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ABSTRACT Visible light communication (VLC) systems are promising candidates for future indoor
access and peer-to-peer networks. The performance of these systems, however, is vulnerable to line of
sight (LOS) link blockage due to objects inside the room. Considering pedestrians as the most common
VLC links blocking obstacles, we develop a probabilistic passive pedestrian detection and localization
method. Our method takes advantage of the blockage status of VLC LOS links between the user equipment
(UE) and transceivers on the ceiling to passively detect a single pedestrian, modeled as a cylinder with
a random radius. The VLC network gathers the blockage status and computes the geometry of the LOS
link graph through a cooperative scheme between VLC device-equipped users inside the room. We also
develop a mathematical framework to obtain an optimum solution for estimating the location and size
of the object and conclude with a sub-optimum estimation by simplifying the problem to a quadratic
programming approach. Simulation results show that using a 5 × 5 grid of transceivers on the ceiling and
as few as eight UEs, the root-mean-squared error in estimating the center and radius of the object can
be less than 5 cm and 3 cm, respectively.

INDEX TERMS Scene-awareness, obstacle detection, visible light communications, shadowing, device
free localization (DFL), passive visible light positioning (VLP), crowdsourcing.

I. INTRODUCTION

THE UBIQUITOUS use of light-emitting diodes (LED)
for lighting purposes has motivated researchers to con-

sider visible light communications (VLC) technology in
future developments of indoor wireless access networks
because of its potential to establish high throughput, secure,
and low latency data transmission [2]–[4]. Due to the micron-
scale wavelength of light signals, VLC systems facilitate
the emergence of other promising technologies, such as
indoor localization [5]–[7] and occupancy detection [8].
However, VLC systems are mostly dependent on the line-
of-sight (LOS) between transceivers because their signals
cannot penetrate through or diffract around ordinary objects
such as furniture and humans. This feature makes these
systems susceptible to shadowing and blockage of opaque
objects in the room, where this effect can lead to nearly
70 dB of extra signal attenuation [9]. This article turns
this severe blockage drawback into an opportunity to detect

and locate obstacles in the indoor space by using the
VLC signals themselves, so as to improve the VLC system
performance.
From a communications perspective, most research stud-

ies address the LOS blockage problem by introducing robust
multiplexing techniques. For example, Guzman et al. [10],
[11] introduce modulation techniques to decrease the block-
age probability while still guaranteeing a tolerable level
of co-channel interference for an optical atto-cell network.
Adaptive joint modulation is another multiplexing tech-
nique that can be used to maximize the throughput of the
network, considering the blockage as well as illumination
constraints [12]. In both of these techniques, knowing the
location and dimensions of the obstacles inside the room
enables the network to run a more robust and efficient
resource allocation algorithm. This knowledge also paves
the way for the design of more efficient cellular structures
and handover algorithms.
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Indoor sensing and localization approaches using wireless
communication infrastructure have recently become a hot
research topic. Sensing techniques based on conventional
radio frequency (RF) systems such as WiFi, can achieve an
accuracy of 0.38 cm for systems based on the 802.11a/g/n
standard. The localization accuracy of these techniques is
intrinsically limited by the RF wavelength. This means that
even a small improvement in accuracy necessitates an expo-
nential increase in both hardware (number of access-points
and multiple input multiple output (MIMO) antennas) and
computational complexity.
In contrast, VLC systems use light, which has an

extremely small wavelength medium for data transmission,
and thus provides a higher spatial resolution. It also experi-
ences a more deterministic and stable behavior of the optical
wireless channel, leading to superior accuracy compared
with RF-based counterpart techniques. Theoretical studies
[13]–[15] and experimental demonstrations [5]–[7] ver-
ify that visible light-based localization systems outperform
RF-based systems by orders of magnitude.
Similarly, initial studies on VLC-based passive local-

ization techniques justify the potential for achieving high
accuracy. Majeed and Hranilovic [16] introduce a VLC-based
passive indoor localization approach where the location of
an object is estimated by considering the impulse response
between the photodetectors and LEDs on the ceiling. Other
recent reflection-based techniques such as [17]–[19], which
deploy different sensor arrangements, report promising accu-
racy. However, due to the tiny cross-area of small objects,
i.e., the low sensitivity of the impulse response between sen-
sors, the performance of these techniques is susceptible to
the signal-to-noise ratio (SNR) as well as the number of
sensors. Li-Tech [20] is another recent VLC-based sensing
approach that mainly focuses on object detection and shape
classification. This platform considers a framework of sen-
sors surrounding an object and detects the object presence
through the variation in the LOS signal blockage between
each sensor pair. The shape of the object is also detected
and reconstructed using the variation in reflected signals.
This technique, which is optimized for the highest achiev-
able shape reconstruction accuracy, deploys a huge set of
fixed sensors surrounding the object.
The performance of VLC systems is very sensitive to

LOS link blockage. Therefore, a reliable super-accurate joint
detection and passive localization technique is necessary
to predict the LOS link blockage and take advantage of
this acquired knowledge to enhance VLC communication
system performance. Considering this strong sensitivity, we
hypothesize that VLC links can provide a high detection and
parameter estimation performance with minimum required
hardware. In addition, the VLC LOS link blockage status is
an apt VLC-embedded candidate for sensing a pedestrian in
an indoor environment, which merits further investigation.
In this article, we develop a VLC-based passive pedes-

trian detection and localization algorithm taking advantage
of VLC LOS links blockage information. In developing the

algorithms, we consider the presence of a single object inside
the room, specifically a pedestrian, as they are challenging
obstacles that often cause catastrophic shadowing in indoor
VLC networks. We consider the LOS blockage between the
user equipment (UE) optical transceivers and a network of
optical transceivers on the ceiling as the observation dataset.
In a cooperative scheme with the VLC users, the VLC
network crowdsources the UEs’ locations and the blockage
status of the resulting LOS links. The algorithm employs
this dataset to detect a pedestrian’s presence and estimate its
location and radius.
In summary, this research study makes the following contri-

butions: (i) we introduce a problem framework based on VLC
link blockage information that can be used to address system
shadowing challenges. As part of this framework, we develop
a scenario for gathering blockage status and computing the
geometry of the LOS link graph. (ii) We derive mathematical
expressions to find the optimum object location considering
the human body’s statistical model [21]. We further sim-
plify these expressions to result in a quadratic programming
optimization as a viable sub-optimal approach. (iii) We dis-
cuss practical considerations and limits; we focus on a solid
mathematical solution for a single pedestrian which can be
extended to multiple pedestrian scenarios in future work.
The rest of the paper is organized as follows. The state

of the arts is discussed in detail in Section II. In Section III,
the system model is presented. The cooperative scheme for
pedestrian detection and passive localization is derived in
Section IV. Numerical results are presented and discussed
in Section V. Finally, the paper is concluded in Section VI.
Notation: �a = [a1, a2] is a horizontal vector. The labels

B and NB refer to quantities that apply to blocked-links
and nonblocked-links, respectively. Pr(·) and p(·) denote the
probability and the probability density function, respectively.

II. RELATED WORKS
Indoor localization and sensing has been a topic of intense
interest throughout the signal processing community. Image-
based techniques are the first approaches to attract attention
due to their use of off-the-shelf inexpensive hardware.
Despite this hardware simplicity, image-based pedestrian
detection performance is challenging due to its sensitiv-
ity to complex backgrounds, illumination variations, and
shadows of objects that are indistinguishable from the
object itself [22], [23]. In addition, using images may
raise privacy concerns, specifically for residential areas,
significantly restricting their usability. Studies on other tech-
niques, such as ultrasonic-based and LiDAR-based indoor
sensing techniques, have mainly focused on specific applica-
tions like autonomous vehicles and indoor robot navigation.
Developing these techniques for indoor sensing requires the
installation of a huge number of sensors. Therefore, these
approaches are not desirable, specifically LiDAR systems,
which are expensive and high-maintenance due to their
mechanical components. We thus restrict our attention to
non-imaging approaches.
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A. RF-BASED PASSIVE LOCALIZATION
Conventional methods of RF-based passive localization/
positioning (also known as device-free localization) rely
on the received signal strength indicator (RSSI), which is
available in mainstream wireless off-the-shelf equipment.
A comparison of different RF-based approaches relying on
RSSI shows that a median accuracy of approximately 2 m
is achievable using at least six access points in a typical
cluttered indoor environment [24]. Increasing the number of
access point nodes to 20 can enhance the median accu-
racy to 1 m. This performance limitation is due to the
randomness of RSSI caused by rich multipath fading and
also temporal dynamics indoors [25]–[28]. In the emerging
802.11a/g/n standard, channel state information (CSI) can
be extracted from off-the-shelf orthogonal frequency division
multiplexing (OFDM) receivers, which provide the subcar-
rier amplitudes and phases [26], [29]. Taking advantage of
the high time/frequency resolution and stability of the CSI,
the most recent research on CSI-based localization shows
an achievable accuracy of 0.38 m [30], [31] with only one
MIMO transmitter and two MIMO receiver nodes.

B. VISIBLE LIGHT-BASED PASSIVE LOCALIZATION
Visible light-based passive sensing techniques can be
divided into two categories (adapted from [32]): (i) gen-
eral visible light-based (unmodified lighting), with either
a device-free object (full passive) [8], [17]–[19], or a
device-equipped object [33]–[36], and (ii) VLC-based tech-
niques with an active transmitter and a device-free object
[16], [20], [37]–[42].
Techniques in the first category mainly use the RSSI

for localization, which makes these systems the most
inexpensive choice, specifically for occupancy detection.
CeilingSee [8] is a fully passive occupancy detection system
that uses reverse-biased LED luminaires as photodetectors
for sensing with a accuracy of higher than 90%. By deploy-
ing an array of sensors on the wall, Faulkner et al. [17]
developed a similar technique that could also localize the
target based on the variations in the RSSI of the ambient
light. This research was extended in [18], [19] with a more
efficient algorithm that lead to decimeter-level localization
accuracy. However, like their RF-based counterpart, these
techniques cannot achieve the full potential accuracy of light
since the RSSI is not a feature-rich measurement, i.e., it not
unique for each place in the room.
On the other hands, the second category’s techniques,

which use the VLC infrastructure, provide more distinguish-
able features for localization. LiSense [37] is the first visible
light-based sensing platform that takes advantage of shad-
owing for sensing, where a set of five LEDs on the ceiling
and a grid of 324 photodetectors on the floor are deployed
for recognizing human body postures. Starlight [38] is an
extention of LiSense where the platform was redesigned to
achieve the same accuracy with a much smaller number of
photodetectors (e.g., 20) in exchange for more LED panels
(e.g., 20).

FIGURE 1. Illustration of an indoor VLC system where the blockage status of LOS
links between nine transceivers on the ceiling and two moving UEs are collected by
the network.

In summary, communication infrastructure-based sensing
techniques are promising for indoor sensing due to the cut-
ting edge hardware already available in both the user and
network equipment. In addition, from a sensing performance
perspective, VLC-based techniques show promising results
in initial studies. However, VLC specific techniques devel-
opment is necessary to achieve all the potential sensing
capability provided by these systems.

III. SYSTEM DESCRIPTION
In this work, we consider a typical VLC system with a grid
of transceivers (TRX) on the ceiling. The UE can be any
device equipped with an optical transceiver, such as a cell
phone, a wearable gadget, a laptop dongle, an autonomous
agent, or an Internet of things (IoT) device. The algorithm
collects blockage information from the signal status at the
VLC network central unit, while the UEs may be moving
inside the room, as illustrated in Fig. 1. In this study, we
neglect shadowing due to UE self-blocking, as most of the
devices considered can work remotely, such as autonomous
agents and IoT devices. Each UE-ceiling transceiver node
pair can mutually sense the signal power from each other
and feed this information to the VLC network central unit.
The UE-ceiling node links can be numbered arbitrarily, and
the measured link status information can be collected as a
set of binary indicators as

Îi =
{

0, link i blocked
1, link i not blocked

(1)

for i = 1, . . . ,L, where L is the total number of links. Îi is
an estimate of Ii, the geometrically true blockage indicator
of the ith link status, where the potential measurement error
is denoted as ε, i.e., ε = Pr(Ii �= Îi), assumed to be the
same for all i. This error could happen due to the ambient
light, multiuser interference, random receiver orientation, or
random reflections in an optical wireless channel. We assume
that this error is known in the design of the primary VLC
communication system. Given that communications systems
are typically designed to meet the hard-decision forward
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FIGURE 2. Schematic view of the ith VLC communication link, showing the
extraction of the status indicator Ii .

error correction (HD-FEC) bit-error-rate threshold of 3.8 ×
10−3, we assume that ε is less than this value.

The set of indicators Î = {Îi}Li=1 can be easily obtained
from the RSSI in the preprocessing unit of the commu-
nication systems receiver. Fig. 2 illustrates a typical VLC
communication system with link blockage status detection.
In this system, side information such as the location of the
UE can be concatenated to the data packet. The transmitter
and receiver nodes can be placed in arbitrary locations on the
ceiling. In a typical arrangement considered in this example,
the transmitter/receiver pairs are co-located, which leads to
the same physical uplink and downlink LOS between each
UE and ceiling transceiver node. The link status indicators
can be obtained from either the downlinks or uplinks. At
the VLC network central unit, in parallel with data packet
processing, the information required for object detection is
obtained.
Fig. 3 demonstrates a top-view abstraction of a typi-

cal VLC scenario, illustrating VLC signal blockage. In the
proposed algorithm, the blockage indicators constitute the
observed information, which can be partitioned into two
subsets B and NB as

B =
{
i ∈ 1, . . . ,L|Îi = 0

}

NB =
{
i ∈ 1, . . . ,L|Îi = 1

}
(2)

To identify all the B-links and NB-links, we assume the
VLC system is able to identify the source of the signal at
each ceiling node using whatever multiuser access technique
employed by the underlying VLC communication system.
By using the link-level information, the proposed algo-

rithm can detect objects that degrade the performance of
the communication system for users located near the UEs

FIGURE 3. Bird’s-eye view illustrating the 2-D LOS blockage information. In this
schematic, I1 = 0 and I8 = 0 are the blocked links; therefore, if there are no link status
errors, NB = {1, 8} and B = {2, . . . , 7}.

themselves, i.e., only objects that interfere in real-time com-
munications are detected. Objects with no VLC users nearby
will not block any VLC links and therefore not be detected;
however, this is not a problem since these objects cause no
impairment to the VLC system.
The fundamental assumptions considered in this article

are as follows:
– We assume that the VLC network knows the UEs’ loca-

tions. This assumption is reasonable considering recent
VLC indoor localization techniques that have been
shown to provide centimeter-level positioning accu-
racy [43]. Based on the location of the transceivers
on the ceiling and the UEs, the geometric parameters
of LOS links can easily be determined.

– The proposed algorithm is piggybacking a typical VLC
access network. Therefore, all the parameters corre-
sponding to the PHY and MAC layer, such as ambient
light, multiuser interference, and random reflection of
the optical wireless channel, are considered in the pri-
mary communication system’s design and their effects
emerge in link status error ε.

A. OBJECT MODEL
Obstacles inside an indoor environment are either back-
ground fixed objects such as building pillars, partitioning
walls, and decorations, or moving objects, i.e., pedestrians.
Although developing a general-purpose sensing algorithm to
detect all relevant background and moving objects is neces-
sary for realistic applications, in this article we introduce a
sensing technique to sense pedestrians in particular, as this
is one of the most challenging obstacles for a VLC network
in an indoor environment.
We model the human body as an elliptical cylinder with

unknown and random radius and position. In order to guaran-
tee the simplicity and practicality of the proposed algorithm,
we assume that the orientation of the ellipse is unknown.
Therefore, by considering a uniform distribution for the
body’s orientation, the resulting object becomes a random
circular cylinder; we assume that the distribution of the
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FIGURE 4. Distance of an object from a LOS link.

radius of the resulting object in 2 dimensions (2-D) is that
of a Gaussian random variable R ∼ N (μr, σr), where μr

and σ 2
r are the mean and variance of the object radius,

respectively, which are assumed known to the detection algo-
rithm. The statistical model we use is described in detail in
[21, Tab. 2]. The other estimation parameter is the horizontal
location of the center of object, denoted as θ = [θx, θy]T .
Fig. 4 illustrates the vector with shortest 2-D Euclidean

distance from the ith LOS link to an object with radius R
located at θ , denoted as �di(θ). Considering the geometrical
parameters of the ith link, the unit normal vector �ni, and
the distance between the link and the origin of the room’s
coordinate system, βi, we calculate this distance vector as

�di(θ) = (�ni · θ − βi)�ni. (3)

The blockage indicator Îi = 0 used by our algorithm shows
that, with high probability, there is an object centered close to
the line that defines the LOS of the ith link. In contrast, Îi = 1
indicates that there is no object close to the ith link. However,
the distances derived using the UE and ceiling transceiver
locations are not deterministic due to the random size and
location of the object. Considering this fact, the likelihood
of the observation Îi = 0 and Îi = 1 can be written as

Pr
(
Îi = 0|θ ,Ti,Ri

)
≈ Pr(Ii = 0|θ ,Ti,Ri)

= Pr
(
R ≥

∣∣∣�di(θ)

∣∣∣) = δ

Pr
(
Îi = 1|θ ,Ti,Ri

)
≈ Pr(Ii = 1|θ ,Ti,Ri)

= Pr
(
R ≤

∣∣∣�di(θ)

∣∣∣) = 1 − δ (4)

where

δ �
∫ +∞

∣∣∣�di(θ)

∣∣∣
e
− (r−μr)2

2σ2
r√

2πσ 2
r

dr = Q

⎛
⎝

∣∣∣�di(θ)

∣∣∣ − μr

σr

⎞
⎠,

R is the random radius of the object and r is a realization
of this random variable. Ti and Ri are the locations of the
transmitter and the receiver, respectively, corresponding to
the ith link. The function Q(·) is the Gaussian complementary
cumulative distribution function. The approximation above
is valid due to the very small value of ε considered in this
study, i.e., Pr(Îi = Ii) = 1 − ε ≈ 1.

FIGURE 5. Realistic measurement scenarios for (a) a poor measurement set, and
(b) a richer measurement set, i.e., a larger number of UE connections.

IV. OBJECT DETECTION AND PARAMETER ESTIMATION
ALGORITHM
The proposed algorithm can detect a large object inside the
room and estimate its parameters based on the blockage of
the LOS signal between each node on the ceiling and the
UEs. In developing these solutions, we consider the presence
of a single object inside the room. Given this assumption,
the detection algorithm simply captures whether there is at
least one blocked link in the LOS measurements.
In this section, we discuss the optimum solution for esti-

mating the location and size of the object. We further propose
a simple sub-optimal estimation algorithm that has signifi-
cantly lower complexity. The algorithms estimate the object
location in a 2-D plane; they are directly scalable to 3-D
object detection and multiple objects scenarios, the details
of which are left for future work.

A. MAXIMUM LIKELIHOOD (ML) PARAMETER
ESTIMATION
Given the set of measurements, Î = {Îi}Li=1, with elements
defined in (1), the optimum estimation for θ , the coordinates
of the center of the object on the xy-plane, can be obtained
based on the ML criterion as

θ̂ = arg max
θ

(
p
(
Î|θ,Ti,Ri, i ∈ 1, . . . ,L

))
(5)

where p(Î|·) is the conditional pdf of the observation.
Assuming the LOS link geometric parameters (�ni, βi) and
Îi are independent for different i’s, the likelihood of all
measurements can be written as

p
(
Î|θ,Ti,Ri

)
=

∏
i∈B

p
(
Îi = 0|θ ,Ti,Ri

)

×
∏
j∈NB

p
(
Îj = 1|θ ,Tj,Rj

)
(6)

Obtaining a closed-form solution for this problem is
computationally complex. Besides, the ML estimator has
drawbacks considering different practical scenarios. For
example, there are situations where the number of links near
the object is limited, as shown in Fig. 5-(a). This can hap-
pen when either the object is located in the corner of the
room, or if there are a small number of sensors and measure-
ments. In this situation, the ML estimator can be quite biased
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from the true location of the object. Even when there is a
larger number of measurements, as shown in Fig. 5-(b), the
blocked and non-blocked links do not necessarily preserve
symmetry around the center of the object. Therefore, finding
a sub-optimal yet more practical and less biased approach
to estimating the object’s center location is desired.

B. LEAST SQUARE PARAMETER ESTIMATION
To simplify the ML objective function in (6), we define the
log-likelihood function as

ln
(
p
(
Î|θ,Ti,Ri

))
=

∑
i∈B

ln
(
p
(
Îi = 0|θ ,Ti,Ri

))

+
∑
j∈NB

ln
(
p
(
Îj = 1|θ ,Ti,Ri

))
, (7)

The expression ln(p(Îi = 0|θ ,Ti,Ri)) is strictly decreas-
ing with respect to |�di(θ)| due to the strictly increasing
property of ln(·) and also strictly decreasing property of
Q(·) in (4) with respect to their arguments. Contrariwise,
ln(p(Îj = 1|θ,Ti,Ri)) is strictly increasing with respect to
|�dj(θ)|. Accordingly, the objective function can be simplified
to a constrained least squares problem as

θ̂ = arg min
θ

∑
i∈B

�di(θ) · �di(θ)
T

s.t.:
∣∣∣�dj(θ)

∣∣∣ > D(NB)
min , j ∈ NB (8)

where the NB-link measurements can be deployed as con-
straints. The parameter D(NB)

min = μr+ασr is a guard distance
between the predicted object center θ̂ and the NB-links. An
initial value of α = 3 is used to guarantee that D(NB)

min is
larger than all possible object’s radii. A large value for this
parameter helps the algorithm account for close-by NB-links
in poor measurement scenarios (shown in Fig. 5-(a)), where
the constraint in (8) reduces the parameter estimation error
obtained by relying only on B-links. However, in a dense
measurements scenario (shown in Fig. 5-(b)), the algorithm
might have a null feasible region due to a large given D(NB)

min .
In this case, α can be reduced iteratively until the NB-links’
constraints create a non-null feasible region.
The constrained optimization in (8) is a quadratic pro-

gramming problem that can be solved based on the Karush-
Kuhn-Tucker (KKT) criteria [44]. In order to find the global
optimum solution to this problem, the optimum point θ∗, we
define the Lagrangian function as follows:

L(θ,λ, γ ) :=
∑
i∈B

(�ni · θ − βi)
2

+
∑
j∈NB

λj

[
D(NB)
min − (�nj · θ − βj

)]

+
∑
j∈NB

γj

[
D(NB)
min + (�nj · θ − βj

)]
(9)

where λj and γj are the KKT multipliers. θ∗ is a local
minimum of the objective function if there exists a set of

KKT multiplier vectors λ∗ = {λ∗
j |j ∈ NB}, and γ ∗ = {γ ∗

j |j ∈
NB} that satisfy the following conditions, known as KKT
conditions:
Stationarity:

∇L(θ∗,λ∗, γ ∗) = 0 (10)

Primal and Dual Feasibility:

D(NB)
min − (�nj · θ∗ − βj

)
< 0 λ∗

j ≥ 0

D(NB)
min + (�nj · θ∗ − βj

)
< 0 γ ∗

j ≥ 0

for j ∈ NB. (11)

Complementary Slackness:

λ∗
j

[
D(NB)
min − (�nj · θ∗ − βj

)] = 0,

γ ∗
j

[
D(NB)
min + (�nj · θ∗ − βj

)] = 0

for j ∈ NB (12)

where ∇L(θ ,λ, γ ) stands for the gradient of the Lagrangian
L(θ ,λ, γ ). The asterisk ∗ identifies the value of the param-
eter that meets all KKT conditions. The stationary KKT
condition in (10) can be written as

∂L(θ ,λ, γ )

∂θ
= 2

∑
i∈B

�ni(�ni · θ − βi)

+
∑
j∈NB

(
γj − λj

)�nj = 0 (13)

To find the local optimum value of θ , we have to solve a lin-
ear system of equations with (2+2[# of NB-links]) unknown
parameters that satisfies the feasibility and complementary
slackness conditions of (11) and (12), respectively. However,
understanding the intuition behind the KKT conditions, and
also the geometrical perspective of the optimization problem,
helps us reduce unnecessary complexity. Considering the
quadratic objective function and linear constraints, we antic-
ipate that θ∗ is either exactly the global optimum of the
unconstrained objective function, denoted as θg, or on one
of the active constraints with closest Euclidean distance from
θg. With this perspective, we can find a θ∗ that meets the
KKT conditions in three steps as follows:
1) Finding the global minimum θg and corresponding

active constraints: By considering all KKT multipliers to
be equal to zero, θg can be obtained from (13) as

θg = A−1 · β̄

where A =
∑
i∈B

�nTi · �ni, β̄ =
∑
i∈B

βi · �nTi (14)

The active constraints that must be applied to θg are the
constraints that do not satisfy the feasibility condition of (11),
which indicate that θg is too close to some NB-link. In this
case, the corresponding KKT multipliers are most probably
positive values, making the Lagrangian gradient zero on the
border of the feasible region, i.e., creating a push vector to
keep the object far away from the corresponding NB-link.
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2) Finding the feasible intersection points of active
constraints: In this step, we are looking for active con-
straints corresponding to θg that are potentially part of the
smallest polygon created by NB lines that surround θg, as
shown in Fig. 5-b. For this purpose, we find the intersection
points of the active constraints and check the feasibility con-
dition (11) at these points. The intersection points that meet
the feasibility condition and the points satisfying the corre-
sponding active constraints are candidates for local minima.
In the case that none of the intersection points meet the con-
dition mentioned above, we are faced with a null feasible
region; we then have to decrease D(NB)

min and repeat this step.
3) Solving the simplified KKT conditions linear system

of equations: Considering the quadratic objective func-
tion and anticipated linear constraints, all candidates θ∗ are
located on either the closest feasible intersection point or
the constraints corresponding to θg. Therefore, the linear
equation (13) can be simplified as

A · θ + 0.5
(
γj − λj

)�nTj = β̄, (15)

where j is the index of the closest NB-link to θg. The
auxiliary equation to solve the optimization problem is the
equation of the jth line that also satisfies the conditions
of (11) and (12).
Considering that the object dimension is small in com-

parison with the room dimensions, estimating this parameter
is difficult because, for a limited number of measurements,
the non-blocked links cannot provide enough information
on the size of the object; they can only provide an upper
bound. However, for the same number of measurements,
more blocked links can provide a more accurate estimate
of the size of the object. When the center of the object
is known, the blocked lines pass through the object from
different directions and slice through various parts of the
object, as shown in Fig. 5-b. Accordingly, to obtain a general
approach for different numbers of measurements, we con-
sider the maximum distance between the estimated center
and blocked links as the estimate of the object’s radius.

V. PERFORMANCE ANALYSIS AND NUMERICAL
RESULTS
In this section, we analyze the performance of the
proposed pedestrian detection and localization algorithm.
The performance of this algorithm is affected by several
parameters: the number of UE measurements U, their geo-
metrical distribution, the size of the network transceiver grid
W×W, their exact location on the ceiling, the object’s loca-
tion and dimension, and the link status error ε. We consider
a typical room without any furnishing to model the LOS
signals. Table 1 summarizes the remaining parameters used
in our simulations. The UE are assumed to all be at a fixed
height from the floor and randomly located in the (x, y)
plane inside the room, where the origin of this coordinate
system (0, 0) is the center of the room.

We ran a Monte-Carlo simulation to analyze the
performance of both detection and localization algorithm.

TABLE 1. Simulation parameters.

In each trial of this simulation, we generate U number of
random positions of UEs. Considering the minimum distance
between users in a realistic scenario, i.e., the personal space
needed by humans, a Poisson disk sampling method pop-
ular in many computer graphics applications is employed
for generating the random locations of the UEs [45]. This
minimum distance is a function of the number of users and
objects inside the room.
For both simulating the link blockage and testing the

algorithm, we consider the pedestrian as a cylinder-shaped
obstacle with randomly generated parameters (θ ,R), which
are unknown to the detection algorithm. In addition, we
consider a pillar with a radius that is deterministic but
unknown to the algorithm. This simulation runs for 104

trials in a scenario with ε = 0 and 106 trials for the
ε �= 0 scenarios to ensure a large enough number of
random samples are computed for accurate performance
evaluation.
To evaluate the performance of our algorithm in detecting

a person and the effects of parameter values, we compare
the results for a pedestrian to the performance when a large
pillar is detected in the room.

A. DETECTION PERFORMANCE ANALYSIS
The detection algorithm considered in this article recognizes
the presence of a single pedestrian if at least one blocked
link exists in the LOS link status measurements. To analyze
the detection performance, we consider two cases: when the
pedestrian is located in the center, θ = (0, 0) versus on one
side of the room, θ = (1.5, 0) m.

We further consider the error in capturing the LOS
link status measurements. Given the hard-decision for-
ward error correction (HD-FEC) minimum threshold of
3.8 × 10−3 for communications, we assume the LOS link
status measurement error rates range from 10−3 to 10−4. To
simulate this indicator measurement error, we simply flip
the geometrically obtained link status with corresponding
error probability to generate the collected link status value
expressed in (1).
We evaluate the performance of the detection algorithm

based on popular performance measures: the true-positive
rate (TPR) and false-positive rate (FPR) [46, Tab. 4.7]. The
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TPR and FPR in our study can be calculated as

TPR = Pr(B �= ∅|Obj. present)
= 1 − Pr(B = ∅|Obj. present)

FPR = Pr(B �= ∅|Obj. absent)
= 1 − Pr(B = ∅|Obj. absent) = 1 − (1 − ε)W

2×U

(16)

where B is the set of links measured as blocked, defined
in (2), and ∅ denotes the null set. There is no closed-form
expression for TPR as the Pr(B = ∅|Obj. present) is a func-
tion of several factors, such as object’s size, its location, and
the number of UE measurements, i.e., the geometric density
of the LOS link graph. However, for a large U, the TPR con-
verges to one, as seen below. The FPR is a straightforward
function of the link status error ε, where at least one of the
link status measurements is collected as a blocked link in
the absence of the object. For small values of ε considered
in this article, the FPR can be simplified as FPR ≈ W2 ·U ·ε.

Fig. 6-(a) illustrates the relative operating characteristic
(ROC) curve for our object detection algorithm. It shows a
superb performance for all object types and location scenar-
ios. The detection performance is higher for an object located
in the room center, which is expected since a centrally
located object is more likely to block LOS links between
randomly distributed UEs and uniformly distributed ceiling
nodes. The detection performance is more sensitive to the
object dimension than the object location; the results for a
large pillar outperforms those for a pedestrian object type for
both object locations. The link status error ε mainly affects
the FPR, where an order of magnitude increase in ε leads to
an order of magnitude increase in FPR for similar scenarios;
we expect this linear dependency for small ε, as discussed
above.
Fig. 6-(b) illustrates the overall accuracy of the detection

algorithm, i.e., ACC = 0.5(TPR+1−FPR). For small values
of U, the accuracy is mainly limited by the TPR, where the
more UE measurements, the higher the TPR. However, for
a sufficiently large number of UE measurements, the TPR
saturates, and the overall accuracy diminishes only slightly
due to an increase in ε. This behavior is the same for all
scenarios, where, for a large number of UE measurements,
each plot asymptotically converges to ACC ≈ 1−0.5W2·U·ε.

B. PARAMETERS ESTIMATION ERROR
In this section, we evaluate the performance of the pas-
sive localization algorithm. We consider the same simulation
scenarios as described above. Similar to the detection
performance analysis, we conducted parameter estimation
simulations for link status error rates of ε = 10−3, ε = 10−4,
and a scenario without error, ε = 0. Due to infinitesimal dif-
ferences between the results, we only show results for the
ε = 0 case.

Fig. 7 illustrates the root-mean-squared (RMS) error in
estimating θ for two different numbers of transceivers

FIGURE 6. Simulated detection performance analysis using a 2 × 2 ceiling
transceiver grid: a) ROC curve, and b) Accuracy of detection algorithm versus the
number of UE measurements. Ped. and Pil. denote whether the object is a pedestrian
or pillar, respectively. C stands for the center, θθθ = (0, 0), and S for one side of the
room, θθθ = (1.5, 0), as the object location.

mounted on the ceiling versus the number of UE measure-
ments. Again we tested the algorithm for an object located
either in the center or near the edge of the room. For the
large pillar, the algorithm can achieve an accuracy of less
than 5 cm in estimating the center of the object, θ , using a
5 × 5 grid of ceiling transceivers and relying on as few as
8 UE measurements; the estimation error is higher, around
10 cm, for a 2 × 2 ceiling transceivers grid, and requires
a larger number of observations. Locating a human body
is more difficult since the number of blocked links is much
smaller compared to larger objects; the algorithm can achieve
an accuracy of 10 cm for 14 UE measurements using the
denser ceiling transceiver grid.
For large values of U and a 5 × 5 transceiver grid, the

algorithm collects dense geometric graphs of blocked and
non-blocked links. In this case, the smallest polygon created
by NB lines tightens around the object, enhancing estimation
accuracy of θ , and making the performance insensitive to
the object size as long as it is located at the center of the
room. However, if the object is located on the side of the
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FIGURE 7. RMS error in estimating the center of the object θ̂θθ : a) using a 2 × 2 ceiling
transceiver grid and b) using a 5 × 5 ceiling transceiver grid.

room, both blocked and non-blocked link graphs are subject
to an asymmetric displacement as they pass through or sur-
round the object (See Fig. 5-b). Therefore, these asymmetric
measurements cause a θ estimation bias proportional to the
object size, leading to a less accurate estimation of the pillar
than the pedestrian.
Fig. 8 shows the RMS estimation error of the radius R

for a different number of UE measurements, using the same
sets of transceivers mounted on the ceiling as for Fig. 7.
Similar to the estimation of the θ parameter, the algorithm
can achieve as low as a 1 cm RMS error for estimating R
for a 5 × 5 transceiver grid and a RMS error of 6 cm for a
2 × 2 transceiver grid for the large pillar. Depending on the
scenario, estimating the radius of the human body may be
slightly easier or harder than estimating the radius of a larger
object. This is again due to the slight geometric asymmetry
in the link graphs; the bias in estimating θ , proportional to
object size, propagates as an error in the estimation of the
object radius R.
By increasing the number of UE measurements, the RMS

estimation error for both the center and the radius of the
object, θ , and R, decrease since the algorithm has more link
blockage measurements. For a sufficient number of mea-
surements, the algorithm achieves its lowest RMS estimation
error when the object is in the center of the room since the
probability of blockage is higher in this region, which leads
to more UE measurements for the algorithm to use.

FIGURE 8. RMS error in estimating the object radius R̂: a) using a 2 × 2 transceiver
grid, and b) using a 5 × 5 transceiver grid on the ceiling.

VI. CONCLUSION AND FUTURE WORK
In this article, cooperative signal processing algorithms
are proposed that exploit LOS link blockage information
between mobile device optical transceivers and VLC system
transceivers on the ceiling to detect and estimate the location
and size of a single pedestrian inside the room. Simulation
results show that, for a large range of simulation parame-
ters, the detection accuracy remains over 90% and the RMS
errors in estimating the center and radius of the object can
be as low as a few centimeters.
When the object is a human, how their mobility affects

the accuracy of the algorithm is relegated to future stud-
ies. Pedestrian mobility affects the performance of both
object detection and parameter estimation. From a detec-
tion perspective, mobility requires tracking and updating
the blockage measurements. The blocked-link status could
remain unchanged when the pedestrian moves over a link
while it changes when the pedestrian passes through a link.
The data-set needs to be updated, and the old measurements
need to be validated. From a parameter estimation perspec-
tive, the pedestrian mobility could enhance the estimation
accuracy if it is combined with a proper tracking algo-
rithm [47]. Developing our signal processing algorithms for a
multiple object scenario as well as addressing other realistic
constraints such as a limited field of view and self-blockage
can also be considered as future work on this research.
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