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ABSTRACT In this article, we propose an orthogonal frequency-division multiplexing system supported
by the compressed sensing assisted index modulation, termed as (OFDM-CSIM), applied to millimeter-
wave (mmWave) communications. In the OFDM-CSIM mmWave system, information is conveyed not
only by the classic constellation symbols but also by the on/off status of subcarriers, where the size of
constellation symbols and the number of active subcarriers can be beneficially configured for maximizing
the system’s throughput. We conceive a machine learning (ML) assisted adaptive OFDM-CSIM mmWave
system, which simultaneously benefits from the OFDM with index modulation (IM), compressed sensing
(CS) and the hybrid beamforming techniques. Specifically, a ML-assisted link adaptation scheme is
designed based on the k-nearest neighbors (k-NN) algorithm with the objective to maximize the system’s
throughput. Our studies show that the proposed ML-assisted link adaptation is capable of providing higher
throughput than the conventional threshold-based link adaptation when different antenna structures are
considered. Furthermore, the achievable data rates of four types of antenna arrays, including uniform
linear array (ULA), uniform rectangular planar array (URPA), uniform circle planar array (UCPA) and
uniform cylindrical array (UCYA), are investigated and compared over mmWave channels. The simulation
results show that the UCYA achieves the highest data rate among these antenna arrays.

INDEX TERMS OFDM, mmwave, index modulation, compressed sensing, hybrid beamforming, link-
adaptation, machine learning, k-nearest neighbour.

I. INTRODUCTION

WITH the development of wireless industry and the
worldwide deployment of mobile networks, there

has been a dramatic increase in the number of mobile
devices, since powerful smart phones, laptops as well as
wearable devices for entertainment have been becoming
more popular and essential in our daily life. In recent
years, mmWave frequency band has attracted the commu-
nity’s attention for development of the future generations
of wireless systems, owing to its potential to meet the ever-
growing wireless capacity demanded in the coming years [1].
However, mmWave signals suffer from high path-loss and
shadowing losses due to its short wavelength, spanning from
1 mm to 10 mm [2]. Fortunately, the short wavelength
of mmWave enables a large number of antennas distributed

over a relatively compact area at both the transmitter and
receiver sides, which allows the employment of advanced
beamforming techniques for overcoming the pathloss [2].
According to practical measurements [3], beamforming

can provide a significant gain to overcome the propagation
pathloss and other absorption in mmWave frequency band.
In conventional multiple-input multiple-output (MIMO)
systems, the full-digital beamforming is usually employed,
which simultaneously controls the phase and amplitude of
the transmit/receive signals in digital domain. However, this
kind of full-digital beamforming is infeasible for operation
with mmWave systems, as each antenna element requires
a radio frequency chain, leading to high cost and power
consumption [4]–[6]. To mitigate this hardware limitation,
full-analog beamforming can be employed, which however
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results in significant performance loss in comparison with the
full-digital beamforming. In order to attain low-complexity
transceivers while approaching the performance of full-
digital beamforming, the principle of hybrid beamforming
was proposed and widely studied [4]–[9]. In principle, hybrid
beamforming divides the beamforming into an analog part
and a digital part. This beamforming arrangement allows
to reduce the hardware complexity and power consump-
tion, while maintaining a desirable system performance
that may be close to that achievable by a full-digital
beamformer [10], [11].
Beamforming enhances the gain of the signals in particular

directions via controlling the signal outputs from the differ-
ent antenna elements in an antenna array, so as to achieve
directional transmission. The direction resolution of an array
is increased with the increase of the number of antenna ele-
ments, which can be placed in various geometries [12], [13].
Generally, the array geometries can be divided into three cat-
egories based on their dimensions, namely, linear, planar, and
volumetric arrays [14]. Linear array is the most common array
considered in the research on hybrid beamforming [4]–[6].
However, linear array is a one-dimensional antenna array that
has no resolution capability in the azimuth direction. On the
other hand, two- and three-dimensional antenna arrays have
recently drawn increasing attention in research [13]–[16].
mmWave channels are in general wideband channels,

owing to the fact that high bandwidth is usually used for
attaining high data rate [12], [17]. According to the 5G
New Radio [18], OFDM has been considered as a typical
signalling scheme for operation with mmWave communica-
tions [6], [8]. On the other hand, index modulation (IM) has
been regarded as a promising modulation scheme, which is
capable of providing additional degrees of freedom for data
modulation, as well as the flexibility to strike a good trade-
off between spectral efficiency (SE) and energy efficiency
(EE). In the literature, OFDM with subcarrier IM (OFDM-
IM) has been proposed in [19], which was extended and
studied by following the principles of spatial modulation
(SM) [20]–[25]. In OFDM-IM [21], information is con-
veyed by both the conventional amplitude phase modulation
(APM) and the indices of subcarriers. In comparison with
the conventional OFDM, OFDM-IM may achieve a better
error performance [21] and can also provide an opportu-
nity to attain a good design trade-off among SE, EE and
complexity [19], [26], [27]. Moreover, to improve the flex-
ibility of OFDM-IM, the compressed sensing (CS) concept
can be introduced to form a virtual index space for IM
operation [26]. This enables OFDM-IM to benefit from CS
for further improving the trade-off between SE and EE
[26]–[28]. Additionally, by introducing appropriate interleav-
ing, the OFDM with CS-assisted index modulation (CSIM)
is also capable of achieving a higher diversity gain and better
error performance than the OFDM-IM [26].
In wireless communications system design, the time-

varying wireless channel is among the biggest challenges,
where link adaptation can be employed to optimize the

SE. Conventionally, link adaptation is achieved via adaptive
modulation and coding (AMC), which selects the appropriate
modulation order and coding rate to maximize throughput at
a given reliability [29]–[31]. In the conventional link adapta-
tion schemes, transmission modes are determined according
to the corresponding thresholds set based on the channel
statistics [32]–[34]. However, the thresholds in the conven-
tional link adaptation are usually hard to be set to near
optimum, as the result of the deficiencies introduced at the
various stages of a wireless system, including time-varying
channel, non-linearity of amplifier, transmission frequency
instability, etc. [35]. By contrast, machine learning (ML)-
based approaches treat the physical layer as the transfer
between system state and data observations [36], which
have the potential to overcome the disadvantages of the con-
ventional link adaptation techniques. Hence, the application
of ML for link adaptation in wireless communications has
drawn attention [31], [33], [37]. Specifically, a supervised
learning algorithm was proposed in [31], where the obser-
vation data correlated with the conditions are directly used
to control the transmission modes.
Bearing in mind the above-mentioned issues, in this con-

tribution, the advantages of adaptive transmission and ML for
information transmission over mmWave channels are com-
bined. Explicitly, we first propose an OFDM-CSIM system
working with the conventional adaptive concept, in order to
take advantage of the individual components of the proposed
system. Then, a ML-assisted adaptation scheme is introduced
to the OFDM-CSIM for further enhancing its performance
beyond its conventional counterpart. To summarize, our
novel contributions can be listed as follows.

• A comprehensive survey of the different antenna struc-
tures considered in mmWave communications is pro-
vided. The effect of the antenna structures on the
achievable SE performance is also investigated in the
context of the hybrid beamforming applied in mmWave
communications.

• We intrinsically amalgamate the concept of adaptive
modulation with the OFDM-CSIM system communi-
cating over mmWave channels. In our adaptive OFDM-
CSIM systems, the modulation order and the number
of active subcarriers are adaptively adjusted according
to the communication conditions, with the objective of
maximizing the system’s throughput for a constrained
target bit error ratio (BER). The main advantage of our
proposed work, as compared to the state-of-the-art such
as [29], [32], is the attainable flexibility of the design
in terms of providing a flexible trade-off among SE,
EE and complexity.

• Based on the k-nearest neighbour (k-NN) algorithm, an
ML-assisted adaptive modulation scheme for operation
with the OFDM-CSIM is proposed. Our studies show
that the ML-assisted adaptive OFDM-CSIM scheme is
capable of choosing better transmission modes than the
conventional adaptive schemes, and hence providing a
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significantly increased throughput than the conventional
ones.

The rest of the paper is organized as follows. In Section II,
a survey of the antenna arrays for wireless beamform-
ing is presented. Section III introduces the model of the
proposed system, including the design of hybrid beam-
forming, mmWave channel model and the joint maximum
likelihood (JML) detector. In Section IV, both the conven-
tional adaptive modulation and the ML-assisted adaptive
modulation are addressed. In Section V, the simulation
results are presented and analyzed. Finally, the conclusions
and some suggestions for future research are provided in
Section VI.
Notations: Lower-case boldface letter a and upper-case

boldface letter A denote vectors and matrices, respectively;
[·]i denotes the i-th element of a vector; (·)T and (·)H express
transpose and conjugate transpose operations, respectively; �
denotes complex signal symbol; C

A×B is the set of (A×B)-
element in the complex field; {·}ba is a sequence with the
indices from a to b; E[ ·] is the expectation operator; diag(a)
expresses a diagonal matrix formed from vector a; Tr(·) and
| · | represent trace and absolute value, respectively;

(n
k

)
is

the combination of the selection of k items from a collection
of n items; ‖ · ‖F is the Frobenius norm; 〈·〉 express inner
product operations.

II. SURVEY OF THE ANTENNA ARRAYS FOR
BEAMFORMING
As introduced above, large-scale antenna arrays can pro-
vide beamforming gain to overcome the propagation losses
in mmWave systems, while the directional transmission with
narrow beams can also improve the throughput by reduc-
ing the interference from other transmissions [38], [39].
Furthermore, large-scale antenna arrays provide the opportu-
nity for multiple data stream transmission, which improves
the SE of the systems [40] by exploiting spatial reuse.
Although the short wavelength of mmWave frequency bands
allows to pack a large number of antenna elements within
a finite area, the geometrical shapes of antenna arrays
impose some challenges on mmWave transceivers and affect
the system performance, which still require further inves-
tigations. The geometry of antenna arrays in wireless
communications can be classified as linear arrays, planar
arrays and volumetric arrays, which are one-dimensional,
two-dimensional and three-dimensional arrays, respectively.
In this section, a survey of these different antenna arrays is
provided.
In general, the array manifold vector of an antenna array

can be represented as

[v(k)]n = e−jk
Tpn , n = 0, 1, . . . ,N − 1, (1)

where

k = −2π

λ

⎡

⎣
sin θ cosϕ
sin θ sinϕ

cos θ

⎤

⎦ (2)

expresses the wavenumber, pn denotes the location of the
n-th element. θ and ϕ are the grazing angles with respect to
the xz-plane and xy-plane, respectively. The array manifold
vector includes all the spatial characteristics of the array
and is also the main factor to distinguish different antenna
structures [41].
Fig. 1 shows some examples of the typical antenna arrays.

Specifically, Fig. 1(a) shows the geometry of a uniform linear
array (ULA), where the elements are located on the z-axis,
and dz is the distance between two adjacent elements. It can
be shown that the array manifold vector of ULA is

[vULA(θ)]n = e−jkzpzn = e
j
(
n−N−1

2

)
dz

2π
λ

cos θ
,

n = 0, . . . ,N − 1, (3)

where λ is the signal’s wavelength, pzn is the location of
an element on the z-axis, and kz = − 2π

λ
cos θ . Usually for

ULA, dz = λ
2 . Also, note that the linear arrays can only

control the signals in the θ -direction.
Fig. 1(b) shows the geometry of a uniform rectangular pla-

nar array (URPA) with M×N elements, which are distributed
as a square in the xy-plane. When the distance between two
adjacent elements is set to dx = dy = λ/2, the array manifold
vector can be found to be

[vURA(θ, ϕ)]mn = e−jk
T
x,ypxn,ym = ej(nψx+mψy),

n = 0, . . . ,N − 1; m = 0, . . . ,M − 1,

(4)

where kx,y = − 2π
λ

[
sin θ cosϕ
sin θ sinϕ

]
and pxn,ym =

[
ndx
mdy

]
giving

ψx = 2π

λ
sin θ cosϕdx,

ψy = 2π

λ
sin θ sinϕdy.

For the URPA array shown in Fig. 1(b), ψx, ψy account for
the spatial characteristics of the horizontal elements.
By contrast, Fig. 1(c) illustrates the geometry of a uniform

circle planar array (UCPA), which is also a two-dimensional
array but with N elements located uniformly on a circle in
the xy-plane. In Fig. 1(c), R is the radius of the array, ϕn
is the angle of the n-th element, with ϕn = 2π

N (n− 1). The
array manifold vector of UCPA can be expressed as

[vUCPA(θ, ϕ)]n = e−jk
T
x,ypxn,yn = ej

2π
λ
R sin θ cos(ϕ−ϕn),

n = 0, . . . ,N − 1. (5)

obtained by setting kx,y = − 2π
λ

[
sin θ cosϕ
sin θ sinϕ

]
and pxn,yn =

[
R cosϕn
R sinϕn

]
. One of the advantages of UCPA over URPA

is that it can be rotated with respect to the z-axis without
changing the shape of the beams significantly [42].
In contrast to the one-dimensional ULA, the two-

dimensional antenna arrays are capable of forming the beams
in both the θ -direction and ϕ-direction, and can also dis-
tribute more antenna elements in a given area [43]. However,
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FIGURE 1. Examples of antenna arrays.

the studies in [13] show that for a given number of elements,
UCPA experiences higher inter-user interference than ULA.
Besides, ULA can always achieve the highest sum-rate, as
it does not have the resolution capability in the azimuth
direction, which increases the channel correlation. In [43],
the authors compared the achievable SE of different planar
antenna arrays in mmWave massive MIMO systems, show-
ing that the two-dimensional arrays with the same number
of elements as the UCPA and URPA have no significant
benefit on the achievable SE.
In many practical applications of interest, the array ele-

ments may not be distributed on a flat surface. Instead,
three-dimensional arrays may be necessary, which may
be in different structures, such as spherical, cylindrical,
etc. As an example, Fig. 1(d) shows a uniform cylin-
drical array (UCYA), which is the most commonly used
one [16]. As shown in Fig. 1(d), the UCYA has M sub-
arrays, each of which is a UCPA with radius R and contains
N elements uniformly distributed on the circle, with the

phases expressed as ϕn = 2π
N (n− 1), for n = 0, . . . ,N − 1.

The distance between two adjacent UCPA sub-arrays is

expressed as dz. Hence, we have kx,y,z = − 2π
λ

⎡

⎣
sin θ cosϕ
sin θ sinϕ

cos θ

⎤

⎦,

pxn,yn,zm =
⎡

⎣
R cosϕn
R sinϕn
mdz

⎤

⎦, and it can be shown that the array

manifold vector is given by

[vUCYA(θ, ϕ)]m,n = ej
2π
λ [mdz cos(θ)+R sin θ cos(ϕ−ϕn)],

m = 0, . . . ,M − 1, n = 0, . . . ,N − 1.

(6)

It can be shown that the array manifold vector of the UCYA
is the product of the manifold vector of the ULA on the z-axis
and that of the UCPA in the xy-plane. This can be explained
by the fact that the UCYA can be geometrically seen as the
ULA sub-arrays isometrically distributed in parallel along the
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surface of a cylinder [44]. In contrast to ULA and UCPA, for
a given number of elements, UCYA is capable of achieving
the highest gain, narrowest beam and lowest sidelobes [45].
Three-dimensional antenna arrays are useful for some

applications, owing to their high efficiency and robust-
ness [15], [16], [46], [47]. One of the advantages of the
three-dimensional antenna arrays is the increase of the cover-
age gain without changing the number of antenna elements.
This is because the three-dimensional antenna arrays can
provide wider coverage in both azimuth and elevation direc-
tion than the one- or two-dimensional arrays [16], [47].
Three-dimensional antenna arrays are also attractive for the
implementation of adaptive antennas, owing to their high
degrees of freedom [48]. Moreover, the studies in [14]
show that when operated in mmWave MIMO propagation
environments, the three-dimensional UCYA outperforms the
two-dimensional URPA, when both the effective interference
and the achievable rate are considered.
According to [6], [11], mmWave channel can be mod-

eled as a clustered channel with Ncl clusters and Nray rays
in each cluster. Specifically, the frequency-domain channel
matrix H(β) for the β-th subcarrier of OFDM systems can
be expressed as

H(β) = r
Ncl∑

l=1

Nray∑

i=1

αlivr
(
θ rli, ϕ

r
li

)
vt

(
θ tli, ϕ

t
li

)H
e−j2πψl

β
M , (7)

where r =
√

NtNr
NclNray

is a normalization factor, ψl is propor-
tional to the phase shift of the l-th cluster, αli is the complex
gain of the i-th ray in the l-th cluster, θ rli and ϕ

r
li are the ele-

vation angle and azimuth angle of the arrival of the i-th ray
in the l-th cluster, respectively, while θ tli and ϕ

t
li are the cor-

responding elevation angle and azimuth angle of departure,
respectively. Finally, vr(·) and vt(·) express the array mani-
fold vectors of the transmitter antenna array and the receiver
antenna array, respectively. It can be shown that (7) can also
be written as

H(β) = Vrdiag(α(β))VH
t , (8)

where, by definition

Vr =
[
vr

(
θ r11, ϕ

r
11

)
, vr

(
θ r12, ϕ

r
12

)
, . . . , vr

(
θ rNclNray

, ϕrNclNray

)]
,

Vt =
[
vt

(
θ t11, ϕ

t
11

)
, vt

(
θ t12, ϕ

t
12

)
, . . . , vt

(
θ tNclNray

, ϕtNclNray

)]
,

α(β) =
[
α11e

−j2πψ1
β
M , α12e

−j2πψ1
β
M , . . . , αNclNraye

−j2πψNcl βM
]
.

Vr ∈ C
Nr×NclNray and Vt ∈ C

Nt×NclNray include all the
array manifold vectors of the receiver and transmitter, and
diag(α(β)) ∈ C

NclNray×NclNray is a diagonal matrix that
contains the complex gains of the rays in all the clusters.
Fig. 2 shows the achievable data rate against average SNR

for the different array configurations operated in the MIMO-
OFDM systems communicating over mmWave channels. The
propagation environment is assumed to have Ncl = 8 clus-
ters with each cluster consisting of Nray = 10 rays, while the
azimuth and elevation angles of both arrival and departure are

FIGURE 2. Achievable data rate versus the SNR for a system employing a
transmitter with 64 elements and ULA, URPA, UCPA and UCYA and a receiver
employing ULA with 32 elements.

assumed to obey the Laplacian distribution with the angular
spreads of 7.5 degrees [4]. The transmitter is equipped with
the ULA, URPA, UCPA and UCYA having 64 elements,
while the receiver employs a ULA of 32 elements. The sin-
gular value decomposition (SVD) beamformer is assumed to
be employed at both transmitter and receiver [4]. As shown
in Fig. 2, UCYA slightly outperforms UCPA, URPA and
ULA. The one-dimensional array ULA achieves a higher
data rate than the two-dimensional arrays of URPA and
UCPA, due to the fact that ULA has no resolution in the
azimuth direction, which reduces channel correlation. UCPA
and URPA achieve almost identical data rate. UCYA shows
no significant advantages over the other arrays in terms of
the achievable data rates. However, UCYA is capable of
providing a wider coverage range and also higher degrees
of freedom than the other arrays. Moreover, the simulation
results in [14] show that UCYA demonstrates advantages
over the two-dimensional antenna arrays with respect to the
radiation pattern, the channel eigenvalue distribution and the
effective interference suppression.

III. PROPOSED SYSTEM MODEL
Fig. 3 shows the block diagram of the proposed system,
which can be divided into four parts shown in different
colors identified by Roman numerals in Fig. 3. The first
part in blue color illustrates the CSIM, where the input bit
sequence is split into G groups, and a part of the bits in
each group are used for selecting active subcarriers, while
the others are employed to modulate amplitude-phase mod-
ulation (APM) symbols. The outputs of both parts of the
G groups are combined to form an OFDM block, which is
then compressed using a measurement matrix from high (N)
dimensions in the virtual domain to low (M) dimensions in
the frequency domain. Then the compressed OFDM block
is input to the red part of Fig. 3, where the main oper-
ation is hybrid beamforming. Specifically, the compressed
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FIGURE 3. Block diagram of the adaptive modulation-aided OFDM-CSIM transceiver with hybrid beamforming.

OFDM block is first processed by a digital precoder, and
then transformed from frequency domain to time domain by
the inverse fast Fourier transforms (IFFT). Then, after adding
the cyclic prefixes (CP), an analog precoder is applied to
form the signals transmitted from the antennas.
At the receiver side, the received signal is first pro-

cessed by an analog combiner, the outputs of which are then
transformed back to frequency domain by the fast Fourier
transforms (FFT) after removing the CP. Then, the received
signal is combined using a digital combiner, which outputs
the compressed OFDM block. Afterwards, the outputs of
the digital combiner are divided into several sub-blocks for
executing signal detection, as shown in the green part in
Fig. 3, where JML detection can be employed. The details
of the three parts mentioned above are provided in the fol-
lowing sub-sections. The fourth part of Fig. 3 colored in
yellow is for the adaptive modulation, which is detailed in
Section IV. Note that to implement adaptive modulation,
the channel information is assumed to be fed back from

the receiver to the transmitter, which is used to adjust the
parameters in the index modulation part, with the aim of
maximizing the throughput for a given target BER.

A. COMPRESSED SENSING ASSISTED INDEX
MODULATION
As in [26], the notions of virtual domain and frequency
domain are used to differentiate the signal before and after
the compressed sensing. As shown in the blue part of Fig. 3,
in the virtual domain, we assume that a total of pG input
bits are partitioned into G groups, with each group including
p bits. Let N and Nv denote the total number of subcarrier
indices and the number of indices per group, respectively,
in the virtual domain. Hence, we have N = nG. As shown
in Fig. 3, the p bits of a group are separated into two parts
of p1 and p2 bits, with p = p1 + p2. Then, p1 bits are used
to select Fv virtual indices out of the Nv virtual indices of
a group. This gives the total number of bits carried by the
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TABLE 1. A look-up table example for Fv = 1 and Nv = 4.

positions of the active indices in a virtual OFDM block as

m1 = p1G =
⌊

log2

[(
Nv

Fv

)]⌋
G, (9)

where �a� returns the largest integer less than a. After the
selections of indices, the active virtual indices of G groups
can be represented as

I = {i(1), . . . , i(g), . . . , i(G)}, (10)

where i(g) = {ig,1, ig,2, . . . , ig,f }, ig,ω ∈ {1, 2, . . . , n}, con-
tains the indices activated in the g-th group, which has in
total 2p1 possible realizations. Following the virtual index
selections, p2 bits are used to generate the APM symbols
(such as BPSK, etc.), to be transmitted on the active virtual
indices of a group. The total number of bits conveyed by
the APM symbols of G groups is

m2 = p2G = Fv
(
log2(Q)

)
G, (11)

where Q is the modulation order of APM. Let these APM
symbols be collected to a matrix

A = [
a(1), . . . , a(g), . . . , a(G)

]
, (12)

where a(g) = [ag,1, ag,2, . . . , ag,Fv ]T contains the APM
symbols to be transmitted on the Fv active virtual indices
of group g, and the APM symbols are normalized as
E[|ag,ω|2] = 1. Hence, based on the above discussion, the
total number of information bits transmitted per symbol
period is pG = (p1 + p2)G = m1 + m2.

Note that, the value of Fv for different virtual groups
may be different. However, for simplicity, the same value
of Fv for all groups is assumed in this article. For example,
Table 1 shows the mappings for p1 = 2, Fv = 1 and Nv = 4.
Since one out of 4 indices is activated per symbol period,
there are in total 4 possible realizations, which can carry 2
bits, in addition to the bits conveyed by the AMP symbol
transmitted on the active virtual index.
After the index selections and symbol mappings, the

OFDM block creator seen in Fig. 3 combines all the G
groups of symbols in A to generate a virtual OFDM block
of (N = NvG)-length, while referring to I of (10) for the
locations of the APM symbols. Specifically, the AMP symbol
ag,w is located on the active virtual index ig,w. Furthermore,
owing to the employment of transmit antenna array, we
assume that each active subcarrier conveys Ns APM sym-
bols, as detailed in Section III-B. Then, the virtual OFDM

FIGURE 4. Illustration of subcarrier index modulation with compressed sensing.
N-dimensional vector XVD in the virtual domain is compressed to a M-dimensional
vector SF using measurement matrix Acs, where N > M . Active subcarriers and virtual
indices are expressed as shaded boxes.

block XVD containing the NsFvG APM symbols transmitted
in one OFDM symbol period can be expressed as

XVD = [
x(1), . . . , x(γ ), . . . , x(N)

]T
, (13)

where XVD ∈ C
N×Ns , x(γ ) ∈ C

Ns×1 contains Ns data sym-
bols associated with the γ -th virtual index, and xγ,j ∈ {0,�}
with ‘0’ indicating an inactive index, where 1 < j ≤ Ns,
and � expressing an APM symbol. To benefit from the
compressed sensing, XVD should be a sparse matrix con-
taining mostly zero elements. However, this virtual vector
needs to be transmitted on M subcarriers. Hence, a mea-
surement matrix Acs ∈ C

M×N , as illustrated in Fig. 4, is
employed to map the virtual matrix XVD of N-dimension to
the M-dimensional frequency domain, M < N, which can
be expressed as

SF = AcsXVD, (14)

where SF ∈ C
M×Ns , SF = [s(1), . . . , s(β) . . . , s(M)]T,

s(β) ∈ C
Ns×1 is the Ns data symbols transmitted by the

β-th subcarrier with the aid of Nt transmit antenna elements.
Correspondingly, M subcarriers are divided into G groups
with each having Mf = M

G subcarriers. It can be shown
that the OFDM-CSIM scheme can effectively improve the
throughput of the system. For example, for a virtual dimen-
sion of Nv = 256 per group, Mf = 8, Fv = 2 and Q = 2,
where Q is the modulation order of APM, the OFDM-CSIM
system can achieve a throughput of 2 bit/s/Hz. By contrast,
the conventional OFDM-IM system with Nv = Mf = 8,
Fv = 2 and Q = 2 can only achieve a throughput of
0.75 bit/s/Hz.

However, in order for the receiver to have a good recov-
ery performance, the virtual matrix XVD needs to have
a low sparsity, i.e., Fv 	 Nv. In principle, to guarantee
the efficiency of compressed sensing, the columns of the
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FIGURE 5. BER performance comparison of OFDM, OFDM-IM and OFDM-CSIM
systems with the same throughput of 1.0 bits/s/Hz.

measurement matrix Acs as shown in (14) should be as uncor-
related as possible [26]. According to [26], [49], the simplest
method to generate a measurement matrix is to make Acs a
random matrix, such as random Gaussian matrix, which has
a high probability to satisfy the requirements for attaining a
good recovery performance. The rigorous approach to verify
the quality of measurement matrix is computing its mutual
coherence μ(Acs) [26], as

μ(Acs) = max
i 
=j

∣∣〈Acs,i,Acs,j
〉∣∣

∥∥Acs,i
∥∥
F

∥∥Acs,j
∥∥
F

, (15)

where Acs,i and Acs,j are different columns in the measure-
ment matrix Acs. Then, as shown in [26], there exists one
sparse vector XVD satisfying SF = AcsXVD, provided that
Fv <

1
2 (1 + 1

μ(Acs)
), which means an ideal recovery.

Fig. 5 shows that OFDM-CSIM outperforms both OFDM-
IM and OFDM, which becomes more significant in the high
SNR region, when the same spectral-efficiency is considered.
Note that, for the results shown in Fig. 5, we assumed 58
sub-carriers used in the conventional OFDM system with
QPSK modulation. The parameters for OFDM-IM system
are Mf = 256, Fv = 2, Q = 4, while for the OFDM-CSIM
system these are Nv = 256, Mf = 32, Fv = 2, Q = 4.
Here, we should point out that the number of transmitted
subcarriers will cause a certain reduction in power gain,
rather than a change in the slope of the BER curve [26].

B. HYBRID BEAMFORMING
Consider a single-user OFDM-based mmWave system, which
employs Nt transmit antennas, Nr receiver antennas and sup-
ports Ns data streams per subcarrier. As mentioned previously
in Section I, beamforming is essential in mmWave commu-
nication, in order to obtain a desirable antenna gain. In this
article, we employ the hybrid beamforming as shown by
the red-colored part of Fig. 3, owing to its reduced com-
plexity and near-full-digital beamforming performance. In
our system, we assume that NtRF and NrRF RF chains are
employed by the transmitter and receiver, respectively, where
the number of RF chains is smaller than the corresponding

number of antennas, i.e., NtRF 	 Nt, NrRF 	 Nr. Additionally,
the fully connected hybrid beamforming architecture [4] is
employed in this article.
As shown in Fig. 3, Ns transmitted symbols s(β) ∈ C

Ns×1

on the βth subcarrier, β = 1, . . . ,M, are precoded using a
digital precoder FD(β) ∈ C

NtRF×Ns , yielding NtRF outputs in
the frequency domain. Then, the outputs of the M numbers
of digital precoders are re-arranged to form NtRF OFDM
blocks, where each digital precoder contributes one symbol
to one OFDM block according to its assigned subcarrier.
Then, the NtRF OFDM blocks are transformed to the time-
domain using the M-point IFFTs. Finally, after adding the
CP and processing by a common analog precoder FRF ∈
C
Nt×NtRF , the final transmitted signal on subcarrier β can be

represented in a baseband equivalent form as

u(β) = FRFFD(β)s(β), (16)

where E[s(β)sH(β)] = 1
Ns
INs .

Since the analog beamforming is implemented by phase
shifters, the elements in FRF are constrained with con-
stant magnitude. The constraint on the transmitted power
is given by ‖FRFFD(β)‖2 = Ns. It is worth noting that
the design of analog beamformer for each subcarrier in a
multi-carrier system (e.g., OFDM) is identical. This gives the
main difference from the design in single-carrier system,
and is also the challenging part of precoder design in
multi-carrier systems [6]. When the signal of (16) is trans-
mitted over mmWave channels, the received signal can be
expressed as

y(β) = H(β)FRFFD(β)s(β)+ n(β), (17)

where H(β) ∈ C
Nr×Nt is the mmWave channel matrix,

and n(β) ∼ CN (0, σ 2INr ) is the vector of additive white
Gaussian noise (AWGN), with σ 2 representing the noise
variance.
At the receiver side, as shown by the red-colored part of

Fig. 3, the received signal is first processed by an analog
combiner WRF ∈ C

Nr×NrRF , which is common to all subcar-
riers. Following this, the CP is removed and then the signal
is transformed from time domain to frequency domain by
the M-point FFTs. Then, the signal is processed by a digital
combiners WD(β) ∈ C

NrRF×Ns to generate the final output.
When considering all the above mentioned processing, the
output can be represented as:

Ŷ(β) = WH
D(β)W

H
RFH(β)FRFFD(β)s(β)

+ WH
D(β)W

H
RFn(β). (18)

Based on [4]–[7], hybrid beamforming is usually designed
to optimize the system SE. However, the joint optimization
of the precoder and combiner matrices is highly challenging,
as explained in [6], [21]. To simplify the design of hybrid
beamforming, the joint optimization is typically decoupled
into the transmitter and receiver optimization. Specifically at
the transmitter side, the design of the precoder (FRF, FD)
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is carried out to maximize the SE. This can be modeled
mathematically as [6]:
(
Fopt
RF,F

opt
D (β)

)
= arg min

FRF,FD(β)

M∑

β=1

∥∥Fopt(β)− FRFFD(β)
∥∥
F,

s.t. FRF ∈ {
vt

(
θ tli, ϕ

t
li

) | 1 ≤ l ≤ Ncl, 1 ≤ i ≤ Nray
}
,

‖FRFFD(β)‖2
F = Ns, (19)

where Fopt(β) ∈ C
Nt×Ns is the optimum precoder for subcar-

rier β, which can be obtained from the SVD of the channel
matrix for the β-th subcarrier. However, the focus of this
article is not on the design of hybrid beamforming. Instead,
the approach in [4] is directly adopted. At the receiver side,
similarly, the solutions for WRF and WD(β) can be attained
as above by first deriving the joint combiner. When the min-
imum mean square error (MMSE) criterion is applied, the
joint combiner is [4]

WMMSE(β) = (H(β)FFHH(β)H + σ 2
n NsI)

−1H(β)F, (20)

where F = FRFFD(β).

C. JOINT MAXIMUM LIKELIHOOD DETECTION
Finally, after the received signal is processed by the digital
combiner, detection is carried out to recover the transmit-
ted information, which is shown in the green-colored area
in Fig. 3. Specifically, corresponding to the transmitter, the
received signals are divided into groups in the frequency
domain. Then, for each group, if the joint maximum like-
lihood (JML) detection is employed, the information is
detected as:

X̂VD,g = arg min
X̃VD,g

∥∥∥ŷg − ĤgAcsX̃VD,g

∥∥∥
2

F
,

g = 1, 2, . . . ,G, (21)

where ŷg is the received signal of the g-th group correspond-
ing to the transmitted signal X̃VD,g, while

Ĥg = WH
D,gW

H
RF,gHgFRF,gFD,g,

and Hg can be written as:

Hg =

⎡

⎢
⎢⎢⎢
⎣

Hg,1 0 · · · 0

0 Hg,2
...

...
. . .

0 · · · Hg,i

⎤

⎥
⎥⎥⎥
⎦
, (22)

where Hg,i represents the channel gain of the i-th subcar-
rier of the g-th group. After the JML detection, the p bits
conveyed in each of the groups are recovered.
mmWave communication environment is typically time

varying and hence the mmWave communications systems’
throughput can be improved with the adoption of link adap-
tation. However, in real-time adaptive modulation, it is often
difficult to switch the modulation mode at the right point,
as the switching point depends on the SNR, which is in
turn related to different issues, as described in Section I.
Therefore, it is highly challenging for the transmitter to

make the switching at the near optimum point. In order to
circumvent these problems, in the next section, our learning-
assisted adaptive system design is introduced, which does
not depend on thresholds but only on the observation of the
communication environment.

IV. ADAPTIVE MODULATION
In wireless communications, adaptive modulation aims to
maximize the throughput, while maintaining a target BER,
via adjusting the modulation order. Adaptive modulation can
also be applied to the mmWave systems, as mmWave chan-
nels are also time-varying channels, as shown in Fig. 6 and
Fig. 7. To obtain the results in these figures, the cluster
channel model of (7) operating at 28 GHz carrier frequency
is considered, where we assume Ncl = 8 clusters and each
cluster has Nray = 10 rays, while the azimuth and eleva-
tion angles of arrival and departure are assumed to obey the
Laplacian distribution with the uniformly distributed angles
over [0, 2π), and the angular spreads of 7.5 degrees within
each cluster [4], [6]–[8]. Furthermore, we assume the ULA
at both transmitter and receiver. Specifically, as shown in
Fig. 6, the channel gains of subcarriers change over time,
which may have a dynamic range up to 30 dB. Furthermore,
as shown in Fig. 7, the mean value of a channel gain may also
have a dynamic range of more than 8 dB. Therefore, adap-
tive transmission, including adaptive modulation, is required
to attain a near-capacity throughput.
In our OFDM-CSIM system, the parameters that may be

adapted include the modulation order Q, the number of active
indices Fv per virtual sub-block, the length Nv of virtual sub-
blocks, and the number of subcarriers Mf of a sub-block. As
introduced in Section III, the transmitted information is not
only carried by the APM symbols, but also by the virtual
indices, which together are mapped to the symbols trans-
mitted by a sub-block of subcarriers. Therefore, the system
throughput can be increased by adjusting the number of
active indices Fv in the virtual domain. For example, assume
Q = 2, Nv = 16 and Mf = 8. When Fv = 1, the system can
achieve a data rate of 0.625 bit/s/Hz, while with Fv = 2, the
throughput increases to 1 bit/s/Hz. Due to the strict require-
ment of sparsity level introduced in Section III-A, in some
cases, the length Mf of OFDM sub-blocks and the number
of active indices Fv per virtual sub-block should be adjusted
according to the communication environments.
In the following two subsections, we present the conven-

tional threshold-based adaptive modulation, followed by the
learning-aided adaptive modulation. In our adaptive modula-
tion schemes, the post-processing SNR is used as the metric
for selecting the parameters Q, Fv, Nv, and Mf in the OFDM-
CSIM system. Based on [33], the post-processing SNR can
be expressed as:

ξ = E

⎡

⎣
Tr

((
WH(β)H(β)F(β)

)H
WH(β)H(β)F(β)

)

Tr
(
W(β)WH(β)σ 2(β)

)

⎤

⎦, (23)

where W(β) = WRFWD(β) and F(β) = FRFFD(β).
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FIGURE 6. An illustration of the channel gains over a time-frequency plane.

FIGURE 7. Time-varying channel magnitude of a subcarrier.

A. CONVENTIONAL ADAPTIVE MODULATION
In conventional adaptive modulation, the parameters Q, Fv,
Nv, and Mf can be selected according to the post-processing
SNR by referring to pre-defined thresholds, in order to
maximize the throughput, while maintaining a target BER.
Since the number of combinations of Q, Fv, Nv, and Mf are
limited, different combinations can be defined as MODEs,
expressed as MODEi, for i = 1, . . . , I, and each MODE cor-
responds to a given data rate. The number of selected modes
I can take any value less than the total number of combina-
tions dependent on the available parameters to adapt, which
would result in variable throughputs. For example, Fig. 8(a)
shows the BER performance of six different transmission
modes, when the OFDM-CSIM system employs a UCYA
transmit antenna array with 64 elements, and a ULA receive
antenna array with 16 elements to support four RF chains
at both the transmitter and receiver. As shown in Fig. 8(a),
varying the system parameters Q, Fv, Nv and Mf results in
variable throughputs and different BER performance. Then,
given the total number of modes, we can decide the adaptive
modes for the system via selecting them from the available
ones as follows: a) More uniformly distributed modes in
terms of SNR are desired; b) when two or more modes have
similar BER performance, the mode yielding the highest

throughput is desired, so that the highest possible throughput
at a given SNR can be achieved. Based on these consid-
eration, in Fig. 8(b) we show an example where 3 out
of 6 modes are selected. Observe from Fig. 8(a) that of
the other 3 modes that are not selected, 2 modes marked
by blue triangles and red circles yield the throughputs of
0.9375 bps/Hz and 0.375 bps/Hz, respectively and have sim-
ilar BER performance to one of the selected mode marked by
orange stars, which gives the throughput of 1.125 bps/Hz.
In this case, the mode generating the highest throughput
of 1.125 bps/Hz is selected. Finally, 3 of the transmission
modes may be selected, and the system parameters as well
as the corresponding data rates are shown in Table 2.
In Fig. 8(b), assuming that the target BER is 10−3, the

specific SNR value T1 and T2 can be selected as the thresh-
olds for the system to be operated in MODE1, MODE2 or
MODE3. After the thresholds are obtained, the procedure of
the conventional adaptive modulation can be described as
Fig. 9. Therefore, in order to implement the adaptive mod-
ulation, the receiver needs to decide the transmission mode
by comparing the instantaneous post-processed SNR against
the threshold values. A higher data rate can be achieved if
more optional thresholds can be set, and the post-processing
SNR can be more accurately measured. However, in the
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FIGURE 8. BER performance of OFDM-CSIM systems.

TABLE 2. System parameters used in simulations.

OFDM-CSIM systems, these are hard to achieve, due to
the many factors involved. Hence, in the next subsection,
we propose the learning-based adaptive modulation for the
OFDM-CSIM system to maximize its throughput.

B. SUPERVISED LEARNING AIDED ADAPTIVE
MODULATION
The operation of adaptive modulation can be understood as
solving a classification problem, which can hence be solved
using ML techniques. Specifically in our system, the adaptive
modulation is the process of selecting a transmission mode

FIGURE 9. Flow chart to explain the conventional adaptive modulation.

for a given realization of the post-processing SNR, which
reflects the channel state. Specifically, index i is referred to
as a class, and each MODEi corresponds to a given data rate.
Therefore, given a channel realization, adaptive modulation
is the process of selecting a class i that maps to a specific
transmission mode MODEi, so as to achieve the highest data
rate under the constraint of the target BER. Normally, the
choice of the classification algorithm depends on the struc-
ture of the feature set [31], [33]. In our adaptive modulation,
the feature set includes the post-processing SNR constitut-
ing a one-dimensional link-quality matrix. The transmission
mode MODEi, which includes the combination of different
orders of modulation, length of sub-block, number of active
indices per virtual sub-block, and the size of virtual domain
vector, has limited mapping relationships with the feature
set. Therefore, we consider the k-NN supervised learning
algorithm, which is capable of achieving the classification
without requiring the information about the functional map-
ping between classifier and feature sets, and also has good
performance for noisy training data [35], [50]–[52]. Another
reason to employ the k-NN algorithm is that the data col-
lected from some practical scenarios may not obey a specific
distribution, while the k-NN algorithm does not require any
knowledge or assumptions about the data distribution [35].
The k-NN is trained with the realizations of the feature

set and its corresponding classes, which can be considered
as a training set. Specifically, the training set for MODEi
can be expressed as a matrix with indices from 1 to Ji as

T(i) =
[
ξ
(i)
1 , . . . , ξ

(i)
j , . . . , ξ

(i)
Ji

]T
, i = 1, 2, . . . , I, (24)

where Ji is the number of realizations of class i and the
total number of realizations of the training set is expressed
as J = ∑I

i=1 Ji. In (24), ξ (i)j is a feature set in the training

set T(i), which belongs to the transmission MODEi.
To elaborate further, Fig. 10 is an example showing the

training sets of MODE1, MODE2 and MODE3 for 100
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FIGURE 10. The training sets for MODE1, MODE2 and MODE3.

FIGURE 11. Illustration for explaining the principle of k -NN Algorithm, where P
represents a testing data.

channel realizations, with each of the channel realizations
used for transmitting 100 symbols at each of the 26 dif-
ferent noise levels (SNR ∈ [−25dB 0dB]). Hence, there
are in total Ji = 260 000 training symbols available for
each transmission mode. In Fig. 10, a point is determined
by its post-processing SNR computed from (23) and the
corresponding BER.
Note that during training, we only record the post-

processing SNR as a feature set in the training set, when
the target BER below 10−3 is achieved. This results in that
the actual size of the training set used in this example is
J1 ≈ 65 000, J2 ≈ 46 000 and J3 ≈ 54 000. As shown
in Fig. 10, due to the ambiguous boundaries of the modes
resulted from the varying communication environment, it
is difficult to accurately determine a transmission mode by
using fixed threshold values as in the conventional adaptive
modulation.
In the context of the ML-based adaptive modulation sup-

ported by the k-NN based classification, the principle can
be explained with the aid of Fig. 11, where the location
of a new observation point P is given by the value of the
post-processing SNR. In Fig. 11, the elements of the training
data corresponding to the three classes are distinguished by
different colors and shapes. As shown in Fig. 11, given a
P , the classifier searches over T(i) for i = 1, 2, 3 to find the

k nearest points in the training sets, based on the distance
metric d(·). When the Euclidian distance is employed, we
have

d
(
ξ
(i)
j , ξP

)
=

∥∥
∥ξ (i)j − ξP

∥∥
∥

2

F
, (25)

where ξP is the post-processing SNR of the new observa-
tion data. Based on (25) and for a given value of k, let
the number of neighbors associated with MODE1, MODE2
and MODE3 be expressed as k1, k2 and k3. Then, the trans-
mission mode is selected as the one providing the highest
number of neighbors to the observation data, i.e., the one
corresponding to the largest value in {k1, k2, k3}. Specifically
in this example, as shown in Fig. 11, if we set k = 4, we
can see that there are two of the nearest neighbors labelled
as MODE1, while only one nearest neighbor is labelled
as MODE2 and MODE3, respectively. Hence in this case,
MODE1 is selected. By contrast, when k = 9, MODE3 pro-
vides the new observation data with the most number of
neighbors, which is 4. Correspondingly, MODE3 is selected
as the transmission mode. Note that, there is possibility that
two or more MODEs provide the same maximum number
of neighbors. In this case, the mode yielding the highest
throughput is selected.
There are two phases in the proposed learning aided adap-

tive modulation, namely the training phase and testing phase.
The training data and testing data are generated indepen-
dently so as to avoid any correlation between them [31], [33].
During the training phase, the post-processing SNR of each
realization is calculated and stored as the training set for dif-
ferent MODEi, for example T(i). During the testing phase,
the post-processing SNR of the new observation data, for
example ξP , is generated. Then, the k nearest neighbors are
identified based on the minimum distance between the new
observation data ξP and each of the training data in T(i).
Finally, the specific transmission mode is determined as the
one giving the majority nearest neighbors.
The complexity of the k-NN algorithm can be analyzed

from two perspectives, which are the memory required for
saving the training data and the computational requirement
for searching the nearest neighbors. The requirement of a
large memory space is a major disadvantage of the k-NN
algorithm, especially when single-chip devices are consid-
ered. However, the memory space required can be reduced
with the aid of the pre-processing of training data. For exam-
ple in this article, only the elements achieving the target BER
are considered, which is usually substantially smaller than
the number of elements in the training set. Moreover, the high
numerical precision (floating point) is not required for storing
each dimension in the feature set [31]. Additionally, the train-
ing data can be updated during run-time by exploiting the
new observation data, in order to improve the performance
over time-varying environments. On the other hand, a brute-
force search for the nearest neighbors would demand a search
complexity of O(kd̂J), where d̂ represents the dimensions of
the feature set. In this article, however, only two dimensions
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TABLE 3. Parameters used in simulations.

of feature set are considered, which are the post-processing
SNR and data rate. Furthermore, there are many references
that addressed the search complexity reduction for the k-NN
algorithm [52], [53]. For example, in [52], the training set is
restructured to form different clusters, where the distance cal-
culation only considers the clusters of data relatively close to
the new observation data, while ignoring the clusters far away
from it. This method is capable of reducing the search com-
plexity to O(kd̂

√
J log Jd̂ + kJ), which can be significantly

lower than that of the brute-force search.
Note that in the conventional adaptive modulation, trans-

mission modes are selected by referring to the pre-defined
thresholds, with the objective to achieve the maximum data
rate. Although the conventional adaptive modulation does
not consider the reserved memory or search complexity, the
achievable data rate is significantly reduced, when compared
with the ML-based approaches.

V. SIMULATION RESULTS
In this section, the performance results of the OFDM-CSIM
systems with the proposed learning-assisted adaptive mod-
ulation and conventional adaptive modulation are demon-
strated. For all simulations, the propagation environment
is assumed to have Ncl = 8 clusters and each cluster has
Nray = 10 rays with equal power. The elevation angle and
azimuth angle for both the arrival and departure rays are
assumed to obey the Laplace distribution. The angle spreads
in both elevation and azimuth directions and at both trans-
mitter and receiver are assumed to be the same value of 7.5◦.
To train the learning-assisted adaptive system, J ≈ 160 000
channel realizations are employed in the training phase and
5 000 channel realizations are used in the testing phase.
Note that, J = J1 + J2 + J3. Finally, the distance metric d(·)
is selected as the Euclidean distance. The other parameters
have the values listed in Table 3.
Fig. 12 shows the achievable data rate of a 64×16 MIMO

system with ULA at both transmitter and receiver, when 4
RF chains are used at both transmitter and receiver to sup-
port Ns = 1, 2, 3 or 4 data streams. Explicitly, the achievable
data rate increases, as the number of data streams increases.
Hence the number of data streams can be considered as

FIGURE 12. Data rate achieved by a 64 × 16 MIMO system with the ULA at both
transmitter and receiver, when both transmitter and receiver employ 4 RF chains.

FIGURE 13. Achievable data rate by various number of antenna elements and RF
chains at both transmitter and receiver in mmWave system with ULA and two data
streams.

one of the adjustable parameters for implementing adaptive
rate transmission. Fig. 13 shows the effect of the num-
ber of transmit and receive antenna elements as well as
the number of RF chains on the data rate of the mmWave
systems. When given the numbers of transmit and receive
antennas, the achievable data rate increases, as the numbers
of RF chains increases. Similarly, for given numbers of RF
chains, the achievable data rate increases as the numbers of
transmit/receive antennas increases.
In Fig. 14, the achievable data rate of the proposed system

as shown in Fig. 3 is depicted against the average SNR,
when different array configurations are considered, which
include the ULA, URPA, UCPA and UCYA employed at
transmitter, while the receiver employs ULA. As shown in
Fig. 14, for a given SNR, the UCYA achieves the highest
date rate followed by the ULA and then the URPA, while
the UCPA attains the lowest data rate. The one-dimensional
ULA achieves a higher data rate than the two-dimensional
URPA and UCPA arrays. However, ULA has no resolution
capability in the azimuth direction and furthermore, it occu-
pies more space than the other two- or three-dimensional
arrays.
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FIGURE 14. Achievable data rate versus SNR performance by adapting hybrid
beamforming for ULA, URPA, UCPA and UCYA.

FIGURE 15. Performance comparison of the k -NN assisted adaptive modulations
with different k values.

Let us now demonstrate the trade-off between the through-
put (Fig. 15(b)) and BER (Fig. 15(a)) performance of the
adaptive modulation schemes implemented by the k-NN with

different k values, in order to determine a suitable k value.
As shown in Fig. 15(a), in general, at the turning point
of about −10 dB to reach the target BER of 10−3, the
BER performance improves as k increases. By contrast, from
Fig. 15(b) we observe that the throughput decreases with the
increase of k, as the result of the higher reliability shown
in Fig. 15(a). Since our target BER is 10−3 and a smaller
value of k means a lower computational complexity of the
k-NN, we choose k = 20 for the following studies. Note that
we choose k = 20 instead of k = 15, because both cases
provide similar throughput while the case of k = 15 reaches
the target BER of 10−3 about 1 dB later than the case of
k = 20.

The probabilities that the adaptive OFDM-CSIM system
is operated in different MODEs, i.e., MODE1, MODE2
or MODE3, versus SNR are shown in Fig. 16, when the
conventional adaptive modulation and the proposed learning-
assisted adaptive modulation equipped with different transmit
antenna array structures are considered. In more detail,
Fig. 16(a) and Fig. 16(b) show the mode probabilities for the
conventional adaptive modulation, when a UCYA transmit
antenna array with 64 elements and a ULA receive antenna
array with 16 elements are respectively employed to sup-
port four RF chains at both the transmitter and receiver.
According to Fig. 8(b), when the adaptive switching thresh-
olds are set to T1 = −8 dB and T2 = −4 dB, as shown
in Fig. 16(a), the transmitter activates MODE1 for transmis-
sion with a probability of nearly 1, when the SNR is below
T1 = −8 dB. Then, when the SNR increases beyond T1,
the probability of activating MODE2 increases, while simul-
taneously, the probability of using MODE1 reduces. This
process continues until reaching about the second threshold
of T2 = −4 dB, when the system begins to activate MODE3.
Correspondingly, we can see that the probability of employ-
ing MODE3 grows gradually as the SNR increases. A similar
trend can also be observed from Fig. 16(b), when the UCYA
transmit antenna array is replaced by ULA with an identical
number of elements.
Correspondingly, the mode probabilities for the learning-

assisted adaptive modulation are depicted in Fig. 16(c) and
Fig. 16(d), when the UCYA and ULA transmit antenna arrays
are respectively employed. In comparison with Fig. 16(a) and
Fig. 16(b) for the conventional adaptive modulation, explic-
itly, the starting points of using MODE2 and MODE3 occur
at lower SNR values and the probability of using MODE3
is significantly increased, for example, at around −2 dB.
Specifically at SNR= −4 dB and considering the UCYA, as
shown in Fig. 16(a) for the conventional adaptive modulation,
more than half of transmissions are at MODE2. By contrast,
as shown in Fig. 16(c), over 50% of the transmissions are at
MODE3 in the learning-assisted adaptive modulation. Similar
effects can also be observed when comparing Fig. 16(b) with
Fig. 16(d). The reason behind the observations is that the
learning-assisted adaptive modulation is capable of making
use of the instantaneous post-processing SNR to select a best
possible mode, while the conventional adaptive modulation
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FIGURE 16. Probabilities for the system to be operated with MODE1, MODE2 and MODE3. The parameters of propagation medium is summarized in Table 3, and the elevation
angle and azimuth angle for both the arrival and departure rays are assumed to obey the Laplace distribution with the angular spread of 7.5◦.

has to use the pre-defined average SNR-based thresholds for
mode selection. Consequently, the learning-assisted design
is able to make more accurate decision than the conven-
tional adaptive design, resulting in a significantly improved
throughput for a given SNR, as seen in Fig. 17. Furthermore,
Fig. 17 shows that employing UCYA or ULA at the trans-
mitter yields similar throughput in both the conventional
modulation and the learning-aided adaptive modulation.
Finally, Fig. 18 shows the BER performance of the

learning-assisted and conventional adaptive modulation
systems, where the BER performance of the three individual
modulation modes is also included. Explicitly, both adaptive
modulation systems are capable of attaining the target BER
of 10−3, when the SNR is higher than −9 dB. As seen in
Fig. 18, the learning-assisted adaptive modulation can make
the BER closer to 10−3 than the conventional adaptive mod-
ulation, and hence attain a higher throughput, as shown in
Fig. 17.

VI. CONCLUSION
In this article, we first provided a survey for the vari-
ous antenna structures, and compared their SE performance
in the context of mmWave communications, showing that

FIGURE 17. Throughput comparison of the conventional and learning-assisted
adaptive modulation.

the UCYA as a three-dimensional array has some advan-
tages over the ULA, URPA and UCPA. Then, the principles
of the OFDM-CSIM system with the hybrid beamforming
operated at both transmitter and receiver is addressed. Our
studies show that in OFDM-CSIM systems, adaptive rate
transmission can be implemented via changing the values
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FIGURE 18. BER performance of the conventional and learning-assisted adaptive
modulations, as well as of the individual MODEs.

of the parameters involved. Based on these observations,
the link adaptation schemes for the OFDM-CSIM mmWave
systems is proposed. Both the conventional link adaptation
approach relying on thresholds and the ML-assisted link
adaptation operated on k-NN algorithm were studied and
compared. It is demonstrated that the conventional link adap-
tation has the challenge to set the near-optimum thresholds,
hence resulting in the loss of achievable performance. By
contrast, the ML-assisted approach is capable of efficiently
exploiting the time-varying nature of wireless channels, and
choosing the best possible transmit mode when considering
different antenna structures. Consequently, the ML-assisted
link adaptation can significantly outperform the conventional
counterpart in terms of the throughput achieved.
One extension of this work is to consider the impact of the

propagation environment on the ML-assisted link adaptive
system, such as the generalization capability of the trained
classifier when different channel models are considered.
Another extension of the work is to use other classification
algorithms, which are able to attain a similar performance
as the k-NN, but come with lower computational cost and
are less demanding on memory storage [35], [54].
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