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ABSTRACT This paper studies optimum detectors and error rate analysis for wireless systems with
low-resolution quantizers in the presence of fading and noise. A universal lower bound on the average
symbol error probability (SEP), correct for all M-ary modulation schemes, is obtained when the number of
quantization bits is not enough to resolve M signal points. In the special case of M-ary phase shift keying
(M-PSK), the maximum likelihood detector is derived. Utilizing the structure of the derived detector, a
general average SEP expression for M-PSK modulation with n-bit quantization is obtained when the
wireless channel is subject to fading with a circularly-symmetric distribution. For the Nakagami-m fading,
it is shown that a transceiver architecture with n-bit quantization is asymptotically optimum in terms of
communication reliability if n ≥ log2 M + 1. That is, the decay exponent for the average SEP is the
same and equal to m with infinite-bit and n-bit quantizers for n ≥ log2 M + 1. On the other hand, it is
only equal to 1

2 and 0 for n = log2 M and n < log2 M, respectively. An extensive simulation study is
performed to illustrate the accuracy of the derived results, energy efficiency gains obtained by means of
low-resolution quantizers, performance comparison of phase modulated systems with independent in-phase
and quadrature channel quantization and robustness of the derived results under channel estimation errors.

INDEX TERMS Low-resolution ADCs, maximum likelihood detectors, symbol error probability, diversity
order.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION

ANALOG-TO-DIGITAL converters (ADCs) are known
to consume most of the power dissipated at a base sta-

tion [1]. It is shown that the power consumed by ADCs grows
exponentially with their resolution level and linearly with
their sampling rate [2], [3]. Thus, using high-resolution quan-
tization with high sampling rates can significantly degrade
the energy efficiency of a communication system. With
the introduction of massive multiple-input-multiple-output
(MIMO) and millimeter wave (mmWave) technology, this is
even more prominent in next generation wireless systems.
Because, massive MIMO systems use hundreds of anten-
nas where each antenna is connected to a dedicated radio

frequency (RF) chain equipped with high-resolution ADCs.
MmWave systems, on the other hand, use much larger band-
widths that require higher sampling rates. In fact, the typical
power consumption of a high speed (≥ 20 GSamples/s) and
high-resolution (8-12 bits) ADC is around 500 [mWatts]. As
an RF chain contains one ADC for the in-phase (I) com-
ponent and another ADC for the quadrature (Q) component
of the received signal, the total power consumption of the
ADCs in a single RF chain is around 1 [Watts]. Therefore, a
future mmWave massive MIMO system with 256 RF chains
and 512 ADCs will require around 256 [Watts] of power [4],
which is potentially unaffordable.
To overcome this challenge, one can consider two possible

solutions. The first solution is to use high-resolution but
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low-speed sub-ADCs, whereas the second one is to use high-
speed but low-resolution ADCs. Since high-resolution but
low-speed sub-ADC architecture introduces error floors due
to mismatches among sub-ADCs [4], the research in the field
has been more focused on the second solution. Consequently,
the idea of replacing power hungry high-resolution ADCs
with low-resolution ADCs could provide a viable solution to
the power consumption concerns in future wireless systems.
Indeed, low-resolution ADCs have long been known to

provide significant energy savings in digital transceiver
implementations [5]–[7]. Their other benefits include simpli-
fication in design (especially with 1-bit ADCs) and reduction
in transceiver form-factor [4], [8], [9]. On the other hand,
using low-resolution ADCs will limit the amount of data
that has to be transferred over the link that connects the RF
components and the baseband-processing unit [10]. For an
example, let us consider a base station which is equipped
with 256 antenna arrays. At each antenna element, the in-
phase and the quadrature components are sampled with
10-bit ADCs operating at 20 GSamples/s. Such a system
produces over 10 Tbit/s of data. However, this data rate
exceeds the rate supported by the common public radio
interface (CPRI) used over today’s fiber-optical fronthaul
links [11]. This is also a severe problem in cloud radio
access network (C-RAN) architecture where the baseband
processing is moved away to a central unit from the base
stations [12]. Furthermore, the future long-term evolution
(LTE) networks are also expected to support a wide range
of Internet-of-Things (IoT) applications through protocols
such as LTE-M, NB-IoT and EC-GSM, where devices are
usually battery power-limited [13]. In these future applica-
tion scenarios, low-resolution ADC based digital transceivers
have the ability to prolong the battery lifetime of remote IoT
devices as well, and thereby lessening the operating costs
and the need for frequent human intervention.
Motivated by the potential of low resolution ADCs, in

this paper, we aim to understand the fundamental trade-off
between using low resolution quantization and achieving a
higher communication reliability. More specifically, we anal-
yse the error probability performance of a communication
system, when the receiver is equipped with a phase quantizer
that only outputs the knowledge of the phase quantization
region on which the received signal lands. The phase quan-
tization is a generalization of the one-bit ADCs, i.e., one for
each in-phase and quadrature components of the received sig-
nal, considered in several previous works [5], [9], [14]–[26],
in which the quantizer only outputs the quadrant on which
the received signal lands. Using the derived structure of the
maximum likelihood (ML) detector, we fully characterize
the symbol error probability performance of a single-input
single-output (SISO) system when the receiver is equipped
with an n-bit phase quatizer.

We note that the SISO system provides the basic building
block of a more complex MIMO system. We adopt the SISO
system to draw fundamental insights. It allows us to con-
duct a rigorous mathematical investigation to provide exact

analytical expressions for the error probability performance.
The performance results obtained in this paper hold in the
general case of n-bit quantization, M-ary phase shift keying
(M-PSK) modulation and Nakagami-m fading channels. We
note that some work on low-resolution ADCs have previously
focused on MIMO systems [5], [9], [14]–[25], but under
the case of one-bit quantization. In this paper, our focus is
on identifying the trade-off between the number of quan-
tization bits and the error probability performance, which
has not been considered previously. Therefore, we take a
different approach in which we allow the number of bits
in the quantizer to vary until the transceiver architecture
becomes asymptotically optimum in terms of communication
reliability.

B. RELATED WORK
Over the years, using low-resolution ADCs in wireless com-
munication systems has been investigated under various
aspects. The performance of communication systems with
low-resolution ADCs is lower than that of the idealized
systems without quantization or traditional systems with
high-resolution ADCs. It was shown in [21] that the capacity
of a point-to-point MIMO channel with 1-bit ADCs is lower
bounded by the rank of the channel in the high signal-to-
noise ratio (SNR) regime. Results in [23] and [24] show
that the channel capacity reduces by a factor of 2/π (1.96
dB) in the low-SNR regime for a MIMO system with 1-
bit ADCs, when compared to a conventional high-resolution
system. Further, the results in [25] establish the fact that
the performance loss due to employing 1-bit ADCs can be
overcome by having approximately 2.5 times more antennas
at the base station.
In [27], authors focus on the information rate of a quan-

tized block non-coherent channel with 1-bit ADCs. The
results in this paper show that around 80−85% of the mutual
information attained with unquantized observations can also
be attained with 3-bit quantization for QPSK modulation
and SNR greater than 2-3 dB. In [28], authors presented a
mixed-ADC architecture for MIMO systems in which some
of the high-resolution ADCs were replaced with 1-bit ADCs.
Their results show that the proposed architecture can achieve
a near-similar performance as conventional architecture while
reducing the energy consumption considerably.
Signal detection rules developed for receivers with high-

resolution ADCs often become sub-optimal for receivers with
low-resolution ADCs [4]. In [29], the authors propose a
linear minimum mean square error (LMMSE) receiver when
in-phase and quadrature components of the received signal
are independently quantized by using a low-resolution ADC.
They provide an approximation for the mean squared error
between the transmitted symbol and the received one, and
derive an optimized linear receiver which performs better
than the conventional Weiner filter. Results in [29] were
further extended to an iterative decision feedback receiver
with quantized observations in [30].
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For the same quantizer structure of independent quanti-
zation of in-phase and quadrature signal components, an
ML detector was obtained in [14] by using only 1-bit
ADCs. The complexity of the ML detector proposed in [14]
grows exponentially with high signal constellations, num-
ber of transmit antennas and network size, which is not
practical for real-world deployments. To overcome this dif-
ficulty, a near-optimum ML detector was proposed in [15] by
using the convex optimization techniques. Although the SEP
performance of the proposed near-optimum ML detector is
better than the performance of linear detectors, it has been
numerically observed that the proposed near-optimum ML
detector still suffers from an error floor as SNR increases
[4], [15]. Complementing this critical observation, in our
work, we show the existence of a universal error floor below
which the average SEP cannot be pushed down for any M-
ary modulation scheme and quantizer structure if the number
of quantization bits is less than log2 M.
For a massive MIMO system with one-bit ADCs, a sphere

decoding based low-complexity near-ML detection method
is presented in [31]. In the proposed algorithm, which is
called one-bit-sphere decoding (OSD), the complexity of
the construction of the sphere is reduced by dividing the
received signal vector into multiple subvectors. The authors
discuss the trade-off between performance and complexity
with the dimension of the sphere and the length of the
subvectors. In [32], the authors focus on the development
of soft-output detection methods for low-precision ADCs
and propose another near-optimal detection method for a
coded mmWave MIMO system. More recently, there has
been progress in machine learning based approaches as well
[33]–[35]. In [33], [34] a reinforcement learning approach is
used to design a robust likelihood function learning method
for MIMO systems with one-bit ADCs. For a similar system,
a semi-supervised learning detector is proposed in [35] which
is further improved to an online-learning detector.

C. MAIN CONTRIBUTIONS
In this paper, we consider a point-to-point wireless commu-
nication system, in which the receiver is equipped with a
low-resolution ADC that quantizes the phase of the received
signal. Our main contributions are summarized as follows.

• For any M-ary modulation scheme and quantizer struc-
ture, we show the existence of an error floor below
which the average symbol error probability (SEP) can-
not be pushed if the number of quantization bits n is less
than log2 M. This provides a fundamental performance
limit for the SEP of a communication system that does
not have enough quantization bits to resolve the M
possible transmitted signals. This result is presented in
Theorem 1.

• Motivated by the capacity achieving property of cir-
cularly symmetric input distributions for low-resolution
ADCs [36], we adopt M-PSK modulation and derive the
optimum ML detection rule for signal detection with
low-resolution ADCs. For the general n-bit quantization,

we obtain exact analytical expressions for the average
SEP attained by the derived ML rule, when the wire-
less channel is subjected to Nakagami-m fading. We use
extensive numerical examples to compare the analytical
expressions against the Monte-Carlo simulations. These
results are presented in Theorems 2 and 3 respectively.

• We establish a fundamental ternary behavior in the aver-
age SEP performance of a wireless communication
system with low-resolution ADCs and M-PSK modula-
tion. Based on the Nakagami-m fading model, we show
that the decay exponent of the average SEP is the same
with that of an infinite-bit quantization, which is equal
to m, when n is larger than or equal to log2 M+ 1. We
also show that it is equal to 1

2 and 0 for n = log2 M
and n < log2 M, respectively. This result is presented
in Theorem 4.

• By analysing the error probability performance in the
high-SNR regime, we characterize the diversity order
for low-resolution ADC based communication systems.
From a system design point of view, our results show
that using one additional bit on top of log2 M of
them can achieve optimum communication robustness
in the high-SNR regime. In particular, for fading envi-
ronments with a large value of m, using an extra
quantization bit improves communication reliability sig-
nificantly. On the other hand, for fading environments
with a low value of m, it may be more beneficial to
use log2 M bits, without sacrificing from communica-
tion robustness too much but doubling system energy
efficiency.

• We perform a numerical analysis to compare the
performance of phase quantization to the more com-
mon situation where I and Q channels are independently
quantized. For this analysis, we focus on Rayleigh
fading (m = 1) with QPSK (M = 4) modulation to
obtain some initial key insights into the potential bit
savings that can be provided by the phase quantization
approach employed in the paper. While clearly 2-bit
phase quantization is identical to using 1-bit quantiza-
tion on each of the I and Q arms, we show that 3-bit
phase quantization performs very similarly to the opti-
mized independent I and Q quantization using 4-bits.
This indicates that phase quantization provides a 1-bit
saving in this particular case. Further, our analysis also
demonstrates that the optimized independent quantiza-
tion with 6-bits in total performs the same as 4-bit phase
quantization, i.e., a saving of 2 bits. An important con-
clusion from this analysis is that not only does phase
quantization have the potential to save bits, but the inde-
pendent case needs to be optimized and adjusted as a
function of the channel statistics, something that is not
required for phase quantization.

• We provide a numerical analysis establishing an impor-
tant robustness property for our analytical results under
channel state estimation errors. A salient feature aris-
ing from this numerical analysis is that the derived
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fundamental ternary behaviour of the decay exponent
of p(SNR) stays the same if n + 1 bits are used dur-
ing the channel estimation stage, while n being the
number of bits used for data decoding. Moreover, the
performance difference between using n and n+ 1 bits
for channel estimation becomes negligibly small as n
increases. We note that the use of different number
of bits for data decoding and channel estimation is
possible by employing mixed-ADC receiver architec-
tures commonly used in the literature. Furthermore, the
same effect to improve channel estimation accuracy
can be achieved by using carefully designed training
sequences to perform a bisection search during the
channel estimate phase.

The material in this paper was presented in part at [37]
and [38]. In [37] we focus only on QPSK modulation for
Rayleigh fading environments and in [38] we generalize the
error probability results to M-PSK modulation under any
circularly symmetric fading distributions. The present paper
expands upon the results presented in [37] and [38] and
provides a rigorous error probability performance and diver-
sity order analysis under Nakagami-m fading. Our results in
Theorem 4 (together with Theorem 1) establishes a funda-
mental ternary behaviour for the symbol error probability in
the high SNR regime for low-resolution ADC based receiver
architectures. These results do not appear in our previous
work [37] and [38], or exist in any other previous paper in
the literature. Further, we present a numerical performance
comparison of phase quantization to the situation where the
in-phase and quadrature channels are independently quan-
tized. We further extend our numerical analysis to evaluate
the robustness of our findings to imperfect channel state
information. This analysis did not exist in our previous
work [37] and [38].

D. NOTATION
We use uppercase letters to represent random variables and
calligraphic letters to represent sets. We use R, R2 and N

to denote the real line, 2-dimensional Euclidean space and
natural numbers, respectively. For a pair of integers i ≤ j,
we use

[
i : j
]
to denote the discrete interval {i, i+ 1, . . . , j}.

For two functions f and g, we will say f (x) = O(g(x))
as x → x0 if |f (x)| ≤ c|g(x)| for some c > 0 when x is
sufficiently close to x0. Similarly, we will say f (x) = �(g(x))
as x → x0 if |f (x)| ≥ c|g(x)| for some c > 0 when x is
sufficiently close to x0. We write f (x) = �(g(x)) as x → x0
if f (x) = O(g(x)) and f (x) = �(g(x)) as x → x0. Finally,
we will say f (x) = o(g(x)) as x → x0 if limx→x0

∣
∣∣ f (x)g(x)

∣
∣∣ = 0.

The set of complex numbers C is R
2 equipped with the

usual complex addition and complex multiplication. We write
z = zre + jzim to represent a complex number z ∈ C,
where j = √−1 is the imaginary unit of C, and zre
and zim are called, respectively, real and imaginary parts
of z [39]. Every z ∈ C has also a polar representation

z = |z|ejθ = |z|(cos(θ) + j sin(θ)), where |z| �
√
z2re + z2im

is the magnitude of z and θ = Arg(z) ∈ [−π, π) is called the
(principle) argument of z.1 As is common in the communi-
cations and signal processing literature, Arg(z) will also be
called the phase of z (modulo 2π ). For a complex random
variable Z = Zre + jZim, we define its mean and variance
as E[Z] � E[Zre] + jE[Zim] and Var(Z) � E

[
|Z − E[Z]|2

]
,

respectively. We say that Z is circularly-symmetric if Z and
ejθZ induce the same probability distribution over C for
all θ ∈ R [40], [41]. For x > 0, log x and log2 x will
denote natural logarithm of x and logarithm of x in base 2,
respectively.

II. SYSTEM SETUP
A. CHANNEL MODEL AND SIGNAL MODULATION
We consider the classical point-to-point wireless chan-
nel model with flat-fading. For this channel, the received
discrete-time baseband equivalent signal Y can be
expressed by

Y = √
SNRHX +W, (1)

where X ∈ C ⊂ C is the transmitted signal, C is the constel-
lation set of information signals in C, SNR is the ratio of
the transmitted signal energy to the additive white Gaussian
noise (AWGN) spectral density, H ∈ C is the unit power
channel gain between the transmitter and the receiver, and W
is the circularly-symmetric zero-mean unit-variance AWGN,
i.e., W ∼ CN (0, 1). In order to formalize the receiver archi-
tecture and the optimum signal detection problem below, we

will assume that C =
{
e
jπ
(

2k+1
M −1

)}M−1

k=0
in the remainder

of the paper, which is the classical M-ary phase shift keying
(M-PSK) signal constellation2 and for ease of exposition,
we only consider the case in which M is an integer power
of 2.3

B. RECEIVER ARCHITECTURE
The receiver architecture is based on a low-resolution ADC.
As illustrated in Fig. 1, the received signal Y is first sent
through a low-resolution quantizer, and then the resulting
quantized signal information is used to determine the trans-
mitted symbol X. More specifically, if n bits are used to
quantize Y , the quantizer Q divides the complex domain C

into 2n quantization regions and outputs the index of the
region in which Y lies as an input to the detector. As such,
we declare Q(Y) = k if Y ∈ Rk for k ∈ [0 : 2n − 1], where
Rk ⊆ C is the kth quantization region. Since information
is encoded in the phase of X with the above choice of
constellation points, we choose Rk as the convex cone
given by

Rk =
{
z ∈ C :

2π

2n
k ≤ Arg(z) + π <

2π

2n
(k + 1)

}
. (2)

1. The range of Arg(z) can be taken to be any interval of length 2π .
For our purposes, taking its range to be [−π, π) will help to simplify the
notation for some integral expressions.

2. This choice of C ensures that the phase of X always lies in [−π, π).
3. Extensions of our results to the more general case of M being any

positive integer is straightforward, albeit with more complicated notation
and separate analyses in some special cases.
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FIGURE 1. The receiver architecture with low-resolution quantization. The signal
detector observes only the n-bit quantized versions of Y to estimate the transmitted
signal.

The use of phase quantization in our receiver architecture is
further motivated by the following two factors. First, consid-
ering channel impairments as phase rotations in transmitted
signals, quantization and decision regions for M-PSK mod-
ulation are conveniently modelled as convex cones in the
complex plane [42] as described above, and without requiring
the use of automatic gain control. Second, phase quantiz-
ers can be implemented using one-bit ADCs that consist of
simple comparators, and they consume negligible power (in
the order of mWatts).
We also assume that full channel state information (CSI) is

available at the receiver. The motivation behind our model
with full-precision CSI in the paper is two-fold. First, in
previous work [8], it was shown that it is possible to attain
a high channel estimation precision (for SNR = 10 dB,
the estimator based on 3-bit ADC gives a mean square
error of −20 dB with 11 training symbols) with the use of
low-resolution ADCs by increasing the number of training
symbols in the closed-loop estimation process.
Second, the mixed-ADC architectures are also commonly

investigated in the literature, and they can be employed
to achieve high channel estimation accuracy [28]. In a
mixed-ADC architecture, high-resolution ADCs (structured
through either serial or parallel connections) are used dur-
ing the channel estimation stage [5], [8], [28] and during
the data transmission phase, the receiver switches to low-
resolution operation by using less number of quantization
bits. Although the energy consumption is increased in
this approach, this is not a restrictive degradation for our
purposes. Each fading state will span a large group of
information bits at the target multiple Gbits per second data
rates in next generation wireless systems. Hence, the energy
saving during data transmission is more significant than the
increased energy consumption during channel estimation.
Based on the existing results for channel estimation accu-
racy with low-resolution quantizers, the assumption on the
availability of full channel state information at the receiver
is also commonly used by the pioneering papers in the field
[8], [43]–[45]. The effect of channel estimation errors on the
SEP performance are further investigated in Section VII-C.

III. OPTIMUM SIGNAL DETECTION
The aim of the detector is to minimize the SEP by using the
knowledge of Q(Y) and channel state information, which can
be represented as selecting a signal point x̂(k, h) satisfying

x̂(k, h) ∈ arg max
x∈C

Pr
{
X = x

∣∣Q(Y) = k,H = h
}
, (3)

for h ∈ C and k ∈ [0 : 2n − 1]. The main performance
figure of merit for the optimum detector is the average SEP

given by

p
(
SNR

) = Pr
{
X 
= x̂(Q(Y),H)

}
. (4)

It is important to note that p
(
SNR

)
depends on SNR as well

as the number of quantization bits. Our first result indicates
that there is an SNR-independent error floor such that the
average SEP values below which cannot be attained for
n < log2 M. The following theorem establishes this result
formally.
Theorem 1: Let pmin be the probability of the least prob-

able transmitted symbol. If n < log2 M, then for any choice
of modulation scheme and quantizer structure

p
(
SNR

) ≥ M − 2n

2n
pmin (5)

for all SNR ≥ 0.
Proof: See Appendix A.
Firstly, we note that the error floor in (5) is always a

valid lower bound since pmin ≤ 1
M . Secondly, it does not

depend on the fading model. The average SEP values below
M−2n

2n pmin cannot be achieved due to the inherent inability
of low-resolution ADC receivers to resolve different sig-
nal points when n < log2 M. We also note that the Fano’s
inequality can also be used to obtain similar, perhaps tighter,
lower bounds on p

(
SNR

)
[46]. However, this will require

the calculation of equivocation between X and Q(Y) for each
choice of modulation scheme and quantizer structure. Hence,
it is not clear how the minimization can be carried out over
the modulation and quantizer selections in this approach.
Next, we will assume that all signal points in C are

equiprobable, with probability 1
M , and hence the optimum

detector in (3) is equivalent to the ML detector given by

x̂(k, h) ∈ arg max
x∈C

Pr
{
Q(Y) = k

∣∣X = x,H = h
}

(6)

for h ∈ C and k ∈ [0 : 2n − 1]. Since Y is a proper complex
Gaussian random variable with mean E[Y] = √

SNRhx and
variance Var(Y) = 1, we can write the probability in (6) as

Pr
{
Q(Y) = k

∣∣X = x,H = h
}

(7)

=
∫

Rk

1

π
exp

(
−
∣
∣∣y− √

SNRhx
∣
∣∣
2
)
dy,

where the integral in (7) is with respect to the standard Borel
measure in C [47]. The next theorem describes the operation
of the ML detector for the above signal detection problem.
Theorem 2: Assume H has a continuous probabil-

ity density function (pdf). Then, x̂(k, h) is unique with
probability one, i.e., the set of h values for which
arg max
x∈C

Pr{Q(Y) = k|X = x,H = h} is singleton has proba-

bility one, and the ML detection rule for the low-resolution
ADC based receiver architecture can be given as

x̂(k, h) = arg min
x∈C

dist
(√

SNRhx,Hk

)
, (8)

where h ∈ C, k ∈ [0:2n − 1], dist(z,A) is the dis-
tance between a point z ∈ C and a set A ⊆ C,
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which is defined as dist(z,A) � infs∈A|z− s|, and Hk ={
z ∈ C : Arg(z) + π = π

2n (2k + 1)
}
.

Proof: See Appendix B.
We first note that although the ML detection rule given

in Theorem 2 is written as dependent on the full channel
knowledge, we only need to know the phase of H in order
to determine x̂(k, h). This can be seen by means of simple
scaling arguments as the set Hk is invariant under any ampli-
tude scaling. The half-hyperplane Hk in Theorem 2 bisects
the kth quantization region Rk into two symmetric regions.
This is an important observation since it indicates that we
are only required to estimate the channel phase to imple-
ment the ML detector. For phase estimation with circularly
symmetric fading distributions, the estimation errors due
to low-resolution quantization can be modelled as bounded
uniform random variables, which lead to a key robustness
property for our analytical results under channel estimation
errors as explained in Section VII-C.
Secondly, given X = x and H = h, the conditional prob-

ability of the event Q(Y) = k corresponds to the integral of
unit-variance and mean

√
SNRhx proper complex Gaussian

distribution over Rk. As we vary x in C, we change the
mean value

√
SNRhx. Hence, Theorem 2 indicates that the

most probability mass is accumulated in the region Rk when
the unit-variance proper complex Gaussian distribution with
mean

√
SNRhx, x ∈ C, closest to Hk is integrated over

Rk, which coincides with the intuition. We will use the
structure of the ML detection rule to derive integral expres-
sions for p

(
SNR

)
for M ≥ 2 in Section IV. Further, in

order to characterize the communication robustness with
low-resolution ADCs in the high SNR regime, we will also
provide a detailed analysis on the asymptotic decay exponent
of p

(
SNR

)
in Section V.

IV. AVERAGE SYMBOL ERROR PROBABILITY
A. SYMBOL ERROR PROBABILITY FOR n ≥ log2M
We first obtain a key lemma that simplifies the calculations
for deriving p

(
SNR

)
when the number of quantization bits

is at least log2 M. We note that this lemma holds for general
circularly-symmetric fading processes without assuming any
specific functional form.
Lemma 1: Let H = Rej� be a circularly-symmetric fading

coefficient with R and � denoting the magnitude and the
phase of H, respectively. Let the joint pdf of R and � be
given by fR,�(r, λ) = 1

2π
fR(r) for λ ∈ [−π, π) and r ≥ 0.

Then, p
(
SNR

)
is equal to

p
(
SNR

) = 2n−1

π

∫ π
M+ π

2n

π
M− π

2n

∫ ∞

0
Pr
{√

SNRrejθ +W /∈ E
}

fR(r) dr dθ, (9)

where E =
{
z ∈ C : 0 ≤ Arg(z) < 2π

M

}
.

FIGURE 2. An illustration of average SEP calculations. If the noise does not drag
the original M-PSK constellation point rotated by the channel h beyond the region E
(shaded area), there will not be any errors in decoding.

Proof: See Appendix C.
Using Lemma 1, next we obtain integral expressions for

p
(
SNR

)
when H is circularly-symmetric with the gener-

alized Nakagami-m fading magnitude. We note that the
Nakagami-m fading model characterizes a broad range of
fading phenomena ranging from severe to moderate and no
fading conditions as m varies over [0.5,∞) [48], [49] and
it reduces to Rayleigh fading for m = 1.
Considering these advantages, we will focus on the

Nakagami-m fading model for H to derive integral expres-
sions for p

(
SNR

)
in the remainder of the paper. This will

be done so for all parameter combinations of M ≥ 2 (as
an integer power of 2), n ≥ log2 M and m ≥ 0.5. It will
be seen that the derived integral expressions are easy to
calculate numerically and they reduce to simple closed-form
expressions in some special cases. Further, we will also show
that using log2 M + 1 bits is enough to achieve the maxi-
mum communication robustness achieved by using infinite
number of quantization bits.
Theorem 3: Assume H is a unit-power fading coefficient

distributed according to a circularly-symmetric distribution
with Nakagami-m fading magnitude. Let Q(·) be the comple-
mentary distribution function of the standard normal random
variable and 	(·) be the gamma function [50]. Then, for
n ≥ log2 M and M ≥ 2, p

(
SNR

)
is given according to (10),

as shown at the bottom of the page.
Proof: In the following we provide the proof for M ≥ 4.

Please note that the proof for M = 2 is similar and simpler.

p
(
SNR

) =
{
p1
(
SNR

)+ p2
(
SNR

)− p3
(
SNR

)+ p4
(
SNR

)
M ≥ 4

p2
(
SNR

)
M = 2

, where (10)
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With a slight abuse of notation, we define

p
(
SNR, h

) = Pr
{√

SNRr ejθ +W /∈ E
}
, (15)

where the set E is defined as in Lemma 1. The probabil-
ity in (15) can be calculated by conditioning on the real
part of W, which is denoted by Wre. By using Fig. 2 as
a visual guide, we can write p

(
SNR, h

)
after condition-

ing on Wre as (16) shown at the bottom of the page, for
w ≥ −√

SNRr cos θ .
Similarly, for w < −√

SNRr cos θ , we get

Pr
{√

SNRrejθ +W /∈ E ∣∣Wre = w
}

= 1. (17)

Integrating (16) and (17) with respect to the pdf of Wre,
which is given by fWre(w) = 1√

π
e−w2

, we obtain p
(
SNR, h

)

as (18) shown at the bottom of the page. For Nakagami-m
fading distribution with shape parameter m ≥ 0.5 and spread
parameter � > 0 [51], we can write the pdf of the fading
magnitude as fR(r) = 2mm

	(m) �m r2m−1e− m
�
r2

for r ≥ 0. We set
� = 1 in our calculations to make sure that H has unit-
power. We average p

(
SNR, h

)
over the fading distribution

and solve the resulting integral based on Lemma 1, and the
fact that θ lies between 0 and 2π

M , to obtain p
(
SNR

)
in

Theorem 3.

B. CENTERING PROPERTY: IMPACT OF QUANTIZATION
BITS ON THE AVERAGE SEP
In this subsection, we will present an intuitive explanation
as to why p

(
SNR

)
improves with increasing number of

quantization bits. In particular, we will observe that one
extra bit, on top of log2 M of them, provides a desir-
able centering property that steers the received signal away

from the error-prone decision boundaries. This intuition will
help to understand the underlying dynamics leading to the
ternary behaviour for the decay exponent of p

(
SNR

)
that

we establish in the high SNR regime in Section V.

For i ∈ [0 : M − 1], let xi = e
jπ
(

2i+1
M −1

)

be the
ith signal point in the constellation set C and Ei ={
z ∈ C : Arg(xi) − π

M ≤ Arg(z) < Arg(xi) + π
M

}
. It can be

shown (i.e., see Appendix C) that the regions defined by
Ei,k � exp

(
j
(
k − 2n−1

) 2π
2n

)
Ei for i ∈ [0 : M − 1] and

k ∈ [0 : 2n − 1] contains all Hk’s to which
√

SNRhxi is
the closest for h ∈ Dk, where

D0 =
{
z ∈ C : π − π

2n
≤ Arg(z) < π

}

⋃{
z ∈ C : − π ≤ Arg(z) <

π

2n
− π

}
(19)

and

Dk =
{
z ∈ C : (2k − 1)

π

2n
≤ Arg(z) + π < (2k + 1)

π

2n

}
.

(20)

This means that all the received signal points in Ei,k will be
detected as xi, and hence Ei,k can be considered as the region
of attraction of xi. This also means that if the received signal
lands in Ei,k when xi is transmitted, then there will not be
any detection errors.
Let us consider an example for QPSK modulation with

2-bit and 3-bit quantization. Without loss of generality, we
will assume that x3 = ej π

M is the transmitted signal. Our
analysis will be for two cases of λ = π

18 and λ = 4π
18 ,

where λ = Arg(h). Table 1 summarizes these two cases,
and Fig. 3 illustrates them. In this figure, we show both the

p1
(
SNR

) = 2n−1mm

π2

∫ π
2

0

∫ π
M+ π

2n

π
M− π

2n

(
SNR

sin2 β
cos2 θ + m

)−m
dθdβ (11)

p2
(
SNR

) = 2n−1mm

π2

∫ π
2

0

∫ π
M+ π

2n

π
M− π

2n

(
SNR

sin2 β
sin2 θ + m

)−m
dθdβ (12)

p3
(
SNR

) = 2n−1mm

π3

∫ π
2

0

∫ π
2

0

∫ π
M+ π

2n

π
M− π

2n

(
SNR cos2 θ

sin2 β
+ SNR sin2 θ

sin2 γ
+ m

)−m
dθdβdγ (13)

p4
(
SNR

) = 2nmm

π
√

π	(m)

∫ π
M+ π

2n

π
M− π

2n

∫ ∞

0

∫ ∞

−√
SNRr cos λ

Q
(√

2SNRr sec

(
2π

M

)
sin

(
2π

M
− θ

)
+ √

2w tan

(
2π

M

))

· exp
(
−
(
w2 + mr2

))
dwdrdθ (14)

Pr
{√

SNRrejθ +W /∈ E
∣∣Wre = w

}
= Q

(√
2SNRr sin θ

)
+ Q

(√
2SNRr sec

(
2π

M

)
sin

(
2π

M
− θ

)
+ √

2w tan

(
2π

M

))
(16)

p
(
SNR, h

) = Q
(√

2SNRr cos θ
)

+ Q
(√

2SNRr sin θ
)

− Q
(√

2SNRr cos θ
)
Q
(√

2SNRr sin θ
)

+ 1√
π

∫ ∞

−√
SNRr cos θ

Q
(√

2SNRr sec

(
2π

M

)
sin

(
2π

M
− θ

)
+ √

2w tan

(
2π

M

))
e−w2

dw (18)
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TABLE 1. Centering property for QPSK modulation with 2-bit and 3-bit quantization.

Ei,k is the region of attraction of the symbol xi when the quantizer output Q(Y ) = k .

FIGURE 3. An illustration of the centering property for QPSK modulation with 2-bit
and 3-bit quantization. Original signal points are indicated by ‘�’, whereas the rotated
ones after multiplication with

√
SNR and h are indicated by ‘•’. Quantization region

boundaries and the corresponding bisectors are indicated in solid black lines and
green dash lines, respectively. The shaded area represents the region of attraction of
the transmitted symbol x3.

original signal points (indicated by ‘�’) and the rotated ones
(indicated by ‘•’) after multiplying with

√
SNR and h.

For both 2-bit and 3-bit quantization, we observe that
h ∈ D2 and h ∈ D4 for λ = π

18 and λ = 4π
18 , respectively.

Therefore, for 2-bit quantization, the region of attraction for
x3 will be E3 for both cases. Here, we can see that the
rotated constellation point

√
SNRhx3 is very close to the

decision boundary when λ = 4π
18 . Hence, there is a high

probability that the received signal
√

SNRhx3 + w lands in
the adjacent quantization region for λ = 4π

18 . In this instance,
we will have a detection error. However, with the addition
of one bit to the quantizer (i.e., with 3-bit quantization),
the region of attraction of x3 will be ej π

4 E3, and hence
the ML detector can correctly decode the transmitted signal
even if the received one lands in the adjacent quantization
region. This is illustrated in Fig. 3(d). Therefore, the addi-
tion of one extra bit to the quantizer, steers the received
signal away from the error-prone decision boundaries to
improve p

(
SNR

)
. Similarly, when the number of bits in

the quantizer continues to increase, the quantization regions
will become thinner, and hence the regions of attraction will
be better centered around the received signal points. This is
the fundamental phenomenon that explains why the average
SEP improves with a larger number of quantization bits.

V. THE DECAY EXPONENT FOR THE AVERAGE SYMBOL
ERROR PROBABILITY
In this section, we will analyze the communication robust-
ness that can be achieved with low-resolution ADCs by
focusing on the decay exponent for p

(
SNR

)
, which is

given by4

DVO = − lim
SNR→∞

log p
(
SNR

)

log SNR
. (21)

Following the convention in the field, we will call DVO
the diversity order, although there is only a single diversity
branch in our system. It should be noted that Nakagami-m
amplitude distribution can be obtained as the envelope distri-
bution of m independent Rayleigh faded signals for integer
values of m [48]. Hence, visualizing a Nakagami-m wire-
less channel as a pre-detection analog square-law diversity
combiner will put the results of this section into context.
We devote the rest of the current section to the proof of this
important finding. We will first start with a definition that
will simplify the notation below.
Definition 1: We say a function f is exponentially

equal to SNRd if limSNR→∞
log f(SNR)

log SNR = d for some

d ∈ R. We write f
(
SNR

) e= SNRd to indicate expo-
nential equality whenever this limit exists. Similarly, we

also write f
(
SNR

) e≤ SNRd and f
(
SNR

) e≥ SNRd if

limSNR→∞
log f(SNR)

log SNR ≤ d and limSNR→∞
log f(SNR)

log SNR ≥ d,
respectively.
The following lemma establishes two important properties

for exponential equality.
Lemma 2: Let f

(
SNR

) e= SNRd and fi
(
SNR

) e= SNRdi

for i ∈ [1 : N]. Then,

(i) For any α > 0, αf
(
SNR

) e= SNRd (i.e., invariance
with scaling property).

(ii)
∑N

i=1 fi
(
SNR

) e= SNRdmax , where dmax = maxi∈[1:N] di
(i.e., summation property).

Proof: See Appendix D.
The next two lemmas establish the decay rates for

p1
(
SNR

)
and p2

(
SNR

)
in Theorem 3 in terms of exponential

equalities.
Lemma 3: For M ≥ 4, p1

(
SNR

)
is exponentially equal to

p1
(
SNR

) e=

⎧
⎪⎨

⎪⎩

SNR− 1
2 if M = 4 and n = 2,

SNR−m if M = 4 and n > 2,

SNR−m if M > 4 and n ≥ log2 M.

(22)

Proof: See Appendix E.

4. We will show that the limit in (21) exists, and hence there is no
ambiguity in the definition of DVO.
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Lemma 4: For M ≥ 4, p2
(
SNR

)
is exponentially equal to

p2
(
SNR

) e=
{

SNR− 1
2 if n = log2 M,

SNR−m if n > log2 M.
(23)

Proof: See Appendix F.
The following lemma establishes lower and upper bounds

on SEP in (10). We note that the bounds in Lemma 5
hold for all circularly-symmetric fading processes, including
Nakagami-m magnitude pdf as a special case.
Lemma 5: For M ≥ 4 and n ≥ log2 M, let L

(
SNR

) =
p1
(
SNR

) + 1
2p2
(
SNR

)
and U

(
SNR

) = p1
(
SNR

) +
2p2
(
SNR

)
. Then,

L
(
SNR

) ≤ p
(
SNR

) ≤ U
(
SNR

)
. (24)

Proof: See Appendix G.
The upper and lower bounds obtained in Lemma 5 are

instrumental for us in providing a proof for the Theorem 4.
In particular, they decay at the same rate as SNR grows to
infinity. Technically speaking, they are exponentially equal to
p
(
SNR

)
(i.e., see Definition 1), and this exponential equality

property enables the derivation of ternary behaviour for DVO
as established in Theorem 4. Further, our numerical analysis
in Section VII shows that the upper bound U

(
SNR

)
becomes

also a very tight bound for p
(
SNR

)
for large SNR values

in some certain circumstances.
Theorem 4: The DVO of a low-resolution ADC

based receiver architecture with M-PSK modulation and
Nakagami-m fading is given by

DVO =
{

1
2 n = log2 M,

m n ≥ log2 M + 1.
(25)

Proof: The proof for M ≥ 4 directly follows from
Lemmas 2, 3, 4 and 5. For BPSK modulation (i.e., M = 2)
and n = 1, we have

p
(
SNR

) = 2n−1mm

π2

∫ π
2

0

∫ π

0

(
SNR

sin2 β
sin2 θ + m

)−m
dθdβ

= 2n−1mm

π2

∫ π
2

0

∫ π
2

0

(
SNR

sin2 β
sin2 θ + m

)−m
dθdβ

+ 2n−1mm

π2

∫ π
2

0

∫ π

π
2

(
SNR

sin2 β
sin2 θ + m

)−m
dθdβ

(26)

By using the change of variables θ̂ = θ − π
2 in the second

integral term of (26), we have

p
(
SNR

) = 2n−1mm

π2

∫ π
2

0

∫ π
2

0

(
SNR

sin2 β
sin2 θ + m

)−m
dθdβ

+ 2n−1mm

π2

∫ π
2

0

∫ π
2

0

(
SNR

sin2 β
cos2 θ̂ + m

)−m
dθ̂dβ

(27)

This expression is equivalent to p1
(
SNR

) + p2
(
SNR

)
for

M = 4 and n = 2. Hence, by using Lemma 2, we can

conclude that

lim
SNR→∞

− log
(
p
(
SNR

))

log
(
SNR

) = 1

2
(28)

for BPSK modulation with 1-bit quantization and m ≥ 1
2 .

For BPSK modulation with n > log2(M), we have

p
(
SNR

)
(29)

= 2n−1mm

π2

(
SNR

)−m
∫ π

2

0

∫ π
M+ π

2n

π
M− π

2n

(
sin2 θ

sin2 β
+ m

SNR

)−m
dθdβ

Therefore

log
(
p
(
SNR

))

= c− m log
(
SNR

)
(30)

+ log

(∫ π
2

0

∫ π
M+ π

2n

π
M− π

2n

(
sin2 θ

sin2 β
+ m

SNR

)−m
dθdβ

)

,

where c = log
(

2n−1mm

π2

)
. Define the function gSNR(θ, β) �

(
sin2 θ

sin2 β
+ m

SNR

)−m
, indexed by SNR. Since it is positive and

increases to the limiting function g∞(θ, β) =
(

sin2 θ

sin2 β

)−m

as SNR increases, we can use the monotone convergence
theorem [52] to write

lim
SNR→∞

log

(∫ π
2

0

∫ π
M+ π

2n

π
M− π

2n

(
sin2 θ

sin2 β
+ m

SNR

)−m
dθdβ

)

= log

(∫ π
2

0

∫ π
M+ π

2n

π
M− π

2n

(
sin2 θ

sin2 β

)−m
dθdβ

)

.

We note that the last integral is finite since g∞(θ, β) is
continuous and finite over the range of integration. Therefore,
after observing that the last term in (30) converges to a finite
value for each fixed m ≥ 1

2 , we get

lim
SNR→∞

− log
(
p
(
SNR

))

log
(
SNR

) = m (31)

for BPSK modulation with n > log2(M).
The DVO analysis above helps to discover the first-order

effects of the low-resolution ADC based receivers on the
SEP system performance. In particular, we observe that it
is enough to use log2 M+ 1 bits for quantizing the received
signal to extract full diversity, which is equal to m for
Nakagami-m faded wireless channels. Considering the fact
that energy consumption increases exponentially with the
number of quantization bits [53], this finding indicates that
a significant energy saving is possible by means of low-
resolution ADC based receivers without any (first order)
loss in communication robustness.
We also observed that the DVO is only equal to 1

2 when
n = log2 M. Together with the universal bound obtained in
Theorem 1, the discovered ternary behaviour has signifi-
cant implications in terms of how to choose the number of
quantization bits for low-resolution ADC based receivers.
In particular, for fading environments with m close to 1

2 ,
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a system designer may decide to trade off reliability for
energy consumption, without having too much degradation
in average SEP by using log2 M bits. On the other hand,
for fading environments with large m, it is more beneficial
to use one extra bit to have a major improvement in average
SEP.

VI. PERFORMANCE ANALYSIS FOR QPSK MODULATION
In this section, we conduct a performance analysis for QPSK
modulation with low-resolution ADCs by using our results
in previous sections. We first present a simplified version of
the average SEP expression in (11) for QPSK modulation,
and then we analyze the effect of low-resolution quantization
under Rayleigh fading.

A. SYMBOL ERROR PROBABILITY FOR QPSK
MODULATION
Nakagami-m Fading: In the special case of QPSK modula-
tion (i.e., M = 4), the average SEP expression in (11) can
be further simplified to produce

p
(
SNR

) = p1
(
SNR

)+ p2
(
SNR

)− p3
(
SNR

)
, (32)

because tan
(

2π
M

)
= ∞ for M = 4. By using hypergeomet-

ric function 2F1[ · ] [50], we can simplify (32) for 2-bit
quantization (i.e., M = 4 and n = 2) as

p
(
SNR

) = 2

π

∫ π
2

0
2F1

[
1

2
,m, 1,

−SNR

m sin2 β

]
dβ

− mm

π

∫ π
2

0

∫ π
2

0

(
SNR

sin2 γ
+ m

)−m
2F1

[
1

2
,m, 1, z

]
dβ dγ,

where z = SNR
(
sin2 β−sin2 γ

)

SNR+m sin2 γ
.

Rayleigh Fading: For special case of Rayleigh fading,
which is obtained by setting m = 1, the expression in (32)
can be re-expressed as (33) shown at the bottom of the page.

Furthermore, for 2-bit quantization with Rayleigh fading
(i.e., M = 4, n = 2 and m = 1), we can obtain p

(
SNR

)
in

closed form as

p
(
SNR

) = 2

π
arctan

(
1√

SNR

)
−
(

1

π
arctan

(
1√

SNR

))2

.

This closed-form analytical expression is very easy to
compute without resorting to any numerical integration.

B. ANALYSIS OF QUANTIZATION PENALTY FOR QPSK
MODULATION
By using the Taylor series expansion for high SNR values,
we can re-express the average SEP expressions for QPSK
modulation under Rayleigh fading given in (33) as (34)
shown at the bottom of the page.
While phase quantization with less number of quantization

bits is desirable, due to less processing complexity at the
receiver, it deteriorates the average SEP performance of
the system. In the following, we quantify the increase in the
average SEP as a quantization penalty defined as


(
SNR, n

) = 10 log

(
pA
(
SNR, n

)

pA
(
SNR,∞)

)

, (35)

where pA
(
SNR,∞) is the average SEP with infinite num-

ber of quantization bits. Based on (34), we can derive
pA
(
SNR,∞) as

pA
(
SNR,∞) =

(
4π − 1

π2

)
SNR−1 + o

(
SNR−1

)
, (36)

where we have used the small-angle approximation tan(x) =
x as x → 0. Substituting (34) and (36) into (35) and
doing some mathematical manipulations, we can derive the
quantization penalty in terms of average SEP with n-bit
quantization as (37) shown at the bottom of the page.

p
(
SNR

) = 2n

π2

∫ π
2

0

sin β
√

SNR + sin2 β

arctan

⎛

⎝
2 sin β

√
SNR + sin2 β

SNR + 2 sin2 β
tan
( π

2n−1

)
⎞

⎠dβ

− 2n−1

π3

∫ π
2

0

∫ π
2

0

√
sin2 β sin2 γ

(
SNR + sin2 β

)(
SNR + sin2 γ

) · arctan(ϑ) dβ dγ (33)

where ϑ = 2 sin β sin γ

√
(SNR + sin2 β)(SNR + sin2 γ )

SNR(sin2 β + sin2 γ ) + 2 sin2 β sin2 γ
tan(

π

2n−1
)

pA
(
SNR, n

) =
⎧
⎨

⎩

2
π

SNR− 1
2 + o

(
SNR− 1

2

)
n = 2

2n−1(4π−1)

π3 tan
(

π

2n−1

)
SNR−1 + o

(
SNR−1

)
n ≥ 3

(34)


(
SNR, n

) =
⎧
⎨

⎩

10 log
((

2π
4π−1

)
SNR

1
2

)
+ o
(
SNR

1
2

)
n = 2

10 log
(

2n−1

π
tan
(

π

2n−1

))
+ o(1) n ≥ 3

(37)
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FIGURE 4. Average SEP curves as a function of SNR for QPSK modulation.
n = 2, 3, 4 and m = 1, 2.

In Section VII, we use 
(
SNR, n

)
to quantify the increase

in average SEP as we change from infinite-bit to n-bit
quantization.
We further notice that, in order to achieve the same aver-

age SEP as with n-bit quantization, we need to transmit the
signal using a higher power if we use only (n−1)-bit quan-
tization. In the following, we quantify the increase in the
transmit power as another quantization penalty defined by

�
(
SEP, n

) = 10 log

(
SNRn−1

SNRn

)
, (38)

where SNRn and SNRn−1 are the SNR values required to
achieve a certain average SEP with n and n−1 quantization
bits, respectively. Substituting (34) into (38) and doing some
mathematical manipulations, we can derive the quantization
penalty with n-bit quantization as

�
(
SEP, n

) =

⎧
⎪⎨

⎪⎩

10 log

(
π2

2(4π−1)

(
SNR2

) 1
2

)
n = 3

10 log
(

1
2 tan

(
π

2n−2

)
cot
(

π

2n−1

))
n ≥ 4.

(39)

In Section VII, we use �
(
SEP, n

)
to quantify the required

transmit power increase as we change from n-bit to (n−1)-bit
quantization.

VII. NUMERICAL RESULTS
In this section, we present analytical and simulated SEP
results for M-PSK modulation with n-bit quantization.
Channel fading is unit-power and circularly-symmetric with
Nakagami-m distributed magnitude, and additive noise is
complex Gaussian with zero mean and unit variance.

A. EFFECT OF QUANTIZATION BITS ON SYSTEM
PERFORMANCE
First, we will investigate the effect of the number of quan-
tization bits on the system performance and illustrate the

FIGURE 5. Average SEP curves as a function of SNR for different modulation
schemes. n = log2 M, log2 M + 1, log2 M + 2 and m = 1.

accuracy of our analytical results obtained in previous sec-
tions. Fig. 4 plots the average SEP as a function of SNR
for QPSK modulation with n = 2, 3, 4-bit quantization under
Nakagami-m fading with shape parameter m = 1 and 2. The
simulated results are generated using Monte Carlo simula-
tion, while the analytical results are generated using our
expression in (11). As the plot illustrates, the analytical
results accurately follow the simulated results for all cases.
We observe a noteworthy improvement in the average SEP
when n changes from 2 to 3-bit quantization for QPSK
modulation in both m = 1 and 2. This jump in the average
SEP performance is expected in the light of Theorem 4,
which states that using one extra bit, on top of log2 M bits,
improves the DVO from 1

2 to m. We also observe that the
average SEP reduces as we increase n, but the amount by
which it reduces also gets smaller as we increase n. This can
be clearly observed from the zoomed-in section in Fig. 4. As
expected, DVO = m for all n ≥ 3. Furthermore, DVO = 1

2
for any m, when n = 2.

Fig. 5 plots the average SEP as a function of SNR for
QPSK, 8-PSK and 16-PSK modulations schemes while keep-
ing the Nakagami-m shape parameter fixed at m = 1, which
is the classical Rayleigh fading scenario. We plot the aver-
age SEP for each modulation scheme by using n = log2 M,
log2 M + 1 and log2 M + 2 bits. From the plots, we can
clearly observe that QPSK with 2-bit, 8-PSK with 3-bit and
16-PSK with 4-bit quantization have a DVO of 1

2 . Further,
we can observe that QPSK with 3 or more bits, 8-PSK with
4 or more bits, 16-PSK with 5 or more bits quantizations
have a DVO of 1, which is equal to m in this case. To further
emphasize this point, the zoomed-in section in Fig. 5 illus-
trates the asymptotic average SEP versus SNR for QPSK
modulation. As stated in Theorem 4, these numerical obser-
vations clearly indicate the ternary behaviour in the decay
exponent for p

(
SNR

)
depending on whether n ≥ log2 M+1,

n = log2 M, or n < log2 M.
In order to illustrate the accuracy of upper and lower

bounds on p
(
SNR

)
, derived in Lemma 5, in Fig. 6 we
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FIGURE 6. Upper and lower bounds on p
(
SNR

)
as a function of SNR for QPSK,

8-PSK and 16-PSK modulations. n = 2, 3, 4, 5 and m = 1.

FIGURE 7. Average SEP as a function of SNR for 8-PSK and 16-PSK modulations.
n = 2 < log2 M and m = 0.5, 1 and 2.

plot the expressions in (24), alongside the exact p
(
SNR

)

curve, as a function of SNR for QPSK, 8-PSK and 16-
PSK modulations under Rayleigh fading (i.e., m = 1).
This figure clearly shows that U

(
SNR

)
becomes a very

tight upper bound for 8-PSK and 16-PSK in the high SNR
regime. The figure also confirms that the decay exponents
of both L

(
SNR

)
and U

(
SNR

)
are the same as that of

the p
(
SNR

)
.

Next, in Fig. 7, we plot the simulated average SEP curves
as a function of SNR for 8-PSK modulation with 2-bit
quantization and 16-PSK modulation with 2 and 3-bit quan-
tization. We consider equi-probable transmitted symbols and
Nakagami-m fading channel model with m = 0.5, 1 and 2.
The simulated results are again generated by using Monte
Carlo simulations. We can clearly observe an error floor
for high SNR values when n < log2 M, as established by
Theorem 1. In particular, the average SEP for 8-PSK has

FIGURE 8. Quantization penalty for QPSK modulation and the asymptotic average
SEP curves. n = 2, 3, 4, ∞ and at m = 1.

a lower bound of 0.5 with 2-bit quantization. Similarly,
the average SEP for 16-PSK has a lower bound of 0.75
with 2-bit quantization and a lower bound of 0.5 with 3-bit
quantization. It should be noted that the error floor given
in Theorem 1 is more conservative than those observed in
Fig. 7. This is because it is a universal lower bound that
holds for all modulation schemes, quantizer types and fading
environments, not only for very specific ones used to plot
average SEP curves in Fig. 7.
Fig. 8 illustrates the quantization penalty and plots the

asymptotic average SEP curves as a function of SNR for
QPSK modulation with n = 2, 3, 4 and ∞ under Rayleigh
fading. The asymptotic plots are generated by using the
expressions in (34). We observe that a DVO of half is
achieved with 2-bit quantization, and the full DVO of one is
achieved with n > 2. When the SNR is fixed at 18 dB, we
observe a quantization penalty of (18 dB, 2) ≈ 6.35 dB as
we change from n = 2 to ∞, i.e., we get a 5-fold increase in
the average SEP as we change from n = 2 to ∞. When the
average SEP is fixed at 0.015, we observe a quantization
penalty of �(0.015, 4) ≈ 0.8 dB as we change from n = 3
to 4, i.e., to achieve an average SEP of 0.015 with 4-bit
quantization, we need 0.8 dB more transmit power than what
is required with 3-bit quantization.

B. COMPARISON WITH INDEPENDENT I AND Q
QUANTIZATION
In this part, we will compare and contrast the system
performance results obtained by using M-PSK modulation
with the commonly adopted approach using independent I
and Q channel quantization. To this end, Fig. 9 provides
performance comparison curves for Rayleigh fading and
QPSK modulation. We set the number of quantization bits
to n = 2, 3, 4 and 6 by numerically optimizing the quantiza-
tion regions for independent I and Q quantization. In order
to cover all possibilities in the latter case, we also consider,
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FIGURE 9. Average SEP as a function of SNR for QPSK modulation with phase
quantization and separate I and Q quantization, m = 1.

in addition to the identical bit allocation strategy, unbalanced
allocation of quantization bits to the I and Q arms.
For n = 2, 2-bit phase quantization SEP performance coin-

cideswith that of using 1-bit quantization on each of the I andQ
arms. The reason for this behaviour is that the optimized quan-
tization regions coincide with the phase quantization regions,
as introduced in Section II in the form of convex cones in C.
When n = 3, the 3-bit phase quantization clearly outperforms
independent I and Q quantization with 2 bits on the I arm and
1 bit on the Q arm (and with optimized quantization regions).
When n = 4, perhaps more interestingly, we observe that
independent I and Q quantization with optimized quantization
regions for 2 bits on both arms performs very similarly to the
3-bit phase quantization. Hence, for this particular allocation
of quantization bits to the I and Q arms, the phase quantization
approach introduced in this paper has the advantange of saving
one quantization bit when compared to the commonly used
independent I and Q quantization.
To test the robustness of our observations above, we have

also obtained the SEP curves for the 6-bit independent I
and Q quantization, with 3 bits on each of the I and Q
arms. Our results indicate that the SEP performance for 6-
bit independent I and Q quantization is similar to 4-bit phase
quantization. Surprisingly, we need two more additional bits
in the case of independent I and Q quantization in order to
match the SEP performance attained by 4-bit phase quan-
tization. Similar results with an increased performance gap
continue to hold with unbalanced allocation of bits on the
I and Q arms. While these results provides some initial
insights into the bit-advantage of using phase quantization
over independent I and Q quantization, a more thorough
investigation is required to obtain general proofs establishing
this phenomenon rigorously.

C. EFFECT OF CHANNEL ESTIMATION ERRORS ON DVO
In this part, we provide a robustness analysis for our analyti-
cal results under channel estimation errors. As we discussed
above, we have assumed the availability of full-precision

FIGURE 10. Average SEP as a function of SNR for QPSK modulation with 4-bit
quantization and imperfect CSI, m = 1, b is the number of quantization bits used for
channel estimation.

CSI at the receiver to derive the DVO results given in
Theorem 4. This assumption was motivated by the previous
work establishing the feasibility of accurate channel estima-
tion by means of carefully designed training sequences for
low-resolution ADC receivers as well as by the availabil-
ity of mixed-ADC architectures. Below, we will focus on
Rayleigh fading (m = 1) and QPSK (M = 4) modulation
but our conclusions continue to hold more generally.
In order to model channel estimation errors in the numer-

ical study below, we first recall that our ML detector in
Theorem 2 only requires the knowledge of channel phase
to determine the most likely transmitted symbol. Hence, we
can model the channel estimation problem as that of esti-
mating the phase information of H.5 For the purpose of
analyzing the effect of channel estimation errors on the
SEP performance, this shows that the channel estimation
errors due to low-resolution quantization can be modelled
as bounded uniform random variables with the MMSE esti-
mator being the mid-point of the quantization regions (i.e., H
has a circularly symmetric distribution). Hence, the Figs. 10
and 11 are generated based on the assumption of bounded
uniform channel estimation errors, with span of 2π

2b
when b

bits are used for channel estimation.6

A salient feature arising from the SEP curves presented
in Figs. 10 and 11 is that the derived fundamental ternary
behaviour for the decay exponent of p(SNR) in Theorem 4
stays the same if n + 1 bits are used during the chan-
nel estimation stage. We recall that n is the number of
bits used for data decoding. Moreover, the performance
difference between using n and n+1 bits for channel estima-
tion becomes negligibly small as n increases. We note that

5. In addition to assisting in modeling channel estimation errors, this is
also practically an important observation since it signifies that the same
phase quantizer in a mixed-ADC architecture can be used for both channel
estimation and data decoding by only dynamically changing the number of
quantization bits.

6. Here, we ignore the channel noise to focus on channel estimation
errors due to quantization noise only.
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FIGURE 11. Average SEP as a function of SNR for QPSK modulation with n-bit
quantization with and without perfect CSI, m = 1, n = 2, 3, 4, 5, b = n, n + 1, where b is
the number of quantization bits used for channel estimation.

the use of different number of bits for data decoding and
channel estimation is possible by employing mixed-ADC
receiver architectures commonly used in the literature [28].
Furthermore, the same effect to improve channel estima-
tion accuracy can be achieved by using carefully designed
training sequences to perform a bisection search in [−π, π)

during the channel estimation stage.
The robustness of our results against channel estimation

errors in Figs. 10 and 11 arises from the following two key
properties of the approach employed in the paper. The first
property leading to the observed robustness behaviour is the
fact that the optimum ML detector we obtained in Theorem 2
is only dependent on the channel phase information. The
second one is the centering property achieved by the num-
ber of quantization bits steering the received symbols away
from the decision boundaries and leading to the observed
ternary behaviour for the decay exponent of p(SNR) with
full-precision CSI, as explained in Section IV-B in detail.
The same effect continues to hold for the channel estima-
tion, with one more additional bit providing the required
accuracy in channel phase estimation and thereby preventing
the bounded channel phase estimation errors from causing
the received symbols to flip over the adjacent quantization
regions.

VIII. CONCLUSION AND FUTURE GENERALIZATIONS
In this paper, we performed a theoretical analysis of a low-
resolution based ADC communication system and obtained
fundamental performance limits, optimum ML detectors and
a general analytical expression for the average SEP for
M-PSK modulation with n-bit quantization. These results
were further investigated for Nakagami-m fading model in
detail. We conducted an asymptotic analysis to show that the
decay exponent for the average SEP is the same and equal
to m with infinite-bit and n-bit quantizers for n ≥ log2 M+1.
We also performed an extensive numerical study to illustrate

the accuracy of the derived analytical expressions, compar-
ison with independent I and Q channel quantization and
robustness under channel estimation errors.
In most parts of the paper, we have focused on phase mod-

ulated communications. Phase modulation has an important
and practical layering feature enabling the quantizer and
detector design separation in low-resolution ADC commu-
nications. For a given number of bits, the quantizer needs
to be designed only once, and can be kept constant for all
channel realizations. The detector can be implemented digi-
tally as a table look-up procedure using channel knowledge
and quantizer output. On the other hand, this feature is lost
in joint phase and amplitude modulation schemes such as
QAM. The quantizer needs to be dynamically updated for
each channel realization in low-resolution ADC based QAM
systems. This is because the fading channel amplitude may
vary over a wide range, but the phase always varies over
[−π, π) . However, phase modulation is historically known
to be optimum only up to modulation order 16 under peak
power limitations [54]. Hence, it is a notable future research
direction to extend the results of this paper to higher order
phase and amplitude modulations by taking practical design
considerations into account.
A major result of this paper is the discovery of a ternary

SEP behaviour, indicating the sufficiency of log2 M+1 bits
for achieving asymptotically optimum M-ary communica-
tion reliability. Hence, without modifying the conventional
RF chain, we can use one extra bit and still achieve
the asymptotically optimum communication performance.
Another important future research direction is to com-
pare and contrast the backward-compatible receiver design
approach of using one extra bit proposed in this paper with
other approaches that can potentially modify the conventional
RF chain and manipulate the received signals in the wave-
form domain by introducing extra analog components. This
study needs to be done in detail by considering accuracy and
agility of analog domain operations, energy consumption of
analog and digital circuit components, different modulation
schemes and the average SEP performance curves resulting
from different low-resolution ADC based receiver architec-
tures. Similarly, utilizing the results of this paper, a further
detailed study on the receiver architecture design to deter-
mine where to place the diversity combiner (before or after
quantizer or detector) and its type is needed when multiple
diversity branches are available for data reception.

APPENDIX A
PROOF OF THEOREM 1
Let us consider a class of hypothetical genie-aided detectors
g : C2 × [0 : 2n−1

] → [0 : M − 1] that has the knowledge
of channel noise W ∈ C, fading coefficient H ∈ C and
quantizer output Q(Y) ∈ [0 : 2n−1

]
. We also let Sw,h,k ={

x ∈ C :
√

SNRhx+ w ∈ Rk

}
be the set of received signal

points resulting in Q(Y) = k for particular realizations of
H = h and W = w. We first observe that since n < log2 M,
there exists at least one quantization region Rk̃ (depending
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on w and h) such that Sw,h,k̃ contains at least M
2n signal

points. We note that M
2n is always an integer greater than

2 since M is assumed to be an integer power of 2. Then,
the conditional SEP of any detector g given W = w and
H = h, which we will denote by pg

(
SNR, h,w

)
, can be

lower-bounded as (40) shown at the bottom of the page.
By averaging with respect to w and h, we have pg

(
SNR

) ≥
M−2n

2n pmin, where pg
(
SNR

)
is the average SEP correspond-

ing to detector g. This concludes the proof since the obtained
lower bound does not depend on the choice of modulation
scheme, quantizer structure and detector rule, and hence
holds for detectors not utilizing the knowledge of W for
any choice of modulation scheme and quantizer structure.

APPENDIX B
PROOF OF THEOREM 2
To prove Theorem 2, we will first obtain the following result.
Lemma 6: Let R be a convex cone given by R =

{z ∈ C:α1 ≤ Arg(z) ≤ α2} for α1, α2 ∈ [−π, π) , and W1 ∼
CN (μ1, 1) and W2 ∼ CN (μ2, 1) be proper complex
Gaussian random variables with means satisfying |μ1| =
|μ2| = r for some r > 0. Then, Pr{W1 ∈ R} ≥ Pr{W2 ∈ R}
if |μ1 − zmid| ≤ |μ2 − zmid|, where zmid = rej

α1+α2
2 .

Proof: It is enough to show this result only for α2 =
−α1 = α. Otherwise, we can first rotate W1, W2 and R
with e−j

α1+α2
2 and repeat the same calculations below. Let

g(μi) = Pr{Wi ∈ R} for i = 1, 2, and assume |μ1 − zmid| ≤
|μ2 − zmid|. There are multiple cases in which the inequality
|μ1 − zmid| ≤ |μ2 − zmid| holds, which we will analyze one-
by-one below.
First, we will consider the case in which both μ1

and μ2 lie outside R◦, where R◦ is the set of interior
points of R. This is the case shown in Fig. 12. To start
with, we will assume 0 ≤ Arg(μ1) ≤ Arg(μ2) < π .
Then, for any y ∈ R, the angle between the line seg-
ments LOy and LOμ1 is smaller than the one between
the line segments LOy and LOμ2 .

7 Hence, applying the
cosine rule for the triangle formed by O, y and μ1, and
for the triangle formed by O, y and μ2, it can be seen that
|y− μ1| ≤ |y− μ2| for all y ∈ R.8 Therefore, g(μ1) =
1
π

∫
R exp

(−|y− μ1|2
)
dy ≥ 1

π

∫
R exp

(−|y− μ2|2
)
dy =

g(μ2). Next, we assume Arg(μ2) ∈ [−π, 0) and 0 ≤
7. The line segment Lz1z2 between the points z1 ∈ C and z2 ∈ C is

defined as Lz1z2 = {(1 − t)z1 + tz2 : t ∈ [0, 1]}.
8. This statement is correct even when both y and μ1 lies on the boundary

of R and the triangle formed by O, y and μ1 reduces to a line segment.

FIGURE 12. An illustration for the proof of Lemma 6 when μ1 and μ2 lie outside
R◦ .

∣
∣μ1

∣
∣ = ∣

∣μ2
∣
∣ = r ,

∣
∣μ1 − zmid

∣
∣ ≤ ∣

∣μ2 − zmid
∣
∣ and α2 = −α1 = α.

Arg(μ1) ≤ |Arg(μ2)| ≤ π . Let W̃ be the auxiliary
random variable distributed according to CN (μ̃, 1) with
μ̃ = rej |Arg(μ2)|, i.e., μ̃ is the reflection of μ2 around the
real line. Symmetry around the real line implies that g(μ2)

is equal to g(μ̃) = Pr
{
W̃ ∈ R}, which is less than g(μ1) due

to our arguments above. For Arg(μ1) ∈ [−π, 0) , the same
analysis still holds after reflecting μ1 around the real line,
leading to g(μ1) ≥ g(μ2) for all μ1, μ2 /∈ R◦ satisfying
|μ1 − zmid| ≤ |μ2 − zmid|.

Second, we consider the case where μ1 ∈ R◦ but μ2 /∈
R◦. This is the case shown in Fig. 13. It is enough to estab-
lish the desired result only for 0 ≤ Arg(μ1) ≤ Arg(μ2) < π .
When μ1 or μ2 has a negative phase angle, the same
analysis below still holds after reflecting the mean with
negative phase around the real line. Let W̃ be the aux-
iliary random variable distributed according to CN (μ̃, 1)

with μ̃ = rejα , i.e., μ̃ is located at the upper boundary
of R. Our analysis in the first case shows that g(μ̃) =
Pr
{
W̃ ∈ R} ≥ g(μ2) since both μ̃ and μ2 are outside R◦

and 0 ≤ Arg(μ̃) ≤ Arg(μ2) < π . We next divide R into
two disjoint regions: R1 = {z ∈ C : Arg(μ1) ≤ Arg(z) ≤ α}
and R2 = {z ∈ C : − α ≤ Arg(z) < Arg(μ1)}. Then, we
have Pr

{
W̃ ∈ R1

} = Pr{W1 ∈ R1} due to symmetry around
the line bisecting R1 and Pr

{
W̃ ∈ R2

} ≤ Pr{W1 ∈ R2}
since |y− μ1| ≤ |y− μ̃| for all y ∈ R2. Hence, g(μ1) ≥

pg
(
SNR, h,w

) ≥ pmin

∑

xi∈Sw,h,k̃

Pr
{
g
(
h,w, k̃

)

= xi

∣∣W = w,H = h,X = xi
}

≥ pmin

(
M

2n
− 1

)

= M − 2n

2n
pmin (40)
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FIGURE 13. An illustration for the proof of Lemma 6 when μ1 ∈ R◦ and μ2 /∈ R◦.∣∣μ1
∣∣ = ∣∣μ2

∣∣ = r ,
∣∣μ1 − zmid

∣∣ ≤ ∣∣μ2 − zmid
∣∣ and α2 = −α1 = α.

FIGURE 14. An illustration for the proof of Lemma 6 when μ1 and μ2 lie inside R◦.∣
∣μ1

∣
∣ = ∣

∣μ2
∣
∣ = r ,

∣
∣μ1 − zmid

∣
∣ ≤ ∣

∣μ2 − zmid
∣
∣ and α2 = −α1 = α.

g(μ̃) ≥ g(μ2). This establishes the desired results for all
μ1 ∈ R◦, μ2 /∈ R◦ satisfying |μ1 − zmid| ≤ |μ2 − zmid|.

Finally, we will consider the third case where both μ1
and μ2 lie inside R◦. This is the case shown in Fig. 14.
Similar to the first two cases, it is enough to focus only
on 0 ≤ Arg(μ1) ≤ Arg(μ2) ≤ α. We divide R into four
disjoint regions given by

R1 = {z ∈ C : Arg(μ2) ≤ Arg(z) ≤ α}
R2 = {z ∈ C : Arg(μ1) ≤ Arg(z) < Arg(μ2)}
R3 = {z ∈ C : Arg(μ1) + Arg(μ2) − α ≤ Arg(z) < Arg(μ1)}
R4 = {z ∈ C : − α ≤ Arg(z) < Arg(μ1) + Arg(μ2) − α}

FIGURE 15. An illustration for the proof of Theorem 2 where
∣∣
∣
√

SNRhx� − zk

∣∣
∣ ≤

∣
∣∣
√

SNRhx − zk

∣
∣∣.

Using the symmetry in the problem, we have Pr{W1 ∈ R1} =
Pr{W2 ∈ R3}, Pr{W1 ∈ R2} = Pr{W2 ∈ R2} and
Pr{W1 ∈ R3} = Pr{W2 ∈ R1}. On the other hand,
Pr{W1 ∈ R4} ≥ Pr{W2 ∈ R4} since |y− μ1| ≤ |y− μ2| for
all y ∈ R4. Hence, g(μ1) ≥ g(μ2) when both μ1 and μ2
lie inside R◦, which completes the proof.

Now, we will utilize Lemma 6 to prove Theorem 2.
For Q(Y) = k, the ML detector given in (6) reduces
to finding a signal point in C maximizing the probability
Pr
{√

SNRhx+W ∈ Rk

}
, i.e.,

x̂(k, h) ∈ arg max
x∈C

Pr
{√

SNRhx+W ∈ Rk

}
.

By Lemma 6, x̂(k, h) is the signal point in C such that√
SNRhx̂(k, h) is closest to zk = √

SNRre
j
(

2π
2n k+ π

2n

)

, where
r = |h|. Further, x̂(k, h) is unique with probability one
due to the continuity assumption of the fading distribu-
tion. Consider now the semi-circle S = {z ∈ C : |z|} such
that |z| = √

SNRr and
(

2π
2n k + π

2n − π
2

)
≤ Arg(z) ≤

(
2π
2n k + π

2n + π
2

)
centered around zk and having Hk as its

bisector. The semi-circle S is illustrated in Fig 15. Let
x� ∈ arg min

x∈C
dist
(√

SNRhx,Hk

)
. For the M-PSK modu-

lation scheme (M ≥ 2) with regularly spaced signal points
on the unit circle, we always have

√
SNRhx� ∈ S and√

SNRhx̂(k, h) ∈ S . Take now another signal point x ∈ C
different than x� and satisfying

√
SNRhx ∈ S . Consider the

triangle formed by 0, zk and
√

SNRhx�, and the one formed
by 0, zk and

√
SNRhx. We first observe that the area of

the first triangle is smaller than the area of the second one
since they share the line segment LOzk as their common

base but the height of the first one dist
(√

SNRhx�,Hk

)
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corresponding to this base is smaller than the height of
the second one dist

(√
SNRhx,Hk

)
corresponding to the

same base. This is also illustrated in Fig. 15. This obser-
vation, in turn, implies

∣∣
∣
√

SNRhx� − zk
∣∣
∣ ≤

∣∣
∣
√

SNRhx− zk
∣∣
∣

because the remaining side lengths of both triangles are equal
to

√
SNRr. Since this is correct for any x ∈ C satisfying√

SNRhx ∈ S , we conclude that x� is unique and equal to
x� = x̂(k, h).

APPENDIX C
PROOF OF LEMMA 1
The proof of Lemma 1 is based on an applica-
tion of the law of total probability [55]. To this
end, we consider a partition {Dk}2n−1

k=0 of C, where
each element of this partition is given by Dk ={
z ∈ C : (2k − 1) π

2n ≤ Arg(z) + π < (2k + 1) π
2n
}

for k ∈
[1 : 2n − 1], and D0 = {

z ∈ C : π − π
2n ≤ Arg(z) < π

}

⋃{
z ∈ C : − π ≤ Arg(z) < π

2n − π
}
. Let xi = e

jπ
(

2i+1
M −1

)

be the ith signal point in the constellation set C for
i ∈ [0 : M − 1]. Then, we can express p

(
SNR

)
according

to (41), as shown at the bottom of the page.
We will show that all the terms in (41), as shown at the

bottom of this page, are equal to each other. Next, we define
Ei = {

z ∈ C : Arg(xi) − π
M ≤ Arg(z) < Arg(xi) + π

M

}
for

i ∈ [0 : M − 1]. Note that Ei contains all Hk’s (i.e., bisec-
tors of quantization regions) to which xi is the closest signal
point since xi’s are uniformly spaced on the unit circle
in C. Furthermore, this statement continues to be true for√

SNRhxi as long as Arg(h) ∈ [− π
2n ,

π
2n
)
since the angular

spacing between Hk’s is uniform and equal to 2π
2n . Notice

that Arg(h) ∈ [− π
2n ,

π
2n
)

if and only if h ∈ D2n−1 . On

the other hand, if Arg(h) ∈
[

π
2n ,

3π
2n

)
, the region ej 2π

2n Ei =
{
ej 2π

2n z ∈ C : Arg(xi) − π
M ≤ Arg(z) < Arg(xi) + π

M

}
con-

tains all Hk’s to which
√

SNRhxi is the closest. Notice also
that Arg(h) ∈

[
π
2n ,

3π
2n

)
if and only if h ∈ D2n−1+1. Similarly,

e−j 2π
2n Ei contains all Hk’s to which

√
SNRhxi is closest if

Arg(h) ∈
[
− 3π

2n ,− π
2n

)
, and Arg(h) ∈

[
− 3π

2n ,− π
2n

)
if and

only if h ∈ D2n−1−1. The same idea extends to any Dk, and
we define

Ei,k � exp

(
j
(
k − 2n−1

)2π

2n

)
Ei, (42)

for i ∈ [0 : M − 1] and k ∈ [0:2n − 1]. We will use the sets
defined in (42) to show that all the terms in (41) are equal.
To complete the proof, we let pi,k =∫

Dk
Pr
{
xi 
= x̂(Q(Y), h)|H = h,X = xi

}
fH(h)dh for

i ∈ [0 : M − 1] and k ∈ [0 : 2n − 1]. We also define

θ ′
i = −π

(
2i
M − 1

)
, θ ′′

k = −(k − 2n−1
) 2π

2n , and θi,k = θ ′
i + θ ′′

k
for i ∈ [0 : M − 1] and k ∈ [0 : 2n − 1]. We first observe
that ejθi,kEi,k = EM

2
since multiplication with ejθ ′

i rotates

the ith signal point to xM
2

and multiplication with ejθ ′′
k

removes the effect of partition selection for h. Secondly,
we observe that when h ∈ Dk, the event

{
xi 
= x̂(Q(Y), h)

}

is equivalent to
{
Y /∈ Ei,k

}
since Ei,k contains all bisectors

to which
√

SNRhxi is closest for this range of h values.
Hence, the following chain of equalities hold:

pi,k
(a)=
∫

Dk

Pr
{√

SNRhxi +W /∈ Ei,k
}
fH(h)dh

=
∫

Dk

Pr
{
W /∈ Ei,k − √

SNRhxi
}
fH(h)dh

=
∫

Dk

Pr
{
ejθi,kW /∈ ejθi,kEi,k − ejθi,k

√
SNRhxi

}

fH(h)dh
(b)=
∫

Dk

Pr
{
W /∈ EM

2
− √

SNRejθ ′′
k hxM

2

}
fH(h)dh, (43)

where (a) follows from the independence of W, H and X,
and (b) follows from above observations and the circular
symmetry property of W. Let us now define z = ejθ ′′

k h
in (43). Since multiplication with a unit magnitude complex
number is a unitary transformation (i.e., rotation) over the
complex plane, we have

pi,k =
∫

Dk

Pr
{
W /∈ EM

2
− √

SNRejθ ′′
k hxM

2

}
fH(h)dh

=
∫

ejθ ′′
k Dk

Pr
{
W /∈ EM

2
− √

SNRzxM
2

}
fH
(
e−jθ ′′

k z
)
dz

(a)=
∫

D2n−1

Pr
{
W /∈ EM

2
− √

SNRzxM
2

}
fH(z)dz

(b)=
∫

D2n−1

Pr
{√

SNRzxM
2

+W /∈ EM
2 ,2n−1

}
fH(z)dz

(c)= pM
2 ,2n−1 , (44)

where (a), (b) and (c) follow from the circular symmetry of
H [40], [41] and the corresponding definitions for Dk, Ei,k
and pi,k for i ∈ [0 : M − 1] and k ∈ [0 : 2n − 1]. This shows
p
(
SNR

) = 2npM
2 ,2n−1 . For a circularly-symmetric pdf fH(h),

it is well-known that rfH(r cos λ, r sin λ) = 1
2π
fR(r) [56].

Switching to polar coordinates, and using the identities
rfH(r cos λ, r sin λ) = 1

2π
fR(r), xM

2
= ej π

M and EM
2 ,2n−1 = E ,

we have

p(SNR) = 2n−1

π

∫ π
2n

− π
2n

∫ ∞

0
Pr
{√

SNRrej( π
M+λ) +W /∈ E

}

fR(r) dr dλ.

p
(
SNR

) = 1

M

M−1∑

i=0

2n−1∑

k=0

∫

Dk

Pr
{
xi 
= x̂(Q(Y), h)|H = h,X = xi

}
fH(h)dh (41)
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By using the change of variables θ = π
M + λ, we conclude

the proof.

APPENDIX D
PROOF OF LEMMA 2
The proof of part (i) follows immediately from Definition 1:

lim
SNR→∞

log
(
αf
(
SNR

))

log SNR

= lim
SNR→∞

log α

log SNR
+ lim

SNR→∞
log f

(
SNR

)

log SNR
= di.

For the proof of part (ii), given any ε > 0, let c > 0 be such
that

SNRdi−ε ≤ fi
(
SNR

) ≤ SNRdi+ε (45)

for all SNR ≥ c and i ∈ [1:N]. Let i′ = arg maxi∈[1:N] di.
Then, as SNR → ∞, we can write

log

(
N∑

i=1

fi
(
SNR

)
)

≤ log

(
N∑

i=1

SNRdi+ε

)

= log SNRdmax+ε + log

⎛

⎜
⎝1 +

N∑

i=1
i 
=i′

SNRdi−dmax

⎞

⎟
⎠

= (dmax + ε) log SNR + o(1),

which implies
∑N

i=1 fi
(
SNR

) e≤ dmax + ε. Since ε > 0

is arbitrary, we conclude that
∑N

i=1 fi
(
SNR

) e≤ dmax. The

other direction
∑N

i=1 fi
(
SNR

) e≥ dmax follows from the same
arguments, which completes the proof.

APPENDIX E
PROOF OF LEMMA 3
We start with the case M = 4 and n = 2, and obtain
upper and lower bounds on p1

(
SNR

)
that will lead to the

same exponential equality. For the upper bound, we write
p1
(
SNR

)
as

p1
(
SNR

) = 2mm

π2

∫ π
2

0

∫ π
2

0

(
SNR

sin2 β
cos2 θ + m

)−m
dθdβ

≤ mm

π

∫ π
2

0

(
SNR cos2 θ + m

)−m
dθ.

Let θ∗(SNR
)
be such that cos

(
θ∗(SNR

)) = SNR− 1
2 . Then,

θ∗(SNR
) = arccos

(
SNR− 1

2

)
= π

2 −SNR− 1
2 −o

(
SNR− 1

2

)

as SNR → ∞. Using the fact that the line 1− 2
π
θ is a lower

bound for cos θ for θ ∈ [0, π
2

]
, we have (46), as shown at the

bottom of the page, for large values of SNR. Equation (46)

shows that p1
(
SNR

) e≤ SNR− 1
2 for all m ≥ 1

2 when M = 4
and n = 2. For the other direction, we obtain a lower bound
on p1

(
SNR

)
as (47) shown at the bottom of the page.

We observe that
∫ π

2
0 (sin β)2mdβ =

√
π	
(
m+ 1

2

)

2	(m+1)
for m >

− 1
2 and let c = mm

π1.5

	
(
m+ 1

2

)

	(m+1)
. We first consider the case

m = 1
2 . Then, as SNR → ∞, we have

p1
(
SNR

) ≥ cSNR− 1
2

∫ π
2

0

(
cos2 θ + 1

)− 1
2
dθ

= SNR− 1
2 �(1). (48)

For m > 1
2 , we define θ∗(SNR

)
as above and lower bound

p1
(
SNR

)
for large values of SNR as

p1
(
SNR

) ≥ cSNR−m
∫ π

2

θ∗(SNR)

(
cos2 θ + m

SNR

)−m
dθ

≥ cSNR−m
∫ π

2

θ∗(SNR)

(
1

SNR
+ m

SNR

)−m
dθ

= SNR− 1
2 c(1 + m)−m(1 + o(1))

= SNR− 1
2 �(1). (49)

p1
(
SNR

) ≤ mm

π

∫ θ∗(SNR)

0

(
SNR cos2 θ + m

)−m
dθ + mm

π

∫ π
2

θ∗(SNR)

(
SNR cos2 θ + m

)−m
dθ

≤ mm

π
SNR−m

∫ θ∗(SNR)

0

(
1 − 2

π
θ

)−2m

dθ + 1

π
SNR− 1

2 (1 + o(1))

= −mm

2
SNR−m

∫ 1− 2
π

θ∗(SNR)

1
u−2mdu+ 1

π
SNR− 1

2 (1 + o(1))

=
{

SNR− 1
2O
(
log SNR

)
if m = 1

2

SNR− 1
2O(1) if m > 1

2

(46)

p1
(
SNR

) = 2mm

π2

∫ π
2

0

∫ π
2

0
(sin β)2m

(
SNR cos2 θ + m sin2 β

)−m
dθdβ

≥ 2mm

π2

∫ π
2

0
(sin β)2mdβ

∫ π
2

0

(
SNR cos2 θ + m

)−m
dθ (47)
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Using (48) and (49), we conclude that p1
(
SNR

) e≥
SNR− 1

2 for all m ≥ 1
2 when M = 4 and n = 2. Since

p1
(
SNR

)
also satisfies p1

(
SNR

) e≤ SNR− 1
2 in this case,

we have p1
(
SNR

) e= SNR− 1
2 for m ≥ 1

2 , M = 4 and n = 2.
Next, we consider M = 4 and n > 2. In this case, we

write p1
(
SNR

)
as

p1
(
SNR

) = 2n−1mm

π2
SNR−m

∫ π
2

0

∫ π
4 + π

2n

π
4 − π

2n

(
cos2 θ

sin2 β
+ m

SNR

)−m
dθdβ. (50)

Let gSNR(θ, β) =
(

cos2 θ

sin2 β
+ m

SNR

)−m
be a collection

of functions indexed by SNR. These functions increase

to g∞(θ, β) =
(

cos θ
sin β

)−2m
as SNR → ∞. Further,

∫ π
2

0

∫ π
4 + π

2n
π
4 − π

2n
g∞(θ, β)dθdβ < ∞. Hence, as SNR → ∞, we

conclude that

p1
(
SNR

) = SNR−m�(1) (51)

by using the monotone convergence theorem [52], which
implies p1

(
SNR

) e= SNR−m. The proof for M > 4 and
n ≥ log2 M is similar, and we omit it to avoid repetition.

APPENDIX F
PROOF OF LEMMA 4
For M = 4 and n = 2, p2

(
SNR

) = p1
(
SNR

)
, and hence the

proof of p2
(
SNR

) e= SNR− 1
2 in this case directly follows

from Lemma 3. For M > 4 and n > log2 M, a similar
argument using the monotone convergence theorem as in the
proof of Lemma 3 readily shows that p2

(
SNR

) e= SNR−m
for all m ≥ 1

2 . Therefore, we will only focus on the case
M > 4 and n = log2 M to complete the proof of Lemma 4.

For M > 4 and n = log2 M, we will obtain upper and
lower bounds on p2

(
SNR

)
leading to the same exponential

equality. For the upper bound, we have

p2
(
SNR

) = 2n−1mm

π2

∫ π
2

0

∫ 2π
M

0

(
SNR

sin2 β
sin2 θ + m

)−m
dθdβ

≤ 2n−1mm

π2

∫ π
2

0

∫ π
2

0

(
SNR

sin2 β
sin2 θ + m

)−m
dθdβ

e= SNR− 1
2 , (52)

where the last equality follows from the fact that p2
(
SNR

) e=
SNR− 1

2 for M = 4 and n = 2 and Lemma 2.
For the lower bound, we have (53), as shown at the bottom

of the page, where c = 2n−2mm

π1.5

	
(
m+ 1

2

)

	(m+1)
.

Let θ∗(SNR
)
be such that sin

(
θ∗(SNR

)) = SNR− 1
2 .

Then, θ∗(SNR
) = arcsin

(
SNR− 1

2

)
= SNR− 1

2 +
o
(
SNR− 1

2

)
as SNR → ∞. Hence, as SNR → ∞, we

have

p2
(
SNR

) ≥ cSNR−m
∫ θ∗(SNR)

0

(
sin2 θ + m

SNR

)−m
dθ

≥ cSNR−m
∫ θ∗(SNR)

0

(
1

SNR
+ m

SNR

)−m
dθ

= SNR− 1
2 �(1), (54)

which implies p2
(
SNR

) e≥ SNR− 1
2 . Since p2

(
SNR

)
also

satisfies p2
(
SNR

) e≤ SNR− 1
2 in this case, we have

p2
(
SNR

) e= SNR− 1
2 for m ≥ 1

2 , M > 4 and n = log2 M.

APPENDIX G
PROOF OF LEMMA 5
We will prove this lemma for general circularly-symmetric
fading processes. To this end, let H = Rej� be the
circularly-symmetric fading coefficient with the joint phase
and magnitude pdf fR,�(r, θ) = 1

2π
fR(r) for θ ∈ [−π, π) and

r ≥ 0. In the proof of Theorem 3, we obtained the expres-
sion p

(
SNR, h

)
with h = rejθ given by (55) as shown at

the bottom of the page.
Below, we will always use rejθ as the polar coordi-

nate representation of h, i.e., r = |h| and θ = Arg(h).
Integrating 2np

(
SNR, h

)
with respect to fR,�(r, θ) for θ ∈[

π
M − π

2n ,
π
M + π

2n
)
and r ≥ 0, and using the Nakagami-m

pdf for fR(r) together with Craig’s formula, we obtained the
resulting p

(
SNR

)
expression in Theorem 3. Here, we will

not assume any specific functional form for fR(r).
We start with obtaining the lower bound L

(
SNR

)
on

p
(
SNR

)
. Let

p1
(
SNR, h

) = Q
(√

2SNRr cos θ
)

p2
(
SNR

) = 2n−1mm

π2

∫ π
2

0

∫ 2π
M

0
(sin β)2m

(
SNR sin2 θ + m sin2 β

)−m
dθdβ

≥ cSNR−m
∫ 2π

M

0

(
sin2 θ + m

SNR

)−m
dθ (53)

p
(
SNR, h

) = Q
(√

2SNRr cos θ
)

+ Q
(√

2SNRr sin θ
)

− Q
(√

2SNRr cos θ
)
Q
(√

2SNRr sin θ
)

+ 1√
π

∫ ∞

−√
SNRr cos θ

Q
(√

2SNRr sec

(
2π

M

)
sin

(
2π

M
− θ

)
+ √

2 tan

(
2π

M

)
w

)
e−w2

dw (55)
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p2
(
SNR, h

) = Q
(√

2SNRr sin θ
)

p3
(
SNR, h

) = Q
(√

2SNRr cos θ
)
Q
(√

2SNRr sin θ
)

and p4
(
SNR, h

)
be the last integral term in (55). For i ∈

[1:4], pi
(
SNR

)
is defined to be the integral of 2npi

(
SNR, h

)

with respect to fR,�(r, θ) for θ ∈ [
π
M − π

2n ,
π
M + π

2n
)

and
r ≥ 0. For the given integration range, p3

(
SNR, h

) ≤
1
2p2
(
SNR, h

)
since the argument of the Q-function is always

positive. Hence, we have

p
(
SNR, h

) ≥ p1
(
SNR, h

)+ p2
(
SNR, h

)− p3
(
SNR, h

)

≥ p1
(
SNR, h

)+ 1

2
p2
(
SNR, h

)
. (56)

After scaling with 2n and integrating (56) with respect to
fR,�(r, θ) over the above integration range, we have

p
(
SNR

) ≥ p1
(
SNR

)+ 1

2
p2
(
SNR

)

= L
(
SNR

)
. (57)

Next, we establish that U
(
SNR

) = p1
(
SNR

)+2p2
(
SNR

)

is an upper bound on p
(
SNR

)
. To this end, we will show

that p4
(
SNR

) ≤ p2
(
SNR

)
for all M ≥ 4. For M = 4, this

is trivial since p4
(
SNR, h

) = 0 ≤ p2
(
SNR, h

)
. For M > 4,

we define

p5
(
SNR, h

) = 1√
π

∫∞
−∞ Q(ϕ)e−w2

dw,

where ϕ = √
2SNRr sec

(
2π
M

)
sin
(

2π
M − θ

)
+√

2w tan
(

2π
M

)
.

We also define p5
(
SNR

)
to be the integral of 2np5

(
SNR, h

)

with respect to fR,�(r, θ) for θ ∈ [
π
M − π

2n ,
π
M + π

2n
)

and
r ≥ 0.

We observe that p4
(
SNR

) ≤ p5
(
SNR

)
since the inte-

grands are always positive and the integral with respect to w
is over the whole real line for p5

(
SNR, h

)
. Thus, it will be

enough to show p2
(
SNR

) = p5
(
SNR

)
to conclude the proof.

For SNR = 0, this can be verified by using the identity
Q(x) = 1 −Q(−x). To prove the equality for all SNR ≥ 0,
we define the function f

(
SNR

) = p2
(
SNR

) − p5
(
SNR

)
.

It is enough to show that the derivative of f
(
SNR

)
, which

we represent by f ′
(
SNR

)
, is equal to zero everywhere in

order to show p2
(
SNR

) = p5
(
SNR

)
. This is because if

f ′
(
SNR

)
is equal to zero for all SNR ≥ 0, then f

(
SNR

)

must be a constant function. Since f (0) = 0, we have
f
(
SNR

) = p2
(
SNR

)− p5
(
SNR

) = 0 for all SNR ≥ 0. We
devote the rest of the proof to showing that f ′

(
SNR

) = 0
for all SNR ≥ 0.

Using the definition of the Q-function, the derivative of
p2
(
SNR

)
with respect to SNR, which we represent by

p′
2

(
SNR

)
, is given by

p′
2

(
SNR

)
(58)

= 2n−1

π

∫ π
M+ π

2n

π
M− π

2n

∫ ∞

0

dp2
(
SNR, rejθ

)

dSNR
fR(r)drdθ

= 2n−1

π

∫ π
M+ π

2n

π
M− π

2n

∫ ∞

0

−r sin θ

2
√

πSNR
e−SNRr2 sin2 θ fR(r)drdθ.

Similarly, p′
5

(
SNR

)
can be written as

p′
5

(
SNR

)

= 2n−1

π

∫ π
M+ π

2n

π
M− π

2n

∫ ∞

0

dp5
(
SNR, rejθ

)

dSNR
fR(r)drdθ

= 2n−1

π
√

π

∫ π
M+ π

2n

π
M− π

2n

∫ ∞

0

−A(r, θ)

2
√

πSNR
I(r, θ)fR(r)drdθ, (59)

where A(r, θ) = r sec
(

2π
M

)
sin
(

2π
M − θ

)
, I(r, θ) =

∫∞
−∞ e

−
(
w2+

(
A(r,θ)

√
SNR+Bw

)2
)

dw and B = tan
(

2π
M

)
. After

completing the term in the exponent in I(r, θ) to square and
using the affinity of the resulting expression to a Gaussian
pdf, I(r, θ) can be shown to be equal to

I(r, θ) = √
π cos

(
2π
M

)
e
−SNRr2 sin2

(
2π
M −θ

)

. (60)

Using (60) in (59), we have

p′
5

(
SNR

) = 2n−1

π

∫ π
M+ π

2n

π
M− π

2n

∫ ∞

0

−r sin
(

2π
M − θ

)

2
√

πSNR

e
−SNRr2 sin2

(
2π
M −θ

)

fR(r)drdθ. (61)

Change of variables u = 2π
M − θ in (61) shows that

p′
2

(
SNR

) = p′
5

(
SNR

)
, and hence f ′

(
SNR

) = 0 as
desired.
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