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ABSTRACT Multiband spectrum access plays an essential role in cognitive radio systems so as to
increase the network’s throughput through wideband spectrum sensing. It includes identifying the number
of subbands comprising a wide spectrum by edge detection, and also examining their occupancy through
primary user detection techniques. Despite the offered accuracy of the wavelet-based approaches, their
complexity becomes a drawback. Remarkably, the features revealing property of cepstral analysis and its
implementation simplicity make it a suitable candidate for signal detection. Motivated by these reasons,
this paper presents a wideband spectrum sensing approach based on cepstral analysis. First, we propose
the differential log spectral density algorithm for the edge detection phase in order to detect the spectral
boundaries within the wideband of interest. Also, we present a mathematical framework of the proposed
algorithm and an expression for the detection threshold of the proposed detector is derived. The simulation
results have showed a superior performance of the edge detection algorithm to different wavelet-based
techniques at low-to-medium noise power. Used in conjunction with denoising, the proposed edge detector
shows good detection results at low signal-to-noise ratio. For the primary user detection phase, we introduce
the improved passband autocepstrum detector to tackle the misdetection problem of noise-like signals and
it outperforms different state-of-the-art techniques. Finally, the uncertainty problem of the subbands center
frequencies is addressed and the baseband autocepstrum detector is introduced as a potential solution to
improve signal detection in frequency selective fading.

INDEX TERMS Baseband autocepstrum detector, cognitive radio, differential log spectral density,
wideband spectrum sensing.

NOMENCLATURE CR Cognitive Radio
5G Fifth Generation mobile system CS Compressive Sensing
6G Sixth Generation mobile system CTF Circular Topological Filter
ACE AutoCorrelation Estimator DLSD Differential Log Spectral Density
AWGN Additive White Gaussian Noise DSA Dynamic Spectrum Access
BB-ACD BaseBand-AutoCesptrum Detector DWT  Discrete Wavelet Transform
BED Broadened Energy Detection ED Energy Detection
CA Cesptral Analysis FCC Federal Communication Commission
CFD Cyclostationary Feature Detection FT Fourier Transform
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HF Hilbert Filtering

MBSA Multiband Spectrum Access

MFD  Matched Filter Detection

MM Majorization-Minimization algorithm
NBSS  NarrowBand Spectrum Sensing

PB-ACD PassBand-AutoCepstrum Detector

PSD Power Spectral Density

PU Primary User

SBSA  Single-Band Spectrum Access
SLD Square-Law Device

SNR Signal-to-Noise Ratio

SS Spread Spectrum

SuU Secondary User
TVD Total Variation Denoising
WBD  Wavelet-Based Detection
WBSS  Wideband Spectrum Sensing
WED  Weighted Energy Detection
WT Wavelet Transform
WTMM Wavelet Transform Modulus Maxima
WTMP Wavelet Transform Multiscale Product
WTMS Wavelet Transform Multiscale Sum.
. INTRODUCTION

OGNITIVE Radio (CR) technology thrusts itself as
a suitable candidate to solve the problem of scarce
radio resources. The evolution of communication technolo-
gies aims to fulfill the needs for higher data rates and the
increased number of users [1]. Such technology, which is
endowed with spectrum awareness, can be integrated with
the next cellular wireless standards. For instance, one of
the primary goals of the 5G technology is to bring and
interconnect wireless and wired systems with a large variety
of services, which requires the cooperation of the CR tech-
nology. However, the practical deployment of 5G-CR based
system poses challenges in the network infrastructure and
limits the integration between both technologies [2].
Despite the fact that the commercial 5G networks are
currently hardly operational in some countries, this has not
stopped engineers to think towards 6G technology that is
concerned with adaptivity, cognition, and resiliency of com-
munication. This makes the CR approaches and concepts are
good candidates to be realized in 6G [3]. For this purpose,
the first global summit on the 6G wireless standards was
held at the beginning of 2019 to discuss some academic
speculations about the possible potentials of 6G technology.
Further, the Federal Communication Commission (FCC) has
announced the opening of the terahertz wave spectrum, rang-
ing from 95 GHz to 3 Terahertz (THz), for experiments on
the next standards, as well as a full of a 21.5 GHz spec-
trum for testing of unlicensed devices [4]. Therefore, this
wide spectrum entails seeking more spectral opportunities.
This can be possible by employing a suitable Wideband
Spectrum Sensing (WBSS) technique and hence allows for
a potential 6G-CR based systems. Apparently, the research
concerns of multiband spectrum access are compatible with
the evolution of future communication technologies.
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In CR, Dynamic Spectrum Access (DSA) techniques per-
mit the spectrum sharing of unlicensed users [5]. This is
to allow a Secondary User (SU) (i.e., unlicensed user) to
access different frequency bands in a wide defined spec-
trum. Generally, there are two types of DSA techniques: the
Single-Band Spectrum Access (SBSA), and the Multiband
Spectrum Access (MBSA). The former type implies that a
SU can access a single narrow frequency band after checking
its suitability for a specific spectrum sharing model, whereas
the MBSA type refers to accessing a large spectrum that con-
sists of a group of narrow bands. The importance of applying
MBSA, despite the complexity of the system, lies in its valu-
able advantages. Indeed, the handoff frequency with different
frequency bands, as well as the interruption of the transmit-
ted SU data due to the sudden resumed activities of Primary
Users (PU) (i.e., licensed users) can be reduced. Needless to
say, the possibility of accessing multiple narrow frequency
bands can enhance the throughput of a CR network and
this can be achieved by employing the appropriate WBSS
technique.

The process of sensing a wide radio spectrum is performed
through two phases, namely: the edge detection phase, and
the PU detection phase. Through the edge detection phase,
the wide spectrum of interest is analyzed to identify the
spectral boundaries, which are characterized by irregularities
appearing in the spectrum. For instance, The Wavelet-Based
Detection (WBD) approaches employ Wavelet Transform
(WT) as a powerful mathematical tool for singularities detec-
tion [6]. These singularities, which represent irregular signal
structures, define the subband edges (i.e., boundaries). As for
the PU detection phase, one of the conventional NarrowBand
Spectrum Sensing (NBSS) techniques can be utilized, such
as Energy Detection (ED), Matched-Filter Detection (MFD),
Cyclostationary feature detection (CFD), and Compressive
Sensing (CS) [7]. In general, there are two main methods
to apply NBSS: Sequentially, or through parallel sensing. In
the sequential sensing method, a narrowband detector senses
multiple bands in a serial manner. The major disadvantage
of employing sequential sensing is the slow processing time,
and also the requirement of re-tuning the used filters and
oscillators. While the theme of the parallel sensing method
assures a better processing time, the increased complex-
ity of the CR receiver architecture becomes a drawback.
This increased complexity is due to the integrated multiple
narrowband detectors at the CR receiver.

Since possible errors in the edge detection result conse-
quently affect the performance of the PU detection phase,
the crucial challenge in applying the WBSS techniques is
the devised edge detection algorithm. In other words, false
alarms can be generated due to the presence of spurious
edges caused by noisy spectral variations. Moreover, errors
in estimating the location of an exact spectral boundary may
lead to the misdetection problem. Thus, the promising accu-
racy of the chosen edge detection approach is vital to assure
the overall efficiency of the WBSS process. Clearly, further
advancements in wideband sensing are required to provide
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high detection robustness against noisy spectral variations
with offered low complexity. Therefore, we should high-
light the trade-off between the detection accuracy, and the
computational burden or the offered hardware complexity.
For example, even though the wavelet-based detector pro-
vides a reliable detection accuracy in an Additive White
Gaussian Noise (AWGN) channel on the one hand, but on
the other hand, its hardware and computational complexities
are significant. This is because a wavelet-based detector is
implemented as a bank of multiresolution filters; So for bet-
ter detection results, the signal analysis is carried out through
all dyadic scales which increases the computational cost.

Moreover, the CS exploits the signal sparsity in the
frequency domain knowing that a scarce or underutilized
spectrum is sparse. This sparsity invokes a few numbers of
measurements to be used, hence a performance degradation
is expected due to the reduced Signal-to-Noise Ratio (SNR)
despite the hardware simplicity of the CS detector. Motivated
by these insights, in this work, we present a novel WBSS
technique that is based on the Cepstral Analysis (CA) in the
context of CR. We introduce a novel edge detection algorithm
based on calculating the Differential Log-Spectral Density
(DLSD) of the received wideband signal. This is to iden-
tify the spectral boundaries and characterize the number of
occupied subbands. In order not to confuse the readers, eval-
uating the DLSD is slightly different than the conventional
differential cepstrum. For a given signal, the DLSD evaluates
the derivative of the natural logarithm of the signal’s Power
Spectral Density (PSD), whereas the differential cepstrum
calculates the derivative of a signal’s Fourier Transform
(FT). A mathematical framework of the proposed edge detec-
tion algorithm is analytically illustrated to show the effect
of the noisy spectral fluctuations on the resultant spectral
boundaries. The proposed algorithm is compared to different
wavelet-based edge detection algorithms at different noise
power levels to validate its efficacy.

In the literature, the CA has a strong impact on several
applications comprising audio and speech processing, as well
as mechanical systems. It is also employed in the fields of
signal classification or feature detection [8]. Thus, the CA
approach is used to identify certain features hidden in a
signal that can be revealed in the cepstral domain.

The concept of cepstrum was firstly introduced by Bogert,
Healy, and Tukey to analyze time series in the logarithmic
frequency domain [9]. Their investigations revealed that the
logarithmic spectrum of a signal containing echoes has an
additive component reflecting the size and the delay of the
echo. Moreover, they introduced new terminologies such as:
the cepstrum and also quefrency. In the literature, the cep-
strum is generally defined as the IFT of the logarithmic
magnitude spectrum of a signal. Cepstral analysis has been
widely used in audio and image processing for its ability to
reveal hidden features about signals. According to the vari-
ants of the CA approach, a certain CA variant is chosen to
fit a specific application. That is why a researcher must be
aware of the problem under analysis, and whether employing

VOLUME 1, 2020

the CA approach will unleash significant details about the
signal in the logarithmic domain. For example, the cepstrum
of a pure sinusoidal signal does not show significant peaks,
however, an echoed version added to it could show such
significance.

By completing the edge detection phase, we eventu-
ally obtain the required information about the spectral
boundaries of the sensed wide spectrum. Afterward, we
proceed to identify the presence of possible PUs in the
sensed frequency bands. For example, the authors in [10],
and [11] developed a spectrum detector based on a Hidden
Markov Model (HMM) with an energy detector front end
for offline and online spectrum sensing of narrowband chan-
nels. Also, the ED technique can be considered for NBSS
since it is a versatile technique that does not require prior
information about the PU signal. However, its susceptibil-
ity to noise variations results in a poor performance in
low SNR environments [12]. While taking advantage of its
implementation simplicity, improvements have been made
on the ED to gain an acceptable performance in a low SNR
scenario [13].

Employing the ED technique for detecting a PU sig-
nal assumes that the frequency band of interest is exactly
defined and recognized by its spectral boundaries. However,
in WBSS, the performance of ED deteriorates. Since the
PSD level within a certain subband is evaluated by the
integration of the PSD over certain frequency bands, it
should take into account the PSD level within the estimated
frequency boundaries which are subjected to possible errors.
Also, in the case of practical blunt spectrum shapes, the
PSD leakage related to the PU signal outside the spectral
boundaries will not be considered in the energy calcula-
tion [14]. Thus, this may cause the misdetection of a PU.
To overcome these drawbacks, the Broadened ED (BED) and
the Weighted ED (WED) are suggested in [14]. However,
the increased resulting complexity is pushing ED to lose
its simplicity property amongst different semi-blind NBSS
techniques.

As an alternative approach to the conventional energy
detector, we propose two PU detection techniques that
are based on evaluating the appropriate signal cepstrum
for detecting noise-like signals for the case of the SBSA.
It is worth mentioning that in [15] we proposed the
PassBand AutoCepstrum Detector (PB-ACD) that analyzes
the received signal in its passband version. Through the PB-
ACD, the detection process merely depends on identifying
a significant peak in the cepstral domain at the recipro-
cal of the center frequency of the target spectral band.
However, in a low SNR environment (e.g., —15 dB) in
which high noisy fluctuations are experienced, identifying
this major peak will be a difficult task. For this purpose,
we introduce an improved version of the PB-ACD tech-
nique by providing a smoothing process. We formulate a
novel signal smoothing technique that involves the use of
the Total Variation Denoising (TVD) approach through the
Majorization-Minimization algorithm (MM).
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We start by evaluating the fluctuations of the
AutoCorrelation Estimators (ACEs) of the received noise-
like signal (i.e., spread spectrum signal) to which we apply
the TVD-MM algorithm, and then estimating the smoothed
spectrum before applying the PB-ACD approach. Since we
assume working in a noncooperative detection environment
and knowing that most of the denoising techniques depend
on some knowledge provided of the received signal, noise
statistics, and channel information, we apply the TVD-MM
algorithm in semi-blind theme without prior knowledge of
the nature of the noise-like signal. Precisely, we utilize the
fact that the fluctuations of the autocorrelation estimators of
the received SS signal and that of the AWGN are distin-
guishable [16], the TVD-MM algorithm is applied on the
ACE of the received CR signal utilizing this discriminating
feature. The purpose of applying the smoothing process is
to reduce possible false alarms.

Although the PB-ACD technique has shown its efficacy
in detecting a Direct Sequence-Spread Spectrum (DS-SS)
signal in [15], with an exact knowledge of the subbands
center frequencies, its performance deteriorates when applied
in the MBSA scenario due to the potential errors in estimat-
ing the subbands center frequencies. These errors may result
in the misdetection and false-alarm problems. As a solu-
tion, we introduce the BaseBand AutoCepstrum Detector
(BB-ACD) that exploits the periodicity feature that can
be revealed of the baseband digital signals in the cepstral
domain. Accordingly, we propose a non-coherent detection
of the received signal via a Circular Topological Filter (CTF),
which consists of Hilbert Filtering (HF) and a Square-Law
Device (SLD). This is to extract the baseband version of a
signal before evaluating the power cepstrum of the received
signal so that the detection process does not depend on
the exact knowledge of the center frequency of a specific
subband.

Specifically, the main contributions of the proposed wide-
band spectrum sensing approach through the CA can be
listed as follows:

1) For the edge detection phase, we propose the DLSD
algorithm to identify the spectral boundaries of the
subbands comprising the target wideband spectrum.

2) A mathematical framework of the DLSD approach is
illustrated.

3) An analytical expression of the detection threshold
characterizing the proposed DLSD detector is derived.

4) The performance of the PB-ACD technique is tested
in Rayleigh fading channel and compared with ED for
detecting OFDM PU signals.

5) The improved PB-ACD technique is presented to
detect noise-like PU signals that may be miss-detected
in noisy channels. The proposed technique is provided
by the employment of a signal smoothing process
which includes applying the TVD-MM algorithm to
the fluctuations of the ACEs of the received signal to
reduce the unwanted spectral fluctuations.
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6) The BB-ACD technique is formulated for the PU
detection phase in wideband spectrum sensing in order
to address the uncertainty problem of the subbands
center frequencies. The proposed technique exploits
the inherited periodicity of the baseband digitally
modulated signals in the cepstral domain. A mathemat-
ical analysis of the detection threshold is developed.
Simulations have shown that the BB-ACD technique
outperformed the PB-ACD technique when the uncer-
tainty problem of the subband center frequencies is
encountered.

7) We also extend our proposed BB-ACD technique to
consider mobile targets such as OFDM PU signals
in frequency selective fading channels with Doppler
frequency shifts and it proved its detection efficacy.

The rest of the paper is organized as follows. Section II
gives a brief state-of-the-art on the applications of CA in
CR and also summarizes the advantages and critics of the
wavelet-based edge detection techniques. Section III states
the mathematical foundation of the problem under investiga-
tion and describes the overall proposed system architecture.
The proposed edge detection and the CA-based PU detection
techniques are introduced in Section IV, with the mathemat-
ical analysis of both techniques. In Section V, the numerical
results are illustrated, and the conclusions are drawn in
Section VI.

Il. STATE-OF-THE-ART

The process of wideband spectrum sensing starts with detect-
ing the edges of the spectral boundaries. Many pieces of
research have presented the process of edge detection as a
peak detection problem. The notion of a peak depends on the
function representing the required set of peaks in a signal.
A peak function is one that characterizes a peak detector. It
captures the spikiness of a significant feature in a signal, or
generally, in a given time-series. Generally, there are some
standard approaches to detect peaks, such as:

i Fitting a smoothed time series to a known function
(e.g., wavelet analysis).
ii Matching a known peak shape to a given time series.
iii Detection of zero-crossings in the differences between
specific points and its neighbors (e.g., Hilbert
Filtering) [17].
Amongst many peak detection approaches, the wavelet anal-
ysis approach is significant in determining sharp variations
that appeared in a signal. So, in this section, we present a
brief overview of the WBD techniques. Further, we illustrate
the applications of CA in CR and the importance of apply-
ing CA in the WBSS problem as compared to the WBD
techniques.

A. WAVELET TRANSFORM FOR EDGE DETECTION

Wavelet analysis is considered as an efficient mathemati-
cal tool to describe the irregular structure in a signal by
defining its singularities. Based on this concept, it has been
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adopted to identify the boundaries of non-overlapping sub-
bands in a wide spectrum to classify them into white,
gray, or black spectral holes. In [18], Tian and Giannakis
introduced the use of WT Modulus Maxima (WTMM)
approach to allocate wideband edges and hence simulta-
neously identify all piece-wise flat frequency bands. One
major limitation of this approach is its sensitivity to noisy
fluctuations. Even by thresholding, all spurious components
cannot be eliminated. Further, the authors suggested the
use of WT Multiscale Product (WTMP), to enhance the
multiscale modulus coefficients while suppressing noise.
However, this results in miss-detecting an exact edge that
is heavily corrupted with noise. On the other hand, WTMP
exploits the correlation provided to improve the detection
performance. The disadvantages of this approach are the
loss of signal details, and losing the property of the mul-
tiresolutional analysis to distinguish between narrowband
and wideband signals. To reduce this effect, the authors
of [18] suggested the analysis of small and large scales
separately. As an alternative approach, WT Multiscale Sum
(WTMS) was introduced in [19] for information preservation
as well as avoiding attenuation that possibly occurs because
of multiplication operations.

Despite the offered advantage of the WTMS over the
WTMP, the dramatic increase of the scales throughout the
analysis causes edges localization loss. A solution to this
problem has been addressed in [20] by employing a non-
orthogonal class of wavelet functions such as the Gaussian
wavelet function. Moreover, Jindal et al. in [21] has tested
the work of Tian and Giannakis in multipath fading chan-
nels, and they found that a good performance is achievable
in moderate fading, but it is dropped significantly in deep
fading channels. In [22], the authors suggested applying a
logarithmic scaling preceded by thresholding in order to
enhance the small modulus maxima values at the exact edges.
However, the computation burden becomes a consequence of
applying their proposed technique. Also, this enhancement
affects negatively the spurious edges by magnifying them.
This increases false alarms at high noise variance. In this
sense, Discrete WT (DWT) based algorithm is suggested
in [22] to alleviate this problem. The DWT algorithm can
perform edge detection and denoising simultaneously provid-
ing reliable performance in high SNR scenarios. In the case
of low SNR scenarios, a moving averaging filtering strat-
egy is adopted. As a result, better performance is achieved
at lower scales, thus the computation time is reduced on
the expenses of the increased hardware complexity. Further
details concerning challenges, advantages, and disadvantages
of multiband spectrum access techniques in CR can be found
in [23].

B. APPLICATION OF CEPSTRAL ANALYSIS IN
COGNITIVE RADIO

Cepstral Analysis (CA) is a logarithmic based approach for
detecting signal features. Analyzing a given signal in the
cepstral domain has gained much interest in different fields
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TABLE 1. variants of the cepstral analysis terms.

Definition Mathematical Description

cr(n) = F~ ' {log | X (k)[}

Real Cepstrum

Complex Cepstrum co(h) = F~H{log X (k)}

Power Cepstrum cp(h) = 4|cr(n)|?

ep(n) = F! {))((((:))

Differential Cepstrum

Autocepstrum ca(h) = F~ {log F{R-(1)}}

of signal processing. Transforming the signal of interest
from time to frequency domains and getting the inverse
Fourier transform of its natural logarithm results in rep-
resenting the signal in neither time nor frequency domain.
So in order to forestall the conceptual confusion of oper-
ating on the frequency side that is customary on the time
side, Bogert et al. chose to refer to such domain as the que-
frency domain [9]. In literature, there are several methods to
employ the cepstrum of a signal. Table 1 gives a summary
of famous cepstral variants. First of all, let us define the
following variables:

o n: The discrete time domain.

o x(n): The analyzed discrete time domain signal.

o k: The discrete frequency variable.

e X(k): The Fourier Transform of x(n).

e F{}, and F~!{.}: The Fourier and inverse Fourier
transform operators, respectively.

o n: The discrete quefrency variable, which is a measure
of alternative time in the cesptral domain [24], [25].

e R.(D): The discrete autocorrelation function of the signal
x(n) at a time lag of [.

e X'(k): The first derivative of X (k).

As it was previously mentioned, CA has been utilized dif-
ferently in the field of signal detection. For example, it has
been applied for echoes detection in seismic waves [26].
Further, it has been used to estimate the multipath time
delay as introduced in [27], or for detecting audio water-
marks [28]. In the contexts of spectrum sensing and signal
detection in CR, CA approaches have been rarely utilized.
For instance, the authors in [29] have employed CA tech-
niques in waveform classification and for detecting OFDM
signals and also for estimating their parameters. Moreover,
the authors of [30] have introduced a WideBand Temporal
Sensing (WBTS) approach based on a cepstral envelope
detector. Precisely, the involvement of the cepstrum-based
spectrum envelope detector is to adapt to dynamic changes
that may occur in the configuration of a PU channel. The
rationale of this approach is to use a cepstral feature vector
to detect the changes in the spectrum envelope of a PU sig-
nal within a given frequency band. Based on the recursive
temporal spectrum sensing algorithm proposed in [31], the
authors in [30] have proposed the use of cepstral analysis
to monitor the change of the PU’s configuration instead of
the conventional ED front end.
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Intended Wideband

PSD
Busy Idle | Partially
busy
fey fe, fes fes v f
N Subbands

FIGURE 1. Wideband Sensing Problem.

In the WBTS approach, a given frequency band is divided
into narrowband channels of equal bandwidths. Every nar-
rowband channel is then sensed individually using an
HMM-based approach. The employed HMM model is trained
by an observation sequence that consists of average received
signal powers. The parameters of the trained HMM model is
estimated by the Baum algorithm! [31]. According to a mod-
ified correlation metric, the adjacent channels are aggregated
to form larger channels. After being conducted in a recursive
manner, this process eventually results in the identification
of a set of PU channels with their HMM estimated parame-
ters. At the same time, a cepstrum-based envelope detector
is applied to monitor the transition of the PU channel to a
different configuration. The spectrum envelope detector is
designed based on the HMM model in which the employed
observation vector corresponds to the signal’s cepstrum.

Our proposed cepstrum-based WBSS approach differs
from the WBTS approach such that it introduces the
following:

« Identification of the number of occupied subbands in

a target wide spectrum. This is formulated as an edge
detection problem and accomplished by developing the
DLSD algorithm.

o Detection of noise-like PU signals such as spread
spectrum signals. For this purpose, we reviewed our
proposed PB-ACD technique in [15] which detects the
presence of a DS-SS signal by monitoring a major
autocepstral peak. The improved PB-ACD technique
is proposed for improving the detection process by
providing a smoothing to the fluctuation so the ACEs.

o Detection of noise-like signals under the uncertainty
problem of the subbands center frequencies is accom-
plished by introducing the BB-ACD technique.

1. The Baum algorithm is a special case of the Expectation-Maximization
(EM) algorithm that is used to find the unknown parameters of an HMM.
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o To the best of our knowledge, the proposed WBSS
approach is the first to consider the use of the DLSD
algorithm for edge detection in CR and also improved
PB-ACD technique for detecting noise-like PU signals.
Also, exploiting the cepstral features of the baseband
signals for PU detection when the uncertainty problem
of the subbands center frequencies is relatively novel.

Since our goal is to identify the frequency locations of

non-overlapping spectrum bands and detect the presence of
spectral holes, the adaptation of CA for WBSS, as opposed
to the wavelet-based approach, is motivated by the following
insights:

o Using wavelet analysis to the intended spectrum
depends on the applied wavelet function, so the accuracy
and the performance will also depend on the appropriate
choice of the mother wavelet.

« The complexity of the wavelet approach offered, due to
the consecutive scaling and shifting operations, affects
the sensing time.

o CA decomposes a signal into envelope and excitation
components through deconvolution [32]. This filtering
signifies the fine details representing fast variations (i.e.,
high frequency components).

o CA has the property of revealing hidden harmonics and
periodic features of analyzed signals.

e CA is lower in the implementation complexity as
opposed to wavelet analysis.

lll. PROBLEM FORMULATION OF WIDEBAND
SPECTRUM SENSING

The main target of employing wideband sensing is to pro-
vide more spectral opportunities. It means that the SU must
recognize precisely the number of subbands in the wide
sensed spectrum before testing the occupancy of each one
of them. To design the wideband detector, we should take
into account the problem of edge detection and the identifi-
cation of spectral holes. Further, there are some challenges,
facing the design of the wideband detector, that must be
clarified. They are summarized as follows:

« The inspected subband may be licensed to certain wire-
less devices, such that they consume a small portion of
the reserved bandwidth, yet the total bandwidth might
be considered occupied. In this case, the SU must be
aware of the percentage of the spectral occupancy accu-
rately to avoid interfering with the licensed user and to
be able to configure properly its transmission to exploit
the non-utilized portion. This is illustrated in Fig. 1.

« Subbands are assumed to be non-overlapping and have
identical bandwidths; and the occupied channels are
uncorrelated, in contrast to systems such as WiLAN
and Broadcast TV in which subchannels are correlated.

o The detection of a PU, transmitting a wideband signal
in a deep fading channel is challenging because without
providing the CR systems with subchannels correlation
information, the SU may interfere with the PU when
resuming its transmission.
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A. PHASE I: IDENTIFICATION OF SPECTRAL
BOUNDARIES

In a cognitive communication network in which heteroge-
neous wireless devices are supported, a CR user must be able
to sense the wireless environment at a specific time and place
within a wide spectrum. In particular, the SU must acquire
the knowledge of the subchannel edges characterizing the
spectral boundaries. Once the boundaries are estimated, we
can define their center frequencies, and eventually, the PU
occupancy can be examined. In this context, we can formu-
late the problem statement for edge detection in WBSS as
follows:

In order to detect a specific spectral hole in a predefined
wide frequency band by a cognitive radio receiver, we need to
identify the parameters characterizing the wideband spectral
environment which are: the number of subbands N, their
corresponding center frequencies {f;, }ﬁ/:_ll, and the spectral
boundaries {fn}ﬁlv;l.

Before representing our proposed solution to this problem,
some basic assumptions are drawn:

o The entire wide band under scrutiny is modeled as a
train of consecutive frequency subbands, where the power
spectral characteristic is analyzed under two conditions:

i Piece-wise flat spectrum that exhibits a discontin-
uous change between adjacent subbands.
ii Blunt-shaped spectrum generated by a raised-
cosine pulse shaping filter as a practical example.
These changes are irregularities in the Power Spectral
Density (PSD). They carry key information on subband
locations.

o The wide spectrum of interest denoted by B is defined
in the frequency range [fy, fx] provided that the spectral
boundaries fy and fy are known by the CR system.

o« The n subband within B is defined by B, such that:
feB,: fu-1 <f <fu, and the frequency boundaries
of the consecutive bands are denoted by fj - - - fv, where
N is the number of frequency bands within B.

o The number of frequency bands is unknown to the CR
as well as the frequency boundaries.

o The ambient noise is assumed to be an additive white
Gaussian noise, with zero mean and two-sided PSD:

No
Swlf) == f ey

o We consider the case of a slotted medium access in the
interweave CR system, by which the SU performs a
periodic sensing on segmented time frames.

o The effect of adjacent channel interference is neglected
by assuming the n”* subband PSD S,(f) = 0,Vf ¢

[fnflvfn]'
1) SIGNAL AND CHANNEL MODELS

Let us define the received signal by the CR receiver by:

r(t) = s() +w(r)

N
= sal0) +w(0) 2)

n=1
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where s(t) is the received wideband signal, w(z) is the AWGN
signal, and s,(¢) is the signal occupying the B,, which is
given by:

$p (1) = Xn(£) * hy (1) 3)

where x,(¢) is the transmitted signal that is represented by
a sequence of a digitally modulated pulses in the n” band.
The channel impulse response between the PU and the SU
at the n'" subband is denoted by h,, whereas the symbol x
denotes the convolution product. In the case of a narrowband
channel, we can rewrite (3) as:

se®) =an Y b pt —kTy) exp(i2nfe,n)  (4)

k=—00

where a, represents the attenuation suffered by the transmit-
ted signal in the n" subband. Also, {b;} are the set of digital
symbols, p(?) is the pulse shaping function, and f., = f”%
is the subband center frequency. The PSD of the observed
signal r(¢) at the CR front-end can be written as:

N
SHH) =Y ay Si(f) + Sw(f). f € [fo.fn] ©)

n=1

where a2 is the PSD level in the n* band due to the channel
attenuation, S(f) is the PSD of transmitted digital signal,
and S,,(f) is the noise PSD.

B. PHASE II: PRIMARY USER DETECTION
Following the edge detection phase, the WBSS problem
requires the CR receiver to solve N binary hypothesis test-
ing problems. For an independent subchannel occupancy, the
WBSS problem definition can be defined as:

W : Under H,"
r_{x+wz Under H{" ©)
where r = [rq,12,1y,...,Iy] denotes the received signal

matrix, w is the noise vector at each subband, and Hy", H"
represents the n™ null and alternative hypothesis, respec-
tively. As seen from (6), the complexity of the detection
problem increases as the number of subchannels increases.
The decision rule, represented by the test statistic 7[r,] and
the detection threshold ¢,, can be given by:

Hl n

T[ry] 2 Cn (7
Hy"

It is important to indicate that the definition of the test statis-
tic depends on the type of the applied narrowband detector.
Also, The formulation of the detection threshold depends
on the statistical distribution of the noise in the detector test
statistic. In the following sections, we illustrate the proposed
approach in both phases.
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Edge Detection Phase

|
1
Identification | | {fa iy CA-Based
of Spectral x s PU
Boundaries

Detection of
Potential
Edges

Detector

FIGURE 2. The sequence of operations of the proposed WBSS approach.

IV. THE PROPOSED WIDEBAND SPECTRUM SENSING
APPROACH

In this work, we develop a complete framework of the WBSS
approach based on the CA of the received signal. In our
investigation, we seek a reduced system complexity and a
reliable detection accuracy in the edge detection and the
PU detection phases. The channel estimate at each subband
can be provided by the pilot-insertion method after being
identified [33].

A. IDENTIFICATION OF SPECTRAL BOUNDARIES BY
CEPSTRAL ANALYSIS

First, we introduce the Differential Log Spectral Density
technique and mathematically analyze the detection process
in the case of high, medium, and low SNR scenarios. The
three SNR cases are considered for an example of a wideband
spectrum that consists of consecutive subbands, each one
has a specific spectral density level. So, based on the aver-
age spectral density level, we vary the AWGN power level,
denoted by o2, to consider the three SNR cases. Precisely,
for the case of having the SNR < 0 dB (i.e., equivalently the
noise power Uv% > 20 dB), the considered wideband spec-
trum is analyzed in a low SNR environment. The sequence
of operations of the proposed CA-based WBSS approach is
shown in Fig. 2.

1) EDGE-DETECTION BY THE DIFFERENTIAL
LOG-SPECTRAL DENSITY ALGORITHM

For a compact representation, the PSD of the received signal,
defined in (5), can be given by:

Sr(f) = S¢) + Sw(f) ®)

where S(f) = Zﬁl\’:l S, (f) denotes the sum of PSDs of the
signals occupying the sensed wide spectrum. To apply the
DLSD, we perform the following:
1) Evaluate the autocorrelation estimate of the received
signal and then, its PSD.
2) Evaluate the first derivative of the autocepstrum of the
received signal in the frequency domain.
For convenience, by applying the natural logarithm to (8),
we obtain:

Z.(f) = log S,()
= log [Sw ()] + log[y () + 1] )
where y(f) = SSM—((ff)) defines the relative PSD variations

of the transmitted wideband signal to the noise PSD.
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FIGURE 3. lllustration of the effect of applying the DLSD to the AWGN spectrum.

The n” spectral peak identifying the n™
is located at:

Jo = arg{ID)}, fu € [f1, fn-1]

where arg(.) defines the argument of a function within the
round parenthesis, and D(f) = %Zr(f) represents the DLSD
function. Accordingly, we need to analyze Z,(f) in case of
a medium-to-high SNR environment as well as a low SNR
environment. Since the PSD level of the noise is assumed to
be constant, getting its natural logarithm decreases the PSD
value. Therefore, the value Z,(f) = log[S,,(f)] is much
lower than log [y (f) + 1]. By taking the derivative of Z,(f),
we can consider that D, (f) = % log [Sy(f)] = 0, then we
obtain:

D(f) =

subband boundary

(10)

d
—flog [y()+11= 570 (f)acy(f) (11)

substituting equation (8) in (11), we get:

1 N

20 = s S

(12)
According to (12), and for the case of a medium-to-high
SNR, the relative PSD variations is assumed y(f) >> 1,
then (12) reduces to:

1

D — 13

(f) ~ R0 df S() (13)

whereas for the low SNR case, y(f) << 1, then we obtain:
D(f) ~ VE‘S(IC) (14)

To clarify the concept, Fig. 3 shows the low PSD level of
the AWGN after applying the DLSD technique and justifies
the approximation applied in (11). Fig. 4 gives another exam-
ple of the wideband spectrum scenario that consists a group
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FIGURE 5. The spectral edges when applying the proposed DLSD algorithm for the

subbands.
TABLE 2. The SNR specifications per subband of an example of a wideband
spectrum.
High Medium | Low
Band PSD
Band SNR SNR SNR
Range Level 9 9 9
Order o5, =147 | 05, =20 | o, =24
(GHz) (dB/Hz)
(dB) (dB) (dB)
1 50-120 21 6.3 1 -3
2 120-170 20.4 5.7 0.4 -3.6
3 170-200 21.1 6.4 1.1 -2.9
4 200-220 20 53 0 -4
5 220-225 21.3 6.6 1.3 -2.7
6 225-250 20 5.3 0 -4

high SNR case (the average SNR is 5.9 dB for qﬁ, = 14.7 dB).

Origional Received Signal PSD for a&{ =20dB

T T T

240

180

L 1

15 2 25

Frequency in GHz

<10

of consecutive flat piece-wise subbchannels. In that exam-
ple, the wideband spectrum is ranging from 50 to 250 GHz,
such that each subband has a specific spectral density level
within its corresponding bandwidth. Also, Table 2 indicates
the SNR values for each subband with respect to the noise
variance.

The effect of applying the proposed DLSD technique for
the case of low, medium, or high noise power with respect
to the average PSD level of the consecutive subbands is
illustrated in Fig. 5, Fig. 6, and Fig. 7. For the case of low and
medium noise variances (precisely, O'v% = 14.7 dB and ov% =
20 dB), the spectral boundaries are clearly distinguishable
from the noisy edges. When the noisy spectral variations are
high, as shown in Fig. 7, the actual spectral boundaries are
hardly being differentiated from the spurious edges and may
result in detection errors. To solve the high noisy spectral
peaks, we employed the TVD-MM algorithm to reduce the
noisy spectral fluctuation before applying the DLSD. Indeed,
we notice that if the average SNR < 0 dB (02 > 20 dB), the
spectral edges of the subbands can be well identified when
the DLSD technique is applied in conjunction to denoising
as shown in Fig. 8.
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Differential Log Spectral Density
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FIGURE 6. The spectral edges when applying the proposed DLSD algorithm for the
medium SNR case (the average SNR is 0.6 dB for nﬁ, =20dB).

In fact, the performance of the TVD-MM algorithm is
affected by the choice of the regularity parameter as well
as the number of iterations taken by the TVD-MM algo-
rithm to converge. According to our assumptions on the
wideband spectrum scenario, it becomes adequate to apply
the TVD-MM algorithm over about 10 iterations to reduce
the spurious edges and to significantly identify the spec-
tral boundaries if crvzv > 20 dB (i.e., the average SNR < 0
dB). In this case, the elapsed time measured for 10 iter-
ations was 0.357 sec on a Intel Core i7-8550U processor
(1.8 GHz), with a R2018a MATLAB program. On the other
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FIGURE 7. The spectral edges when applying the proposed DLSD algorithm for the
low SNR case (the average SNR is —3.4 dB for aﬁ, =24 dB).
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FIGURE 8. The spectral edges when applying the proposed DLSD algorithm with
2

denoising for the low SNR case (the average SNR is —3.4 dB for g3, = 24 dB).

hand, the elapsed time measured for employing the WTMM
edge detection algorithm under the same simulation condi-
tions was approximately 7 sec. Thus, in accordance with our
application and the stated wideband criterion, the processing
time of the DLSD after applying the denoising technique is
much lower than that of the WTMM algorithm. The results
of several Monte Carlo simulations for the DLSD algorithm
are shown in Section V.

2) NOISE CHARACTERISTIC IN THE DLSD TECHNIQUE

In our cepstrum-based edge detection approach, differential
cepstral peaks may arise not only due to the exact spectral
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FIGURE 9. The spectral edges when applying the proposed DLSD algorithm if
impulsive noise is imposed at average SNR of 5.7 dB.
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FIGURE 10. The spectral edges when applying the proposed DLSD algorithm with
denoising if impulsive noise is imposed at average SNR of 5.7 dB.

edges but also due spurious edges generated from AWGN,
impulsive noise, or very-NarrowBand Interference (vNBI).
Therefore, it is important to identify the degrading effect of
these sources on the target wide spectrum as follows:

« Concerning the ambient noise, we find that the effect of
the AWGN in our DLSD technique is not harmful when
it is applied in a high-to-medium SNR environment.
Also, when denoising is employed before the DLSD
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technique, the spectral edges became more recognizable
in a low SNR environment.

o In wideband CR receivers, the impulsive noise and
vNBI occur as narrow peaks in a spectral hole. Thus, it
is desired not to identify these peaks during spectrum
sensing. In Fig. 9, we illustrate the effect of applying
the DLSD technique to the target wide spectrum for an
average SNR of 5.7 dB and we find that the spectral
peaks can be easily identified. Further, we applied the
DLSD technique after denoising the spectral fluctua-
tions and we find that the spectrum is smoothed out
while the spectral boundaries are well recognized as
shown in Fig. 10. Practically, some wideband receivers
have a built-in capability to handle vNBI [18].

3) DESIGN CHARACTERISTICS OF DLSD EDGE
DETECTOR

In our devised edge detection algorithm, the peak function
evaluates its value at each sample point. In this case, all the
positive sample points are candidate peaks. In order to reduce
the effect of false peaks, we need to rule out these peaks
based on their statistical distribution. Therein, we analyze
the statistical characteristics of the peak function defining
the DLSD approach. For the case of a baseband Binary
Phase Shift Keying (BPSK) signal occupying the wideband
of interest, the PSD of the BPSK signal is given by [34]:

Sx(f) = nglsincz(Tdf)

where T; denotes the symbol duration. The peak function,
based on the DLSD approach described in (12), is given by:

581
S + Sw(f)
in this case, if the noise at the CR receiver is assumed to
be real Gaussian and based on (1), the estimate of S,,(f)
follows a Chi-squared distribution, X(zl), with one degree of

freedom. Accordingly, the edge detection problem can be
formulated as a binary hypothesis test by:

15)

P() = 1D = (16)

#50
,P(f) _ PO(f) = | S (f) | Under Ho (17)
B Sr(f)
Pi(f) = |S(;i§+S (f)l . Under Hi

where Py(f) is the set of spurious edges due to noisy spectral
fluctuations, and Pi(f) is the set of noisy spectral bound-
aries. In order to design the detector, we need to find the
detection threshold based on the distribution of (17) under
the null hypothesis. In this case, we must obtain the right-tail
probability of the proposed test statistic under Hy for a fixed
value A of the false alarm probability denoted by Pry [35]:

Pu= [ fpPitiy) ap =1 (8)

{P:T>n}

where 7 is the detector test statistic, n is the detection
threshold, A is the Pgy value, and fp (P; Hp) is the probability
density function of every peak value defined based on the
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Algorithm 1 DLSD Edge Detection Algorithm

1: Imput: P(f), Ly, A, n

2:  Qutput: O // set of detected edges
3: Begin O = { // initially empty set
4: for (i=1;i<Ly;i++) do

50 Alil =P, Lp, i, ID(H))

6: if A[i] > n then

7: O = O UA[i]

8: end if

9: end for

peak function P(f). In other words, the detector test statistic
is defined by:

H

TIAl ={All, if AlilZn}; 1 <i<L (19)
Ho

where A[i] represents each peak value within the set of peaks

of length L, points defined in the quefrency domain. For

positive peak values, we find that the statistical distribution

of each point in P(f) = |D(f)| follows also Xlz, which is

defined by:
exp(—5)
(@=———, a>0 (20)
Ja N 2am
then by solving for (18), we obtain?:
2

Ppp = — 21
FA ﬁQ(«/ﬁ) (21)

Thus, the threshold of the DLSD edge detector for a given
false alarm probability is given by:

o ()]

To sum up, the DLSD edge detection algorithm is illustrated
as Algorithm 1.

(22)

B. THE DETECTION OF NOISE-LIKE PU SIGNALS BY
DIFFERENT CEPSTRAL APPROACHES

Following the edge detection process, we proceed by intro-
ducing novel PU detection techniques for detecting the
presence of noise-like signals in the case of the single-band
and the multiband spectrum sensing scenarios.

1) IMPROVED PB-ACD TECHNIQUE BY SIGNAL
SMOOTHING

In the PB-ACD technique, we estimate the autocorrelation of
the received wideband signal and then evaluate the cepstrum.
To enhance the detector performance, we aim to reduce the
fluctuations experienced in the ACE before evaluating the
PSD of the received signal. The functional block diagram
of the smoothing process is shown in Fig. 11. In the litera-
ture, there are many methods employed for signals denoising

2. The function Q(.) describes the tgil probability of the standard normal
distribution; Q(x) = \/%71 fxoo exp (—%)dt.
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FIGURE 11. The proposed smoothing process; Rr(z) is the autocorrelation estimate
of the receiveg signal; po(7) is the ACE fluctuations; 5o(7) is the smoothed ACE
fluctuations; Rr(z) represents the smoothed autocorrelation estimate.

which includes linear, Wiener, and wavelet-based filtering.
In these approaches, the noisy received signal is being pro-
cessed provided that prior knowledge of the noise statistics
and the transmitted signal shape is available. However, in
a non-cooperative semi-blind CR context, this information
is not available so the conventional techniques would fail
especially in the case of noise-like signals.

Recently, variational calculus has been employed in mod-
ern communication systems and statistical signal processing
for different purposes such as choosing an optimal signal-
ing function and deciding on certain statistical distributions
that minimizes Fisher’s information [36]. Moreover, varia-
tional methods have drawn great interest in solving image
processing problems that including image denoising and
deblurring [37]. Our choice to process the fluctuations of
the ACE rather than the autocorrelation itself or the noisy
observed time-domain signal is motivated by the following:

o Denoising a SS signal in the time domain without hav-
ing prior information about the coding pattern is a
difficult task and could fail due to its similarity with
noise.

« Analysis of an underlying signal using its autocorrela-
tion provides a means to enhance significant patterns
that identify the signal.

o It has been shown in the work of Burel in [16] that
the fluctuations of ACE of noise differ from that of
a spread spectrum signal. This distinguishing feature
can be applied to eliminate the noisy variation in the
autocorrelation of the received SS signal.

In order to compute the autocorrelation estimator, we can
divide the received time domain signal into M segments over
a time rectangular window of a duration 7. Then, we can
evaluate the ACE for the m"”* segment by [16]:

pm 1 r *

Rl(7) = ?/0 r(Or(t — t)dt 23)
where r*(¢) denotes the complex conjugate of the received
signal, and 7 is the time lag. In the statistical description
of random processes, the second order moment describes
the random fluctuations of a signal. Since the variance may
characterize the random fluctuations around the mean value,
the fluctuations of the ACE are identified by their mean and
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variance as mentioned in [16]. The measure of the fluctua-
tions in terms of the second order moment of the ACE is
given by:

pr, (1) = (IR-(D)[?) (24)
or approximately,
1 M—1 R 2
pr(0) == D |RI) 25)
m=0

where < . > in (24) represents the averaging operator. If the
signal and noise are considered uncorrelated then we get:

R (7) ~ Ry(7) 4 Ry (1) (26)

where R (t) and R,,(t) are the autocorrelation of the noise-
free signal and the noise at the CR receiver, respectively. In
this case, we can define the underlying fluctuations of the
ACE of the received signal according to (26) by:

PR, (T) = px(T) + Pu(7) (27)

a) Fluctuations smoothing by the TVD-MM algorithm: In
general, the variational calculus is employed to find local
extrema in a functional by solving differential equations.
Signal denoising is one of its essential applications [38].
An important aspect of signal denoising is to preserve sig-
nal features, and also identify signal trends. An approach
for the signal denoising by variational calculus is the TVD,
through which the output is obtained by minimizing a par-
ticular cost function. Unlike conventional filtering, the TVD
is defined in terms of an optimization problem. To formu-
late our smoothing problem, we should illustrate first the
following notations:

o The L—point signal gy is represented by the vector:

ps = [5s0), ..., oL — 1]

e The £; norm of the vector d, which represents the dis-
crete notations of the continuous variable 7, is given

(28)

by:
il =) 1dD)] (29)
¢
e The ¢, norm of the vector d is given by:

1

2
ld]| = [Z |d<l>|2} (30)

¢

o The diagonal matrix D is given by:

10 0 0
-1 1 0 0
D= ,
0 . 1 0
0 0 -1 1

by which the first-order difference of a L—point signal
ps is denoted by: D p
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o The measurement of the total variation of a L—point
signal pg is given by [39]:
L-1

TV(A) = Y |ps() = = 1| = ||PA[|, 3D
=1

o The optimization problem, defining the smoothing of
the ACE fluctuations, is given by:

ps(l) = arg min {F(ps(D))} (32)
Ps

where F(.) is the functional to be minimized in order to

find the desired estimate. This functional can be defined

in terms of mean squared error, such as [39]:

L—1

1 "
F(ps(D) = 5 6o = A +aTV(5s) (33)
=0

where L is the maximum time lag at which the ACE
fluctuations function is evaluated, p,(/) denotes the
observed fluctuations, for the case of uncorrelated signal
and noise, that is given by:

Po(T) = ps(T) + Pu(T) (34)

and o > 0 represents the regularization parameter that
controls the smoothing degree. An appropriate value of
a can be found heuristically.
In order to solve the minimization problem defined in (32),
various algorithms can be employed, such as the TVD clip-
ping algorithm [40]. However, the appropriate choice of an
algorithm depends on the desired accuracy level and the con-
vergence rate. For example, the Majorization-Minimization
(MM) algorithm is applied to solve the TVD problem, which
provides a significant accuracy on the expenses of the con-
vergence time. The MM algorithm solves the minimization
problem using a sequence of functions, called majorizer
functions, that are easier to solve than the original cost func-
tion. To use the MM algorithm and reduce the computation
burden, one must choose carefully an optimization function
denoted by G(gy) to approximate F(0s). To choose G(.), the
MM approach requires that:
1) G(0) is a majorizer of F(ps):
G(ps) = F(ps), Vps(D).

2) The majorizer coincides with the F(.) at each iteration
k: Gi(ps(D) = F(ps(D).

3) G(ps;) must be a convex function, so that the MM
algorithm obtains the solution at each k”* iteration by
minimizing the majorizer function.

b) Application of the proposed smoothing process to the
case of detection a DS-SS signal: To anticipate a construc-
tive example for showing the applicability of the proposed
smoothing process to our detection problem, consider the
case of a passband DS-SS signal, s(#), occupying a wideband
of interest with the autocorrelation function given by [40]:

2

Ry(7) = %Rd(f)Rp(f)COS(Zﬂfcf) (35)
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where R;(t) and R,(t) are the autocorrelation of the data
and spreading waveform, respectively,’ and they are given
by [40]:

1—
R(7) = A(Ti> _1or

d Ty
1 N+ 1 > T — iNyT,

Al ———— 36

,';OO ( Te o

Ry(t) = ——+
p(r) s N

Based on the baseband version of (35), we can express the
ACE fluctuation function of s(¢) by:

o .
N T — iNsT,
Ps(T) =~ pp Z A(TH)
c

i=—00

(37)

in which ps(tr) viewed as a periodic triangular wave form
with peak values p,. According to (37), a convenient
majorizer function at the k" iteration Gy(py(t)) = g(r) for
one period of p(t) is given by:

g() = c— bi? (38)
From the MM algorithm, g(#) must satisfy:
g = f(@), Vi (39)

where f(¢) is the original cost function. Equivalently, if we
set pp = 1, then we should have:

—t
, V>0

c
In this case, we need to evaluate the constants ¢ and b to
validate that the chosen function in (38) is a majorizer. The
mathematical analysis to find ¢ and b yields the following:
1 12|
STt T 2T,
See Appendix A for the proof.
Clearly, an upper bound of one period of f(¢) is given by
g(?), then by substituting ¢ and b in (40), we get:
_ 2 _
1 —21 1 - 1— |t
2T, 2T .ty — T,
To obtain the required cost function, we use d(/) for the

discrete notation instead of 7, and then by summing over /,
we obtain:

L 2 L
Z<1_2|dk(l)| . d( ) Zle—ld(l)l
2T, 2Tc|di (D] Tc

=1 =1

1
c—bt* > (40)

(41)

, VieR (42)

(43)

By using vector notations, we can rewrite (43) in a compact
form as:

N 1 _
(—E—Ildk(l)lh—szAk 1d> > —|ld|| (44)

where Ap = diag(ldy(])|) denotes a diagonal matrix.
Recalling the definition of the TVD in (31), then by replacing

3. Ty is the symbol duration, 7, is the chip duration, A is the triangular
function; Ny = 2™s — 1 is the length of the m-sequence pseudo random
spreading code; my is the degree of a chosen primitive polynomial.
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d with D in (44), multiplying it by the regularity parameter

«, and adding the error data term e, () = %Hﬁg(l) — ﬁ(l)llg
to its both sides, then we get:

—aN N a . —1 A

er)+ —— —a|Dp, (D], — 55D AL DA,

> e,() — | Dp,| “5)

Clearly, the majorizer of the cost function is given by:

R —aN R o . A
Gi(fs) = er(h) + —— — alIDpy, DIl — 5 5, D" AL D,
(46)

Using (46), we seek to obtain the update equation (0,)r+1
as follows:

o Set the iteration index k to 0 and initialize (0y)o.

o Set (0x)k+1 as a minimizer of G(0,) such that:

(bx)ik+1 = arg min Gk(px) 47
Px
e Set k=k+ 1 and go to step 2.
Accordingly, by differentiating (46) and equating the results
to zero, it yields:

By = A+ V) HD) (48)
where I is the identity matrix, and U is defined by:
U=aD"A;'D (49)

In Fig. 12, Fig. 13, and Fig. 14, we illustrate the effect
of applying the smoothing process for the case of a DS-
SS signal at SNR of —10 dB. The operating specifications
are based on the IEEE802.11a standards that use the DS-SS
signal with 5 GHz as the operating frequency and 54 Mbps
for the data rate [41]. It is important to clarify that despite
the effective results provided by the proposed smoothing
process on the estimated PSDs, there is an 8% estimation
error in the operating frequency. For this reason, it is essential
that the PU detector operates independently on the operating
frequency value.

Taking into account that random ACEs fluctuations of the
DS-SS signal and that of the AWGN are distinguishable,
the smoothed PB-ACD exploits the advantage of denoising
the fluctuations of the Autocorrelation Estimators (ACEs)
by the TVD-MM algorithm. The calculation of the ACEs
fluctuations involves dividing the time domain signal into
M segments as indicated in (25). By respecting Nyquist’s
rate fs,, the estimated PSD maintains the exact frequency
information. However, in the case of oversampling the signal,
the estimated PSD experiences a minor loss of frequency
localization [42].

As the number of samples increases within each signal
segment, in case of oversampling, the summation of the
segmented autocorrelation will smooth out the details of the
signal. Therefore, the maxima presented in the sum will be
more smoothed resulting in a minor frequency shift in the
estimated PSD. Also, as the oversampling increases above
double the Nyquist’s rate, a substantial loss of frequency
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FIGURE 13. The received signal PSD at SNR of —10 dB.

localization occurs, so the frequency error is not fixed and
does not depend on the number of simulation trials.

Despite the fact that oversampling a time-domain signal
is supposed to improve the process of estimating the auto-
correlation, it is shown in [42] that oversampling short data
sequences at Nyquist’s rate increases the variance of the
autocorrelation estimate such that the mean-squared error of
the estimate increases. On the other hand, it is sufficient to
sample at the Nyquist’s rate for long data sequences (i.e., as
in our presented case) such that the variance of the autocor-
relation estimate attains its minimum value. To demonstrate
the effect of varying the sampling rate in calculating the
ACEs, Fig. 15 and 16 show the original and the noisy PSD
of the PU signal and the estimated PSD after applying the
smoothing process, respectively. When the signal is sampled
at the Nyquist’s rate, no loss of frequency localization is
encountered as shown in Fig. 16.

The TVD employs the regularity parameter, «, to control
the degree of smoothing. Increasing o gives more weight
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FIGURE 15. Anillustrative example of the original PSD of the DS-SS signal and its
noisy spectral density.

to the term that measures the fluctuations of the signal. In
this case, choosing small values for the regularity parameter
translates into reduced spectral fluctuations but may affect
the level of the exact spectral boundaries. Therefore, before
choosing the regularity parameter, we have to be aware of
the required detection accuracy level to avoid over-smoothing
the analyzed signal and hence increasing the misdetection
probability.

2) THE PROPSED BB-ACD TECHNIQUE

The proposed BB-ACD consists of a CTF followed by the
PB-ACD. The CTF utilizes the circular topology of a typ-
ical sinusoidal signal to separate the baseband signal or its
squared version. The detection of a noise-like PU signal, or

VOLUME 1, 2020

Denoised PSD

PSD Level

1 -0.5 0 0.5 1
Frequency (GHz) x10°

FIGURE 16. The estimated PSD after applying the TVD-MM algorithm to the
fluctuations of the ACEs of the received signal; the signal is sampled at Nyquist’s rate.

a conventional digitally modulated signal, by the PB-ACD
technique, depends on the presence of a strong peak appear-
ing at a quefrency value equivalent to the reciprocal of the
center frequency of a certain subband. Due to the possible
frequency estimation errors from the edge detection phase,
the PB-ACD gives poor performance. Thus, our objective is
to utilize the baseband features of the target signal appearing
in the power cepstrum of the received signal. Specifically,
we exploit the peaks reflecting the periodicity that appears
in the power cepstrum of the n* baseband signal. These
peaks interpret the presence of digitally modulated symbols
of a possible PU signal. By using the combination of the
HF and the SLD, we can obtain the required term repre-
senting the baseband signal. A functional block diagram of
the proposed BB-ACD is shown in Fig. 17. To illustrate the
concept, we notice in Fig. 18 that the autocepstrum of a
passband DS-SS signal reveals a major peak that appears
at the reciprocal of the carrier frequency after getting the
inverse Fourier Transform of the autocepstrum, whereas a
periodicity is revealed in the baseband version of the signal’s
power cepstrum (i.e., the frequency domain version of the
autocepstrum) in Fig. 19. This is shown at multiples of the
reciprocal of the bit duration of the DS-SS signal.

To illustrate the calculus, consider a digitally modulated
carrier signal, denoted by B,(¢), is defined by:

By(t) = B(t) cos(2nf,t) (50)
where B(f) is the baseband signal, and f. is the carrier
frequency (i.e., the center frequency of the n” subband).
By the Hilbert filtering applied to (50), the output O(¢) of
the CTF is given by:

0) = By(w) + B (t)]2 = B2(1) (51)
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FIGURE 17. The system architecture of the proposed baseband autocepstrum
technique.

where H denotes the Hilbert version. Practically, the carrier
frequency will be replaced with f, = f. £ 6f, where f, indi-
cates the estimated center frequency, and &f is the frequency
deviation from the actual carrier frequency that causes the
estimation error. Also, the noise effect at the CR receiver
is considered for the AWGN noise w(¢), hence, the output
O(t) becomes:

2
01) = [Ba() +w) + | B ) + w0
= By(1) + &) + 2BW)[w(t)cos2f.1)
— (t)sin(2nfct)] (52)

In (52), the squared baseband version of the signal is denoted
by B,(f) = B>(t), and E(r) = w?(1) + (W (r))? denotes the
squared envelope of the noise signal. However, it is required
to eliminate the high frequency terms before defining the
detector test statistic. A possible solution is to apply the
autocepstrum approach for the case of uncorrelated noise
and signal. To do this, first, we determine the autocorrelation
of O(t) such that:

Ro(t) =~ Rp, (1) + Re (7) (33)

then, by getting the Fourier Transform of Rp(t), we obtain
the corresponding PSD terms by:

So(f) ~ Sp,(f) + S&,(f)

By taking the natural logarithm of So(f), we get the
autocepstrum by:

Zo(f) = log[Sg,(f) + S, ()]

Since the BB-ACD utilizes the periodicity that may occur
in the log-PSD of the received signal, we need to show
at the beginning that the Sp (f) is periodic in the cepstral
domain, and then consider the noisy periodicities in Zp(f)
due to the spectral fluctuations from Sg, (f). Consequently,
this periodic feature can be utilized to formulate the detector
test statistic. In order to generalize the BB-ACD approach to
digitally modulated signals, consider the following baseband
version of (4) which is defined by:

(54)

(55)

B(t)=Y_ bp(t—kTy) (56)

k=—00
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FIGURE 19. The frequency domain version of the autocepstrum of the baseband
DS-SS signal which reveals periodicity at multiples of 1 MHz.

Conventionally, B(7) is a polar signal and the pulse shape
is the rectangular function p(r) = [](#). Let us define the
spectrum of Bg(f) by Bs(f) = |B(f)| * |B(f)|, since we
consider the magnitude of the spectrum, and the symbol
# denotes the convolution product. For a truncated binary
sequence of size N, and with T, being the symbol duration,
|B(f)| &~ NtbiP(f), where P(f) = sinc(Tyf). We can obtain
the required B;(f) from the time domain and then evaluating
the Fourier transform to get:

By(f) ~ Nzb} sinc*(Tyf) (57)

The natural logarithm of By (f) results in a negative periodic
function thus, in order to have a reliable detector test statistic,
we choose to combine all periodic peaks appeared in Zp(f)
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by defining:

LP
TilZo) = L—lp 2_1Zo()] (58)
i=1
where L, is the number of peaks presented in the autocepstral
signal. To devise a suitable detection threshold, we should
find the statistical distribution of 7;. Referring to (55), if
the AWGN w(¢) is distributed as a Circularly Symmetric
Complex Gaussian (CSCG) process, the squared-envelope
of w(t) is distributed as a X(ZZ) process with two degrees of
freedom, whose Probability Density Function (PDF) is given
by [43]:

fww) = %exp(—w/Z) ,w>0 59)

Thus, the statistical distribution of 7~ follows a Modulus Log
Chi-Squared (MLCS) (i.e., Modulus-log — Xé)) distribution.
By using the PDF approach of the transformation of random
variables, the MLCS distribution is given by:

f7} (ts) = % GXP(ls - %exp(ts)>

+ %exp(—rs - %exp(—t‘v)) (60)
See Appendix B for the proof.

In order to get an expression for the detector thresh-
old ¢, we follow the same concept indicated in (18) for
a fixed false-alarm probability A. By employing the method
of substitution, we obtain:

A:exp(—%@)) —exp(—@) +1 (61)

also, we can simplify (61) by decomposing the exponential
terms to obtain:

) = exp (_ ex};(f))

n Zexp<—w> sinh<W) (62)

The approximation of the hyperbolic function can be given
by Taylor’s expansion. However, the Taylor series diverges
to infinity, so a closed-form expression for { cannot be found
analytically, and (62) can be solved numerically by different
methods such as the Newton Raphson Method [44].

V. NUMERICAL RESULTS AND DISCUSSIONS

In order to validate the efficacy of the proposed wideband
spectrum sensing approach, we begin with evaluating the
performance of the proposed DLSD technique as opposed
to different wavelet-based edge detection techniques. This
evaluation includes calculating the average detection error
probability P, as mentioned in [14], which is given in
terms of the probability of miss-detecting an actual spec-
tral boundary Pyp and the probability of falsely detecting a
spurious edge Prp. Further, we evaluate the performance of
the smoothed PB-ACD technique as opposed to the PB-ACD
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technique for detecting the presence of a possible noise-like
signal. Then, we show the applicability of the proposed BB-
ACD technique to different digitally modulated signals. We
also address the problem of detecting noise-like signals by
the PB-ACD technique under the carrier frequency uncer-
tainty, and we show the advantage of applying the proposed
BB-ACD instead.

A. PERFORMANCE EVALUATION OF THE PROPOSED
EDGE DETECTION APPROACH:

The frequency of the wideband spectrum under consideration
extends from 30 GHz to 300 GHz. The proposed algorithm is
simulated through randomly generated spectrum models for
generalization. The average PSD level within each occupied
subband is maintained to 6 W/Hz assuming 60% of spec-
trum occupancy rate. Although the assumed average PSD
level is large as opposed to normal radiation levels in prac-
tical settings, it is chosen to match the chosen specifications
in [20] for the sake of comparison. The characteristics of
each spectrum model are generated randomly. They include
the number of subchannels within the wideband of interest,
the exact spectral boundaries, and the signal power speci-
fied in each subband. These subbands are assumed to have
different bandwidths to match up with the diversity of the
transmission technologies.

Further, depending on the distance between the CR
receiver and the transmission station in the occupied sub-
band, as well as the status of the spectrum occupancy, the
SNR level is assumed to differ from one subband to another.
The performance of the proposed technique is tested by
adding white Gaussian noise with the same power to the
received RF stimuli corresponding to the whole sensed spec-
trum while maintaining the same average PSD level in all
spectrum models.

The simulated PSD model is a modified version of the
model presented in [18]. It is important to note that the
modification is in the PSD shape; we assume a more prac-
tical raised-cosine approximation for the PSD shape rather
than the ideal piecewise-constant shape widely employed.
By referring to (5), Sy(f) denotes the normalized PSD and
we assume a raised-cosine pulse shape with a roll-off factor
of 0.3. A summary of the simulation parameters is listed
in Table 3. For clarification, Table 4 shows the detailed
information of an example of a randomly generated PSD
model shown in Fig. 20. The Simulations are done with
R2018a MATLAB, and the obtained results are based on
1000 Monte Carlo trials.

First, we discuss the effects of applying the DLSD algo-
rithm on spurious edges generated by the noisy spectral
variations in Pgp. In Fig. 21, at considerably low-to-medium
noise power (i.e., over the range [10, 22] dB), we notice that
the proposed DLSD algorithm outperforms the WTMM, the
WTMS, or the improved WTMM algorithms. Thanks to the
ability of the cepstral analysis approach to reduce the noisy
spectral variations. In fact, the white Gaussian noise’s cep-
strum becomes a Dirac impulse at the zeroth quefrency value.
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TABLE 3. Simulation parameters for the edge detection technique.

Parameter/Tool Description
Frequency Band 30-300 GHz
Spectral Estimation Method Periodogram
Sample Size 1024
Number of PSD Models per Simulation 20
Spectrum Occupancy 60%
Average PSD Level in Occupied Channels 6 W/Hz
Noise Power 10 to 30 dB
Number of Monte Carlo Iterations 1000

TABLE 4. Spectral specifications of one randomly generated spectral model for aﬁ, =

20 dB.

. . PSD Signal
Channel | Boundaries | Bandwidth
(N <15) | (GHz) (GHz) Level Power | SNR
(W/Hz) | (dB)

1 [30,36] 6 0 NA NA
2 [36,142] 106 14.677 31.919 | 10919
3 [142,190] 48 6.099 24.665 4.665
4 [190,224] 34 0 NA NA
5 [224,240] 16 12.689 | 23.075 3.075
6 [240,300] 60 2.532 21.816 1.816

Clearly, this characterization of the AWGN in the cepstral
domain helps in rejecting potential spurious edges. These
results match the concluding insights from Fig. 5, Fig. 6, and
Fig. 7. This means that the DLSD algorithm can characterize
and reject the false edges.

From literature, the major drawback of the WTMM algo-
rithm is the increased number of spurious edges which cannot
be eliminated even with a threshold-based detection [14].
The superior performance of the WTMS technique over
the WTMM technique is due to the averaging effect of the
WTMS algorithm over the noisy spectral edges. However, as
shown in Fig. 7, if the noise power increases (i.e., above 22
dB), the performance of the DLSD algorithm decreases due
to the increased number of spurious edges. To improve the
DLSD performance, we employed the TVD-MM algorithm
in order to reduce the noisy fluctuations before applying the
DLSD technique. We employed the TVD-MM algorithm on
about 10 iterations with two different regularity parameters:
o = 0.9 and 1.2 respectively. As seen in Fig. 8 and 21,
the employment of denoising before applying the DLSD
algorithm helped in reducing the spurious edges and hence
reducing the Prp. Precisely, for a noise power value over
the range [10, 22] dB, the DLSD algorithm with denoising
outperforms the four considered algorithms and performs
similar to the improved WTMM algorithm for av% > 22 dB.

Considering the probability of miss-detecting and actual
spectral boundary, the Pyp is plotted for the five considered
algorithms in Fig. 22. We notice that the DLSD algorithm
and the WTMS perform similarly over the noise power
range [10, 18] dB. Since the WTMS algorithm enhances the
wavelet modulus maxima that represent the spectral edges,
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FIGURE 21. A comparison of the probability of false detection of an original edge
by the DLSD technique evaluated as opposed to wavelet-based techniques.

it outperforms the WTMM and the improved WTMM tech-
niques in this performance criterion. As the noise power
increases above 18 dB, the DLSD algorithm falls behind the
WTMS algorithm due to the lack of edge enhancement.

While the denoising effect of the DLSD technique reduces
the false detection probability, it affects the miss-detecting
probability as well. In other words, the suppression of noisy
spectral fluctuations may result in suppressing a correct spec-
tral boundary. This is due to the fact that the noisy spectral
fluctuations tend to deform the actual spectral boundaries,
so as the noise power increases, this deformations increases
as well which cause the DLSD detector to reject some of
the original subbands edges falsely. Remarkably, by using
the DLSD algorithm in conjunction with the TVD-MM, the
misdetection probability decreases and becomes the lowest
among the probabilities of the other four considered algo-
rithms for o2 up to 28 dB. Above the threshold of 28 dB,
the WTMS algorithm has the lowest Pyp.

The average detection error probability is plotted for the
five considered algorithms in Fig. 23. The proposed DLSD
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FIGURE 22. A comparison of the probability of misdetecting an original spectral
boundary by the DLSD technique evaluated as opposed to wavelet-based techniques.

algorithm has a superior performance over the noise vari-
ance range of [10, 22] dB. The improved WTMM algorithm
has a superior performance over the range [22, 28] dB. The
proposed DLSD algorithm with denoising gives the best
performance over the other considered algorithms when the
noise power is above 28 dB. It is worth mentioning that
the level of denoising offered by the TVD-MM algorithm
is affected by the regularity parameter. Thus, this parame-
ter must be chosen suitably according to the application to
provide the required level of denoising and to avoid over
smoothing which may diminish the characterization of the
spectral boundaries. Moreover, Table 5 provides a compari-
son of the edge detection capability, the applicability, and the
implementation complexity of the proposed approach under
AWGN channel as opposed to the chosen wavelet-based
techniques.

B. PERFORMANCE EVALUATION OF THE PROPOSED
PU DETECTION TECHNIQUES

1) DETECTION OF NOISE-LIKE SIGNALS BY THE
SMOOTHED PB-ACD TECHNIQUE

For the PU detection phase, different NBSS techniques can
be employed. In the following, we start by reviewing the PB-
ACD technique and compare it to the improved PB-ACD and
other techniques. Our objective is to test the efficacy of the
improved PB-ACD as an NBSS technique for the detection
of noise-like signals such as DS-SS and IR-UWB signals.
In Section IV, we proposed a solution for improving the
detection performance of the PB-ACD technique for detect-
ing noise-like signals through a smoothing process. Indeed,
the detection of low-power signals in CR is a spectrum
sensing challenge, especially when the CR receiver has no
knowledge of the specifications of the noise-like signal.
The authors in [15] have evaluated the performance of the
PB-ACD technique for detecting a DS-SS signal under the
AWGN channel in the case of the SBSA. In this work, we
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FIGURE 23. A comparison of the average detection error probability of the DLSD
technique evaluated as opposed to wavelet-based techniques.

aim to evaluate the performance of the smoothed PB-ACD
in terms of the detection and the misdetection probabilities
for two examples of noise-like signals, namely: a DS-SS
signal and an Impulse Radio Ultra Wide Band (IR-UWB)
signal. Our choice of the IR-UWB signal is due to its very
low power level as compared to a typical narrowband RF
signal and a spread spectrum signal.

The simulations are averaged over 3000 realizations with
the following parameters for the DS-SS signal: the chip
duration is 1.54 pusec. In the simulations, we employed a
Boolean parameter ®, which is uniformly distributed and
takes randomly a value of O or 1 to include the presence
or absence of a DS-SS PU signal. The used spreading code
is based on a primitive polynomial defining the m-sequence
code in the form of x® 4+ x+ 1. The length of the spreading
code is 63 samples, and the sequence length of the analyzed
signal is 4410 samples. The modulation type is the passband
BPSK modulation scheme with a carrier frequency of 5 GHz,
and a sampling frequency f; of 30 GHz. The number of
segments used to calculate the autocorrelation estimates in
630 segments, the regularity parameter « for the TVD-MM
algorithm is set to 0.01 and the number of iterations is 10.

The performance measures are shown in Fig. 24 to Fig. 30.
Fig. 24 shows the simulation results obtained in [15] for eval-
uating the detection probability of the PB-ACD technique as
compared to the conventional ED technique for detecting the
presence of a possible DS-SS signal. The simulations of the
ED are carried on under the Central Limit Theorem (CLT)
assumption and the noise statistics are estimated through
histograms. The performance of the ED essentially depends
on the settings of the detection requirements depending on
the transmission standards. As shown in Fig. 24, at SNR
of —15 dB, we find that the PB-ACD technique is supe-
rior to ED by approximately 40% for Prpy = 0.01 and by
20% for Ppy = 0.05. As the SNR increases slightly from
—15 to —10 dB, the PB-ACD and the ED techniques behave
similarly.
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TABLE 5. Comparing wavelet analysis to cepstral analysis for edge detection in wideband spectrum sensing.

Approach Wavelet Analysis

Cepstral Analysis

Post Processing the filtered PSD.

The Local maxima are found through differentiating

The Local maxima are found through differentiating
the autocepstrum in frequency domain.

detection of spectral boundaries.

SNR environment.

White Noise Characteristics

the multiplication operation.

higher complexity.

WTMM: calculates the wavelet modulus maxima in the
frequency domain. However, the noise impact affects

Improved WTMM: exploits the singularity
characteristics of the wavelet multiscale to identify spurious
edges and reject them. Its performance is degraded in low

WTMP: The product of the first derivative of
WT is developed for noise suppression and edge
sharpening, but it results in attenuating the edges due to the

WTMS: It preserves the edges information
and avoids edges attenuation. Increasing the scales
leads to a better detection performance but at

Time-domain Cepstrum and Autocepstrum:
The AWGN fluctuations are suppressed at all
the quefrencies values except for a major peak
at the zero™ quefrency at medium-to-high SNR
values.

DLSD: It reduces the noisy spectral variations.

Application Versatility

The detection performance depends on the analyzed
signal and the used mother wavelet function.

The employment of the CA approach depends on the
type of the cepstral algorithm used that is suitable
for the problem under analysis to successfully

reveal the hidden signal’s features. Any cepstral
algorithm may require further processing to achieve
the required results.

Implementation Complexity

WT is implemented as a bank of filters. Reducing
spurious edges can be accomplished by processing
the signal of interest through all scales which
substantially increases the computational burden.

Relatively lower than the wavelet approach.
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FIGURE 24. The detection probability of the PB-ACD as compared to that of the ED
for detecting a DS-SS Signal.

Also, to elaborate more on higher-order and advanced
modulations, Fig. 25 shows a comparison of the detection
performance of the PB-ACD technique with ED for detecting
16-QAM and 64-QAM PU signals. In wireless communica-
tion, the 64-QAM modulation scheme is used in 4G systems
in the uplink and provides the most benefit in small cell
environments under good uplink conditions. Moreover, we
simulated the PB-ACD technique, as shown in Fig. 26, to test
its detection performance for detecting OFDM PU signals
and compare them with ED and the Eigenvalue Detection
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FIGURE 25. The detection probability of the PB-ACD as compared to that of the ED
for detecting a QAM PU Signal.

(EVD). From Fig. 26, the detection performance of the PB-
ACD technique outperformed the ED and EVD techniques
in the SNR range [—15, —6] dB. In simulating OFDM mod-
ulated signals, we considered the parameters defined in the
IEEE802.11 specifications [29].

To provide more improvement over the ED technique,
we applied the proposed smoothed PB-ACD technique and
compare it with different state-of-the-art spectrum sens-
ing techniques, such as the EVD, and the Matched Filter
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FIGURE 26. The detection probability of the PB-ACD as compared to that of the ED
and EVD for detecting an OFDM PU Signal.

The Detection Probability of a DS-SS PU Signal
1

FIGURE 27. The detection probability of the PB-ACD as compared to the smoothed
PB-ACD and different state-of-the-art techniques for detection a DS-SS signal;
PB-ACDgs denotes the smoothed PB-ACD technique.

Detection (MFD). The detection and misdetection probabil-
ities are shown in Fig. 27 and Fig. 28, respectively. For the
EVD technique, the detection performance is based on eval-
uating the maximum and the minimum eigenvalues of the
covariance matrix of the received signal [45]. The inherited
correlation between signal samples can be reflected in the
eigenvalues of the covariance matrix which can be used to
formulate the detection test statistic.

Deciding on the presence or absence of the PU signal
depends on the ratio of the maximum to minimum eigen-
values. Even though the maximum-minimum EVD does not
require any knowledge on the transmitted signal character-
istics neither on the noise variance, its high computational
complexity due to the high data processing is the main draw-
back. The desired expression of the detection threshold based
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FIGURE 28. The misdetection probability of the PB-ACD as compared to the
smoothed PB-ACD and different state-of-the-art techniques for detection a DS-SS
signal for detection a DS-SS signal; PB-ACDg denotes the smoothed PB-ACD
technique.

on the probability of false alarm can be found in* [46]. For
the MFD, its drawbacks are related to the perfect knowledge
of the PU signal and the noise variance. In [47], the detec-
tion threshold of the suggested MFD is given as a function
of SNR so at low SNR, the value of the detection threshold
becomes higher such that the detection performance deterio-
rates.> In Fig. 27, the matched filter detector has the highest
detection probability among the energy Detector and the
eigenvalue-based detector at SNR of —15 dB, whereas the
PB-ACD technique is higher in detection probability by 30%
than the matched filter detector. However, as the SNR slightly
increases to —12 dB, the PB-ACD and the MFD techniques
perform similarly. By applying the smoothing process to the
PB-ACD, the detection results increased by 40%. Moreover,
Fig. 28 illustrates the efficacy of the PB-ACD technique to
be less likely to miss-detect the presence of a DS-SS PU sig-
nal among the considered state-of-the-art techniques. For the
IR-UWB signal, we used a Gaussian monocycle waveform
to generate the transmitted pulses along with the passband
BPSK modulation scheme. The impulse duration is 0.5 nsec,
and the carrier frequency is 6 GHz.

The performance results are shown in Fig. 29 and Fig. 30.
In Fig. 29, the PB-ACD outperforms the three considered
state-of-the-art techniques over the SNR [—15,—9] dB. At
—8 dB, the PB-ACD and the Matched filter techniques
have the same detection probability. Over about —8 dB,
the Matched Filter Detector gives the highest detection

4. The approximated detection threshold of the EVD ngyp is given by:
negvp = F, l;IJL( 1—Pg); F ;plp(.) is the approximated distribution function
of the eigenvalue ratio.

5. The detection threshold of the MFD, denoted by npyfr, is given by:
NMF = Q*I(PFA‘/EXJV%); Es is the energy of the signal and ‘7»% is the
noise power.
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The Detection Probability of an IR-UWB PU Signal
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FIGURE 29. The detection probability of the PB-ACD as compared to the smoothed
PB-ACD and different state-of-the-art techniques for detection an IR-UWB signal;
PB-ACDgs denotes the smoothed PB-ACD technique.
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FIGURE 30. The misdetection probability of the PB-ACD as compared to the
smoothed PB-ACD and different state-of-the-art techniques for detection an IR-UWB
signal; PB-ACDg denotes the smoothed PB-ACD technique.

performance than the PB-ACD and the considered state-
of-the-art techniques. To provide more improvement, we
applied the smoothed PB-ACD. As shown in Fig. 30, the
smoothed PB-ACD technique can detect the presence of the
IR-UWB signal by approximately 40% detection probability
as opposed to the PB-ACD technique. Also, it gives the low-
est misdetection probability at low SNR values as opposed
to the other considered detection techniques as shown in
Fig. 30.

To sum up, as mentioned in Section III, we divide the
WBSS problem into two phases, namely: the edge detec-
tion and PU detection phases. In the edge detection phase,
the identification of the spectral boundaries is accomplished
by the DLSD technique and the detection performance
is compared to different wavelet-based spectrum sensing
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FIGURE 31. The detection probability of the BB-ACD technique for different
modulation schemes.

techniques. In the PU detection phase, a suitable NBSS
technique can be employed to analyze each subband in
order to monitor its occupancy by a noise-like signal. To
show the robustness of the PB-ACD and the improved PB-
ACD techniques, we assumed an exact knowledge of the
subband center frequencies and compared their detection
performance for detecting noise-like signals to ED, MFD,
and EVD techniques as shown in Fig. 27 to Fig. 30.

2) DETECTION OF NOISE-LIKE SIGNALS UNDER
CARRIER FREQUENCY UNCERTAINTY BY THE BB-ACD
TECHNIQUE:

In the single-band signal detection scenario, the operating
frequency is usually known to the SU receiver. However,
under multiband spectrum sensing scenario, and due to the
edge-detection phase, the center frequencies of the subbands
are unknown and may be subjected to frequency estima-
tion errors. Thus, the BB-ACD technique is proposed to
detect noise-like signals under carrier frequency uncertainty
and its performance is compared with that of the PB-ACD
technique. The simulations are averaged over 3000 Monte-
Carlo realizations with the following parameters: the carrier
frequency f. = 5 GHz, and the employed sampling frequency
fs 1s 20 GHz. The performance of the proposed narrowband
detector is measured in terms of the detection probability
versus the SNR evaluated from —15 to 10 dB. To include
the effect of carrier frequency uncertainty, we employed the
example illustrated in Fig. 14 which results in a frequency
shift of 0.4 GHz.

The applicability of the proposed BB-ACD technique for
detecting different digital modulation schemes is tested for
the case of the BPSK, QPSK, and 16-QAM modulation
schemes as well as BPSK/OFDM PU signal as shown in
Fig. 31. Further, we compare the BB-ACD technique with
the PB-ACD when the operating carrier frequency is known
to the CR receiver in Fig. 32. When the PB-ACD tech-
nique is applied under exact knowledge of the subband
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FIGURE 32. The detection probability of the BB-ACD as compared to the PB-ACD
under carrier frequency uncertainty for detecting a DS-SS signal; PB-ACD g refers to
the applying the PB-ACD in case of frequency errors.

center frequency, the achieved detection probability becomes
approximately 50% higher than the same technique applied
when there are errors in the center frequency values of the
subbands of interest at SNR of —15 dB due to the detec-
tion dependency on the carrier frequency value. On the other
hand, the proposed BB-ACD technique results in 50% detec-
tion probability at —15 dB and slowly increases to 100% at
SNR of —6 dB. Precisely, the detection test statistic of the
BB-ACD technique depends on averaging the periodic peaks
that appeared in the power cepstrum of the baseband signal.
At low SNR, these peaks have relatively low values as com-
pared to the major peak that characterizes the test statistic
of the PB-ACD technique. Thus, as the SNR increases, we
notice a gradual increase in the detection performance of the
BB-ACD technique.

Moreover, to test the robustness of the proposed BB-
ACD technique in fading channels, we evaluate its detection
performance as compared to the PB-ACD technique for
detecting PU signals in a Rayleigh fading channel. Fig. 33
shows that the detection performance of the BB-ACD tech-
nique is superior to the PB-ACD for detecting a BPSK PU
signal. Also, we notice a performance deterioration of the
PB-ACD technique by around 40% when the PU signal expe-
riences fading such that the detection probability drops to
0 at —15 dB. On the other hand, the detection probability
of the BB-ACD technique drops to 20% at —15 dB when
Rayleigh fading is encountered.

We also tested the performance of the proposed BB-
ACD technique to detect an OFDM PU signal in frequency
selective channel and compared the obtained results with
the PB-ACD technique. The simulation of OFDM sig-
nals in AWGN or a frequency selective channel follows
the IEEE 802.11 specifications [29]. The frequency selec-
tive channel is implemented as a 4-taps Finite Impulse
Response (FIR) filter. The path delays vector is given as
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FIGURE 33. The detection performance of the BB-ACD technique as compared to
the PB-ACD technique in a Rayleigh fading channel; PB-ACDRay refers to employing
the PB-ACD technique in Rayleigh fading channel.
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FIGURE 34. The detection performance of the BB-ACD technique as compared to
the PB-ACD technique in a frequency selective fading channel.

7 = [0, 100, 35, 120] pusec, and the average path gains vec-
tor is given by Pg = [0, —1, —1, —3] dB. For a sample
period Ty = 1usec, the maximum Doppler frequency equals
100 kHz. The detection performance of the BB-ACD as com-
pared to the PB-ACD under the Doppler frequency shift due
to the frequency selective fading channel is shown in Fig. 34.
According to our simulations, we find that the proposed
BB-ACD technique gives better detection results than the
PB-ACD technique at —15 dB, whereas the PB-ACD starts
to significantly detect the PU presence above —4 dB. This
means that the effect of the Doppler frequency shift dete-
riorates the PB-ACD performance, especially at low SNR
values, while the BB-ACD technique can detect the OFDM
PU signal successfully.

Another important performance metric to evaluate the effi-
cacy of the proposed techniques is computational complexity.
In this regard, we analyze the computational complexity
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TABLE 6. Summary of the computational complexity of the DLSD algorithm as compared to the WTMP algorithm.

WTMP DLSD
Arithmetic Operations | Complexity Arithmetic Operations Complexity
Autocorrelation O(N2) Autocorrelation O(N2)
FFT O(Nclog No) | FFT O(Nclog N.)
Linear Convolution by Natural Logarithm using
a kernel of size K O(N:K) Arithmetic-Geometric Mean | O(N.log N¢)
Product of Modulus Automatic or numerical
Maxima O(N.) Differentiation O(N.)

of the DLSD edge detection algorithm followed by the
BB-ACD technique and compare it with the WTMP edge
detection technique followed by ED. For a 1D signal of size
N, the edge detection algorithm given by the WTMP tech-
nique involves evaluating the autocorrelation of the received
signal followed by the FFT operation to obtain the PSD.
To identify the spectral boundaries, the received signal’s
PSD is filtered by the Fourier Transform of the smoothing
wavelet function through a convolution operation. On the
other hand, the proposed DLSD algorithm involves getting
the autocorrelation, the PSD of the received signal followed
by the gradient of the natural logarithm of the signal’s
PSD. Table 6 summarizes the complexity of the arithmetic
operations involved in evaluating both algorithms.

To perform energy detection, the computational complex-
ity requires O(N.) multiplications and O(N, — 1) for the
averaging. For the BB-ACD technique, it requires O(N.K)
for convolving the received signal with the Hilbert filter of
size K, O(N,) for the SLD, and for the power cepstrum the
complexity is similar to the DLSD algorithm except for that
of the differentiation step. Based on Table 6, we find that
the complexity of the WTMP is higher than the DLSD algo-
rithm since the complexity of evaluating linear convolution
is greater than that of the natural logarithm [48]. However,
under the problem of frequency uncertainty, the BB-ACD
has a higher complexity than ED or the BED despite its
high detection accuracy. A trade-off analysis between the
computational complexity and the maximum detection accu-
racy can be further investigated to highlight the competence
of the proposed approach.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a wideband spectrum sensing
approach based on cepstral analysis. It is shown that the
spectral boundaries of the subbands comprising the target
wide band can be well identified, in medium-to-high SNR
environments (i.e., over the range [0, 6] dB), by employing
the proposed DLSD algorithm. Although the detection of the
spectral edges becomes difficult in low SNR environments
(i.e., below 0 dB), the performance of the DLSD algorithm
provides good detection results as compared to different
wavelet-based approaches when further denoising is applied.
For the PU detection phase, we tackled the problem of detect-
ing noise-like signals in the SBSA and the MBSA scenarios.
In the case of the SBSA, we proposed the improved PB-ACD
technique to detect the presence of noise-like signals such
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as DS-SS and IR-UWB signals. The proposed detector out-
performed different state-of-the-art techniques. Further, we
addressed the problem of the carrier frequency uncertainty
in the MBSA and presented the BB-ACD technique to pro-
vide better detection of possible noise-like signals in low
SNR environments. The applicability of the proposed BB-
ACD algorithm to different digitally modulated signals is
evaluated. Also, the reliability of the BB-ACD technique is
validated as opposed to the PB-ACD technique in frequency
selective fading channels. As future work, the involvement of
a reliable channel estimation process is essential to include
its effect on the spectrum sensing results. Also, the trade-
off between the computational complexity and the detection
accuracy can be analyzed for the combined DLSD and
BB-ACD techniques.

APPENDIX A

We need to get the constants a and b in order to verify
that the chosen function g(¢) is a valid majorizer for f(¢), so
based on the second condition of MM algorithm, we have:

gt=1n)=ft=1) (63)
accordingly, we get:
= ! t ! bt, (64)
‘T Mr T
referring to the inequality in (37), we have:
- L (L oe) <o (65)
T, T,
then for b > O:
4b 1 _ (66)
. )1
substitute (65) in (67), for u = bT.t; we have:
2 1
u —u+ 1 >0 67)
thus, for a general expression:
1 1—2J
b=——, c= J (68)
2T |ty 2T,
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APPENDIX B

Consider a random process J = |log[V]|, and we seek the
distribution of J if V follows X(ZZ). Thus, J follows MLCS dis-
tribution. Based on the PDF approach, we find the required
distribution by:

4]
DO = {aravilv—ss 2
then, by substituting for % = %L we get:
1 1
f1G) =5 [eXP (j —3 em(i))
1
+ em(—i 3 ew(—ﬂ)}. (70)
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