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ABSTRACT The emerge of Internet of Things (IoT) brings up revolutionary changes to wireless com-
munications. Cognitive radio (CR) can be seen as one of the prominent solutions to spectrum scarcity
in IoT, where multi-band cooperative spectrum sensing (CSS) is the key. However, lack of centralized
control and increase in number of devices place a room for many challenges. One of the main challenges
is secondary users’ (SUs’) scheduling to sense a subset of channels in heterogeneous distributed CR
networks (CRNs). To overcome the aforementioned challenge, in this paper, we propose a novel hetero-
geneous multi-band multi-user CSS (HM2CSS) scheme. The proposed scheme allows heterogeneous SUs
to sense multiple channels and consists of two stages. We formulate a mathematical model to optimize
leader-selection for each channel in the first stage. We then formulate another optimization problem to
determine corresponding cooperative SUs to sense these channels in the second stage. After that, diffusion
learning is used to decide on the availability of channels. Simulations illustrate that the proposed scheme
improves detection performance and CRN throughput, is scalable in terms of detection performance, and
provides fair energy consumption for CSS on all channels compared to existing multi-band CSS schemes.

INDEX TERMS Cognitive radio, cooperative communications and distributed processing, heterogeneous
networks, Internet of Things.

I. INTRODUCTION

INTERNET of Things (IoT) has brought a rapid increase in
the usage of wireless spectrum [1]. Meanwhile, cognitive

radio (CR) has drawn attention as a potential technology to
address spectrum demands of IoT systems [2]. CR networks
(CRNs) allow secondary users (SUs) to opportunistically
access the spectrum owned by legitimate/primary users (PUs)
without affecting the primary network’s transmission [3].
Within CR, spectrum sensing is a key component. By sensing
the spectrum, SUs can acquire the knowledge of whether the
spectrum is occupied by PUs or not, and hence, utilize the
spectrum when it is not used by PUs.
Generally, wide-band spectrum owned by PUs is divided

into non-overlapping sub-bands, called channels. This causes

a multi-band structure of the spectrum. Due to hardware
limitations and energy constraints of IoT devices, instead of
sensing all channels, each SU can sense multiple channels
and then, exchange the sensed information with other SUs
to determine spectrum availability [4]. This process is called
multi-band cooperative spectrum sensing (CSS).
Multi-band CSS can be done in centralized or distributed

ways [3]. In centralized multi-band CSS, SUs forward locally
sensed information to a central entity, also called fusion cen-
ter (FC). FC controls the system and makes decisions on the
availability of channels based on the feedback from SUs. In
distributed multi-band CSS, SUs exchange their local obser-
vations with corresponding cooperative SUs to determine
the availability of channels without an FC. The nature of
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IoT systems is distributed [5]. In addition, IoT networks
place focus on learning and feedback information about the
environment [6]. Therefore, distributed approach tends to be
more favorable in the IoT scenario.
The role of learning and adaptation is becoming increas-

ingly essential with IoT. Conventionally, learning implies
changes within a system that over time enables it to per-
form more effectively within its environment by reusing past
experiences [7]. However, in this paper, we consider learning
as an adaptation process through making adjustments in the
locally sensed results within each cooperative SU-cluster in
a distributed CRN. Each SU is not only capable of sens-
ing spectrum and experiencing the environment directly, but
also receives locally sensed information from its cooperative
SUs to process and analyze it [7]. In this way, a common
decision about channels’ availability is achieved.
In traditional distributed multi-band CSS, SUs sense chan-

nels independently, using a single detector type. Then,
distributed learning algorithms are used to make coopera-
tive decisions on the availability of channels [3]. However,
the nature of IoT comes up with revolutionary ideas. CSS for
IoT systems has to consider spectrum analysis, history and
prediction, network reconfiguration, hardware limitations,
and computational complexity of secondary IoT-nodes [2].
Cognitive IoT systems have to take into account prior
information available about the signal carried across the
channel. Scalability is another key IoT-driven requirement,
which implies network growth with time [5]. SUs deployed
in CRNs may have different types of spectrum detectors
due to heterogeneous nature of IoT. Nevertheless, supple-
mentary heterogeneous SUs may cause system performance
degradation, leading to extra human intervention to get
acceptable system performance level back. Therefore, IoT-
based multi-band CSS design is very challenging mainly
because of SUs’ scheduling to sense a subset of chan-
nels. Correct choice of cooperative SUs may significantly
increase system performance level and reduce latency [8].
Furthermore, heterogeneous multi-band multi-user CRNs
place serious challenges in terms of fairness in the coop-
erative SU-selection process of the IoT system. Therefore,
to have stable system performance for all channels, it is
essential to study and improve distributed multi-band CSS
schemes by considering IoT demands mentioned above.

A. RELATED WORK
There has been a plethora of research efforts in recent years
in the area of CSS. This section gives a brief state-of-the-art
summary of this field.
To begin with, authors propose an energy-efficient reliable

decision transmission scheme for IoT-based CSS in [9]. The
proposed scheme has a centralized system model, which
uses OR/AND-rule and improves detection probability as
well as reduces sensing energy consumption. However, the
aforementioned work does not take into account the multi-
band approach. Recently, several multi-band CSS schemes
are proposed in the literature. Non-uniform sensing duration

of multi-band spectrum access is analyzed for centralized
CRNs in [10]. Authors in [11] propose an efficient energy
detector (ED) based centralized multi-band CSS scheme,
which uses detection threshold optimization to minimize
sensing energy consumption. A basic centralized multi-band
CSS scheme is proposed in [8] to reduce the complexity of
the spectrum sensing process. Authors provide a thorough
throughput analysis of the proposed system. Nevertheless,
all works mentioned above do not take into account either
the heterogeneous aspect of SUs or the distributed system
topology.
In [12], an optimal multi-band distributed homogeneous

CSS scheme is proposed, which maximizes the CRN
throughput with constraints on energy and signal process-
ing resources consumed on spectrum sensing. Moreover,
in [13], authors propose homogeneous distributed adaptive
spectrum sensing strategy (ASSS), which uses PU traffic
patterns to determine channels to be sensed in multi-band
CRNs. ASSS selects channels to be sensed in an adaptive
manner such that the selected channels are more likely to
be unoccupied. In [14], a heterogeneous centralized system
using k-out-of-K rule is analyzed. Centralized and distributed
consensus learning-based heterogeneous CRNs are compared
in terms of CRN throughput analysis in [3]. There, using
random spectrum sensing strategy (RSSS), cooperative SUs
that sense multiple channels are chosen arbitrarily, i.e., in
the random manner. Nevertheless, random SU-selection may
lead to system performance degradation as the network size
increases.
There exists plenty solutions for cooperative SU-selection

schemes in single-band CRNs. In [15], a single channel
CRN is assumed, where one user is chosen randomly and
then, Cramer-Von Mises (CVM) test values are calculated
to select cooperative SUs. Only those SUs are selected, for
which CVM test values are greater than the calculated thresh-
old. In [16], a distributed heuristic algorithm is proposed to
reduce system’s energy consumption by minimizing the num-
ber of cooperative SUs. However, in this system, SUs located
within a certain distance to a PU are not allowed to use the
spectrum and act only as sensing units. In [17], we proposed
a homogeneous multi-band multi-user CSS (M2CSS) scheme
to select multiple SUs to sense channels in distributed CRNs.
M2CSS is a two stage process, which consists of selecting
a leader for each channel and its corresponding coopera-
tive SUs. We further proposed an enhanced M2CSS scheme
to allow new SUs to join and existing SUs to leave the
CRN [18]. Both schemes utilize distributed consensus learn-
ing based approach. However, these works did not consider
SU-selection in the heterogeneous multi-band context.
Concluding, although there exists good literature on CSS,

non-arbitrary ways of assigning channels to be sensed by
participating SUs in heterogeneous multi-band multi-user
distributed CRNs are not considered yet. Therefore, in this
paper, we propose a heterogeneous multi-band multi-user
CSS (HM2CSS) scheme for distributed IoT systems. The
proposed approach is a heterogeneous and scalable scheme
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based on M2CSS [17]. As discussed previously, the term
IoT implies scalability, heterogeneity, and interoperability
of connected devices in networks. The proposed HM2CSS
scheme provides interoperability of heterogeneous connected
devices, i.e., SUs, to schedule sensing task assignments in
a scalable distributed CRN. The technical challenge of this
work lies in stable system performance levels for scalable
and heterogeneous cognitive IoT systems through efficient
utilization of resources. Particularly, the existing schemes do
not consider optimizing SUs’ scheduling to sense multiple
channels subject to different sensing capabilities of SUs. The
novelty of this scheme is the selection of SUs with differ-
ent sensing results to improve utilization of IoT systems’
resources. In other words, the proposed HM2CSS scheme
does not select SUs to be cooperative if they own simi-
lar information about the channel. This work differs from
the existing scheme by providing a modular two-stage SUs’
selection in heterogeneous and scalable IoT systems.

B. CONTRIBUTIONS
The main contributions of this paper are as follows:

• We propose a two-stage HM2CSS scheme for hetero-
geneous SUs’ scheduling to sense multiple channels.
We consider heterogeneous information available about
channels, where up to 100 SUs have to be assigned to
sense multiple channels making this scenario applicable
to IoT.

• In the first stage, we propose a modular leader
selection approach for channels with heterogeneous
information available about them. We formulate sep-
arate optimization problems for each detector type that
can be integrated into the system in a modular manner
and executed concurrently for all channels. Particularly,
one module, and hence a detector type, is selected for
each channel based on the information available about it.

• We then formulate a unified optimization problem to
select corresponding cooperative SUs for all channel
concurrently in the second stage. For interoperability,
only SUs with similar detector type as the leader’s
detector and owning different sensed information can
be selected for each channel.

• We further utilize diffusion based learning as a unified
approach for information exchange between cooperative
SUs. This allows to reduce the number of iterations
needed to perform the information exchange process,
and hence, decrease the learning time compared to the
consensus algorithm used in M2CSS.

• Simulations are performed to demonstrate the
performance of the proposed HM2CSS scheme. The
results are compared to the existing heterogeneous
multi-band CSS schemes.

C. ORGANIZATION
The rest of the paper is organized as follows. In Section II,
system model is discussed for distributed multi-band CSS

with heterogeneous devices. Then, we investigate the
proposed HM2CSS scheme thoroughly in Section III.
Section IV covers the computational complexity analysis
of the proposed HM2CSS scheme. In Section V, extensive
simulation results are presented. The proposed distributed
HM2CSS scheme is compared to existing distributed and
centralized multi-band CSS schemes. Finally, conclusions
are made in Section VI.

II. SYSTEM MODEL
We investigate a distributed heterogeneous CRN as illustrated
in Fig. 1. There are M PUs in the network, each one hav-
ing its dedicated channel. Hence, the number of channels
is also considered to be M, i.e., M = {m1,m2, . . . ,mM}.
Each PU is assumed to be either in an active or idle
mode. The active mode denotes a PU occupying its channel,
while the idle mode means that a PU is not transmitting
and hence, this channel can be used by SUs until the PU
starts its transmission. We further consider K SUs, i.e.,
K = {SU1, SU2, . . . , SUK}. In IoT networks, the number of
devices is typically higher than the number of channels [19].
Hence, we assume that K > M. In addition, SUs have no
privileges over the PU transmission in CRNs. In most cases,
technical details of the PU transmission are unknown. Only
certain significant details may be known at the SU side.
PUs can share these details with SUs through a pre-defined
agreement. This agreement can allow SUs to use the shared
details to improve PUs’ detection over the channels and
hence, reduce the potential interference levels for both, PUs
and SUs [20]. Depending on the sensitivity of an IoT appli-
cation, the level of shared details may vary. Therefore, in
this paper, we consider heterogeneous PUs, i.e., PUs with
different technical details of the transmission. We further
assume that only certain information is available about the
PU transmission at the SU side. Hence, three main chan-
nel types considered are with no prior information about a
PU signal, with known pilot tone of a PU signal, and the
channel with an orthogonal frequency division multiplexing
(OFDM) PU signal being sent over it. We assume that MN

is the total number of channels with no information avail-
able about them, MP is the total number of channels with
the known pilot-tones, and MO is the total number of chan-
nels known to carry the OFDM signal. This means that
M = MN +MP +MO.
IoT interconnects heterogeneous applications together,

operating concurrently, and provides their interoperability
in a scalable network. This means that an IoT system con-
tains more than a single device type, i.e., is heterogeneous
in terms of secondary IoT-nodes. For example, smart cars,
smart cameras, smart lighting, etc. Therefore, we set the
IoT system model in Fig. 1 to be heterogeneous by consid-
ering three types of detectors for local spectrum sensing. The
detector types considered are ED, pilot tone detector (PD),
and OFDM-based detector (OD) [3]. SUs sense channels
cooperatively and decide whether they are occupied by PUs
or not. For this purpose, each SU is assumed to be equipped
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FIGURE 1. Heterogeneous distributed multi-band multi-user CRN topology.

with one detector, such that in total there are KE ED, KP
PD, and KO OD-based SUs, i.e., K = KE + KP + KO. To
determine the availability of channels in the ED-based case,
the received signal power is estimated. In the PD-based sce-
nario, the orthogonality property between the pilot tone, i.e.,
sp, and the data-carrying signal, i.e., sd, is used [3], [21].
Hence, in this case, the transmitted PU signal can be seen
as s = √

ε × sp + √
1 − ε × sd, where ε is the fraction of

the total power allocated to the pilot tone. As for the OD-
based case, using the knowledge of cyclic prefix and the
OFDM symbol length, inherent signal correlation incurred
by cyclic prefix repetition is taken into consideration [22].
To this end, we consider two levels of heterogeneity. These
are SUs with heterogeneous sensing capabilities, i.e., differ-
ent detector types, and heterogeneous information available
about the channels owned by PUs.
We assume that there is sufficient number of SUs to detect

each type of channels in the network. An SU can sense
minimum one and maximum I channels, where I < M. Each
k-th SU performs local spectrum sensing using Nkm samples
for channel m. This means that SUs have to solve multiple
binary hypothesis problem [3]:

Hm,k
0 : xkm = wk

m

Hm,k
1 : xkm = hkm · sm + wk

m, (1)

where Hm,k
0 and Hm,k

1 denote the absence and presence binary
hypothesis testing of the m-th channel sensed by k-th SU,
respectively. xkm is the signal received by k-th SU while
sensing the m-th channel, sm is the signal transmitted by the

FIGURE 2. The structure of one frame for CSS.

m-th PU over the Rayleigh Fading channel with the ampli-
tude gain hkm, and wk

m is the circularly symmetric complex
Gaussian noise with zero mean and (σ km)2 variance, i.e.,
wk
m ∼ CN (0, (σ km)2I).
As shown in Fig. 1, only certain SUs in a CRN can

communicate with each other. This is because of the geo-
graphic location and fading environment. All PUs and SUs
are assumed to be distributed randomly across the area.
Furthermore, channel’s coherence time is assumed to be
larger than the frame period. During a single frame the
signal-to-noise ratio (SNR) and position of SUs is considered
to be constant. However, these values may change between
frames. This means that the location of nodes is not constant.
Therefore, each SU is achieving a certain value of SNR for
each channel. All SUs participate in the CSS process and
have to be aware of the final decision of the availability of
channels as well as the priority of SUs’ transmission in case
channels are unoccupied. Hence, we assume that SUs can
route each others information through SU-leaders, where one
leader is being assigned for each channel. Fig. 2 illustrates
the total frame structure of the CSS process. Let Tms denote
the total sensing process time, and T be the transmission or
idle mode time, depending on the availability of channel m,
then TF is the total period of the frame, i.e., TF = TmS + T .
The energy consumed to sense and decide on availability of
each channel is represented by Em,CONS and can be given as:

Em,CONS = (
PS × TmS

) × Qm + Em,learn, (2)

where PS is the power consumed on spectrum sensing, Qm
is the number of cooperative SUs sensing channel m, and
Em,learn is the total energy consumed on the learning process
for the m-th channel. In other words, Em,learn considers the
energy spent on exchanging locally sensed data between
cooperative SUs and deciding on the availability for the m-th
channel. Finally, assuming SUs access ML channels out of
M, global CRN throughput can be defined as:

R = B×
ML∑

m=1

pm0 × log2(1 + SNRmk) ×
(

1 − Pmkf

)

+ pm1 × log2(1 + SINRmk) ×
(

1 − Pmkd

)
, (3)

where B is channel’s bandwidth, pm0 is the probability that
channel m is not used, pm1 is the probability that channel m is
occupied, SNRmk is the SNR value, SINRmk is the signal-to-
interference-and-noise ratio (SINR) value, and Pmkf as well
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FIGURE 3. A flow chart for the proposed HM2CSS scheme.

as Pmkd are the false alarm and detection probabilities of k-th
SU sensing channel m, respectively.

III. HETEROGENEOUS MULTI-BAND MULTI-USER
COOPERATIVE SPECTRUM SENSING
In this section, we propose a CSS scheme, called HM2CSS.
We select cooperative SUs for distributed multi-band CSS in
two stages. Cooperative SUs then sense channels and using
diffusion learning algorithm, exchange sensed information
and decide on channels’ availability. The proposed scheme
is designed to enable scalability and improvements for detec-
tion performance, enhance CRN throughput, and provide fair
sensing energy consumption for all channels.
A flow chart for the proposed HM2CSS scheme is

presented in Fig. 3. The first stage of the proposed HM2CSS
scheme is to select an SU-leader for each channel m ∈ M.
In case no information is available about a PU signal, i.e.,
mN ∈ MN , an SU-leader is selected from the ED-based
SUs subset, KE ∈ K. If the pilot tone of a PU signal
is known, i.e., mP ∈ MP, an SU-leader is selected from
the PD-based SUs subset, KP ∈ K. Otherwise, if the sig-
nal sent by a PU across the channel is believed to be the
OFDM one, i.e., mO ∈ MO, then an SU-leader is selected
from the OD-based SUs subset, KO ∈ K. After that, the
CVM goodness-of-fit test together with the SU-leaders cho-
sen are used to select cooperative SUs to sense each channel
m ∈ M as a second stage of the proposed HM2CSS scheme.
Similarly to the leaders’ choice, cooperative SU-selection
depends on the information available about channels, such
that in cases no prior information about the signal, the known

pilot tone of the signal, and the signal is known to be OFDM,
cooperative SUs are chosen to be from the ED, PD, and
OD-based SUs subsets, respectively. This is necessary to
provide synchronization to the diffusion learning process
and use the most out of information available for sensing.
The two stages mentioned above are discussed in details in
the following sections. After the cooperative SU-selection
process is accomplished, diffusion learning is performed by
each cooperative SU-cluster to determine whether channels
are occupied or not. Those channels, which are determined
to be in the idle mode, are available for SUs’ transmission,
meaning that SUs with highest priorities to use channels can
transmit for time duration T . As for the occupied channels,
SUs are not allowed to use them. Thus, they have to wait
for time duration T and then, repeat the process from the
beginning.

A. STAGE 1: LEADER SELECTION
Optimal leader-selection implies determining the best SU to
listen to for each channel m ∈ M. Leaders are responsible
to select cooperative SUs for distributed CSS. This is why
it is essential to make the correct choice of a leader for
each channel. We can define a binary indicator bmk to show,
whether k-th SU is chosen as a leader for channel m or
not as:

bmk =
{

1, if k-th SU is the leader of channel m
0, otherwise.

(4)
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1) ENERGY DETECTOR (ED)-BASED LEADER
SELECTION

Since ED-based detection is done by estimating the received
energy levels whether the noise level is high or low, together
with the PU signal it is detected. In case noise level is high
and a PU is in the idle mode, an ED-based SU may decide
that the PU is present. This is why the SNR value of the
channel plays an important role in this type of detection.
Let SNRavg be a threshold for the desired and prefixed aver-
age SNR value across each channel. Since the test statistics
for the ED-based detection is primarily the energy level
sensed, for the efficient diffusion process it is important to
select cooperative SUs with low correlation in the signal
envelopes. This is because lower correlation ensures diver-
sity and results in richer information for cooperative SUs’
collaboration. To achieve this objective, we select leaders
with SNR values close to SNRavg for channels with no prior
information available about them. The optimization problem
formulation to select leaders for mN ∈ MN channels can be
defined as follows:

min
bmNkE

:
KE∑

kE=1

MN∑

mN=1

bmNkE × ∣∣SNRmNkE − SNRavg
∣∣,

s.t. C1:
MN∑

mN=1

bmNkE = ckE,∀ kE ∈ KE,

C2:
KE∑

kE=1

bmNkE = 1,∀ mN ∈ MN, (5)

where ckE is a binary variable, which takes the value 1 if
an SU is a leader of one of the channels from a subset of
MN and 0 otherwise. C1 ensures that same SU cannot be
selected as a leader for more than one channel. C2 confirms
that each channel can have one leader.

2) PILOT-TONE DETECTOR (PD)-BASED LEADER
SELECTION

For PD-based sensed channels, the orthogonality property
between the pilot tone and the data-carrying part of the
signal is used for detection. This is why noise existence
here is not as crucial as in the ED-based case. Since we own
information about the pilot tone of a PU signal, we require
a leader with easily detectable pilot tone. Hence, a leader
for each channel mP ∈ MP is selected with highest SNR
value. The optimization problem formulation for PD-based
leaders’ selection can be defined as follows:

max
bmPkP

:
KP∑

kP=1

MP∑

mP=1

bmPkP × SNRmPkP ,

s.t. C1:
MP∑

mP=1

bmPkP = ckP,∀ kP ∈ KP,

C2:
KP∑

kP=1

bmPkP = 1,∀ mP ∈ MP, (6)

where ckP is a binary variable, which takes the value 1 if an
SU is a leader of one of the channels from MP subset, and
0 otherwise. C1 ensures that same SU cannot be selected as
a leader for more than one channel. C2 confirms that each
channel can have one leader.

3) ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING
DETECTOR (OD)-BASED LEADER SELECTION

As for the OD-based detection, using the knowledge of cyclic
prefix and the OFDM symbol length, the inherent signal cor-
relation incurred by cyclic prefix repetition is used to detect
the PU signal. Since sufficient amount of information is
available about the PU signal, there is no need for the spe-
cific leader choice because it only increases the algorithm’s
complexity in this case. Hence, this property of the OD-
based scenario allows us to randomly select a leader for
each channel mO ∈ MO from the subset of KO SUs.

For all three cases above, SU-leader selection is inde-
pendent and performed concurrently. This is because only
ED-based SUs may be selected as leaders for each chan-
nel mN ∈ MN , PD-based SUs for each channel mP ∈ MP,
and OD-based SUs for each channel mO ∈ MO. Finally,
the problems in (5) and (6) are of mixed integer linear
programming (MILP) type. Each one of them includes a
linear objective function and constraints. In both problems,
all variables are binary. To solve these problems, we adopted
the B&B algorithm [23]. The B&B algorithm searches the
complete space of solutions for the best one within a given
problem. For each iterative search, there exists an incumbent
solution, which denotes to the best found feasible solution in
the branching tree. If the solution is worse than the existing
incumbent solution, then the branch is fathomed. The algo-
rithm stops as soon as no subset is remained, which has to
be still fathomed, and the best incumbent solution is denoted
as the optimal value.

B. STAGE 2: COOPERATIVE SECONDARY USER
SELECTION
The second stage of the proposed HM2CSS scheme is to
select SUs for each channel m ∈ M, which together with
SU-leaders cooperatively sense channels. In this paper, the
cooperative SU-selection is centralized. It is one of the spec-
trum management tasks performed by the leaders rather than
part of the distributed CSS process. For this purpose, the
goodness-of-fit test is used. There are several goodness-of-
fit tests in the literature [24]. CVM [25], Anderson-Darling
(AD) [26], and Kolmogorov-Smirnov (KS) [27] are the most
used ones. Our choice in this paper has fallen on the CVM
test for multiple reasons. Firstly, the CVM and AD tests have
been proved to be more powerful than the KS test. The main
disadvantage of the KS test is low sensitivity to deviations
at the tails of the distribution. Secondly, the performance
of the CVM and AD tests has been proved to be approxi-
mately similar [24]. However, the AD test has a drawback of
higher bias. This is because the AD test gives more weight
to distribution’s tails. In other words, the AD test is more
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sensitive to noise and fading. This disadvantage makes the
AD test difficult in use in realistic situations. Hence, in this
paper, we consider the CVM test.
To begin with, locally sensed signals’ envelopes for each

sample n are calculated as follows:

rmk (n) =
√(

gmI,k(n)
)2 +

(
gmQ,k(n)

)2
(7)

where gmI,k(n) and gmQ,k(n) are in-phase and quadrature com-
ponents of the locally sensed signal by k-th SU for channel
m, respectively. The CVM test matrix is then formed by
finding the difference in the correlation of the sensed signal
envelopes with the sensed leader ones for all channels. Thus,
the CVM test matrix entries are calculated as [17]:

Tj,k = 1

12N
+

N∑

n=1

(
Fj

(
rmk (n)

) − 2n− 1

2N

)2

, (8)

where Fj(.) is cumulative distribution function of the received
signal by j-th SU acting as a leader for channel m, and N is
the number of samples used to sense one channel by each
SU. For each channel m, test values are computed only for
SUs, which are one hop away from the leaders. Otherwise,
the test value is set to 0.

Our objective is to select cooperative SUs with highest
CVM test values because they provide lowest correla-
tion between SUs’ signal envelopes and leaders’ signal
envelopes. We assume βjk to be a binary variable, which
defines whether k-th SU is selected for CSS or not
as follows:

βjk =
{

1, if k-th SU is cooperative with leader j
0, otherwise.

(9)

Then, an optimization problem for cooperative SU-
selection can be formulated as:

max
βjk

:
K∑

k=1

M∑

j=1

βjk × Tjk × ajk,

s.t. C1:
M∑

j=1

βjk ≥ 1,∀ k non-leaders ofM,

C2:
M∑

j=1

βjk ≥ 0, ∀ k leaders ofM,

C3:
M∑

j=1

βjk ≤ I,∀ k non-leaders ofM,

C4:
M∑

j=1

βjk ≤ I − 1,∀ k leaders ofM,

C5:
K∑

k=1

βjk ≤ K × I

M
− 1,∀ j leadersM,

C6: L ≤
KE∑
kE=1SNRjkE × βjkE

KE∑
kE=1βjkE

≤ U,∀ j leaders ofMN,

D7: L = (1 − p) × SNRavg, 0 ≤ p ≤ 1,

D8: U = (1 + p) × SNRavg, 0 ≤ p ≤ 1, (10)

where p is the tolerance probability for SNRavg, and L and
U are lower and upper bounds for SNRavg of all cooperative
SUs of each channel mN ∈ MN , respectively. As it has
been mentioned in Section II, only certain SUs in a CRN
can communicate with each other. Therefore, ajk is a binary
value set to 1 if k-th SU can communicate and be selected as
cooperative with leader j and 0 otherwise. A list of symbols
used in the model and their description is provided in Table 1.
The constraints (C1)-(C5) are introduced to balance energy

consumption among all channels and devices fairly. For each
Tjk matrix column, minimum of 1 (C1) and maximum of I
(C3) entries are chosen for the non-leader columns, whereas
the minimum of 0 (C2) and maximum of I− 1 (C4) entries
are chosen for the leaders’ ones. To limit system’s energy
consumption, constraint in (C5) sets the maximum number of
SUs which can sense one channel to K×I

M . In addition to this,
constraint (C6) is introduced only for the channels, which
we own no prior information about the signal being carried
by them, i.e., ED-based sensed channels. It ensures that the
actual average SNR value is dynamic for each channel with
the help of lower (D7) and upper (D8) bounds’ definitions
for the threshold SNRavg. The problem in (10) is also of
MILP type with linear objective function and constraints.
To solve problem (10), we adopted the B&B algorithm as
well. Here, the variables are of binary type.
The problem’s output is the optimized cooperative SUs’

vector for each channel m as Q = [Q1 Q2 · · · QM]T , where
Qm is the number of cooperative SUs for channel m and is
equal to:

Qm =
K∑

k=1

βjk, (11)

where j is the index of the leader for channel m.
In multi-band CSS, we want to achieve and operate in high

detection probability and low false alarm probability. In the
proposed HM2CSS scheme, we are aiming to achieve it by
selecting optimal cooperative SUs rather than putting con-
straints on the false alarm and detection probabilities. Each
selected PU protection level is integrated in the threshold
that is compared with test statistics to decide whether the
PU is occupying a channel or not. This threshold is propor-
tional to the SNR value at an SU. Hence, without specifying
the PU protection level directly in the optimization problem
in (10), it still has an influence on the outcome because it
depends on the selected threshold at an SU.
The selected cooperative SU-clusters use diffusion learn-

ing to exchange the locally sensed information upon which
it is decided if PUs are present or not as follows [28]:

Smk (i+ 1) = Smwavg(i) + μm
k

Qm∑

j=1

(
Smwavg(i) − Smj (i)

)
, (12)
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TABLE 1. Description of the symbols used in the model.

where Smwavg is the weighted test statistics’ average among
received cooperative SUs’, Smj is the test statistics calculated
by the j-th SU for channel m, i is the iteration number, and
μm
k is the learning step size. Reaching consensus point, the

point where all cooperative SUs have the same information
about the channel, implies performing several iterations.
Then, resulted test statistics are compared with the threshold
to decide if the channels are occupied or not. Finally, the
unoccupied channels can be assigned to SUs with highest
priorities for transmitting data.

C. APPLICABILITY OF HM2CSS TO IOT APPLICATIONS
The proposed HM2CSS scheme can be applicable to IoT
applications where SUs are typically low-complex nodes
with limited power, storage, and processing capabilities. This
is because of the following. To begin with, this scheme
implies the use of three different detector technologies for
SUs. The ED, PD, and OD technologies have different com-
plexity levels and power requirements to perform spectrum
sensing. Hence, SUs with limited power capabilities can
use the basic ED technology. Medium range SUs can uti-
lize the PD technology, while more sophisticated SUs, such
as sink nodes, can have the OD technology incorporated
within them. In addition, no information needs to be stored
from the previous cycles, which helps in saving the stor-
age space on SUs. Furthermore, the only information that is
needed by SUs to implement the proposed HM2CSS scheme
is the information about the detector type of the neighboring
nodes. Control channels can be used in determining the type
of detector for any given SU. For this purpose, each node
broadcasts the information about the detector type owned
to the neighboring nodes. What is more, not all SUs are
involved in the cooperative SUs’ selection process. At each
cycle of the SUs’ selection, different leaders are chosen.
The primarily role of SU-leaders is assisting in cooperative
SU-selection for their channels. In other words, SU-leaders
help in dividing all SUs into cooperative SU-clusters. Finally,
to coordinate among heterogeneous SUs distributed in the
network, we assume that cooperative SUs are synchronized.
Therefore, at least one SU should take over the synchroniza-
tion responsibility [29]. Here, we assume that SU-leaders’
second role is to ensure synchronization. The synchroniza-
tion of SUs and their information exchange can be done
through dedicated control channels.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS OF
HM2CSS
A brief analysis of the proposed HM2CSS scheme is
presented in this section. To begin with, the leader-selection
problems in (5) and (6) are equality constrained optimization
problems. First, it is worth mentioning that there exist
optimization problem formulations, where all constraints are
equality constraints, and the parameters are searched on a set
of manifolds that represent these equality constraints [30],
[31], [32]. In (5) and (6), we assume that both ckE and
ckP are binary variables in C1. We define the constraint to
be

∑MN
mN=1 bmNkE − ckE = 0 and

∑MP
mP=1 bmPkP − ckP = 0

for the ED-based and PD-based leader selection, respec-
tively. However, by simplifying, we can specify C1 as∑MN

mN=1 bmNkE = ckE and
∑MP

mP=1 bmPkP = ckP. We can notice

that the value of
∑MN

mN=1 bmNkE can range from 0 to MN .

Similarly, the value of
∑MP

mP=1 bmPkP can range from 0 to
MP. On the other hand, the variables ckE and ckP can range
from 0 to 1. C1 constrains the summation of bmNkE and
bmPkP variables to either 0 or 1. Here, we are interested in
the variable b matrix outcome, which has the size of MN-
by-KE and MP-by-KP in cases of ED-based and PD-based
leader-selection, respectively. The objective is that columns
and rows of matrix b should be orthogonal, meaning that:

b · bT = I, (13)

where I is the identity matrix. This indicates that the follow-
ing formulation has limited feasible solution space set and
always leads to a feasible solution. The feasible space rep-
resents a collection of non-square, i.e., rectangular, matrix
b permutations. Each permutation represents a product of a
permutation square matrix and a projection matrix, which
swaps round the basis vectors and then, projects onto the
span of the original basis vectors. Hence, the total number
of permutations are:

nEp = KE!

(KE −MN)!
and nPp = KP!

(KP −MP)!
, (14)

for the ED-based and PD-based leader-selection, respec-
tively. In addition, the number of constraints in both problems
grows linearly with the CRN size and number of channels
such as:

nEc = KE +MN and nPc = KP +MP (15)
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for the ED-based and PD-based cases, respectively.
Therefore, the computational complexity can be represented
as O(KE + MN) and O(KP + MP) for the problems in (5)
and (6), respectively. It is important to note that assuming
the same number of ED-based SUs and PD-based SUs, i.e.,
KE = KP, and channels they are sensing, i.e., MN = MP,
the complexity of leader-selection for both cases is similar.
However, for the OD-based case, the complexity is O(1)
because of the arbitrary leader-selection discussed in the
previous section.
In the proposed HM2CSS scheme, the optimization

problem in (10) is then used to select cooperative SUs. The
important part in analyzing the problem in (10) is com-
putational costs as a function of the problem size. The
constraints of the optimization problem represent inequal-
ities. Nowadays, the relation between the problem size of an
MILP and the average complexity of the solution for such
problems is believed to be an open issue [23]. As it has
been mentioned in the previous section, the B&B algorithm
is used to the problem in (10). In general, the B&B algo-
rithm has the worst case complexity scenario equal to the
exhausted search. However, the complexity depends on the
input variables and constraints fed to the algorithm.
On the other hand, in the best case scenario, the complex-

ity is linear because simple parallelism and incorporation
of heuristics may relax the problem and reduce the tree
size [23]. The parallelism mentioned is the ability of the
MILP tree nodes to be processed independently. Analyzing
the optimization problem in (10), the number of constraints,
i.e., nc, grows linearly with K, M, and MN as follows:

nc = 2 × K +M +MN . (16)

Further, we can notice that the number of variables, i.e., nv,
also depends on K and M such as:

nv = M × K. (17)

Therefore, the total complexity of the problem in (10) can
be presented as O((K +M+MN) ×K ×M). We can notice
that nv and nc do not depend on I, but the number of states,
i.e., ns, depends on I. Hence, the increase in I may lead to
computational complexity growth. However, since all vari-
ables are binary, the complexity depends on the number
of binary input combinations. Moreover, in the formulated
problem the constraint matrix is highly sparse, which reduces
the computational complexity by M−I

M × 100%. In other
words, the total complexity of the problem in (10) becomes
O((K + M + MN) × K × I). Note, for the case when I is
relatively small compared to M, the total complexity of the
problem in (10) can be approximated to O((K+M+MN)×K).
It is further important to mention that although equation (10)
conducts the selection of SUs belonging to all the three types
in one problem, it can conduct the selection of SUs belong-
ing to different types independently. This means that the
complexity of an optimization problem can be reduced by
running it separately and con-currently for all three types of
SUs, if needed.

The computational complexity of the diffusion learning
algorithm is another factor of interest. For diffusion learn-
ing, the computational complexity can be illustrated in the
number of additions and multiplications, which is:

nadd = 2 × i× (Qm)2 and

nmul =
(
(Qm)2 + Qm − 1

)
× i, (18)

respectively. Generally, diffusion learning requires low num-
ber of iterations, i.e., i, to reach the consensus (see simulation
results section below). The number of iterations and the con-
vergence stability depends on the learning step size, i.e., μm

k .
The higher the learning step size is, the faster the learning
process is. However, high values of μm

k may lead to insta-
bility. This is why the learning step size is usually chosen
between 0 and 1

Qm
for fast and stable convergence [7].

The discussion above shows that the problems in (5)
and (6) are low in complexity even when the number of
channels and the CRN size grows. Therefore, the main con-
cern for the computational complexity is the problem in (10).
Reducing the size of the problem formulation can reduce
the complexity of the solution. The impact of nv on the
problem solution is higher than the impact of nc. In this
case, a reasonable strategy that can be utilized is the modu-
larity principle [33]. The optimization problem in (10) could
be split into several modules each containing smaller values
of nv. Then, the optimal solution for the problems could be
found for each of them. However, constructing modules is
a challenging task and is out of scope of this paper, but can
be left as an open area for further investigation.
It is important to note, that a simple random assignment

of SUs to sense particular channels has the complexity of
O(K ×M× I) with the constraint that maximum I channels
can be sensed by each SU [13]. This means that the problem
in (10) has a higher computational complexity than random
assignment. Nevertheless, the problem in (10) allows better
system performance as it will be seen in the simulation
results section below.
Generally, two-stage optimization problems may lead

to a sub-optimal solution compared to joint optimization.
However, the reason why joint optimization is not consid-
ered in our case is the cooperative SU-selection dependence
on leaders. Leaders’ selection of the first stage acts as a
benchmark in selecting cooperative SUs for the second stage.
The second optimization problem has to be solved by lead-
ers only instead of all SUs. Therefore, such a configuration
allows complexity reduction of the system in total. Moreover,
selecting correct leaders helps in an efficient selection of
corresponding SUs, which results in detection performance
improvements. As it will be seen in the next section, the
two-stage solution in our case is shown to have stable
system performance and outperform existing multi-band CSS
schemes.

V. SIMULATION RESULTS
In this section, performance of the proposed HM2CSS
scheme is investigated. Three different network sizes are
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TABLE 2. Number of channels with the certain information available about them.

FIGURE 4. The OFDM signal transmission.

considered for simulation results. Those are M = 50 chan-
nels and K = 100 SUs, M = 25 channels and K = 50 SUs,
and M = 5 channels and K = 10 SUs. In the event that only
one network size is used, the M = 50 channels and K = 100
SUs scenario is assumed. The information available about
channels is displayed according to Table 2. PU signals with
no prior information are modeled as random Gaussian sig-
nals. PU signals with known pilot tones are assumed to have
binary phase shift keying (BPSK) modulated pilot tones and
the random Gaussian data-carrying signal part, where 10%
of the total PU signal power is allocated for the pilot tone
part. As for the OFDM PU signals, 16 quadrature amplitude
modulation (QAM) is used. As illustrated in Fig. 4, in total
100 blocks are used to construct one OFDM signal, where
the number of symbols in one block is assumed to be 32
with the cyclic prefix length of 8 for each block. In all cases,
the number of ED, PD, and OD-based SUs are assigned to
be approximately 40%, 40%, and 20%, respectively.

The three CRN sizes are considered to demonstrate the
trend of the proposed HM2CSS scheme’s behaviour in dif-
ferent practical IoT scenarios. For example, 10 SUs and 5
channels can represent a smart home application, 50 SUs and
25 channels can symbolize a smart parking system, whereas
100 SUs and 50 channels can express a smart campus [34],
[35], [36]. In an IoT-based CRN, 100 SUs is a reasonable
number because many sensor nodes can connect with each
one of them. For instance, in a smart campus application,
there may be 100 controllers with more than 5000 sensors
attached to them [36]. 50 controllers in a smart parking
system can connect more than 3000 sensors. In addition, 10
sensor nodes per house can connect more than 4000 sen-
sors in smart homes applications [34]. The assumption that
the number of SUs is higher than the available CR chan-
nels reflects the scarcity of the available spectrum in future
IoT systems and the challenge to fulfill the high spectrum
demands of competing SUs.
All the parameters set to the network model are as fol-

lows, unless specified. The minimum and maximum number

of channels sensed by one SU is set to be 1 and I = 5, respec-
tively. We assume that 100 SUs and 50 PUs are randomly
distributed in a 1000×1000m2 area. Each SU is achiev-
ing a specific SNR value, i.e., SNRmk , depending on the
location, distance to PUs, and fading and noise conditions.
Estimated SNRavg across each channel is assumed to be
−10 dB. In addition, we assume a fixed number of sam-
ples for each channel for synchronization purposes of the
diffusion-based distributed learning. The number of samples
sensed by one ED, PD, and OD-based SU per channel are
considered NED = 2000, NPD = 500, and NOD = 4000,
respectively. As for the sensing energy consumption, 40 nJ
of energy is assumed to be consumed by an SU for sens-
ing one sample [37]. The IEEE 802.22 standard is used as
a benchmark for simulation results, according to which the
total detection probability should be greater than 90%, while
the false alarm probability should be less than 10% [38].

A. DIFFUSION LEARNING ANALYSIS
We compare the proposed HM2CSS scheme with the het-
erogeneous version of the existing RSSS and ASSS schemes
presented in [3] and [13], respectively. RSSS and ASSS are
distributed multi-band CSS schemes, which can be imple-
mented in an IoT CRN with heterogeneous devices with
hardware limitations. Hence, we believe that RSSS and ASSS
are reasonable metrics to compare the proposed HM2CSS
scheme with. In this version of RSSS and ASSS, neighbor-
ing SUs are selected to form cooperative clusters for each
channel with the constraint that ED-based, PD-based, and
OD-based SUs are allowed to sense channels with no prior
information about the PU signal, channels with known pilot-
tones of the PU signal, and channels known to carry OFDM
signals, respectively. After that, SUs perform local spectrum
sensing. Similarly to HM2CSS, each SU is allowed to sense
maximum I channels, and each SU computes the test statis-
tics of its observations. SUs then exchange the local data
between each other to achieve a global decision about the
availability of channels. In this paper, we assume that it is
performed by means of diffusion learning for the sake of
similarity in comparison to the proposed HM2CSS scheme.
Hence, the first thing to consider is the difference between
the diffusion learning process of the proposed HM2CSS
scheme and the existing RSSS and ASSS schemes.
Fig. 5 (a), (b), and (c) illustrate the learning process of

the proposed HM2CSS and the existing RSSS and ASSS
schemes used to select cooperative ED-based SUs to sense
channel 2, respectively. Similarly, Fig. 5 (d), (e), and (f)
show the proposed HM2CSS and the existing schemes used
to select cooperative OD-based SUs to sense channel 5,
respectively. It can be observed that one of the main advan-
tages of the proposed HM2CSS scheme is that it does not
allow the choice of redundant cooperative SUs, the ones
with similar sensed information for the m-th channel. After
5 iterations, the consensus point is reached, and results are
compared to the threshold to determine the occupancy of
channels.
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FIGURE 5. The diffusion learning process for: (a) the proposed HM2CSS scheme of ED-sensed channel 2, (b) the existing RSSS scheme of ED-sensed channel 2, (c) the
existing ASSS scheme of ED-sensed channel 2, (d) the proposed HM2CSS scheme of OD-sensed channel 5, (e) the existing RSSS scheme of OD-sensed channel 5, and (f) the
existing ASSS scheme of OD-sensed channel 5.

It is important to mention that in the proposed HM2CSS
scheme, control channels are used for announcing the detec-
tor type, selected leaders, their corresponding cooperative
SUs as well as the distributed diffusion learning process.
However, in the existing RSSS and ASSS schemes, control
channels are used for announcing the detector type, selected
cooperative SUs, and the distributed diffusion learning pro-
cess, omitting the leader announcement step. For all schemes,
the diffusion learning process is the dominant factor in the
communication overhead of control channels. This is because
it involves performing several iterations to reach the con-
sensus point. Therefore, the communication overhead over
the control channels is almost the same for the proposed
HM2CSS and the existing RSSS and ASSS schemes.

B. RECEIVER OPERATING CHARACTERISTICS
RESULTS
Fig. 6 represents receiver operating characteristics (ROC)
for the proposed HM2CSS scheme. In Fig. 6(a), results
for the proposed HM2CSS scheme are compared with the
existing distributed RSSS and ASSS schemes. The proposed
HM2CSS scheme clearly outperforms the existing schemes.
It fulfills the requirements of the global detection proba-
bility Qd = 90% for the global false-alarm probability Qf
of less than 10% in the cases of M = 50 channels and
K = 100 SUs as well as M = 25 channels and K = 50 SUs,

whereas for the case of M = 5 channels and K = 10 SUs,
Qd = 90% is reached for the Qf value of a bit higher
than 10%. Moreover, as the network size increases, the
performance of the proposed HM2CSS scheme improves
due to a wider variety in selection of cooperative SUs. This
makes the system applicable to the future IoT networks as it
demonstrates the scalability advantage in terms of detection
performance. However, increasing the size of the network
decreases system performance for the existing RSSS scheme.
This can be explained by the way RSSS is accomplished or,
i.e., the way cooperative SUs are being chosen. In RSSS,
cooperative SUs are chosen arbitrary, i.e., in a random man-
ner. Hence, the chances to get cooperative SUs with at least
one of them to own feasible information for the channel
decreases as network size increases. As a result, this leads
to system performance degradation. As for the existing ASSS
scheme, although its performance tends to slightly improve
with increasing the network size due to adaptive principles,
it tends to have the lowest performance rate.
Fig. 6(b) shows how changing the maximum num-

ber of channels sensed by an SU affects aggregate ROC
performance for the proposed HM2CSS and the existing
RSSS and ASSS schemes. For the proposed HM2CSS
scheme, the enhancement of ROC stops at a certain point
of increasing I. This allows us to have decreased energy
consumption per SU as additional channels’ sensing requires
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FIGURE 6. Global ROC results: (a) the proposed distributed HM2CSS scheme compared to the existing distributed RSSS and ASSS schemes for different network sizes, (b) the
variation of the maximum number of channels allowed to be sensed by one SU for the proposed distributed HM2CSS scheme and the existing distributed RSSS and ASSS
schemes, (c) the proposed distributed HM2CSS scheme compared to the existing centralized schemes, and (d) the comparison between fixed and variable number of samples
between cooperative SU-clusters for the proposed distributed HM2CSS scheme.

extra power to be consumed on both sensing and trans-
mission processes. The aggregate detection probability for
I = 2 and I = 5 cases is slightly higher than for I = 8
when Qf ≤ 5%. This is because the selection of coop-
erative SUs for the proposed HM2CSS scheme is being
optimized. Choosing best 5 channels to be senses by each
SU can provide better detection performance than sensing
higher numbers of channels as 8 when some of them are
in the deep fading state with respect to the SU. This places
another advantage for low-power IoT devices, which are not
capable of sensing more than a certain number of chan-
nels at a time instance. However, for the existing RSSS
and ASSS schemes, system performance keeps improving
by increasing the number of channels sensed by an SU.
The more randomly selected cooperative SUs are chosen,
the better system performance is. Randomness of the RSSS
process can not guarantee that the selected channels to be
sensed by an SU are not in deep fade with respect to it.
Hence, choosing more channels to sense can enhance detec-
tion performance in this case. Regarding ASSS, as we have
seen previously, it allows the choice of cooperative SUs with
similar information available about them. This is the main
reason that ASSS’s performance improves with increasing I.
While Figs. 6(a) and (b) illustrate the proposed distributed

HM2CSS scheme with another existing distributed schemes,
Fig. 6(c) compares HM2CSS with the existing centralized

schemes. In the distributed case, we have assumed that
each SU calculates its own test statistics and then, this
information is combined by means of the diffusion learning
process. As for the centralized case, generally, the com-
bining of locally sensed information can be performed in
two ways, i.e., soft and hard combining [14]. In case of
soft combining, SUs forward the locally sensed data to an
FC without performing any local processing. The process-
ing and decision of the availability of channels is done by
an FC. In hard combining, each SU processes the locally
sensed information and sends its decision to an FC. Then,
an FC combines the received information to achieve a global
decision. Generally, soft combining techniques demonstrate
better detection performance [14]. However, hard combin-
ing techniques allow lower bandwidth utilization. In this
paper, we consider combined soft and hard combining in the
existing centralized schemes to achieve a trade-off between
the detection performance and bandwidth requirements. For
a fair comparison, in the existing centralized schemes, we
assume that SUs sense channels and then, perform local pro-
cessing to achieve the test statistics results. After that, they
send local test statistics to an FC, which performs further pro-
cessing. The processing of an FC includes comparing each
received test statistics with a threshold and combining the
results by means of rules. The OR, 20% k-out-of-K, major-
ity, and AND rules are taken into account for the centralized
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cases [3], [14]. Typically, the centralized OR and k-out-of-K
rules tend to outperform distributed schemes in terms of
ROC due to the high control level accommodated by an
FC [39]. However, Fig. 6(c) illustrates that the proposed
scheme outperforms most of the centralized rules as 20%
k-out-of-k, majority, and AND-rule and provides compara-
ble performance to the centralized OR-rule one. Both, the
proposed distributed HM2CSS and centralized OR-rule sat-
isfy the condition of Qd = 90% at the Qf value of less than
10%.

Finally, Fig. 6(d) illustrates ROC results for the proposed
HM2CSS scheme with variable and fixed number of samples
per channel being sensed by each SU. Synchronization dur-
ing the learning process is an important issue for distributed
systems [3]. However, this issue comes within cooperative
SUs sensing the same channel. Hence, different channels
may be sensed using different number of samples. This rep-
resents an advantage to heterogeneous systems as the number
of samples needed for different detector types may vary. ROC
with fixed NED = NPD = NOD = 2000 results are compared
with the allowed variation of NED = 2000, NPD = 500,
and NOD = 4000. In the results of Fig. 6(d), the allowed
variation in samples sensed by each detector type proves to
enhance ROC performance without disturbing the learning
synchronization per cooperative SU-cluster as only similar
detector types are chosen as cooperative.

C. AGGREGATE PRIMARY USER PROTECTION LEVEL
VS AVERAGE SIGNAL-TO-NOISE RATIO ANALYSIS
In Fig. 7(a), the PU protection level or global detection
probability, Qd, with respect to different values of SNRavg is
used to compare the proposed HM2CSS scheme to the exist-
ing RSSS and ASSS schemes. The false-alarm probability
is fixed and set to 10%. It is clear that for all SNRavg val-
ues the proposed HM2CSS scheme outperforms the existing
RSSS and ASSS schemes. The global detection probability
reaches 90% for the proposed HM2CSS scheme at SNRavg
of slightly higher than −12 dB for M = 50 channels and
K = 100 SUs, −12 dB for M = 25 channels and K = 50
SUs, and −9 dB for M = 5 channels and K = 10 SUs
cases. However, in all three cases the existing RSSS scheme
achieves the minimum required global probability of detec-
tion at SNRavg = −8 dB. It can be concluded that at the
SNRavg value of −10 dB, the proposed HM2CSS scheme
outperforms RSSS by 14.5%, 12%, and 7.2% for the cases
of M = 50 channels and K = 100 SUs, M = 25 chan-
nels and K = 50 SUs, and M = 5 channels and K = 10
SUs, respectively. What is more, the existing ASSS scheme
does not reach the 90% global detection probability for the
global false alarm probability of 10%. For all three network
configurations, the existing ASSS scheme has the aggregate
detection probability of 80% at SNRavg = 0 dB.

Fig. 7(b) discloses the effect of maximum number of chan-
nels sensed by one SU, I, by varying SNRavg for the proposed
HM2CSS and existing RSSS and ASSS schemes. The values
of I = 8, I = 5, and I = 2 are considered for the simulation

results. In case of the proposed HM2CSS scheme, increas-
ing I does not have significant impact on the results. For
all listed values of I the global detection probability reaches
90% at the SNRavg values under −11 dB. Moreover, at the
SNRavg value of −10 dB, all three cases considered have
the global detection probability of approximately 95%. This
brings an advantage of HM2CSS as in case an SU is not
capable of sensing I channels due to power limitations and
has to decrease its value, the system performance will not
experience sensible changes. Whereas for RSSS, for I values
of 8, 5, and 2, the corresponding global detection probability
reaches 90% at the values of −9 dB, −8 dB, and −6 dB,
respectively. Further, using RSSS, the global detection prob-
ability is 86%, 83%, and 78% at the SNRavg value of −10 dB
with I values of 8, 5, and 2, respectively. As for the existing
ASSS scheme, it does not reach the 90% global detection
probability while varying I. For all three network configura-
tions, the existing ASSS scheme has the aggregate detection
probability of approximately 50% at SNRavg = −10 dB.

Fig. 7(c) illustrates the comparison of the proposed
distributed HM2CSS scheme and the existing centralized
schemes discussed above. Although at very low SNRavg
values centralized OR and 20% k-out-of-K rules tend to
outperform HM2CSS, already at SNRavg of slightly higher
than −17 dB and −14 dB, the proposed HM2CSS scheme
outperforms the 20% k-out-of-K and OR centralized rules,
respectively. This can be explained as follows. At very low
SNR values, noise level is high, and centralized systems
tends to outperform due to high control level provided by an
FC. However, at the SNRavg value of −10 dB, the proposed
distributed HM2CSS scheme outperforms the centralized
OR, 20% k-out-of-K, majority, and AND rules by 5.6%,
15.9%, 75.9%, and more than 5 times, respectively, with the
aggregate detection probability of 95%.
Fig. 7(d) shows curves with global false-alarm proba-

bility values of 10% and 30%. The enhancement for the
proposed HM2CSS scheme is in the similar manner for
all three network sizes as the global false-alarm probabil-
ity increases. Moreover, this enhancement has similar trend
of approximately 10% in aggregate detection probability for
the SNRavg value of −10 dB. Finally, the increase in system
performance can be noticed as the network size grows.

D. THROUGHPUT ANALYSIS
In this section, we compare CRN throughput results of the
proposed HM2CSS scheme with existing multi-band CSS
schemes. Considering IEEE 802.22 standard, aggregate false
alarm probability is set to be 10%. The interference level
coming from each PU is set to be −10 dB, while the channel
bandwidth and the PU-activity is set to be 6MHz and 30%,
respectively.
Fig. 8(a) compares the proposed distributed HM2CSS

scheme with the existing distributed RSSS and ASSS
schemes. Clearly, the proposed HM2CSS scheme outper-
forms the existing RSSS and ASSS schemes. Already at the
global detection probability of 60%, 65%, and 87%, CRN
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FIGURE 7. Global PU protection level vs SNRavg for: (a) the proposed distributed HM2CSS scheme compared to the existing distributed RSSS and ASSS schemes for
different network sizes, (b) the variation of the maximum number of channels allowed to be sensed by an SU for the proposed distributed HM2CSS scheme and the existing
distributed RSSS and ASSS schemes, (c) the proposed distributed HM2CSS scheme compared to the existing centralized schemes, and (d) the variation of the global false alarm
probability for the proposed distributed HM2CSS scheme.

FIGURE 8. Aggregate CRN throughput results: (a) comparison between the proposed distributed HM2CSS scheme and the existing distributed RSSS and ASSS schemes for
different network sizes and (b) comparison between the proposed distributed HM2CSS scheme and the existing centralized schemes.

throughput for the existing RSSS scheme starts to degrade
with respect to the proposed HM2CSS scheme for the cases
of M = 50 channels and K = 100 SUs, M = 25 channels

and K = 50 SUs, and M = 5 channels and K = 10 SUs,
respectively. Note that for the existing RSSS scheme, the
aggregate throughput drops suddenly to very low values
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FIGURE 9. Comparison of the proposed HM2CSS scheme with the existing RSSS and ASSS schemes in terms of average sensing energy consumption level per channel for:
(a) ED-sensed channels, (b) PD-sensed channels, and (c) OD-sensed channels.

at the global detection probability of approximately 90%
for all three networks. However, the proposed HM2CSS
scheme maintains smooth logarithmic curves achieving bet-
ter throughput results by 7.3, 3.6, and 1.4 times for the three
network sizes, respectively. In contrast to the existing RSSS
scheme, the existing ASSS scheme maintains a smooth loga-
rithmic curve. Its performance starts degrading with respect
to the proposed HM2CSS and existing RSSS schemes at
approximately 30%, 35%, and 53% aggregate PU protec-
tion level for the cases of M = 50 channels and K = 100
SUs, M = 25 channels and K = 50 SUs, and M = 5
channels and K = 10 SUs, respectively. The improvement
of the proposed HM2CSS scheme compared to the exist-
ing RSSS and ASSS schemes increases as the network size
grows. In the proposed HM2CSS, the modularity of the
first stage allows to consider different attributes, i.e., char-
acteristics, of three channels/IoT devices types available. As
a result, this leads to efficient utilization of resources and
hence, boosts the throughput of the whole heterogeneous
CRN.
Fig. 8(b) compares the proposed distributed HM2CSS

scheme and the existing OR, 20% k-out-of-K, majority, and
AND rule centralized schemes. HM2CSS tends to perform
in a similar manner to the centralized OR rule, achieving 29
Mbps of aggregate CRN throughput for the global detection
probability of approximately 90%. Moreover, HM2CSS

outperforms the 20% k-out-of-K, majority, and AND rules
by 11.5%, 7.25 times, and 19.3 times, respectively.

E. ENERGY CONSUMPTION ON THE SENSING PROCESS
In both, the proposed HM2CSS and the existing RSSS
and ASSS schemes, diffusion learning is used to exchange
information between cooperative SUs. Hence, having the
same impact on both schemes, for the comparison purposes,
the consumed energy on the learning and decision process
can be omitted. Therefore, in this section, we focus on the
distribution of energy spent on the sensing process among
SUs as a result of using a particular CSS scheme. We also
focus on differences in the behavior of different detector
types, i.e., ED, PD, and OD, for the proposed HM2CSS
and the existing RSSS and ASSS schemes. Note that even
though both schemes use diffusion learning, the efficiency
of the learning is not the same. As we have discussed
previously, by efficient diffusion learning we define select-
ing SUs owning different locally sensed information, i.e., the
useful energy consumption. Although energy consumed on
the decision may be similar, as we have seen in Section III-A,
the efficiency of learning is different.
Fig. 9 illustrates average sensing energy consumption for

different channels for the proposed HM2CSS scheme com-
pared to the existing RSSS and ASSS schemes. To begin
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with, the proposed HM2CSS scheme shows fair distribu-
tion of sensing energy consumption across all channels of
the same type, while the existing RSSS and ASSS schemes
consume more energy on sensing one channel and less on
another. This is done through selecting near-equal, depend-
ing on availability, number of SUs to sense each channel.
However, the existing RSSS scheme selects the number of
SUs to sense each channel arbitrarily, i.e., in a random man-
ner. In addition, the existing ASSS scheme does not consider
the fairness constraint in its solution. This is why the sens-
ing energy consumed varies. Note that the variation of the
average amount of energy consumed for sensing channels
1 to 20 in Fig. 9(a), 21 to 40 in Fig. 9(b), and 41 to 50
in Fig. 9(c) comes from the differences in the number of
samples used for each detector type. Higher number of sam-
ples needed to sense a channel requires greater amount of
energy to perform sensing. Despite the fact that the aver-
age amount of sensing energy for ED-sensed channels, i.e.,
channels 1 to 20, is relatively higher for HM2CSS than
for RSSS and ASSS, and the PD-sensed channels has a
slight increase in the energy consumption as well, the OD-
sensed channels demonstrate reduced energy consumption.
This is because the more information is available about the
channel, the less number of cooperative SUs are needed
to sense it. Finally, aggregate sensing energy consumption
of the system depends on the system configuration chosen.
This is because different detectors imply different sensing
energy consumption. For instance, for sensing one channel,
OD-based detector consumes 2 times more energy than ED-
based detector, and ED-based detector consumes 4 times
more energy than PD-based detector. In addition, aggregate
sensing energy depends on the number of nodes selected to
sense the channel, which further depends on the particular
CSS scheme selected. For the considered system configura-
tion, the aggregate sensing energy for the proposed HM2CSS
scheme (35 mJ) is 41.7% less than the existing RSSS scheme
(60 mJ). Although the aggregate sensing energy of the exist-
ing ASSS scheme (25mJ) is slightly lower than the aggregate
sensing energy of the proposed HM2CSS scheme (35 mJ) for
the considered configuration, as we have seen in the provided
simulation results, this comes at the expense of the overall
system performance. In addition, even though the aggre-
gate sensing energy consumption depends on the chosen
system configuration, the constraints in the second stage of
the SU-selection process for the proposed HM2CSS scheme
limit energy consumption independently of the configuration.
Therefore, for all system configuration, the sensing energy
consumption cannot exceed the maximum allowed sensing
limit of the devices.

VI. CONCLUSION
In this paper, we proposed a diffusion learning-based
HM2CSS scheme for distributed multi-band CRNs. We
formulated a two-stage scheme to provide an efficient coop-
erative SU-selection for all channels. The first stage consists
of forming SU-leaders based on which cooperative SUs

are selected in the second stage. Simulation results show
that the proposed HM2CSS scheme outperforms the exist-
ing multi-band CSS schemes in global detection probability
and CRN throughput. Moreover, while the existing dis-
tributed scheme’s performance starts degrading as network
size increases, HM2CSS improves the performance as the
system size grows. Hence, HM2CSS is scalable in terms
of detection performance, which allows supplementary SUs’
addition without extra human intervention needed to keep
stable system performance level. The proposed HM2CSS
scheme provides fair energy consumption for CSS on all
channels. Finally, one of the possible applications for the
proposed scheme is smart transportations. Electrical vehi-
cles can be equipped with sensing technologies and small
computers, capable of performing the presented optimization
problems. Nevertheless, HM2CSS has its own drawbacks yet
to overcome as relatively higher computational complex-
ity and power consumption per channel for certain detector
types. The scheme may still represent challenges for small
IoT devices.
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