [1 3].

C. DETAILED SET BUILDING ALGORITHMS
In order to build the set, S, of unique orthogonal STBCs
from the MPO468 base code, the initialization algorithm
is performed first followed by the remaining algorithms in
Appendix A and this subsection in any order. The cardinality
of S, denoted as |S|, including the base code is

∣∣S∣∣ = 2r+c+k−1 · r! · c! · |vasp| · 2|vasn|, (7)

which equals 7, 610, 145, 177, 600 for c = 4, k = 6, r = 8,
|vasp| = 15 is the length of vasp, and |vasn| = 2 is the length
of vasn. This cardinality is obtained by the product of the
operation limits for all algorithms in Appendix A and this
subsection. The operation limit for each algorithm is the
multiplication factor applied within to obtain the number of
populated codes in the output set from that of the input. The
two far-right terms in (7) are contributed by addition of the
two new algorithms from this work; thus, it can be seen that
these new algorithms increase the set cardinality by a factor
of 60.
The values of c, k, and r are known to all algorithms

in this article. All text within curly brackets are com-
ments to aid the reader. A slightly modified version of the
perms(n) MATLAB function is used to create an n!-by-n
array containing all permutations of the integers from 1 to
n in lexicographic order, where each row contains a dif-
ferent permutation [25]. The [B, I] = sort(A) MATLAB
function is used to sort the elements of vector A in ascend-
ing order, where B holds the sorted elements, and I holds
the original indices of the elements of A as they appear
within B such that B = A(I) [25]. The ∼ symbol in
place of B indicates that B is not used. The de2bi(i, n)

1506 VOLUME 1, 2020



Algorithm 7 Symbol Negations
Inputs: S, PCi, Asyms,

vasn {Allowed symbol negations vector}
Outputs: S, PCo, Asyms

1: PCo = PCi · 2|vasn| {Operation limit = 2|vasn|}
2: for it = 1 to 2|vasn| − 1 do
3: vsym = de2bi(it, |vasn|) {Symbol negation vector}
4: for m = 1 to PCi do
5: Asyms(PCi · it + m, :) = Asyms(m, :)

{Update symbols record array}
6: vpsn = Asyms(m, vasn)

{Permuted allowed symbol negations vector}
7: vcsn = vsym ◦ vpsn

{Current iteration symbol negation vector set}
8: T = 2-dimensional array of 1’s of size r-by-c
9: for ri = 1 to r do
10: for ci = 1 to c do
11: if S(ri, ci,m) �= 0 then
12: j = symbol index of S(ri, ci,m)

{e.g., j = 3 for S(ri, ci,m) == s3, s∗3, etc.}
13: if j ∈ vcsn then
14: T(ri, ci) = −1
15: end if
16: end if
17: end for
18: end for
19: S(: , : ,PCi · it + m) = S(: , : ,m) ◦ T
20: end for
21: end for
22: return S, PCo, Asyms

MATLAB function is used to create an n-bit, little-endian
(aka right most significant bit) binary row vector of the
decimal value i [25]. Lastly, × is used to indicate matrix mul-
tiplication whereas ◦ indicates element-wise multiplication,
and == indicates logically equal whereas = indicates assign-
ment. For completeness and to facilitate the discussion for
the reader, the updated algorithms from [17] are included
in Appendix A with their original numbering, and the
two new algorithms are presented in this subsection as
Algorithms 6 and 7.

D. TRACKING SYMBOL PERMUTATIONS
The symbols record array, denoted as Asyms, is used for
tracking symbol permutations throughout performance of
each algorithm. When the G input to Algorithm 0 is a non-
symbol permuted version of the original base code for which
vasp is empirically derived, then Kperm = [1 . . . k] is input
to Algorithm 0 as well. For this case, symbol permutation
tracking is only necessary when Algorithm 6 is performed
prior to Algorithm 7. This serves to permute vasn as dis-
cussed in Example 4 and performed in Algorithm 7. On the
contrary, when a symbol permuted version of the base code
is used as the G input to Algorithm 0, the Kperm input to

Algorithm 0 is vital to properly initialize Asyms which is
then used within Algorithm 6 to determine the correct sym-
bol permutation vector, vkp, to prevent duplicate codes from
being built.

IV. INDIVIDUAL STBC BUILDING
In schemes that perform beamforming, precoding, or encod-
ing by selecting a code for use from a known codebook (aka
code set), it is common to store the entire codebook for use
as a lookup table [26], [27]; however, when the size of the
codebook is very large, this may not be practical, especially
for low-storage devices. With this in mind, it would be desir-
able to build specific selected STBCs from the codebook for
use as needed without storing the entire codebook. In order
to do this, three pieces of information are needed:
1) the base code and
2) order of operations/algorithms used to build the

intended codebook as well as
3) the index value of the desired code.
The base code must be known as it is the first indexed code

in the set. The order of operations conducted must also be
known as building the set with different order of operations
effectively reindexes the entire set with the exception of the
first code. Naturally, the set is indexed from 1 to

∣∣S∣∣. The
index value must be known as it specifies the iteration of
each operation to be performed in order to build the selected
code, where the iteration of an operation refers to the value
of the it variable in each one of the algorithms provided.
A fourth piece of information, namely the operation limits
discussed in Section III-C, must be known as well but can
generally be considered as common knowledge for a given
code set.
With these pieces of information, a specific STBC can be

built by starting with the base code, determining the specified
iteration of each operation to perform based upon the given
index value, and performing each operation in the given
order. The process for determining the specified iteration of
each operation starts by defining a 1-by-l divisor vector, vdiv,
with elements

vdiv(i) =
{

1 i = 1∏i−1
j=1 vol(voo(j)) 1 < i ≤ l,

(8)

where vol is a row vector containing the operation limits for
Algorithms 1 - 7 in that order, voo is an order of operations
row vector containing the number of each algorithm in the
order in which they are performed to build a code, and l is
the length of each row vector, which equals seven when all
of the provided algorithms are performed. Upon definition of
vdiv, the iteration of each operation can be contained within
a 1-by-l iterations vector, vit, with elements

vit(i) =
⎧⎨
⎩

⌊
IV−1
vdiv(i)

⌋
mod vol(voo(i)) 1 ≤ i < l⌊⌊

IV−1
vdiv(i−1)

⌋
/vol(voo(i− 1))

⌋
i = l,

(9)

where IV represents the index value of the desired code,
mod represents the modulo operator, and � 	 represents the
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floor function. With these vectors defined, it can be seen
that

IV = vit × vTdiv + 1, (10)

where +1 is required due to set indexing starting at 1.
Once the iterations have been determined, the desired

code is built by performing Algorithm 0 first with the
∣∣S∣∣

input argument set to 1 since only 1 code will be built.
Algorithms 1 - 7 are performed next in the order specified
by voo. To modify each of these algorithms for individual
STBC building instead of set building, any reference to S
is replaced with G, the values of PCi and PCo are set to
1, the it variable is set equal to the value contained in vit
for that algorithm, and all index values of PCi · it + m are
replaced with 1. For any element of vit equal to zero, the
corresponding algorithm is not performed.
Example 5: Using the MPO468 base code with voo =

[3 6 2 1 7 4 5], IV = 3, 824, 537, 371, 943, and operation
limits as specified in Algorithms 1–7, i.e.,

vol = [
2r 2c−1 r! c! 2k |vasp| 2|vasn|]

= [
256 8 40320 24 64 15 4

]
, (11)

vdiv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
40320

604800
4838400

1238630400
4954521600

118908518400

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, (12)

vit = [
20902 12 7 182 3 3 32

]
, (13)

and the built STBC is

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−s2 −s∗6 0 −s5
s∗3 0 −s∗6 −s∗1−s1 s4 0 −s3
s∗4 s∗1 −s5 0
0 s∗5 s1 −s6

−s6 s∗2 −s3 0
0 s∗3 s2 s∗4−s∗5 0 −s4 s∗2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

It should be noted that the order of operations conducted
to build this STBC directed Algorithm 6 be performed
prior to Algorithm 7; therefore, as explained in Section III,
Example 4, Asyms = [1 3 4 2 5 6] for this STBC was used
to permute vasn = [1 2] to vpsn = [1 3].

V. PLS TECHNIQUE: ALTERNATING STBC SCHEME
Employing a static alternative STBC from the code set other
than the original common STBC provides a certain amount
of security; however, switching to a different STBC in the set
after each codeword in a pseudorandom fashion undoubtedly
provides additional security. Analysis of these two options is
discussed in Section VIII-A. This section presents the details
of such a scheme for pseudorandomly alternating between
STBCs in the set. The scheme involves three phases: steady

FIGURE 1. Basic elements for each phase of the alternating PLS scheme.

state, initialization, and data transmission. The basic elements
of each phase are illustrated in Fig. 1. As this scheme is
predominantly located at the physical layer, details regarding
medium access, flow, and error control are not discussed and
are left as a topic of future research. Downlink transmission
(e.g., base station (BS) to user equipment (UE)) is the sole
focus of the scheme presented in this article; however, it
could readily be extended to include uplink transmission.
For simplicity, the communications link described here is
MISO, but this may easily be adapted for a MIMO link.

A. STEADY STATE
During this phase, communication has not yet begun between
the BS and UE; however, it is obviously assumed that each
entity has a priori knowledge of the original base code (OBC)
shown in (2), the operation limits discussed in Sections III-C
and IV, and the unique contents contained on the UE’s sub-
scriber identity module (SIM). These unique contents include
a base code index (BCI) and a base order of operations vec-
tor (vboo). With this a priori information, both entities are
able to build a unique base code (UBC) using the process
detailed in Section IV.
From the set size given in (7) for MPO468 and the 7! pos-

sible vboo vectors alone, this scheme allows for ≈ 3.84 · 1016
unique SIMs. The SIM also includes a seed obfuscation key
(SOK) used during the next phase to obfuscate the received
seed to minimize any impact of the seed being intercepted.
If the size of the employed SOK is 64 bits, then the number
of unique SIMs may be increased by a factor of 264.
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FIGURE 2. Illustration of indexing into permutations array containing elements of
vboo in lexicographic order with row index = 1639.

B. INITIALIZATION
During this phase, it is desired for communication to begin;
thus, a random seed is transmitted from BS to UE using
a secret sharing method such as the post-quantum cross-
layer key agreement scheme presented in [2]. Each entity
performs modulo-2 addition, denoted by the ⊕ symbol in
Fig. 1, between the bits of this random seed and those of the
SOK to obtain an obfuscated seed. Each entity then uses this
seed to synchronize PRNGs. Next, pseudorandom numbers
(PRNs) are generated to create a temporary BCI (tBCI) and
temporary order of operations vector (vtoo) for use during
this session. The value of tBCI is set as

tBCI = (PRN mod |S|) + 1, (15)

and vtoo is set by indexing a row from a permutations array
containing the elements from vboo in lexicographic order,
where the row index is set as

row index = (PRN mod 7!) + 1. (16)

Example 6: For a vboo = [3 6 2 1 7 4 5] and PRN =
278, 570, 369, 041, 398, the row index = 1639 using (16);
therefore, vtoo = [2 6 4 1 3 7 5] as shown in Fig. 2.
With these two session variables along with the UBC from

the steady state phase and operation limits, both entities build
a temporary base code (tBC) using the process detailed in
Section IV. Upon completion of this step, the BS and UE
are ready to begin data transmission.

C. DATA TRANSMISSION
During this phase, the synchronized PRNGs from the initial-
ization phase are used to generate PRNs in order to determine
the next STBC to be used during transmission from BS to
UE. The next code index (NCI) is set as

NCI = (PRN mod |S|) + 1. (17)

Using this index value, vtoo, tBC, and operation limits, both
entities build the next STBC using the Section IV process.
As MPO468 consists of six data symbols, the steps

described here for determining the NCI and building the
next STBC are repeated for each set of six data symbols to

be transmitted. We now discuss a potential communications
link employing this PLS scheme including the steps required
by UE for reception.

D. COMMUNICATIONS LINK & RECEPTION
A potential MISO communications link between BS and UE
begins with a common digital modulation scheme such as
quadrature phase-shift keying (QPSK) or M-ary quadrature
amplitude modulation (MQAM) to convert a binary source to
data symbols. These symbols are inserted into the next pseu-
dorandomly built STBC and transmitted across the wireless
interface using c TX antennas over r symbol time periods.
The r-by-1 sample vector, Z, received by UE using a single
receive (RX) antenna is

Z = G × hBU + n, (18)

where G is the next STBC, hBU is the c-by-1 channel tap
vector between BS and UE, and n is an r-by-1 additive white
Gaussian noise vector. UE is assumed to have perfect CSI
and knowledge of the STBC used to encode each codeword.
UE performs MRC to equalize and decode the data symbols
and demodulates the symbols to binary data using the known
digital modulation scheme.
The general MRC process applicable to all STBCs dis-

cussed in this work can be described by two steps performed
in sequence to obtain the estimated data symbol vector, ŝ.
These steps can be seen as calculating

ŝint = H†
CBU × Z (19)

followed by

ŝ(x) = ŝint(x) + ŝ∗int(x+ k)

‖hBU‖2
(20)

for x ∈ {1, . . . , k}, where ‖hBU‖2 is the square of the
Euclidean norm of hBU , ŝint is a 2k-by-1 intermediate vector,
and HCBU is an r-by-2k combining matrix corresponding to
G such that

HCBU × sext = G × hBU . (21)

The intermediate vector represents a weighted version of
sext with noise plus interference due to spreading of data
symbols; however, completion of (20) cancels all interfering
terms to produce the estimated data symbol vector. This can
be shown to be true according to the sufficient statistics

Ĥ = ‖hBU‖2 · Ik, (22)

where

Ĥ(x, y) = Hint(x, y) + H∗
int(x+ k, y+ k)

+ Hint(x, y+ k) + H∗
int(x+ k, y) (23)

for x, y ∈ {1, . . . , k}, and
Hint = H†

CBU × HCBU . (24)

These sufficient statistics represent a systematic approach to
finding k vectors to solve for each of the k data symbols
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contained within any complex orthogonal STBC using MRC.
This approach meets the sufficient statistics given in [28,
(10.272)]. For the purpose of brevity and without loss of
generality, the Alamouti code is used to provide proof
for this MRC sufficient statistic and two-step sequence in
Appendix B.
Without loss of generality, the process for determining the

corresponding HCBU matrix for any given complex orthog-
onal STBC matrix, G, and channel tap vector, hBU , can
be seen as solving the system of equations given in (21)
for the terms of HCBU with appropriate constraints. In gen-
eral, the terms of HCBU are constrained to zeros, weighted
terms from hBU , and sums of these weighted terms. The use
of sums of weighted terms is provided to account for this
approach to be applied with the sporadic 3/4 rate STBCs
given in [29] designed using the theory of amicable designs
from [30]. For all STBCs discussed in this work, sums of
terms are unnecessary, and the only required weights are
∈ {−1, 1}. As such, an algorithmic approach for construc-
tion of these MRC matrices given the channel tap vector
and any STBC matrix discussed in this work is provided in
Algorithm 8.
Example 7: The HCBU matrix for the base code in (2) and

channel tap vector, hBU = [h1 h2 h3 h4]T , is given as

HCBU =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 0 0 0 0 0 0 h4

h2 0 0 0 0 0 −h4 0
h3 0 0 0 0 h4 0 0
0 0 0 h4 h1 0 0 0
0 0 −h4 0 h2 0 0 0
0 h4 0 0 h3 0 0 0
0 h2 h3 0 0 0 0 0
0 −h1 0 h3 0 0 0 0
0 0 −h1 −h2 0 0 0 0
0 0 0 0 0 h2 h3 0
0 0 0 0 0 −h1 0 h3

0 0 0 0 0 0 −h1 −h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (25)

VI. NOMENCLATURE AND CHARACTERIZATION
Before analyzing the security of the proposed scheme, we
first define some common nomenclature for use in char-
acterization of STBC PLS schemes. In [31], definitions
were provided for a cryptogram, message residue class, and
cryptogram residue class pertaining to secrecy systems in
general. This work intends to relate those terms as they
pertain to STBC PLS schemes. Additionally, the notion
and definitions for a KR and key residue class (KRC) are
provided.

A. CRYPTOGRAM DEFINITION
For this work, the cryptogram, E, is defined as the trans-
mitted STBC matrix, G, with embedded data symbol vector,
s, containing k specific data symbols of the chosen digital
modulation scheme.

Algorithm 8 MRC Matrix Generation
Input: G {STBC Matrix}, h {Channel tap vector}
Output: HC {MRC Matrix}

1: HC = 2-dimensional array of 0’s of size r-by-2k
2: for ri = 1 to r do
3: for ci = 1 to c do
4: if G(ri, ci) �= 0 then
5: j = symbol index of G(ri, ci)

{e.g., j = 1 for G(ri, ci) == s1,−s1, s∗1,−s∗1}
6: if G(ri, ci) is negated then
7: n = −1
8: else
9: n = 1

10: end if
11: if G(ri, ci) is conjugated then
12: g = 1
13: else
14: g = 0
15: end if
16: HC(ri, j+ g · k) = n · h(ci)
17: end if
18: end for
19: end for
20: return HC

Example 8: Given the MPO468 base code shown in (2)
employing 16-QAM with s = [+ 1 + 1j, −3 + 3j, −3 −
1j, −1 − 1j, +3 − 3j, +3 + 1j]T , the cryptogram is
represented as

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 + 1j −3 + 3j −3 − 1j 0
+3 + 3j +1 − 1j 0 +3 + 1j
+3 − 1j 0 +1 − 1j −3 + 3j

0 +3 − 1j −3 − 3j −1 − 1j
−1 − 1j +3 − 3j +3 + 1j 0
−3 − 3j −1 + 1j 0 −3 − 1j
−3 + 1j 0 −1 + 1j +3 − 3j

0 −3 + 1j +3 + 3j +1 + 1j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

B. KEY RESIDUE DEFINITION
The KR is defined as the pattern or set of symbol pair
relationships and their matrix locations within a given
STBC. Initially discussed in Section III, when variations
are constrained to original, negative, conjugate, or negative-
conjugate data symbols, symbol pair relationships refer to
the conjugate and negative-conjugate relationships that exist
between the symbol variations within a symbol pair. For the
KR, the particular symbols in each pair are irrelevant. The
pattern is defined only by the locations and relationships of
the symbol pair elements.
The KR may be shown in tabular form by listing the

relationship and variant locations of each data symbol for
all symbol pairs within the STBC. As the SPO334 STBC
contains only one symbol pair between each combination of
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TABLE 1. Tabular form KR showing the relationships and locations of each element
for all symbol pairs in the SPO334 base code.

its three columns, there are
(3

2

) · 1 = 3 symbol pairs that
make up its KR.
Example 9: The tabular form KR for the SPO334 base

code shown in (1) is provided in Table 1, where the symbol
pair index (SPI) is used to abstractly identify the data sym-
bols within each symbol pair. For instance, SPI 1.2 refers
to the second data symbol in the first symbol pair.
Likewise, as the MPO468 STBC contains two symbol

pairs between each combination of its four columns, there
are

(4
2

) · 2 = 12 symbol pairs that make up its KR. The
tabular form KR for the MPO468 base code is given in
Appendix C.
A KR may also be represented in matrix form. Given

a STBC matrix, this form of the KR may be determined
by performing symbol permutations, symbol negations, and
symbol conjugations. Each operation is performed as neces-
sary on the given matrix in order to place the unconjugated
and unnegated symbols in the data symbol vector, s, down
the left-hand column in order from top to bottom.
Example 10: The matrix form KR corresponding to the

SPO334 base code shown in (1) is determined by negating
and conjugating symbols s2 and s3 and is represented as

GKR =

⎡
⎢⎢⎣
s1 −s∗2 −s∗3
s2 s∗1 0
s3 0 s∗1
0 s3 −s2

⎤
⎥⎥⎦. (27)

Example 11: The matrix form KR corresponding to the
MPO468 base code shown in (2) is determined by negat-
ing and conjugating symbols s2, s3, s5, and s6 and is
represented as

GKR1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 −s∗2 −s∗3 0
s2 s∗1 0 −s∗6
s3 0 s∗1 s∗5
0 s3 −s2 s4
s4 −s∗5 −s∗6 0
s5 s∗4 0 −s∗3
s6 0 s∗4 s∗2
0 s6 −s5 s1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

Depending upon the specific symbols contained in s, the
KR may or may not be able to be precisely determined from
a given E. This determination process can be seen as find-
ing the STBC from the known set that could produce E,
assuming the non-zero entries of the left-hand column rep-
resent the unconjugated and unnegated symbols in the data

TABLE 2. Relationships and locations of each element for symbol pair 7 in (28)
and (29).

symbol vector, s, in order from top to bottom. It can clearly
be seen that the KR in (28) could produce the cryptogram
in (26); however, as an example to illustrate the uncer-
tainty that exists when s is structured with particular patterns
for multi-pair orthogonal STBCs such as MPO468, (26)
represents a special case cryptogram that could have also
been produced by seven alternative KRs including

GKR2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 s∗5 −s∗3 0
s2 −s∗4 0 s∗3
s3 0 s∗1 −s∗2
0 s3 s5 s4
s4 s∗2 −s∗6 0
s5 −s∗1 0 s∗6
s6 0 s∗4 −s∗5
0 s6 s2 s1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

This uncertainty impacts the key equivocation in later
analysis as each KR corresponds to a different KRC.

C. KEY RESIDUE CLASS DEFINITION
In [32], the term KRC was used to refer to keys which act
similarly and may be indistinguishable under certain condi-
tions. Whereas this usage of the term is compatible with our
work, [32] adds that when the KRC is known, the message
is also known. As this latter statement is not true for our
purposes, we provide a more complete definition of KRC as
it pertains to STBC PLS schemes.
A KRC is defined herein as a subset of the full code

set consisting of all “keys”, or STBCs, sharing the same
symbol pair relationships in the same matrix locations as
one another. Collectively, the KRCs form a partition of the
full code set. For all STBCs discussed for this work, it can
be shown that there are

4k · k! (30)

STBCs within each KRC.
By this definition, all STBCs within a KRC are unique

but share a common KR. As previously stated, the particular
symbols within each symbol pair do not impact the KR so
long as the locations and relationships are the same. For
instance, the seventh symbol pair in (28) and (29) produces
the same entry within their respective tabular form KRs
despite the symbol pair being formed by variants of s2 and
s3 in (28) vice s5 and s3 in (29). For reference, this symbol
pair entry is shown in Table 2. Whereas the entry for this
particular symbol pair is a match between these two KRs,
not all symbol pair entries match; thus, they are not in the
same KRC. This is expected, as by our definition only one
KR can be associated with each KRC.
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To further illustrate the concept of the KRC, the set of all
STBCs within a single KRC may be built by using the corre-
sponding KR as the base code and performing Algorithms 0,
5, 6, and 7. The input set cardinality for Algorithm 0 is set
to 4k · k!. Algorithm 6 is extended by setting vasp to the
range from 1 to k! to allow for all symbol permutations
to be performed, and Algorithm 7 is extended by setting
vasn = [1 . . . k] to provide all 2k − 1 binary combinations
of symbol negations in the same manner as Algorithm 5
provides all 2k − 1 combinations of symbol conjugations.

As all KRCs are of equal size and partition the full set,
the number of KRCs can be determined by dividing the full
set cardinality by the class size; however, this can also be
determined by finding the number of unique KRs as there
is a one-to-one correspondence between KRs and KRCs. In
order to find the number of unique KRs, we must look at
the factors that distinguish them from one another, namely
the symbol pair relationships and locations. The symbol pair
locations are most obviously affected by the zero placements
within the STBC matrix. As there are exactly two zeros per
column and one zero per row of G for MPO468, it can be
seen that there are

(8
2

) · (6
2

) · (4
2

) · (2
2

) = 2, 520 different per-
mutations of zero placements. Each permutation constitutes
a set of unique KRs. The symbol pair locations can also be
changed by performing row permutations. To operate within
a single zero placement permutation of the STBC matrix,
the only permitted row permutations can be better under-
stood as row swaps. As such, the rows of the STBC matrix
having common zero locations may be swapped. For every
zero placement permutation, there are 2r/2−1 permitted row
swaps constituting different KRs. Finally, for each permuta-
tion of symbol pair locations, the symbol pair relationships
may be modified by performing row negations. While hold-
ing a single row constant, the remaining rows may undergo
any one of the 2r−1 binary combinations of row negations
creating different KRs. All combined, for MPO468 there are

2, 520 · 2r/2−1 · 2r−1 = 2, 580, 480 (31)

unique KRs and by extension, KRCs. It can be seen that
multiplying the class size in (30) by the number of KRCs
in (31) produces the same full set cardinality shown in (7) as
expected. For comparison, the Alamouti STBC and SPO334
have 2 and 192 KRCs, respectively.

D. MESSAGE AND CRYPTOGRAM RESIDUE CLASS
DEFINITION
From [31], a message residue class is defined as the set
of messages that might have produced a given cryptogram.
Likewise from [31], a cryptogram residue class is defined
as the set of cryptograms that may be produced from a
given message. We supplement these definitions by adding
our cryptogram definition, clarifying that the message is the
embedded data symbol vector for a STBC, and adding a
KRC caveat to the cryptogram residue class definition.

A message residue class is defined herein as the set of
data symbol vectors that might have produced a given cryp-
togram. Similarly, a cryptogram residue class is the set of
cryptograms that may be produced from a given data sym-
bol vector by employing only those STBCs from a single
KRC. This caveat regarding the KRC is important as each
KRC has different cryptogram residue classes matching the
KR for that class. The uncertainty of the KR for particu-
lar cryptograms discussed previously in Section VI-B for the
MPO468 code is due to the fact that these special case cryp-
tograms exist within cryptogram residue classes for each of
the eight associated KRCs.

E. CHARACTERIZATION OF RESIDUE CLASSES
When employing only the STBCs from a single KRC of a
chosen STBC, it can be shown that the message and cryp-
togram residue classes meet the properties for those of a
pure cipher system in [31, Th. 3]. For clarity of discussion,
a summary and adaptation of these properties is provided
here:

Property 1) Message residue classes C1, C2, etc. collec-
tively form a partition of the data symbol vector
space for a given digital modulation scheme.
Similarly for the cryptogram residue classes C′

1,
C′

2, etc.
Property 2) Embedding any data symbol vector in Ci within

any STBC of the chosen KRC produces a cryp-
togram in C′

i. Decoding any cryptogram in C′
i

with any STBC of the chosen KRC leads to a
data symbol vector in Ci.

Property 3) The number of data symbol vectors in Ci, say
φi, is equal to the number of cryptograms in
C′
i and is a divisor of the number of STBCs in

the chosen KRC shown in (30).
Property 4) Each data symbol vector in Ci can be embedded

within exactly f different STBCs of the chosen
KRC to produce each cryptogram in C′

i, where
f is defined such that

φi = 4k · k!
f

. (32)

This f value is a repetition metric for the data symbol vec-
tors within each message residue class. To allow for further
examination of this metric, we first define a unique sym-
bol set. For any chosen digital modulation scheme, a unique
symbol set is herein defined as a set of four symbols that
are equal to the negative, conjugate, or negative-conjugate of
one another; thus, 16-QAM contains four unique symbol sets
whereas 64-QAM contains 16 unique symbol sets. For any
modulation scheme of order M with constellation exhibiting
bilateral symmetry across both the real and imaginary axes,
the number of unique symbol sets is equal to M/4.
Example 12: The four unique symbol sets contained within

16-QAM are shown in Fig. 3 and distinguished by different
colors and shapes.
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FIGURE 3. The four unique symbol sets for 16-QAM.

With the unique symbol set definition established, the rep-
etition metric, or f value, for each message and cryptogram
residue class can be further defined as

f =
u∏
i=1

ni!, (33)

where u is the number of unique symbol sets represented in
each of the data symbol vectors of the message residue class,
and n = [n1 . . . nu]T is a u-by-1 column vector containing
the number of times a symbol appears in each data symbol
vector from each of the unique symbol sets represented.
Example 13: For an MPO468 message residue class

containing a 16-QAM data symbol vector represented as

si =

⎡
⎢⎢⎢⎢⎢⎢⎣

+1 + 1j
+3 + 3j
+3 − 1j
−1 − 1j
−3 − 3j
−3 + 1j

⎤
⎥⎥⎥⎥⎥⎥⎦

, (34)

u = 3, n = [2 2 2]T , and f = 2!·2!·2! = 8; thus, substituting
this result into (32) gives a message residue class size of

φi = 4k · k!
f

= 46 · 6!

8
= 368, 640. (35)

F. RESIDUE CLASSES FOR THE ALAMOUTI STBC
To better understand the message and cryptogram residue
classes pertaining to STBC PLS schemes, we now examine
these classes for the Alamouti STBC employing 16-QAM
data symbols and only the STBCs from one of its two KRCs.
For each message and cryptogram residue class, with k = 2
and M = 16, either u = 1 or u = 2 leading to n = [2]
or n = [1 1], respectively; thus, for the Alamouti STBC,
the repetition metric for all message and cryptogram residue
classes is either f = 2 or f = 1. Note that 2 = k! in this case.

For any chosen base code, the number of data symbol vec-
tors collectively contained within all message residue classes

FIGURE 4. After [31], template for Alamouti message and cryptogram residue
classes with f = 2 employing 16-QAM data symbols and STBCs from a single KRC.

with a repetition metric of f = k! can easily be understood
by determining the number of potential data symbol vectors
that may be produced by selecting all k data symbols from
within a single unique symbol set. This selection process can
be further explained as selecting any of the M modulation
symbols to be the first data symbol followed by selecting
any of the 4 variations (e.g., original, negative, conjugate, or
negative-conjugate) of the first modulation symbol for the
remaining k − 1 data symbols. By this process, there are

M · 4k−1 (36)

data symbol vectors within message residue classes with
f = k!. By substituting k! for f in (32), it can be seen that
there are exactly

φi = 4k · k!
k!

= 4k (37)

data symbol vectors in each of these classes; therefore,
combining (36) and (37), there are

M · 4k−1

4k
= M

4
(38)

message residue classes and associated cryptogram residue
classes with a repetition metric of f = k!. This is an intuitive
solution as each of these classes represents the set of all data
symbol vectors that can be produced by selecting all k data
symbols from within a single unique symbol set. As there
are M/4 unique symbol sets, there are M/4 message and
cryptogram residue classes with f = k!.

For the Alamouti STBC employing 16-QAM data sym-
bols, there are 16/4 = 4 classes with a repetition metric
of f = 2. Fig. 4 shows a template for these classes with
the following variable definitions. Since there are 4 classes
based upon this template with φi = 4k = 16 data sym-
bol vectors and cryptograms in each class, i ∈ {1, 2, 3, 4},
l = 16 · (i − 1) + 1, o = l + 15, and l < n < o. The
multi-colored lines connecting each data symbol vector on
the left-hand side to a cryptogram on the right-hand side
represent 6 of the 32 STBCs within the chosen KRC. The
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FIGURE 5. After [31], template for Alamouti message and cryptogram residue
classes with f = 1 employing 16-QAM data symbols and STBCs from a single KRC.

particular colors serve to aid in distinguishing between dif-
ferent STBCs, to illustrate Properties 2 and 4 for the message
and cryptogram residue classes of a pure cipher system given
in Section VI-E, and to illustrate that a given STBC can not
produce a cryptogram in C′

i from more than one data sym-
bol vector in Ci. Any other pattern or relation that can be
found within the chosen colors is unintended and does not
represent a known property of these classes.
For any chosen base code, the number of data symbol vectors

collectively contained within all message residue classes with
a repetition metric of f = 1 can be understood as the set of all
data symbol vectors produced by selecting all k data symbols
from different unique symbol sets. This is only possible when
k < M/4. Given that this condition is met, there are

k−1∏
i=0

(M − 4 · i) (39)

data symbol vectors within message residue classes with a
repetition metric of f = 1. By substituting 1 for f in (32),
it can be seen that there are exactly

φi = 4k · k!
1

= 4k · k! (40)

data symbol vectors in each of these classes.
For the Alamouti STBC employing 16-QAM data sym-

bols, combining (39) and (40) provides that there are

M · (M − 4)

4k · k! = 16 · 12

42 · 2!
= 6 (41)

message residue classes and associated cryptogram residue
classes with a repetition metric of f = 1. Fig. 5 shows a
template for these classes with the following variable defi-
nitions. Since there are 6 classes based upon this template
with φi = 4k · k! = 32 data symbol vectors and cryptograms
in each class, and 4 previously defined classes with f = 2
with a total of 4 · 16 = 64 data symbol vectors and cryp-
tograms combined, i ∈ {5, 6, 7, 8, 9, 10}, l = 32 ·(i−5)+65,
o = l+ 31, and l < n < o. The multi-colored lines serve the
same purpose as those in Fig. 4.

It can be seen that Property 1 in Section VI-E is confirmed
as these ten message residue classes collectively partition the
data symbol vector space for the Alamouti STBC employing
16-QAM with a total of Mk = 162 = 256 data symbol
vectors. Likewise for the cryptogram space matching the
KR of the chosen KRC.

VII. INFORMATION-THEORETIC SECURITY AND BIT
ERROR RATE ANALYSIS
We now use the established nomenclature to analyze the
information-theoretic security of the proposed alternating
STBC PLS scheme from the perspectives of message and
key equivocation. Theoretical expected BER for a passive
eavesdropper is then discussed and plotted along with Monte
Carlo simulations for confirmation. First we describe our
eavesdropper assumptions and a method Eve may take to
obtain information about the embedded data symbol vector
and STBC in use for each codeword employing only a single
RX antenna. Additional RX antennas and alternative meth-
ods may be employed by the eavesdropper; however, this
approach shows what may be achieved with minimal addi-
tional hardware. Under our worst case analysis, additional
antennas prove to be of no added value.

A. EAVESDROPPER ASSUMPTIONS
For the communications link described in Section V-D, it is
assumed that Eve:

• has a priori knowledge of the chosen OBC and digital
modulation scheme employed,

• may have a priori knowledge of some plaintext data,
• employs 1 RX antenna,
• has perfect CSI of the channel between BS and Eve
denoted by the c-by-1 channel tap vector hBE,

• has perfect timing synchronization,
• passively records all received data samples for an entire
communications session,

• and has the ability to generate the matrix form KR,
GKR, associated with all KRCs for the chosen OBC.

We point out that these are non-trivial assumptions, i.e.,
that significant knowledge is somehow available a priori to
Eve and substantial operations are required for perfect CSI
and synchronization.

B. EAVESDROPPER ATTACK METHODOLOGY
With these non-trivial assumptions, Eve may gain information
about the embedded data symbol vector and STBC employed
for each transmitted cryptogram from the recorded sample
vector, Z, by performing the following steps:

1) For each KRC of the OBC, use GKR along with the
channel tap vector, hBE, to determine the correspond-
ing MRC matrix, HCBE.

2) Perform MRC of the received sample vector using
the HCBE matrix associated with each KRC to obtain
results, ŝi for i ∈ {1, . . . , l} where l = 2, 580, 480 is
the number of KRCs given in (31).
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3) Determine the KR of the KRC to which the STBC
used for transmission of the cryptogram belongs. This
is done by finding the index value, i, of the result,
ŝi, with the minimum Euclidean distance to any one
of the potential data symbol vectors, s ∈ M

k, where
M is the set of all symbols in the M-ary modulation
scheme. This can be represented as

i = argmin
∀i∈{1,...,l}

(
min

∀s∈Mk
d
(
s, ŝi

))
(42)

where d(x, y) represents the Euclidean distance
between x and y.

4) Obtain a coded symbol vector, sc, by selecting the
data symbol vector, s, with the minimum Euclidean
distance to the determined result, ŝi, from Step 3 as
represented by

sc = argmin
∀s∈Mk

d
(
s, ŝi

)
. (43)

For sufficient signal-to-noise ratio (SNR), Step 3 gen-
erally provides a single KR determination; however, for
the MPO468 STBC and special case cryptograms discussed
previously in Section VI-B, eight MRC results should exhibit
approximately the same Euclidean distance to a potential data
symbol vector. For this case, Eve may use any one of these
eight results for ŝi in Step 4 as it can be shown that each
one yields a coded symbol vector in an equivalent message
residue class from a different KRC. By equivalent, we mean
that the message residue classes from these different KRCs
have the exact same data symbol vectors contained within.
It is only the corresponding cryptogram residue classes that
are different for each of these KRCs.
From this point forward, the worst case is analyzed by

assuming that Eve has been able to successfully obtain a
coded symbol vector within the correct message residue class
for each codeword of the entire recorded communications
session. Likewise, it is assumed that Eve has successfully
obtained the correct KR, or set of eight KRs, for each code-
word. Although it requires that Eve perform l times the
number of MRC steps as the intended receiver as well as
a comparison of those l results for each codeword, where
l is the number of KRCs, this case is a likely eventuality
with the assumptions provided in Section VII-A validated
and with sufficient SNR and time.

C. MESSAGE EQUIVOCATION
Having obtained a coded symbol vector within the correct
message residue class, the amount of uncertainty remaining
about the transmitted data symbol vector within each code-
word is referred to as the equivocation of the message [31].
This equivocation is represented as

H(s|sc) = log2

(
4k · k!
f

)
(44)

where the argument of the logarithm is the size of the mes-
sage residue class, φi, to which the coded symbol vector

FIGURE 6. Probability mass function of the repetition metric, f , for 16-QAM with
k = 6.

belongs. We can determine φi using (32) and (33) from
Section VI-E.
In order for Eve to obtain an estimate of the data symbol

vector, ŝ, Eve has two equivalent techniques available to
decode sc. First, Eve could create the message residue class
to which the coded symbol vector belongs and randomly
select one of the data symbol vectors from the class to be
ŝ as they are all equally probable. Alternatively, ŝ may be
obtained by performing symbol assignment and variation
decision operations to decode sc as discussed in [17]. For
clarity of discussion, these operations are repeated here:

1) “Symbol assignment is performed by assigning each
of the symbols in sc to a given data symbol, e.g., s1,
in the transmitted data symbol vector, s [17].”

2) “Variation decision is performed by deciding whether
the symbol in the coded vector represents the original,
negative, conjugate, or negative-conjugate variation
of the assigned data symbol, e.g., s1, −s1, s∗1, or
−s∗1 [17].”

The amount of uncertainty in either decoding process is
equivalent and represented in (44).
To determine the mean and upper bounds on message

equivocation, the probability mass function of the repeti-
tion metric, f , is required for all MQAM schemes evaluated.
These mass functions are empirically derived by first calcu-
lating the value of f , according to (33), for all Mk possible
data symbol vectors for a given M-order modulation scheme
and value of k. Assuming equally probable data symbol
vectors, the probability of each value of f is calculated by
counting the number of vectors resulting in each value of f
and dividing that count by the total number of vectors, Mk.
These mass functions and mean value of the repetition met-
ric for k = 6 are provided in Figs. 6 and 7. For QPSK, it
is guaranteed that f = k! as QPSK contains only a single
unique symbol set. Message equivocation for various STBCs
with k symbols per codeword employing QPSK, 16-QAM,
and 64-QAM can be seen in Fig. 8.
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FIGURE 7. Probability mass function of the repetition metric, f , for 64-QAM with
k = 6.

FIGURE 8. Message equivocation given STBCs with various number of data
symbols per codeword and modulation schemes.

The amount of information Eve gains about the message
by obtaining sc is the mutual information between s and sc,
represented as

I(s; sc) = H(s) − H(s|sc)
= k · log2(M) − log2

(
4k · k!
f

)
, (45)

where H(s) is the entropy in s before obtaining sc which
is equal to the number of bits per codeword. When QPSK
is used, M = 4, f = k!, I(s; sc) = 0, and Eve gains no
information about the message by obtaining the coded sym-
bol vector. Mutual information between s and sc for various
STBCs with k symbols per codeword employing QPSK,
16-QAM, and 64-QAM can be seen in Fig. 9.

D. KEY EQUIVOCATION
Having determined the correct KR for the transmitted cryp-
togram from Step 3 in Section VII-B, the amount of

FIGURE 9. Mutual information between s and sc given STBCs with various number
of data symbols per codeword and modulation schemes.

uncertainty remaining about the STBC used for transmission
of each cryptogram is called the equivocation of the key [31].
If Step 3 provided a single KR determination, then only the
STBCs from the corresponding KRC may have been used to
produce the transmitted cryptogram. For the Alamouti and
SPO334 STBCs, this is always true. For this case, the key
equivocation is minimized and represented as

H(G|GKR)min = log2(4
k · k!), (46)

where 4k · k! is the KRC size given in (30).
For the MPO468 STBC, when the symbols in the embed-

ded data symbol vector are patterned such that all rows
within the transmitted cryptogram are equal to, or the neg-
ative of, another row in the cryptogram, any one of the
STBCs within eight KRCs is equally likely to have pro-
duced the cryptogram. The STBCs within these eight KRCs
are differentiated by row swaps and a particular row nega-
tion pattern that corresponds to the exhibited data symbol
vector pattern. For these special case cryptograms, Step 3
in Section VII-B determines the eight KRs corresponding to
these KRCs. For this case, the key equivocation is maximized
and represented as

H(G|GKR)max = log2(8) + log2

(
4k · k!

)
. (47)

For equally likely modulation symbols, this special case can
be shown to occur with probability (2 ·M3)/M6 = 2 ·M−3

for the MPO468 STBC with k = 6. Again, note that these
special case cryptograms do not occur when employing the
Alamouti or SPO334 STBCs.
For the MPO468 STBC, these two cases combine for an

expected key equivocation of

H(G|GKR)exp = log2

(
1 + 14 ·M−3

)
+ log2

(
4k · k!

)
(48)

which is approximately equal to H(G|GKR)min for any value
of M of practical concern.
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TABLE 3. Entropy in G, key equivocation, and mutual information between G and
GKR for Alamouti, SPO334, and MPO468 STBCs.

The amount of information Eve gains about the key by
obtaining the KR is the mutual information between G and
GKR, represented as

I(G;GKR) = H(G) − H(G|GKR), (49)

where

H(G) = log2(|S|) (50)

is the entropy in G before obtaining the KR in bits. For
each of the three primary STBCs discussed in this work,
the values or ranges of values of H(G), H(G|GKR), and
I(G;GKR) are provided in Table 3.

E. EXPECTED EAVESDROPPER BIT ERROR RATE
Althoughmessageequivocationgivesoneperspectiveofuncer-
tainty, it does not offer a complete understanding of the
expected BER of an eavesdropper when decoding the coded
symbol vector, sc. Permuting the symbols within these vectors
has a different effect on the expected number of bit errors
depending upon the specific symbols in the vector. Every mes-
sage residue class with f = k! has a common expected BER
of 1/b, where b = log2(M) for a typical Gray-coded MQAM
scheme of order M. However, there are different expected
BERs for other message residue classes depending upon the
symbols within each data symbol vector of each class. In [17],
it was stated without proof that the expected BER is

BERexp = 1 + (k − 1) · b2
k · b . (51)

This represents the average expected BER of all message
residue classes. Theoretical proof of (51) is provided in
Appendix D. A plot of (51) for various STBCs with k sym-
bols per codeword employing various modulation schemes
can be seen in Fig. 10. Additionally, 100,000 Monte Carlo
simulations were performed for the three primary STBCs dis-
cussed in this work employing QPSK, 16-QAM, 64-QAM,
and 256-QAM with energy per bit to noise power spectral
density ratio (Eb/N0) values of 5, 10, 15, and 20 dB, respec-
tively. For each simulation, the worst case assumption that
Eve has obtained a coded symbol vector within the cor-
rect message residue class is enforced. The results of these
simulations are included in Fig. 10.

VIII. ATTACK ANALYSIS AND COST-BENEFIT
COMPARISON
We now look at the different approaches or models that
Eve may take to obtain a correct output data frame given
the initial assumptions and approach from Sections VII-A

FIGURE 10. Theoretical plot of (51) with various number of data symbols per
codeword and modulation schemes including high SNR Monte Carlo simulations for
the three primary STBCs discussed herein.

and VII-B. We then discuss the cost of our proposed PLS
scheme. Finally, we compare the cost and attack complexity
of our scheme to that of two alternative techniques.

A. STATIC VS. ALTERNATING STBC ATTACK MODELS
After completing the four step approach given in
Section VII-B, Eve may use the key and message equiv-
ocation for each codeword to search for the correct output
data frame.

1) STATIC STBC

If a static STBC from the set is employed throughout the
entire recorded communications session, Eve could relatively
easily obtain the correct output data frame using the key
equivocation. After performing the four step approach for
only a few codewords, Eve could determine the KRC of the
employed STBC with confidence. Upon determination of the
KRC, the correct output data frame is one of 4k ·k! possibil-
ities corresponding to the outputs produced by performing
the two-step MRC sequence of all received codewords for
all STBCs within the determined KRC.
Using this attack model, having known plaintext could

further reduce the number of possible output data frames
down to the repetition metric, f , as shown in (33). The
value of the repetition metric depends upon the data symbol
vectors contained within the known plaintext portion of the
transmission. This would require solving for the transmitted
cryptogram from the received sample vector and determin-
ing the f STBCs within the KRC capable of producing the
transmitted cryptogram from the known data symbol vector.
Solving for the transmitted cryptogram may not be possible
with only a single RX antenna depending upon the symbols
within the known data symbol vector.

2) ALTERNATING STBC

The complexity of the attack model used for the static
STBC increases exponentially by employing the proposed
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TABLE 4. Number of codewords and possible output frame combinations for a given
frame length when performing a search using the message equivocation of each
codeword.

alternating STBC scheme discussed in Section V. Without
knowledge of the SIM unique contents and a synchronized
PRNG, selection of the STBC used for transmission of each
codeword appears to be independent from the perspective of
the attacker. Thus, Eve could repeat the four step approach
for every codeword of the recorded communications session
and perform a search for the correct output data frame using
the message equivocation. This search involves all possible
combinations of the 4k · k!/f unique data symbol vectors in
the determined message residue class of each received code-
word. For a frame of n codewords when using this approach,
the correct output data frame is one of (4k·k!/fmean)n possible
combinations.
Example 14: For a single data frame of length correspond-

ing to a common Ethernet maximum frame length of 1, 518
bytes [33], the number of codewords and possible output
frame combinations when attempting to search for the cor-
rect output data frame using the message equivocation of
each codeword is shown in Table 4 for various modulations.
Using this attack model, having known plaintext yields

little benefit as Eve is unable to determine the NCIs cor-
responding to the STBCs used to transmit the known data.
Without knowledge of the NCIs, tBC, and vtoo, Eve is unable
to improve upon the search complexity for the codewords
received either before or after the known plaintext portion
of the transmission.
For a transmission longer than ≈ 10 codewords, the least

complex attack in the case of alternating STBCs, to our
knowledge, is for Eve to perform a brute force search for the
tBC, vtoo, and PRNG state at the beginning of the data trans-
mission phase. For later comparison purposes, this approach
is referred to as the exhaustive key search [34]. As stated in
Section V-A for the number of unique SIMs when employ-
ing the MPO468 STBC and all seven operations, there are∣∣S∣∣ · 7! ≈ 3.84 · 1016 unique combinations of the tBC and
vtoo. If the PRNG employed has a state space of 64 bits,
then using this attack model, the correct output data frame
is one of 264 ·∣∣S∣∣ ·7! ≈ 7.08 ·1035 possibilities corresponding
to the outputs produced by performing the reception steps
detailed in Sections V-C and V-D for all received codewords
for all possible combinations of tBC, vtoo, and PRNG state
at the beginning of the data transmission phase.

B. COMPLEXITY COST OF PROPOSED PLS SCHEME
When considering complexity of the proposed PLS scheme,
costs are separated into realtime and non-realtime, where
realtime costs refer to those which may not be completed in
advance of transmission. Depending upon implementation,

STBCs for data transmission may be built in advance and
queued for use after the initialization phase has completed.
For common time-division duplex (TDD) medium access
schemes, there is likely sufficient time to build all STBCs
in advance of transmission. When this is the case, all
realtime costs are considered negligible. When discussing
non-realtime costs, those occurring only once per communi-
cations session are considered negligible as well; thus, only
recurring non-realtime costs of the data transmission phase
are discussed.
Whereas the set building algorithms provided in

Section III-C and Appendix A are intended to illustrate a
potential method of implementation, they are not optimized
for any specific platform. Execution time for these algo-
rithms may differ greatly depending upon the capabilities of
the chosen platform and specific implementation; however,
we present a simplistic complexity cost associated with the
proposed PLS scheme based upon average number of oper-
ations required to build each STBC to aid in comparison
with related works.
The first recurring cost for this scheme is that of obtaining

a PRN and performing the modulo operation given in (17)
to obtain the NCI for each STBC. The iterations vector
is then calculated as shown in (9). Combined, these costs
represent one PRN generation, l+1 floor division operations,
and l modulo operations, where l = 7 when all provided
algorithms are performed. If the chosen OBC is the Alamouti
or SPO334 STBC, then the two new algorithms presented
in Section III may not be performed, and l = 5.

Lastly, there is the cost associated with performing each
operation included within vtoo. It is assumed, on average,
that each negation and conjugation algorithm is performed
on 50% of the rows, columns, and symbols upon which they
may operate. Additionally, it is assumed that all symbol-wise
operations are performed on the data symbol vector prior to
embedding within the chosen STBC to minimize complexity.
Row, column, and symbol permutation operations are con-
sidered to add negligible complexity as they involve simple
reordering operations that are easily optimized when stor-
ing the STBC in the queue. Thus, to build each STBC, the
average number of operations includes r/2 row negations,
(c− 1)/2 column negations, |vasn|/2 symbol negations, and
k/2 symbol conjugations. Without loss of generality, nega-
tion of a single row involves negating c matrix elements,
and negation of a single column involves negating r matrix
elements. On the contrary, individual symbol negation and
conjugation operations involve operations on a single sym-
bol within the data symbol vector. On average, the number
of element-wise operations required to build a STBC using
this process is

r · (2 · c− 1) + |vasn| + k

2
. (52)

C. COST-BENEFIT COMPARISON
Wenowcompare thecost andattackcomplexityof theproposed
schemewith two related techniques. Assuming similar applied
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TABLE 5. Comparison of costs and exhaustive key search attack complexity for the proposed PLS scheme and two related techniques.

optimizations, only recurring non-realtime costs are discussed.
For ease of comparison, we use the exhaustive key search to
analyze attack complexity of each scheme.

1) PHASE ROTATION SCHEME

In [15], RSSI was used as a secret key to seed a PRNG
used to generate phase rotations for each TX antenna of a
MIMO system after encoding with the Alamouti STBC or
the 3/4 rate Octonion orthogonal STBC.
The first recurring cost for this scheme is that of obtaining

a PRN for each of the c TX antennas and performing a
masking operation to index into a set of L phase rotations.
For each antenna, all elements in the corresponding column
of the STBC are multiplied by the indexed phase rotation;
thus, a combined r · c element-wise operations are required
for each STBC using this technique.
To conduct the exhaustive key search attack for this

scheme, the search space is that of the state space of
the chosen PRNG. It was remarked in [15] that allowed
phase rotation angles for MQAM constellations include
θ = {0, π/2, π, 3π/2} to avoid increasing the PAPR; thus,
with L = 4, only 2 bits of each PRN are masked to index
the phase rotation for each antenna. With this knowledge,
there may be methods to improve the exhaustive key search
attack; however, we assume that no improvement exists for
ease of comparison.

2) HIDDEN OSTBC SCHEME

In [16], a technique named “hidden OSTBC” was introduced
where a pre-shared secret pseudorandom antipodal sequence
was applied across the TX antennas of a MIMO system
after encoding with a real-valued orthogonal STBC. The
primary STBC considered in [16] is a rate 1 real-valued STBC
consisting of eight symbols transmitted over eight symbol time
periods using eight TX antennas. A few extensions of this
STBC were offered up to a rate 1/8 real-valued orthogonal
STBC consisting of eight symbols transmitted over 64 symbol
time periods using 64 TX antennas. In [16], it was stated that
the same pseudorandom sequence could be used for multiple
transmissions; thus, this technique is considered to employ a
static STBC throughout the entire communications session.
The first and only recurring cost for this scheme is that of

multiplying all r elements in the c columns corresponding

to the antenna data streams with the appropriate elements
from the antipodal sequence; thus, this process involves a
combined r · c element-wise operations for each STBC.

To conduct the exhaustive key search attack for this
scheme, the search space is the number of possible pseudo-
random antipodal sequences. The correct output data frame
is one of 2c possibilities corresponding to the outputs pro-
duced when performing the combining rule given in [16]
of all received codewords for all 2c possible pseudorandom
sequences.

3) COMPARISON SUMMARY

A summary of the cost and attack complexity comparison is
provided in Table 5. Whereas the total operations costs per
STBC are roughly comparable across the schemes, the attack
complexity of the proposed scheme is at least 64 · 5! times
greater than that of the next closest technique. By employing
the MPO468 STBC, the attack complexity of the proposed
scheme is ≈ 3.84 · 1016 times greater than that of the next
closest technique. Thus, far greater security is possible by
employing the proposed scheme.

IX. CONCLUSION
In this work, multiple contributions in terms of PLS with the
use of STBCs were presented. Algorithms from [17] were
adapted and two additional algorithms included to build a
much larger code set using the MPO468 base code. An effi-
cient and practical technique to build individual STBCs from
the code set using the set index was demonstrated. A PLS
scheme was proposed to alternate the STBC in use over a
MISO or MIMO communications link throughout a commu-
nication session. An algorithm was given for the intended
receiver to update the MRC matrix in use as the STBC
alternates. Definitions were provided for cryptograms, KRs,
KRCs, and message and cryptogram residue classes pertain-
ing to STBC PLS schemes. Information-theoretic security
of the proposed PLS scheme including message and key
equivocation was analyzed. Theoretical expected BER for a
passive eavesdropper was plotted along with Monte Carlo
simulations. The difference between the security offered
by use of a static versus alternating STBC was discussed
showing that far superior security is available by alternat-
ing the STBC used for each codeword. Cost and attack
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Algorithm 0 Initialization

Inputs: G {Base STBC},
∣∣S∣∣ {Set cardinality},

Kperm {Symbol permutation of base STBC}
Outputs: S {Set of STBCs},

PCo {# of populated codes in output S},
Asyms {Symbols record array}

1: PCo = 1
2: S = 3-dimensional array of 0’s of size r-by-c-by-|S|
3: S(: , : , 1) = G {Populate set index 1 with Base STBC}
4: for m = 1 to |S| do
5: Asyms(m, :) = Kperm

{Initialize each row of Asyms with Kperm}
6: end for
7: return S, PCo, Asyms

Algorithm 1 Row Negations
Inputs: S, PCi {# of populated codes in input S}, Asyms

Outputs: S, PCo {# of populated codes in output S}, Asyms

1: PCo = PCi · 2r {Operation limit = 2r}
2: for it = 1 to 2r − 1 do
3: vrow = de2bi(it, r) {Row negation vector}
4: In vrow, replace 1’s with −1’s and 0’s with 1’s
5: Trow = diag(vrow)

6: for m = 1 to PCi do
7: Asyms(PCi · it + m, :) = Asyms(m, :)
8: S(: , : ,PCi · it + m) = Trow × S(: , : ,m)

9: end for
10: end for
11: return S, PCo, Asyms

complexity were compared between the proposed scheme
and two related techniques from the literature showing that
far greater security is available by employing the proposed
scheme.

APPENDIX A
UPDATED SET BUILDING ALGORITHMS
Originally in [17], Algorithms 0 through 5 have been updated
for set building with the two new algorithms presented in
Section III and are provided here for completeness. All func-
tions and notation described in Section III-C applies to these
algorithms as well. The diag(v) MATLAB function is used
to create a square diagonal matrix with the elements of vec-
tor v on the main diagonal [25]. In Algorithm 5, it should
be understood that multiplying a STBC element by a con-
jugate operator, denoted as (·)∗, in a transformation matrix,
T, results in the conjugate of that STBC element.

APPENDIX B
PROOF OF MRC SEQUENCE
For the purpose of brevity and without loss of generality,
we use the Alamouti STBC to prove the two-step MRC

Algorithm 2 Column Negations
Inputs: S, PCi, Asyms

Outputs: S, PCo, Asyms

1: PCo = PCi · 2c−1 {Operation limit = 2c−1}
2: for it = 1 to 2c−1 − 1 do
3: vcol = de2bi(it, c) {Column negation vector}
4: In vcol, replace 1’s with -1’s and 0’s with 1’s
5: Tcol = diag(vcol)
6: for m = 1 to PCi do
7: Asyms(PCi · it + m, :) = Asyms(m, :)
8: S(: , : ,PCi · it + m) = S(: , : ,m) × Tcol
9: end for

10: end for
11: return S, PCo, Asyms

Algorithm 3 Row Permutations
Inputs: S, PCi, Asyms

Outputs: S, PCo, Asyms

1: PCo = PCi · r! {Operation limit = r!}
2: Rperms = perms(r) {Row permutations array}
3: for it = 1 to r! − 1 do
4: for m = 1 to PCi do
5: Asyms(PCi · it + m, :) = Asyms(m, :)
6: S(: , : ,PCi · it + m) = S(Rperms(it + 1, :), : ,m)

7: end for
8: end for
9: return S, PCo, Asyms

Algorithm 4 Column Permutations
Inputs: S, PCi, Asyms

Outputs: S, PCo, Asyms

1: PCo = PCi · c! {Operation limit = c!}
2: Cperms = perms(c) {Column permutations array}
3: for it = 1 to c! − 1 do
4: for m = 1 to PCi do
5: Asyms(PCi · it + m, :) = Asyms(m, :)
6: S(: , : ,PCi · it + m) = S(: ,Cperms(it + 1, :),m)

7: end for
8: end for
9: return S, PCo, Asyms

sequence given in Section V-D. Starting with a variant of
the Alamouti STBC represented as

G =
[
s1 −s∗2−s2 −s∗1

]
(53)

and channel tap vector hBU = [h1 h2]T , Algorithm 8 is
performed to construct

HCBU =
[
h1 0 0 −h2
0 −h1 −h2 0

]
. (54)
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Algorithm 5 Symbol Conjugations
Inputs: S, PCi, Asyms

Outputs: S, PCo, Asyms

1: PCo = PCi · 2k {Operation limit = 2k}
2: for it = 1 to 2k − 1 do
3: vsym = de2bi(it, k) {Symbol conjugation vector}
4: for m = 1 to PCi do
5: Asyms(PCi · it + m, :) = Asyms(m, :)
6: T = 2-dimensional array of 1’s of size r-by-c
7: for ri = 1 to r do
8: for ci = 1 to c do
9: if S(ri, ci,m) �= 0 then
10: j = symbol index of S(ri, ci,m)

{e.g., j = 1 for S(ri, ci,m) == s1, s∗1, etc.}
11: if vsym(j) == 1 then
12: T(ri, ci) = (·)∗
13: end if
14: end if
15: end for
16: end for
17: S(: , : ,PCi · it + m) = S(: , : ,m) ◦ T
18: end for
19: end for
20: return S, PCo, Asyms

To confirm the sufficient statistic, (24) is calculated to obtain

Hint = H†
CBU × HCBU

=

⎡
⎢⎢⎣
h∗

1 0
0 −h∗

1
0 −h∗

2−h∗
2 0

⎤
⎥⎥⎦ ×

[
h1 0 0 −h2
0 −h1 −h2 0

]

=

⎡
⎢⎢⎣
h1h∗

1 0 0 −h∗
1h2

0 h1h∗
1 h∗

1h2 0
0 h1h∗

2 h2h∗
2 0

−h1h∗
2 0 0 h2h∗

2

⎤
⎥⎥⎦. (55)

Equation (23) is then used iteratively for x, y ∈ {1, . . . , k}
to confirm (22). With k = 2, x = 1, and y = 1,

Ĥ(1, 1) = Hint(1, 1) + H∗
int(3, 3) + Hint(1, 3) + H∗

int(3, 1)

= h1h
∗
1 + h2h

∗
2 + 0 + 0 = ‖hBU‖2. (56)

With k = 2, x = 2, and y = 1,

Ĥ(2, 1) = Hint(2, 1) + H∗
int(4, 3) + Hint(2, 3) + H∗

int(4, 1)

= 0 + 0 + h∗
1h2 − h∗

1h2 = 0. (57)

With k = 2, x = 1, and y = 2,

Ĥ(1, 2) = Hint(1, 2) + H∗
int(3, 4) + Hint(1, 4) + H∗

int(3, 2)

= 0 + 0 − h∗
1h2 + h∗

1h2 = 0. (58)

With k = 2, x = 2, and y = 2,

Ĥ(2, 2) = Hint(2, 2) + H∗
int(4, 4) + Hint(2, 4) + H∗

int(4, 2)

= h1h
∗
1 + h2h

∗
2 + 0 + 0 = ‖hBU‖2. (59)

Thus, (22) is validated and the sufficient statistic is met for
MRC.
For the communications link given in Section V-D, the

r-by-1 received sample vector in (18) becomes

Z = G × hBU + n = HCBU × sext + n

=
[
s1 −s∗2−s2 −s∗1

]
×

[
h1
h2

]
+

[
n1
n2

]

=
[
h1 0 0 −h2
0 −h1 −h2 0

]
×

⎡
⎢⎢⎣
s1
s2
s∗1
s∗2

⎤
⎥⎥⎦ +

[
n1
n2

]

=
[
s1h1 − s∗2h2 + n1

−s2h1 − s∗1h2 + n2

]
. (60)

With this received vector, the first step of the MRC sequence
given in (19) is calculated as

ŝint = H†
CBU × Z

=

⎡
⎢⎢⎣
h∗

1 0
0 −h∗

1
0 −h∗

2−h∗
2 0

⎤
⎥⎥⎦ ×

[
s1h1 − s∗2h2 + n1

−s2h1 − s∗1h2 + n2

]

=

⎡
⎢⎢⎣
s1h1h∗

1 − s∗2h∗
1h2 + n1h∗

1
s2h1h∗

1 + s∗1h∗
1h2 − n2h∗

1
s∗1h2h∗

2 + s2h1h∗
2 − n2h∗

2
s∗2h2h∗

2 − s1h1h∗
2 − n1h∗

2

⎤
⎥⎥⎦. (61)

The second step given in (20) is then used iteratively for
x ∈ {1, . . . , k} to obtain the estimated data symbol vector, ŝ.
With k = 2 and x = 1,

ŝ(1) = ŝint(1) + ŝ∗int(3)

‖hBU‖2

= s1h1h∗
1 − s∗2h∗

1h2 + n1h∗
1 + s1h2h∗

2 + s∗2h∗
1h2 − n∗

2h2

‖hBU‖2

= s1 + n1h∗
1 − n∗

2h2

‖hBU‖2
. (62)

With k = 2 and x = 2,

ŝ(2) = ŝint(2) + ŝ∗int(4)

‖hBU‖2

= s2h1h∗
1 + s∗1h∗

1h2 − n2h∗
1 + s2h2h∗

2 − s∗1h∗
1h2 − n∗

1h2

‖hBU‖2

= s2 − n2h∗
1 + n∗

1h2

‖hBU‖2
. (63)

APPENDIX C
EXAMPLE TABULAR KR
The KR corresponding to the MPO468 base code given in (2)
represented in matrix form is shown in (28) whereas the
tabular form is provided here in Table 6.

APPENDIX D
PROOF OF EXPECTED BIT ERROR RATE
From [17], ŝ may be obtained by performing symbol assign-
ment and variation decision operations to decode sc. Also
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TABLE 6. Tabular form KR showing the relationships and locations of each element

for all symbol pairs in the MPO468 base code.

from [17], “when performing symbol assignment, the num-
ber of permutations that will assign l symbols correctly and
the remaining k − l symbols incorrectly is

Perms(l, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 k = l (64a)
k−l∑
i=2

(
(−1)i · k!
i! · l!

)
k − l ≥ 2” (64b)

0 otherwise. (64c)

Assuming sc is in the correct message residue class, we
use this information to calculate expected BER as

BERexp = E[l|k] · E[Bca] + (k − E[l|k]) · E[Bia]

k · b , (65)

where E[ ] is the expectation operator, l is the number of
correctly assigned symbols per codeword, k is the number
of symbols per codeword, Bca is the number of bit errors per
correctly assigned symbol, Bia is the number of bit errors
per incorrectly assigned symbol, b = log2(M) is the number
of bits per symbol, and M is the order of the digital modula-
tion scheme employed. E[Bca] = 1 based upon the average
of the four possible variation decisions as discussed in [17].
E[Bia] = b

2 assuming symbols within the codeword are inde-
pendent of one another. The expected value of l given k, can
be calculated as

E[l|k] =
k∑
l=0

l · P(l|k), (66)

where

P(l|k) = Perms(l, k)

k!
(67)

is the probability of l given k, assuming each permutation is
equally probable. Substituting (67) into (66) and removing
the l = 0 and l = k − 1 cases as they always evaluate to 0
results in

E[l|k] =

⎧⎪⎨
⎪⎩

1 k ≤ 2 (68a)

k

k!
+

k−2∑
l=1

l ·
k−l∑
i=2

(
(−1)i

i! · l!
)

k > 2. (68b)

It can be shown that evaluating (68) for any value of k yields
E[l|k] = 1. Thus, substituting this result along with E[Bca]
and E[Bia] into (65) provides

BERexp = 1 · 1 + (k − 1) · b2
k · b . (69)
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