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ABSTRACT Wireless traffic usage forecasting methods can help to facilitate proactive resource allocation
solutions in cloud managed wireless networks. In this paper, we present temporal and spatial analysis
of network traffic using real traffic data of an enterprise network comprising 470 access points (APs).
We classify and separate APs into different groups according to their traffic usage patterns. We study
various statistical properties of traffic data, such as auto-correlations and cross-correlations within and
across different groups of APs. Our analysis shows that the group of APs with high traffic utilization have
strong seasonality patterns. However, there are also APs with no such seasonal patterns. We also study
the relation between number of connected users and traffic generated, and show that more connected
users do not always mean more traffic data, and vice versa. We use Holt-Winters, seasonal auto-regressive
integrated moving average (SARIMA), long short-term memory (LSTM), gated recurrent unit (GRU)
and convolutional neural network (CNN) methods for forecasting traffic usage. Our results show that
there is no single universal best method that can forecast traffic usage of every AP in an enterprise
wireless network. The combined models such as CNN-LSTM and CNN-GRU are also used for spatio-
temporal forecasting of a single AP traffic usage. The results show that considering spatial dependencies
of neighboring APs can improve the forecasting performance of a single AP if it has significant spatial
correlations.

INDEX TERMS 5G, CNN, CNN-GRU, CNN-LSTM, forecasting, GRU, holt-winters, LSTM, neural
network, real network data, SARIMA, spatio-temporal, temporal, time series analysis, WLAN.

I. INTRODUCTION

DIFFERENT from the previous generation of wireless
networks, fifth generation (5G) and beyond wireless

networks are expected to provide wireless connectivity to
billions of devices and they would be required not only to
have improvements in data speed but also to incorporate sup-
port for ultra-reliable low latency communication (URLLC).
To achieve this, more advanced and efficient network infras-
tructures as well as new network function modules which can
perform data analytics and forecasting on key performance
indicators (KPIs) to facilitate proactive network resource
allocation in a short timescale [1] will be required. The 3rd
Generation Partnership Project (3GPP) has recently intro-
duced a data driven automated centralized framework called
network data analytics function (NWDAF) [2] to handle

real-time data analytics and forecasting with huge amount of
data. NWDAF is expected to make use of any real-time data
from different resources in the 5G core network for assist-
ing traffic routing, background data transfer and network
performance predictions [3] so that data analytics and
predictions in NWDAF become important. Consequently, not
only cellular networks but also enterprise networks are being
extended using data analytics modules like NWDAF for bet-
ter wireless connectivity. For example, Cisco Miraki [4] is
using dedicated data analytics modules which collect data
to perform better resource allocation decisions.
Enterprise wireless network analytics requires that data

relating to various network parameters, such as traffic utiliza-
tion and number of connected users at an access point (AP),
are collected and examined over time and space. Forecasting
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the total traffic utilization of the entire network from the
network’s perspective and forecasting traffic utilization of
each AP of an enterprise network are both extremely helpful
in network management and proactive resource allocation. In
general, time series temporal analysis and forecasting meth-
ods can be applied on wireless network traffic data which
is one of the main network parameters. Moreover, spatial
dependencies of neighboring APs also have influence on
forecasting wireless network traffic time series of an AP.
Therefore, spatial analysis and spatio-temporal forecasting
methods which make use of spatial dependencies of the
neighboring APs to forecast the temporal traffic usage of
a target AP should be also examined. Time series analy-
sis methods exploit the property that network traffic data
points taken over time may have some internal structures
which include stationarity/non-stationarity of time series,
auto-correlations, trend or seasonal variations. Spatial anal-
ysis tells how the neighboring APs are spatially correlated
to a target AP. By taking into account the internal structures
discovered by temporal and spatial analysis, one can use an
appropriate temporal or spatio-temporal forecasting model
to make predictions about behavior of network traffic usage
which in turn will be useful for proactive resource allocation.
For example, a good prediction about how much network
traffic will be utilized at a certain AP (or certain group
of APs) within short time period can help in proactively
allocating appropriate resources at those APs.
Broadly speaking, various time series temporal fore-

casting methods can be divided into two major groups:
statistical methods including exponential smoothing (ES),
auto-regressive integrated moving average (ARIMA) and the
theta model [5], and machine learning methods such as recur-
rent neural network based long short-term memory (LSTM),
gated recurrent unit (GRU), convolutional neural network
(CNN) and support vector regression (SVR) [6]. The past
decade of research in the area has shown that there is not one
temporal forecasting method that fits all types of time series
data. Instead, in general, the detailed temporal analysis and
appropriate forecasting method selection which is function
of the input time series traffic data are required. For example,
if the analysis of input data shows strong seasonality and
trend, the statistical methods have been shown to give better
results than machine learning [7]. On the other hand, machine
learning methods have shown the ability to handle complex
non-linear patterns and rapid changes [8]. For spatio-
temporal forecasting, combination of recent famous machine
learning methods such as auto-encoder (AE) with LSTM and
CNN with LSTM are mostly used to exploit the benefit from
spatial dependencies of the APs in the network [9].
In this paper, we perform detailed temporal analysis and

perform forecasting of traffic utilization in a real enterprise
network using both statistical and machine learning methods.
We also perform spatial analysis for spatio-temporal fore-
casting using combined machine learning methods. To the
best of our knowledge, this is the first time both temporal
and spatial analysis for forecasting wireless traffic data of a

real enterprise network is performed and the famous statis-
tical methods and state-of-the-art machine learning methods
are compared. The main contributions of this paper are:
1) To perform traffic usage forecasting that can be used

at a resource controller of an enterprise network for
proactive resource allocation, we study temporal and
spatial dependencies of traffic usage data collected over
a period of more than a month from 470 APs deployed
in the University of Oulu.

2) For the ease of analysis and forecasting, traffic time
series of APs are separated and classified into differ-
ent groups based on their traffic usage patterns. We
also present time series temporal analysis results such
as auto-correlations and cross-correlations within and
across different groups of APs. Moreover, we also
examine the time series representing the number of
connected users to see the relation between the num-
ber of connected users to various APs and their traffic
usage.

3) We perform correlation-based spatial analysis with
two different methods, Pearson spatial correlation and
Moran’s I spatial auto-correlation, for a target AP
with its neighboring APs to be able to utilize spatial
dependencies in spatio-temporal forecasting.

4) By utilizing the time series analysis results, we com-
pare and evaluate temporal forecasting performance for
traffic utilization of highly utilized APs and the entire
network using five different methods: 1) Holt-Winters
which is a smoothing based method, 2) Seasonal
ARIMA (SARIMA) which is a regression based
method, 3) LSTM which is a recurrent neural network
based method, 4) GRU which is also a recurrent neu-
ral network but simpler and faster than LSTM, and
5) CNN which is a type of deep neural network with
convolution and fully connected layers.

5) We also compare and evaluate spatio-temporal fore-
casting performances for traffic usage of a target
AP by using two different methods: 1) CNN-LSTM
(combination of CNN and LSTM), and 2) CNN-
GRU (combination of CNN and GRU). In addition,
we examine the computational complexity involved in
each of the compared temporal and spatio-temporal
forecasting methods in our work.

The rest of the paper is organized as follows. Section II
provides the previous literature related to traffic time series
analysis and forecasting. The overview of the system model
is introduced in Section III. Section IV presents the basic idea
of different forecasting methods and performance metrics
used in this paper. The collected data set description and
detailed explanations of time series temporal analysis and
spatial analysis for our enterprise network traffic can be
seen in Sections V and VI, respectively. The evaluations
and comparisons of the forecasting performances can also
be seen in Section VII. Finally, we conclude the paper in
Section VIII and also present some directions for future
research.
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II. RELATED LITERATURE
Data analysis and data mining in NWDAF has a big role
in next generation networks. The details of the network
information that NWDAF needs to collect for data analysis
and predictions to optimize the network, such as amount of
traffic volume, number of connected devices, locations and
so on, are stated in [3]. In general, most of the collected
network information such as traffic utilization and channel
utilization are in the form of time series [10]. However, [11]
stated that due to highly dynamic traffic utilization and
evolving distribution properties of the time series, traditional
temporal analysis such as removing trends and differencing
time series as pre-processing stage for time series predictions
are not suitable for wireless networks. Instead, the wireless
home network traffic time series in [11] are characterized
by using correlation-based similarity. Moreover, studying
temporal behaviors and patterns of the time series using cor-
relation functions is common in wireless time series analysis
as we used in our work, for example [12], [13]. In addi-
tion, [14], [15] and [16] showed that spatial dependencies
of neighboring cells or base stations also have influence on
forecasting cellular traffic time series of a target cell or a
base station. For this reason, we also did spatial analysis
for the APs deployed in a specific area of the University.
In [14], [15], Pearson spatial correlation is used for spatial
analysis and in [16] Moran’s I spatial autocorrelation is used.
There is abundant literature on analyzing and forecasting

traffic time series of cellular networks with both statis-
tical and machine learning methods. The cellular radio
traffic time series of a particular cell is predicted for one
week in the future with Holt-Winters exponential smooth-
ing method in [17]. LSTM and ARIMA are utilized to
predict the base station traffic in [18] and the aggregated
network traffic in [19]. Reference [20] also demonstrated
high performance of recurrent neural networks such as
LSTM and GRU compared to ARIMA for network traf-
fic prediction. In [18], [19] and [20], LSTM performed
higher than other methods. The research in [21] presented
performance comparisons of LSTM and GRU, and showed
that one method can outperform another depending on input
sequences, hence, there is no clear winner between LSTM
and GRU in time series prediction. Moreover, [22] stated
that a CNN model can be applied to time series forecasting
problems as it is expected to be good on some noisy series
due to its layered structure.
Most of the recent researches such as [14] and [23],

focused on both temporal and spatial cellular traffic analy-
sis followed by prediction with ARIMA and Holt-Winters
for temporal forecasting as well as combination of CNN
and LSTM for spatio-temporal forecasting with commonly
used metrics, mean absolute error (MAE), root mean square
error (RMSE) and normalized RMSE (NRMSE). Moreover,
another temporal and spatio-temporal forecasting without
grid-based region partitioning of the cellular traffic data for
each of total 5929 cell towers in a major city of China
can be found in [16]. Reference [15] proposed a strategy

by combining auto-encoder and LSTM for spatio-temporal
prediction of cellular network traffic. However, [9] stated
that auto-encoder may fail to learn the fully characterized
features for spatial dependencies between neighboring cells
so that they established CNN based framework while [23]
claimed that the state-of-the-art method, CNN-LSTM, out-
performed the CNN and LSTM for spatio-temporal mobile
traffic forecasting. All these recent works proved that spatio-
temporal forecasting improves the forecasting performance
for a single AP. Therefore, we used CNN-LSTM and also
established CNN-GRU as an alternative to CNN-LSTM to
forecast traffic usage of a target AP in our work.
The recent work [24] studied the use of deep learning

techniques for classification of mobile encrypted traffic.
The work in [25] utilized 1D-CNN and GRU as multi-
model deep learning and proposed the novel framework
called MIMETIC to classify mobile encrypted traffic data.
Different from [24] and [25], our work focused on temporal
and spatio-temporal forecasting of traffic usage of an enter-
prise network. For our spatio-temporal forecasting, 2D-CNN
is used to extract spatial dependencies and LSTM or GRU
is used to learn the temporal relations in CNN-LSTM or
CNN-GRU where CNN and LSTM or GRU combination is
in cascade form which is different from [25]. Moreover, [26]
proposed a mobile traffic super-resolution technique to make
fine grained information from low resolution measurements
by inspiring image processing model which is the combina-
tion of Zipper Network (ZipNet) and Generative Adversarial
neural network (GAN). The proposed model is also able
to capture spatio-temporal relations between traffic volume
snapshots with low resolution and the corresponding usage at
specific area level with high resolution. Its dataset dealt with
cellular traffic in licensed spectrum in the form of image and
focused on image processing techniques to capture both spa-
tial and temporal relations of the traffic. However, our work
focuses on dataset of an enterprise wireless network using
unlicensed spectrum. Moreover, our datasets are in the form
of time series representing traffic utilization, and number of
connected users to an AP at a given time interval.
In addition, the cellular traffic time series used in [16]

shows weak seasonality and similarities between weekdays
and weekends which is different from the cellular traffic
series used in [14], [15] and [23] telling that cellular traf-
fic time series analysis and forecasting results can vary for
different networks. The extended version of ARIMA which
is called seasonal autoregressive conditional heteroskedas-
ticity (ARCH) based model is used to forecast the traffic
time series of an enterprise network in [27]. Only the total
traffic of the network time series is used in [27] and the
data series is separated into weekdays and weekends. It also
stated that the traffic time series exhibits non-stationarity
with sometimes chaotic behavior. Our collected data series
also shows the daily patterns in weekdays and some sporadic
patterns in weekends. Due to this reason, we also separated
the collected data into weekdays and weekends as well as
we classified into different groups to separate time series
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FIGURE 1. Diagram of the system model.

with chaotic behaviors. However, forecasting in [27] is only
for one-step ahead and no detailed analysis of the network
data is presented. Despite of having various researches of
traffic temporal and spatial analysis for forecasting traffic
usage of cellular and other networks, there is lack of liter-
ature on research presenting temporal and spatial detailed
analysis followed by forecasting traffic usage for an enter-
prise network. Therefore, we performed temporal and spatial
detailed analysis as well as temporal and spatio-temporal
forecasting traffic usage of a certain AP (or certain group
of APs) in a real enterprise network.

III. OVERVIEW OF THE SYSTEM MODEL
Forecasting the total traffic usage of the entire network and
forecasting traffic usage of each AP can be extremely help-
ful for proactive resource allocation in network management.
However, an enterprise network is completely different from
the cellular network so that we performed temporal and spa-
tial analysis for forecasting traffic data of a real enterprise
network and compared famous statistical methods and state-
of-the-art machine learning methods. As shown in Fig. 1,
network traffic data from all of the APs around the campus
of the university are collected. The collected traffic usages
of weekdays and the weekends exhibit different patterns due
to the nature of studied enterprise network (university cam-
pus) where majority of the wireless data will be consumed
during weekdays. When weekend time series data is sig-
nificantly different from weekdays, it is standard forecasting

approach to separate weekdays and weekends, see for exam-
ple [11], [27]. Therefore, we have separated the weekdays
and weekends time series data to make the analysis simpler
and coherent. Moreover, as there are some APs which exhibit
different behavior than the stated weekday and weekend pat-
terns, for ease of data analysis, we classified APs based on
their traffic utilization characteristics into different groups.
Another interesting observation about the network time

series data is that while the traffic of each individual AP
can have high variability, the aggregation of time series of
different APs within each classification group shows less
variability. This means that modeling individual AP data
can be more difficult as compared to the aggregated data.
Therefore, we use both individual and aggregated raw data
in our analysis. Moreover, as the transmitted traffic time
series show high variability and some data points can be
considered as the outliers of the main data pattern, cer-
tain filtering should be performed in order to get smooth
values. Among different types of series smoothing, median
filter is mostly used to obtain the important pattern of the
time series preserving the edges which are not outliers [28].
Hence, along with raw data, filtered time series data are also
used in our analysis. Then, stationarity test and correlation-
based analysis for both temporal and spatial dependencies
are performed. From the results of time series analysis, time
series with the most interesting characteristics are selected
for further forecasting step. After selecting appropriate time
series, samples of the time series are divided into training
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TABLE 1. The important factors and their challenges of forecasting wireless network traffic time series.

data and testing data to be utilized by different forecasting
models. Two important features relating to forecasting prob-
lems are forecast interval (FI) and forecast horizon (FH).
The frequency with which new forecasts are prepared is
called forecast interval. The forecast horizon is the number
of future time periods for which forecasts must be produced.
For time series forecasting, we defined x =
{x1, x2, . . . , xT} as the input traffic series, y =
{y1, y2, . . . , yT} as corresponding response traffic values of
x, for example, if xi is the current traffic usage, yi will be the
traffic usage of next day at the same time for 1 day ahead
prediction. We also defined x̂ = {xT+1, xT+2, . . . , xN} as the
testing data, where T is the number of samples included in
the training dataset and N is the total number of sample in
the time series. In general, time series forecasting can be
mathematically described as

Training, F : x, xi ∈ R→ y, yi ∈ R

Prediction, F : x̂, x̂i ∈ R→ p, pi ∈ R (1)

where function F , which consists of weights, bias or resid-
ual error matrices, represents the relations between input
and true response pairs of training dataset (x, y). Function
F is optimized during a model training phase and the fore-
casted time series p is executed in a model prediction phase
by applying optimized function F on the testing data x̂.
In our case, we assume that a forecasted time series of
one FI is p = {pT+1, pT+2, . . . , pT+H} and H is the num-
ber of forecasted samples to be produced within that FI.
Let D be the number of samples for one day period. In
first scenario called 5-day FH with only one FI, we fore-
casted traffic data for 5 days ahead continuously, where
H = 5 × D without updating training dataset by assum-
ing network does not change for a certain period. In next
scenario called 1-day FH with 5 FIs, we forecasted traf-
fic data for one day at a time (in each FI) to consider
recent changes of network traffic by updating training dataset
daily. First, the initial training dataset (x, y) is used to pro-
duce forecasted series p = {pT+1, pT+2, . . . , pT+D} within

first FI, then, (x, y) is updated at the end of that FI
as (x, y) = {(x1, y1), . . . , (xT+1, yT+1), . . . , (xT+D, yT+D)}
where (xT+i, yT+i) is the (T + i)th pair of input and true
response values. Then, the updated training dataset after each
FI is used to retrain the model to produce forecasted series
for next FI in 1-day FH scenario.
Time series forecasting itself has its own challenges since

data points are time-varying and most of them are non-
stationary. For particular wireless network traffic time series,
the challenges are more specific. In Table 1, we present
important factors and their challenges to consider before
forecasting wireless network traffic time series. To consider
these challenges, we performed temporal forecasting with
two training dataset updating scenarios to study the effect of
different training frequency. We also addressed the problem
of having multiple seasonalities by separating weekdays and
weekends which is also relevant for an enterprise network
traffic data. Moreover, we presented the performance of fore-
casting time series with unusual fluctuations using machine
learning methods which are famous for handling irregular
changes. For data processing, the detailed analysis of time
series are explained in Section V.

IV. FORECASTING METHODS AND PERFORMANCE
METRICS
A. REASONS OF CHOOSING AND COMPARING THE
PRESENTED FORECASTING METHODS
As wireless traffic time series often exhibit seasonal patterns,
one classical approach that is available for forecasting such
data is Holt-Winters which is also known as triple expo-
nential smoothing method. In [16], the results also showed
that Holt-Winters outperformed the state-of-the-art machine
learning methods and gave the best MAE for cellular traffic
temporal forecasting. Seasonal ARIMA (SARIMA) which is
an extension of ARIMA supports the direct modeling of the
seasonal component and it can describe non-stationary time
series satisfactorily by neglecting the random fluctuations so
that the underlying pattern of the time series can be seen
clearly. Therefore, SARIMA is suitable to use for forecasting
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wireless traffic data. Moreover, the recurrent neural networks
(RNNs), such as LSTM and GRU, are famous and well-
suited to forecasting wireless traffic time series due to their
advantage of preventing gradient vanishing problem. LSTM
can remember the long time information (long-term memory)
as in RNN and it can also learn how much information to
keep from the present state (short-term memory). Research
shows LSTM to be one of the most powerful tool in wire-
less traffic time series forecasting [29] and the literature
mentioned in Section II, make a strong case to use it for
forecasting wireless traffic data in our work. GRU controls
the flow of information like in LSTM but without having a
memory unit so that it has less gating units than in LSTM.
When difference in forecasting performances of LSTM and
GRU is insignificant, GRU has the advantage of lower com-
putational complexity [21]. Therefore, in this paper, GRU
is used and compared with other forecasting methods to
forecast wireless traffic time series.
CNNs are famous in image processing [30] and also used

in network traffic time series forecasting [31] due to their
abilities of capturing the temporal dependencies in the dataset
through the operations of relevant filters. Moreover, [22]
also stated that a CNN model can be applied to tem-
poral time series forecasting problems to learn the filters
which are able to recognize specific patterns in the input
data and use them to forecast the future values. It is also
expected to be good on some noisy series due to its layered
structure. These reasons gave the strong support to choose
Holt-Winters, SARIMA, LSTM, GRU and CNN methods to
compare and evaluate for temporal forecasting in our work.
Among different combination of machine learning methods
for spatio-temporal forecasting, auto-encoder with LSTM
and CNN with LSTM combinations are widely used. As
it is mentioned in Section II, auto-encoder cannot guarantee
to learn the important features completely but it is not the
case in CNN [15]. On the other hand, CNN-LSTM, which
has been successfully used in activity recognition in videos,
also outperformed the other spatio-temporal methods in cel-
lular traffic forecasting [23]. For these reasons, we selected
CNN-LSTM to forecast wireless traffic usage of a target
AP in our work. We also established CNN-GRU to com-
pare with CNN-LSTM for spatio-temporal traffic forecasting
since GRU is faster and simpler than LSTM. As a summary,
the different methods we used for temporal forecasting of
our network traffic time series are: Holt-Winters, SARIMA,
LSTM, GRU and CNN. For spatio-temporal forecasting, we
used CNN-LSTM and CNN-GRU.

B. HOLT-WINTERS
Holt-Winters is used to forecast the time series by assigning
exponentially decreasing weights and values on the old data.
Based on seasonality, Holt-Winters has two type of models,
additive model and multiplicative model. However, we used
only additive model as wireless mobile traffic data series
are more compatible with additive model [32]. Let lt, bt
and st be the sequences of level, trend and seasonal factors,

respectively. The closed form expressions used in the method
to forecast the traffic value pt+m of mth time instance ahead
with seasonal length L are expressed as in [33]

Level : lt = α(xt − st−L)+ (1− α)(lt−1 + bt−1)

Trend : bt = β(lt − lt−1)+ (1− β)bt−1

Season : st = γ (xt − lt)+ (1− γ )st−L
Forecast : pt+m = lt + mbt + st−L+1+(m−1)modL (2)

where α, β and γ are level smoothing factor, trend smoothing
factor and seasonal smoothing factor, respectively, which are
optimized as usual to fit the training samples. The initial
values such as l0, b0 and s0 are calculated and assigned
according to given time series as in [33].

C. SARIMA
SARIMA has AR term, MA term and integrated (I) term to
fit the seasonal data as well as possible. It can be expressed
as ARIMA(p, d, q)(P,D,Q)s, where p is the number of AR
terms, d is the number of difference, q is the number of
MA terms, P is the number of seasonal AR terms, D is the
number of seasonal difference, Q is the number of seasonal
MA terms and s is seasonal period of time series. SARIMA
model can be trained to fit the data by adjusting the above
parameters [34]. The prediction algorithm for traffic value
xt and addictive white noise wt ∼ N (0, σ 2) at time t is as
follows [35]:

AR Term : φ(B) = 1− φ1B− · · · − φpBp
Seasonal AR Term : �

(
Bs

) = 1−�1B
s − · · · −�pB

sp

MA Term : θ(B) = 1+ θ1B+ · · · + θqBq
Seasonal MA Term : 	

(
Bs

) = 1+	1B
s + · · · +	qB

sq

Forecast : φ∗(B)�∗
(
Bs

)
xt = θ(B)	

(
Bs

)
wt (3)

where φ∗(B) = φ(B)(1−B)d and �∗(Bs) = �(Bs)(1−Bs)D
are the backward shift operators of the algorithm.
Initiating an appropriate SARIMA model based on the

auto-correlation function (ACF) and Partial ACF (PACF)
is common but it can also be inconclusive and misleading
according to an example in [33]. In general, [36] suggested
to initiate with the model whose order of AR-MA-I are
ARIMA(0, 1, q)(0, 1, 1)s, where q can be 1 or 2 and s is sea-
sonal period, for a time series with strong seasonal pattern.
Reference [36] stated that ARIMA(0, 1, 1)(0, 1, 1)s is the
most commonly used SARIMA model which also is essen-
tially a seasonal exponential smoothing model. According
to correlation-based analysis results, s is assigned as 144.
However, we chose ARIMA(0, 1, 2)(0, 1, 1)144 model which
gave optimal performance for all of our time series data.

D. LSTM
LSTM is a variation of RNN and it is a type of artificial
neural network whose one application is to recognize patterns
in time series data. The main part of a LSTM network is
called a cell which consists of 3 main regulation structures

782 VOLUME 1, 2020



FIGURE 2. A cell structure of a LSTM network.

to control the amount of information which are called input
gate, forget gate and output gate [37]. The gates of a cell
in LSTM are in the form of sigmoid activation functions
whose outputs are between 0 to 1, where only 0 indicates
that nothing can pass through the gate, and 1 indicates that
everything can pass through the gate. Let xt be the input time
series for an LSTM at time t, the closed form expressions
for a LSTM unit can be written as follows [38]:

Input gate : it = σ(wihht−1 + wixxt + bi)

Forget gate : ft = σ
(
wfhht−1 + wfxxt + bf

)

Output gate : ot = σ(wohht−1 + woxxt + bo) (4)

where it, ft, ot are the gate parameters, wih, wix, wfh, wfx,
woh, wox are the weight vectors for the corresponding input
time series, and bi,bf ,bo are biases for input gate, forget
gate and output gate, respectively. σ represents the sigmoid
activation function of the gate and ht−1 is the output series
of previous LSTM block. After computing the states of the
gates, the cell of a LSTM network computes the candidate
cell state (c̃t), the current cell state (ct) and the final output
(ht) as follows:

Candidate cell state : c̃t = tanh(wchht−1 + wcxxt + bc)

Cell state : ct = ft � ct−1 + it � c̃t
Final output : ht = ot � tanh(ct) (5)

where tanh is the hyperbolic tangent and � means an
element-wise multiplication. wch, wcx and bc are the weights
and bias of the cell. The gates and the cell structure can be
seen in Fig. 2.
For neural network-based machine learning methods, deep

and narrow networks can create more complex feature rep-
resentations of the current input than shallow and wide
networks [39]. However, stacking many layers does not
always help for time series forecasting [40]. The optimal
number of layers also depends on the data, for example,
the LSTM performance comparison of different layers and
nodes for filtered aggregated time series of total 470 APs
which can be seen in Table 2. For model selection, K-fold
cross-validation approach, in which data is randomly divided
into K equal parts, is common for machine learning mod-
els. However, it does not work in the case of time series
forecasting, since it ignores the temporal dependency of

TABLE 2. Performance comparison of LSTM with different layers and hidden units
for filtered aggregated time series of total 470 APs for 5-day FH.

the time series [41]. Therefore, we used time series cross-
validation method called rolling origin evaluation where n−1
chronological windows are used for training and nth window
is used as validation [42]. The collected data set is split
into 5 windows since we are considering our time series
data in daily periods and the hyperparameters which gave
the optimal average result of all windows are selected for
machine learning forecasting models.
We first started with commonly used parameters for time

series forecasting from [41] and figured out the optimal val-
ues for our time series by using time series cross-validation
approach. We used 2-layer LSTM each layer with 32 nodes
(memory cell size) for filtered aggregated time series of
total 470 APs and 64 nodes (memory cell size) for filtered
aggregated time series of High group. Each LSTM layer
is followed by dropout layer with probability 0.5 to prevent
overfitting. Then, one dense layer is added at the end. Among
different optimisers for LSTM model training, Adam opti-
miser is selected in our work since it can converge faster
than other optimisers [14].

E. GRU
GRU is introduced in [43]. Like in LSTM, GRU has two
gates called reset gate and update gate using sigmoid activa-
tion functions. After the gating operations, current memory,
h̃t and final output, ht are calculated since GRU does not
have a separate memory cell, which is in LSTM, to compute
the cell states. Let xt be the input time series for GRU at
time t, the closed form expressions for a GRU unit can be
written as follows [44]:

Reset gate : rt = σ(wrhht−1 + wrxxt + br)

Update gate : zt = σ(wzhht−1 + wzxxt + bz)

Memory : h̃t = tanh(whh(rt � ht−1)+ whxxt + bh)

Final output : ht = (1− zt)� ht−1 + zt � h̃t (6)

where, rt and zt are the gate parameters, σ represents the sig-
moid activation function of the gate, ht−1 is the output series
of previous GRU block and � represents an element-wise
multiplication. wrh,wrx,wzh,wzx,whh,whx are the weight
vectors for corresponding input time series and br,bz,bh
are biases for corresponding activation functions. The gates
and structure of GRU can be seen in Fig. 3. Hyperparameters
of GRU model are same as in the case of LSTM since we
would like to compare their performance on the same ground
for our time series.
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FIGURE 3. A block structure of a GRU network.

F. CNN
A common CNN consists of convolution layers which extract
the high-level features from data by convoluting data with
a filter, pooling layers which reduce the size of convoluted
features to decrease the computational requirements and also
help in extracting dominant features, and fully connected
layers which have connections to all activations in previous
layers to learn non-linearities of the high-level features from
convolution layers. With this structure, a CNN model can
be applied to time series forecasting problems to learn the
filters which are able to recognize specific patterns in the
input data and use them to forecast the future values [22].
Let xt be the input time series at time t, the closed form
expressions for a simple CNN can be written as follows [45]:

Convolution Layer : zt1 = xt � F

Activation Layer : At1 = a(zt1)

Fully Connected Layer : zt2 = wt
ᵀAt1 + b

Output : ot = a(zt2) (7)

where F is the filter in a convolution layer, a() is the acti-
vation function, wt is a weight matrix, b is a bias matrix
and zt1,At1, zt2, ot are the outputs of their respective lay-
ers. First, we used time series cross-validation methods as
mentioned in Section IV-D for choosing optimal hyperpa-
rameters for CNN. We also tried with filter size 30 since it
gave optimal result for network traffic time series forecast-
ing in [31]. However, the validation performance differences
between all combinations of number of layers {1, 2, 3} and
filters {30, 32, 64} are insignificant for our training dataset.
Therefore, we tested all models with testing dataset and
they have insignificant performance differences also for the
testing dataset. Nevertheless, the model with 2-layer 2D-
CNN and 30 filters gave slightly better result than other
combinations. Despite of having insignificant performance
differences between the models for our traffic time series,
the impact of increasing hidden layers is significant in train-
ing time complexity. Additionally, if the number of hidden
layer is increased, the model capacity, which is the ability to
learn more complex features during training phase, becomes
higher and it requires huge amount of training data. Hence,
without a huge training dataset, increasing hidden layers can
overfit the training data. Also, the stride size of pooling layer
should be small since the main purpose of pooling layer is
to reduce the size of data in CNN [45].

TABLE 3. Performance comparison of CNN with different activation functions for
filtered aggregated time series of total 470 APs for 5-day FH.

One important component for CNN is the activation
function used in the network which does the non-linear trans-
formation. Sigmoid function and tanh function, the updated
version of sigmoid function, were widely used during the
early age of CNN. However, they have the major drawback
of losing information due to gradient vanishing problem.
Relu function is trendy and most widely used due to its
advantages such as sparse activation, better gradient propa-
gation, scale-invariant and efficient computation. One main
shortcoming of Relu function is that the derivative will be
always zero when input is negative, hence, the gradient of
loss function during network training becomes zero and it
can affect the final result. One variant of Relu which is called
leaky Relus function can overcome this shortcoming. Beside,
softplus function is also famous for overcoming drawbacks
of Relu function but it has higher computational complex-
ity than Relu function [46]. Therefore, we also tested our
traffic time series with five commonly used activation func-
tions in the model with 2-layer 2D-CNN and 30 filters. As
example results in Table 3 show, Relu activation function is
the best for our traffic time series in terms of performance
and time complexity. Moreover, reference [31] also used the
same activation function so that we adopted 2-layer 2D-CNN
each with 30 filters and ReLu activation followed by max-
pooling layer with unit stride and dense layer at the end
for our traffic time series. The same CNN model is used
for all types of time series in our work, since tuning hyper-
parameters of CNN did not help to improve performance
significantly for our traffic time series.

G. CNN-LSTM AND CNN-GRU
In wireless network, spatial dependencies of neighboring
APs also have influence on forecasting traffic usage of an
AP so that the machine learning models with combination
of CNN and LSTM, which has been successfully used in
activity recognition in videos, are used as spatio-temporal
forecasting [23]. In general, 2D-CNN can extract the fea-
tures of spatial dependencies from the input data and LSTM
can learn the temporal relations of the series. To select the
optimal hyperparameters for CNN-LSTM, we first adopted
the model from [23] for initial hyperparameters and figured
out the optimal hyperparameters as in LSTM. The model
consists of 2-layer 2D-CNN, each with 32 filters and ReLu
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Algorithm 1: Temporal Forecasting With LSTM/ GRU/
CNN
Load Data: Select one FTS with highest AC values
from the groups with highest CC values (or) one FTS whose
properties are similar to a stationary series.
Normalization: xi ← si−μ√

σ 2
, i = 1, 2, ...,N

Divide Data: Dtr = {(x1, y1), (x2, y2), ..., (xb, yb)}
Dte = {(xb+1, yb+1), (xb+2, yb+2), ..., (xm, ym)}

// b = T
batch_size ,m = N

batch_size
Define: Model = Sequential() // for time series
Set: layer.LSTM(nodes, activation, dropout) or GRU() or

CNN()
layer.MaxPooling(stride_size) // only for CNN
layer.LSTM(nodes, activation, dropout) or GRU()
or CNN()
layer.MaxPooling(stride_size) // only for CNN
layer.Dense(1) // for traffic value
Model.compile(optimizer=’adam’,loss=’mae’)

for i = 1 to No. of forecast intervals (FIs) do
Train Model: {z1, z2, ..., zb} ← Model(Dtr)

optimize Lmae = 1
T

∑T
i=1 |yi − zi|

update weights
Predict Model(ith FI): {pT+1, pT+2, ..., pT+H} ←

Model(Dte(ith FI))
Update Training Data: Dtr ← add Dte(ith FI)

into Dtr

Denormalization: fi ← {pi ∗
√
σ 2} + μ,

i = T + 1,T + 2, ...,N
Evaluate: MAE = 1

N−T
∑N

i=T+1 |si − fi|
// also evaluate using 1)RMSE,
2)NRMSE and 3)R2 score

activation. First layer is followed by max-pooling layer with
stride size 2 and second layer is followed by max-pooling
layer with unit stride. Then, the output of 2D-CNN is passed
into LSTM with 64 nodes each followed by dropout layer
with probability 0.8. We also established CNN-GRU as an
alternative to CNN-LSTM for spatio-temporal traffic fore-
casting. The same hyperparameters are used in CNN-GRU
as in CNN-LSTM.
Let’s si denote the ith sample, N is the total number

of samples in a selected time series used for forecast-
ing and T is the number of samples in training dataset.
The overview algorithms of temporal and spatio-temporal
forecasting with machine learning methods can be seen in
Algorithm 1 and Algorithm 2, respectively. Before fore-
casting, auto-correlations (AC), cross-correlations (CC) and
stationarities of aggregated or individual filtered time series
(FTS) as well as spatial correlations of individual FTS of
APs from a focus area are evaluated as temporal and spatial
analysis. According to these analysis results, specific FTS are
selected for further temporal or spatio-temporal forecasting
as in Algorithms 1 and 2.

H. PERFORMANCE METRICS
To evaluate and compare both temporal and spatio-temporal
forecasting methods, we need to introduce the performance
metrics that can measure their accuracy. There are many

Algorithm 2: Spatio-Temporal Forecasting With CNN-
LSTM / CNN-GRU
Load Data: Select FTS of a single AP with highest
spatial correlations, FTS of its neighbor APs (to use as
features in xi of Dtr and Dte).
Normalization: xi ← si−μ√

σ 2
, i = 1, 2, ...,N

// for each FTS
Divide Data: Dtr = {(x1, y1), (x2, y2), ..., (xb, yb)}

Dte = {(xb+1, yb+1), (xb+2, yb+2), ..., (xm, ym)}
// b = T

batch_size ,m = N
batch_size

Define: Model = Sequential() // for time series
Set: layer.CNN(nodes, activation)

layer.MaxPooling(stride_size)
layer.CNN(nodes, activation)
layer.MaxPooling(stride_size)
layer.LSTM(nodes, activation,dropout) or GRU()
layer.LSTM(nodes, activation,dropout) or GRU()
layer.Dense(1) // for traffic value
Model.compile(optimizer=’adam’,loss=’mae’)

for i = 1 to No. of forecast intervals (FIs) do
Train Model: {z1, z2, ..., zb} ← Model(Dtr)

optimize Lmae = 1
T

∑T
i=1 |yi − zi|

update weights
Predict Model(ith FI): {pT+1, pT+2, ..., pT+H} ←

Model(Dte(ith FI))
Update Training Data: Dtr ← add Dte(ith FI)

into Dtr

Denormalization: fi ← {pi ∗
√
σ 2} + μ,

i = T + 1, T + 2, ...,N
Evaluate: MAE = 1

N−T
∑N

i=T+1 |si − fi|
// also evaluate using 1)RMSE,
2)NRMSE and 3)R2 score

different performance metrics to evaluate the time series fore-
casting methods. Among them, the most common and widely
used metric is called root mean square error (RMSE) [42]
which is given as

RMSE =
√√
√√ 1

M

M∑

t=1

(xt − pt)2 (8)

whereM is the total number of samples in a predicted period,
xt is true value and pt is predicted value. However, the
disadvantage of RMSE is that it gives more weight to larger
errors. One way to reduce the effect of a few outliers in
traffic data is to remove the square term and using mean
absolute error (MAE) [42] which is expressed as

MAE = 1

M

M∑

t=1

|xt − pt| (9)

The above metrics are not normalized and the performance
thresholds are varying according to the true values. One
solution to overcome this problem is to normalize RMSE.
Since there is no consistent definition of normalized RMSE
(NRMSE) [47] in the literature, we use difference between
maximum and minimum to normalize RMSE to obtain

VOLUME 1, 2020 785



SONE et al.: WIRELESS TRAFFIC USAGE FORECASTING USING REAL ENTERPRISE NETWORK DATA: ANALYSIS AND METHODS

NRMSE which is defined as

NRMSE = RMSE

max(x)− min(x) (10)

where RMSE is root mean square error defined as in (8),
max(x) is the maximum value and min(x) is the minimum
value of true data series of x. Another way to compare the
performances using normalized standard metric is coefficient
of determination which is also known as R2 score [48]. It
is calculated as follows:

Total Sum : Stot =
M∑

t=1

(xt − x̄)2

Sum of squared residuals : Sres =
M∑

t=1

(xt − pt)2

Coefficient of determination : R2 = 1− Sres
Stot

(11)

where x̄ is the sample mean of the true data. In this paper, we
use all RMSE, MAE, NRMSE and R2 score to compare the
performance of different time series prediction algorithms.

V. TEMPORAL ANALYSIS OF NETWORK DATA
A. DESCRIPTION OF COLLECTED REAL
NETWORK DATA
We collected the real measurement data from a total of 470
APs deployed in the Linnanmaa campus of the University
of Oulu, Finland. The dataset contains measurements of
received traffic data (in bytes), transmitted traffic data (in
bytes) and number of users in the form of time series as
well as name of the locations and ID numbers for a total
470 APs. Each measurement provides a data point at every
10-minute interval between January 5, 2019 and February 8,
2019, hence, each time series has 5040 observations. Among
received traffic data at an AP, which is also known as uplink
data, and transmitted traffic data from an AP, which is called
downlink data, the transmitted traffic data dominates signif-
icantly over the received data at an AP. Due to this reason,
we mostly focus on the transmitted traffic data. We also
focus on the connected number of users to an AP.

B. GENERAL REPETITIVE PATTERNS OF
TRAFFIC USAGE
The collected traffic time series data over the period of one
month shows that heavy traffic usage of several APs can be
seen during office/university hours within weekdays and spo-
radically light traffic usage can be seen in weekends as shown
in Fig. 4. The group classification for weekdays and week-
ends can be seen in Fig. 1. For both weekdays and weekends,
we use the group called “Patternless” whose members
were identified by correlation-based analysis. The detailed
correlation-based analysis of both weekdays and weekends
for different groups is presented in Section V-D and V-E.
For weekdays, APs with random traffic patterns which have
strong AC with previous lags at first and followed by a linear
fall off are classified into Patternless group since these APs

FIGURE 4. Transmitted traffic for Sunday (Jan 13), Monday (Jan 14) and Tuesday
(Jan 15).

have the AC characteristics of a random walk time series with
complete random movement which are unpredictable [12].
APs with significant traffic usage but no significant correla-
tions for their traffic time series which is also a characteristic
of randomness in the time series [12] are also included in
Patternless group.
APs with repetitive daily patterns during weekdays are

classified into High and Low groups depending on their
mean traffic level. We used Otsu’s algorithm which is well
known for being used in image processing [49] and is
also being used for wireless communication data thresh-
olding [50]. In our work, Otsu’s method is used with three
thresholds for automatic mean level thresholding to sepa-
rate APs with seasonality into High and Low groups using
the lowest threshold. Then, we selected APs whose rounded
means are above or equal to the highest threshold as the
representative APs of High group with very high traffic
usage. In general, we would like to perform traffic usage
forecasting at resource controller of the network for proac-
tive resource allocation which is mainly required for APs
with very high traffic usage in an enterprise network. For
weekends, some APs do not have significant traffic usage
over the whole weekends and most APs do not have cor-
relation between Saturday and Sunday. Therefore, APs with
almost no transmission over the weekends are in Almost No
data group. APs with sporadic transmission patterns in which
there is increasing traffic from 8am onward and then decreas-
ing over the evening like in weekdays on some weekend days
while there is no traffic utilization on other weekend days
go to Sporadically Low group. Patternless group is for APs
with random traffic utilization over the weekends (similar to
weekdays Patternless group).

C. TIME SERIES SMOOTHING
As the collected data is huge, we select the same number
of representative APs (as in High group) with highest mean
traffic usages from each classification group of APs. We
consider individual APs and aggregated data (from the rep-
resentative APs) of each group for later correlation-based
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FIGURE 5. Auto-correlation functions of time series data with various filter length
and original data of an APs in Low group of weekdays.

analysis. Median filter with various window lengths is also
used for time series smoothing. The important part of apply-
ing median filter is selecting an appropriate window length.
For example, median filtering with window length 8 means
taking the median value of 1 hour 20 minutes duration at
every time step in the time series. We observed that the
median filter with window length 4 gives high correlation
values for individual APs. For aggregated time series of
each group, median filter with window length 8 gives the
smoothest pattern and high correlation values as in Fig. 6(c).
Example AC results of filtering the aggregated traffic series
of Low group for weekdays with different window length
are shown in Fig. 5 and they show that time series traffic
data are slightly sensitive to time aggregations and filtering.
Moreover, it is also observed that when we aggregated the
time series of all 470 APs to see the behavior of traffic
utilization from network’s perspective, the resultant aggre-
gated time series became less noisy and applying filtering
to it further smoothed the time series data. As our goal for
correlation-based time series analysis is to study correlation
properties of individual APs and APs in classified groups,
hence, results relating to the aggregated time series of all
470 APs are not presented in correlation-based analysis.

D. AUTO-CORRELATION
To analyze the patterns in time series data, it is typical to use
AC and CC metrics to find the similarities, seasonality and
differences of the time series of APs. AC is evaluated to see
how strong the connections between the values of a single
time series at different delays are. It can provide information
about any repeating patterns and predictive power of the time
series [12]. We next present results relating to the AC of the
collected time series data for various APs of different groups.
Let’s denote the two different time series of single APs with
x and y, and the two different aggregated time series with
X and Y , where xt, yt,Xt and Yt represent the traffic value
at time t of each series. The AC function denoted as αxx(k)
used for time series analysis at time lag k is then given

FIGURE 6. Auto-correlation functions of a single AP, and aggregated data of APs
with and without filter in High group of weekdays.

by [51]

αxx(k) = cxx(k)

cxx(0)
(12)

where cxx(k) is the auto-covariance function at time lag k
and is given as

cxx(k) = 1

T

T−k∑

t=1

(xt − x̄)(xt+k − x̄), (13)

cxx(0) is the sample variance and is given as

cxx(0) = 1

T

T∑

t=1

(xt − x̄)2, (14)

and T is the number of time series samples and x̄ is the
sample mean.
For weekdays of a representative AP in High group, the

AC of traffic values at next 10 minutes, 1 hour and 24 hours
are 62%, 31% and 22%, respectively. Our results in Fig. 6(a)
show this AC relationship for an AP belonging to High
group. The AC of a representative AP from Low group also
has the same behavior as in High group but with much lower
AC values of 15%, 7%, and 4% at next 10 minutes, 1 hour,
and 24 hours, respectively. The AC of aggregated traffic
values in High and Low groups show significantly higher
values as the AC even at the next 24 hours are 45% and 17%,
respectively. The AC for aggregated traffic of High group can
be seen in Fig. 6(b). The result tells that aggregated traffic of
APs in High group can be predicted using seasonality/daily
pattern based methods for next day with higher accuracy
than APs in Low group.
The traffic of individual APs in Patternless group exhibit

randomness, hence, some APs show the AC characteristic of
a random walk time series and some APs show no significant
correlations. When the traffic of individual APs in this group
is aggregated, the AC of aggregated time series shows linear
decrease with some fluctuations within 24 hours and then
shows small increase in AC values at 24 and 48 hours with
overall decreasing AC values. This means that the aggregated
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TABLE 4. The cross-correlations between different single APs within and across the groups considering only weekdays.

traffic shows very weak seasonality at 24 hours which gets
even weaker at the 48 hours interval but with overall random
walk time series characteristics. This behavior is significantly
different from the High and Low groups as the seasonality
in these two groups is almost constant over several multiples
of 24 hours (24 hours, 48 hours, etc.) and is high compared
to the Patternless group.
There is very low traffic utilization over the weekend as

compared to the weekdays. As evaluating AC of each indi-
vidual APs for weekends is not insightful, we only present
results relating to aggregated time series for the weekends.
The aggregated data for Patternless group shows linearly
decreasing AC values over the period of 48 hours with the
characteristics of random walk model. The AC does not
increase at 24 and 48 hours indicating that even the weak
seasonality is not present which is as expected. For the spo-
radically low group, the AC shows linear decrease in data
for the 8 hours interval which is followed by small negative
AC values which indicate the behavior that traffic is utilized
during day and then almost no traffic utilization at night. The
sporadically low group also shows very little seasonality at
24 hours interval such as 40% at next 10 minutes, 15% at
next 1 hour and 5% at next 24 hours. For APs with almost
no data transmission during weekends, it is not insightful
to evaluate their correlations since they do not even have
significant transmission.

E. CROSS-CORRELATION
Correlation function helps to describe the evaluation of the
process through the time and it is often called an analysis
in the time domain to detect the non-randomness in data. In
general, CC is evaluated to see how the values of different
time series are connected. In our work, CC is used to measure
similarity between traffic time series of different APs or
different groups of APs as a function of the time lag of
one relative to the other. The CC at time lag k between two
different time series x and y is

ψxy(k) = cxy(k)√
cxx(0)

√
cyy(0)

(15)

where cxy(k) is the cross-covariance between time series x, y
and is given by

cxy(k) = 1

T

T−k∑

t=1

(xt − x̄)(yt+k − ȳ), (16)

√
cxx(0) and

√
cyy(0) are the sample standard deviations of

the series, T is the number of time series samples, and x̄
and ȳ are the sample means.

For weekdays of individual APs, the CC between two dif-
ferent representative APs within the same group and the CC
between a representative AP of each group across the differ-
ent groups can be seen in Table 4. According to the Table 4,
there exists very small negative CC between the data points
of a single AP from each group at 6 hour difference. The
CC between two representative APs within High group is
significant at 1 hour and 24 hours lags. Moreover, High and
Low groups are significantly correlated to each other, telling
that they have the similar characteristics. The rest of the
cases show no significant correlations. For High group, all
of the CCs within and across the groups have consistent CC
behavior such that for 1 hour and 24 hours are positively
correlated and for 6 hour is negatively correlated unlike in
Patternless group with CC values which are mostly close to
zero with random fluctuations. The results from Table 4 are
based on a particular AP that we selected from the different
groups. Unlike in AC, the CC at different time lags are from
different APs so that the results might be biased according
to our choice of APs. We can also find the average of all
four representative APs in a group to reduce the bias.
The average CC for APs within a group can be simply

calculated as

ψ̂xy(k) =
∑M

i=1 ψ
i
xy(k)

M
(17)

where M = (P
2

)
represents the number of 2-combinations

of APs from the considered group with no repetition, P is
the number of APs in one group, and ψ i

xy(k) represents the
CC of the ith combination within the set, x and y are the
different time series from the same group. The average CC
for APs across the groups can be defined similarly as

ψ̂xy(k) =
∑N

i=1 ψ
i
xy(k)

N
, x ∈ G1, y ∈ G2 (18)

where N = P2 represents the number of 2-combinations
between APs from two different groups G1 and G2. The aver-
age CC within the same group and CC across the different
groups can be seen in Table 5. According to the Table 5 for
weekdays, only APs in High group show the significant CC
at 1 hour and 24 hours lags. For all other cases, there is very
little or no correlations. By comparing Table 5 and Table 4,
we see that main difference coming from taking into account
all combinations within/across the groups is that averaging
high and low groups results in much less correlated values
than using only single representative APs.
For the aggregated time series, the CC, ψ̃XY(k), can be

defined similarly as for a single AP. The aggregated time
series of a group can be expressed as X = ∑P

i=1 x
i and
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TABLE 5. The average cross-correlations within and across the groups considering only weekdays.

TABLE 6. The cross-correlations of aggregated series itself and across the groups considering only weekdays.

the CC of aggregated time series across the groups can
be calculated using (15) by only substituting x = X and
y = Y , where X and Y are aggregated time series of dif-
ferent groups. The CC of the aggregated time series within
the same group, which is in fact the AC of the aggregated
time series of a group, and across the groups are shown in
Table 6 for weekdays. Since the CC within the same group
is exactly the same as AC, the behavior of correlations of
each group are same as in Section V-D. The strong correla-
tions between High and Low groups can be seen in Table 6
also. By comparing Table 6 and Table 5, we see that the
correlation between Patternless group and itself has signifi-
cantly increased with linearly decreasing correlations due to
its random walk properties.
Since time series data of each AP does not have any con-

sistent pattern during weekends, the CC between different
APs within the same group, and the CC between represen-
tative APs of each group across the different groups are
not significant. The average CCs of within and across the
groups of weekends are not significant also. Even the CCs
of aggregated time series within and across the groups are
not significant unlike in AC, meaning that one AP can not
be predicted based on another AP data for weekends since
they do not have any correlated information.

F. TIME SERIES STATIONARY TEST
For time series prediction, stationarity of a time series is
important since it can strongly influence the behaviour and
properties of a time series [42]. In general, stationary means
the statistical properties of a time series do not change over
time and there are several different definitions of station-
arity (e.g., strong stationarity and weak stationarity). The
previous literature [11] stated that wireless traffic time series
are not stationary both in general sense and in wide sense as
their distribution characteristics change over time. Therefore,
we tested our own time series data for stationarity using
unit root tests such as Augmented Dickey-Fuller (ADF) and
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests [52]. We
applied both unit root tests on our data in two different
ways. First, the short time periods of a time series is tested
by using overlapping sliding window protocol with specific
time frame. Then, the most frequently occurred outcome

case is taken as the result for short time period of the whole
time series, hence, the collected time series are analyzed
and tested to use for short-term predictions in the future.
According to the results, most of the 10-hour periods of the
time series of all APs in each group are absent of unit roots
for both weekdays and weekends. Second, the complete time
series is tested for unit roots in order to know the behav-
ior of the long-term traffic. Accordingly, most of the APs
in Patternless groups of both weekdays and weekends have
unit roots and all of the APs in other groups are absent of
unit roots in the whole time series.
On the other hand, absence of unit root in a time series

does not grantee for stationarity [53] so we also tested for
stationarity by checking whether mean and variance are con-
stant over time, and covariance between two time instants
depends only on the time difference between the two time
instants and not the actual time at which the covariance
is computed [54]. We tested for individual APs time series,
aggregated time series of each group and an aggregated time
series of all 470 APs with 4 hours, 8 hours, 16 hours and
24 hours time intervals. None of the scenarios above have
shown constant mean and variance. However, means and
variances of an aggregated time series of all 470 APs is
observed to be flatter than other time series.
For covariance test, let Kxx(t1, t2) be the auto-covariance

between windows t1 and t2 of a time series x, and Kxx(τ )
be the auto-covariance of τ th window of a time series x,
where t2 − t1 = τ . We observe that none of the selected
windows of the time series satisfy the definition of weak
stationarity. However, Fig. 7 shows that when the traffic of
more number of APs is aggregated, there is more similarity
between Kxx(t1, t2), Kxx(t3, t4) and Kxx(τ ), where t2 − t1 =
t4 − t3 = τ . This can be observed in Fig. 7(c). In summary,
the raw time series data are not stationary but when they
are aggregated, the results show similarity to the stationary
time series properties.

G. USERS AND TRAFFIC RELATION
Next, we look into the relation between number of connected
users and generated traffic. For weekdays, especially in High
and Low groups, the number of connected users time series
shows similar pattern to traffic time series. However, Fig. 8
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FIGURE 7. Auto-covariance of non-overlapping sliding windows with 24 hours time
interval.

FIGURE 8. Pattern of traffic and number of users in one representative AP of
Patternless group for weekdays.

shows that the patterns are not similar between the connected
user time series and traffic time series for the Patternless
group. The works in [55] and [56] have observed the similar
behavior and the reason for it which can be explained as
follows. In Fig. 8, a small number of users with heavy data
usage contribute the majority of traffic in APs so that data
usage pattern for users are highly uneven. We also found that
mostly the number of users that contribute to the most traffic
is much lower than the total number of users connected to
that AP at a given time.
Moreover, the AC of connected users time series and traf-

fic time series of a single AP are compared. Fig. 9 shows that
the number of connected users at different time lags are more
correlated and hence more predictable than traffic data of the
AP for weekdays. Unlike in traffic time series analysis, even
for weekends, the connected users time series shows some
correlations. AC of users are more widely spread than in
traffic correlations as in Fig. 9. To evaluate the CC between
user and traffic, sample Pearson correlation coefficients are
calculated by setting the number of connected users time
series as the variables which is causing the changes in traf-
fic time series variables. The sample Pearson correlation

FIGURE 9. Auto-correlations of traffic and number of users in one representative AP
of Low group for weekdays.

TABLE 7. The Pearson correlation between traffic and user variables for weekdays.

TABLE 8. The Pearson correlation between traffic and user variables for weekends.

between two different variables is

ruw =
∑T

t=1(ut − ū)(wt − w̄)√∑T
t=1(ut − ū)2

√∑T
t=1(wt − w̄)2

(19)

where T is the number of points in one time series data, ut,wt
are the sample points at time t of different time series and
ū, w̄ are the sample means. Pearson’s correlation coefficients
for each representative AP of each group during weekdays
and during weekends can be seen in Tables 7 and 8, respec-
tively. Despite of having highly uneven data usage pattern
for the connected users, it can be seen that APs in High and
Low groups have high Pearson correlation coefficients dur-
ing weekdays. Moreover, different from CC values between
traffic time series for weekends in Section V-E, it can be
seen that there are higher Pearson correlation coefficients
values for all representative APs of Sporadically Low group
in weekends.

VI. SPATIAL ANALYSIS OF NETWORK DATA
An enterprise network is completely different from the cel-
lular network due to the facts: 1) some APs in an enterprise
network have their own purpose and do not correlate with
other surrounding APs and 2) traffic usage of APs from
Patternless group can not be predicted and considering spa-
tial dependencies of these APs is not useful also. According
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FIGURE 10. Locations of APs at study and conference lounge area.

to above temporal analysis results, proactive resource allo-
cation is essential for APs with high utilization deployed at
the area with high user density during weekdays. Therefore,
we selected the most crowded area of the University, study
and conference lounge, where total 8 APs with high traffic
utilization are located as in Fig. 10. Since we are focus-
ing on the spatial analysis for each AP located at the focus
area of the University considering spatial dependencies of
its neighboring APs, we used only filtered traffic utilization
values of the APs as time series smoothing method without
aggregating any traffic time series of APs.
As in time series temporal analysis, correlation-based

methods are also used for spatial dependencies analysis. We
examined spatial dependencies with two different widely
used metrics: Pearson correlation [14], [15] and Moran’s
I auto-correlation [16]. The spatial correlation between a
target AP, APu, and its neighboring AP, APw, can be
measured by Pearson correlation which is the same as in
equation (19). Moran’s I measures the overall spatial auto-
correlation between APs of a focus area. It is evaluated
to see how APs in the focus area are similar to or differ-
ent from their surrounding APs. In general, let xt(i) denote
the traffic value of an ith AP at time t, the Moran’s I is
given by

I = n
∑n

i=1
∑n

j=1 Wij
×

∑n
i=1

∑n
j=1 Wij(xt(i)− x̄t)(xt(j)− x̄t)
∑n

i=1(xt(i)− x̄t)2
(20)

where W is the binary weight matrix and an individual entry,
Wij, is 1 when ith and jth APs are adjacent and 0 if they
are not, n is the number of APs located within the focus
area and x̄t is the mean traffic value of all associated APs
at time t.
First, we examined the Pearson spatial correlations for

each AP between it and its neighboring APs. From results
for each AP, we selected only one AP with maximum cor-
relations to all of its neighboring APs and with high traffic
utilization as a target AP whose spatial correlations are given
in Table 9. APs are arranged sequentially based on their dis-
tance from a target AP and placed in Table 9 with respect
to their actual locations on map. Despite of having close

TABLE 9. Pearson spatial correlation between a target AP of study and conference
lounge, AP(1), and its neighboring APs.

FIGURE 11. Moran’s I spatial auto-correlation of APs in study and conference
lounge area for 20 days.

distance, AP(1) is not significantly correlated with AP(2).
However, AP(1) and AP(4) are highly correlated. Moreover,
AP(2), AP(5) and AP(8) do not have any significant spa-
tial correlation with other APs while AP(4) is also highly
correlated with AP(6) and AP(7).
In general, Pearson spatial correlation is not sufficient for

spatial analysis so that we also examined Moran’s I spatial
auto-correlation of a focus area. Fig. 11 shows Moran’s I val-
ues of APs in our focus area for 20 days. The mean Moran’s I
value is -0.2683 with negative spatial auto-correlation which
means adjacent APs do not have similar behaviors but some
distant neighboring APs have. The above Pearson spatial
correlations also support the results of Moran’s I being
negative.

VII. NETWORK TIME SERIES DATA FORECASTING
In an enterprise network, the majority of the wireless data
is consumed during weekdays so that proactive resource
allocation and network management are mainly required
for weekdays. Therefore, we next utilize the analyzed time
series of weekdays from the previous sections which are
already classified and smoothed to optimize the performance
of forecasting methods used in our work. By using temporal
forecasting, filtered aggregated time series of total 470 APs
which has the most similar properties of a stationary series is
used to predict the total traffic usage of the network. In addi-
tion, we knew that traffic usage of APs in Patternless group
are not predictable and APs in High and Low groups have
similar traffic usage patterns with only difference in mean
levels as their CC values are high. Moreover, predicting high
traffic usage are typically important for network manage-
ment and proactive resource allocation. Hence, we focused
on aggregated and filtered time series of High group repre-
senting the traffic usage of a group of APs, which also has
the highest AC values, by using temporal forecasting. For a
single AP prediction, we focused on the traffic usage of a
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FIGURE 12. Temporal forecasting with LSTM Algorithm for filtered aggregated time
series of total 470 APs including weekends.

TABLE 10. Comparison for the aggregated time series of total 470 APs for 5-day FH.

target AP with the highest spatial correlations from a specific
area by using both temporal and spatio-temporal forecasting
in this paper.

A. PERFORMANCE COMPARISON FOR TEMPORAL
FORECASTING METHODS
Before presenting the forecasting performances of classi-
fied and analyzed time series, we would like to prove that
weekdays, weekends separation of traffic time series is a
better approach to gain good forecasting results for an enter-
prise network. The temporal forecasting performances of
LSTM with 7-day FH and 1-day FH scenarios applied on
filtered aggregated time series of total 470 APs without sep-
arating weekdays and weekends can be seen in Fig. 12.
We can see that LSTM is predicting reasonably well when
using 7-day FH although the forecasted results for week-
ends are not very good. However, its performance degrades
significantly when using 1-day FH. Moreover, we tried with
Holt-Winters double seasonal forecasting method [57] by
considering both daily seasonality and weekly seasonality.
However, forecasting performance for weekends was also
significantly degraded.
For the filtered aggregated time series of total 470 APs,

LSTM gives the best result in every performance metric for
5-day FH as shown in Table 10, while Holt-Winters has the
best performance for every metric in 1-day FH which can
be seen in Table 11. The forecasting performances of Holt-
Winters and GRU algorithms for filtered aggregated time
series of total 470 APs can be seen in Fig. 13 and Fig. 14,
respectively. According to Table 10, most of the machine
learning methods have better performances than statistical

TABLE 11. Comparison for the aggregated time series of total 470 APs for 1-day FH.

FIGURE 13. Forecasting with Holt-Winters Algorithm for filtered aggregated time
series of total 470 APs.

FIGURE 14. Forecasting with GRU Algorithm for filtered aggregated time series of
total 470 APs.

methods for 5-day FH. However, according to Table 11,
statistical methods give better results for 1-day FH which is
completely opposite of the previous situation. At the same
time, the performance comparisons of filtered aggregated
time series of representative APs of High group for 5-day FH
and 1-day FH scenarios can be seen in Table 12 and Table 13,
respectively. For High group time series in 5-day FH, Holt-
Winters performs the best in RMSE, NRMSE and R2 score
while SARIMA gives the best result of MAE. However, the
MAE difference between Holt-Winters and SARIMA is not
significant so that we can assume Holt-Winters performs the
best for 5-day FH in overall. For 1-day FH, SARIMA gives
the best results in every metric for the filtered aggregated
time series of representative APs of High group.
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TABLE 12. Comparison for the aggregated time series of representative APs of high
group for 5-day FH.

TABLE 13. Comparison for the aggregated time series of representative APs of high
group with for 1-day FH.

FIGURE 15. Forecasting with SARIMA Algorithm for filtered aggregated time series
of representative APs of High group.

Moreover, the forecasting performances of SARIMA and
LSTM methods tested on filtered aggregated time series of
representative APs of High group with both scenarios are
shown in Fig. 15 and Fig. 16, respectively. According to
Table 12, machine learning methods, such as LSTM, GRU
and CNN, have lower performance compared to statistical
methods since they are sensitive to the unusual traffic fluc-
tuations as shown in Fig. 16(a). Holt-Winters and SARIMA
give the good results by forecasting only the main load
of data assuming the unusual fluctuations as outliers as
shown in Fig. 15(a). For 1-day FH, machine learning meth-
ods failed to forecast the fluctuations in daily data pattern
same as before which can be seen in Fig. 16(b) for LSTM.
On the other hand, Holt-Winters started trying to forecast
the unusual fluctuations based on daily updated new training
dataset so that it also has lower performance. Only SARIMA
which considers the unusual fluctuations as outliers even in
the daily updating case has the best performance for fil-
tered aggregated time series of representative APs of High
group as shown in Fig. 15(b). Although LSTM gives better
results than GRU in most of the cases, performance differ-
ence between LSTM and GRU is insignificant while GRU

FIGURE 16. Forecasting with LSTM Algorithm for filtered aggregated time series of
representative APs of High group.

FIGURE 17. The computational time comparison of both statistical and machine
learning methods for different scenarios.

has the advantage of being simpler and faster than LSTM
which can be seen in time complexity results, specifically
in Fig. 17 of Section VII-B. In addition, CNN does not
perform as well as other methods for temporal forecasting
of our time series. However, it has the advantage of being
able to handle spatial dependencies of the time series of APs
which is very useful in spatio-temporal forecasting done in
Section VII-C.
The accuracy differences between two scenarios are also

significant in filtered aggregated time series of total 470 APs.
Every forecasting method gives the better accuracy values
in all metrics for 1-day FH compared to 5-day FH. This
indicates that considering daily traffic changes and updating
training data help to increase the performances of the fore-
casting algorithms, as an example, difference between two
scenarios of Holt-Winters forecasting method can be seen
in Fig. 13. However, for filtered aggregated time series of
representative APs of High group, all of the forecasting algo-
rithms, except SARIMA, get worse performances in 1-day
FH than in 5-day FH due to their sensitivity to outliers in
the daily updated training dataset. Only with SARIMA, the
daily updating training data helps to increase performance
of the forecasting algorithms.
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TABLE 14. Comparison of training time complexity of different models.

B. COMPUTATIONAL COMPLEXITY OF TEMPORAL
FORECASTING METHODS
In addition to temporal forecasting performance of the
models, computational complexity is also considered as an
important factor for model comparison. Computational com-
plexity of a time series forecasting model is mainly based on
the number of input variables and the hyperparameters deter-
mining the complexity of the model [8]. In [24] and [25],
the number of trainable parameters and the Run-time Per-
Epoch (RTPE) based on ten-fold cross-validation reporting
both mean and variance of the performance are presented
as computational complexity of the deep learning models.
However, the nature of the statistical and machine learn-
ing model algorithms are different, such as RTPE can only
be used for machine learning models, and hyperparame-
ters can also vary with different time series even for the
same method. For these reasons, references [7] and [58]
determined computational complexity by presenting running
time of the forecasting models as time complexity (TC) in
seconds.
Therefore, we presented TC of different methods in

two different approaches: a) empirical measurement for a
complete running time of a model including training and
forecasting processes, and b) theoretical expression of train-
ing TC of a model using big-O notation. For empirical TC
measurement, we defined the computational complexity of
our forecasting models as mean running time needed to train
a given model and forecast the desired N FH of 10 itera-
tions, which resemble the range of iteration for averaging
computational TC in [25]. Empirical time complexities of
the models are estimated on the same hardware architec-
ture with following specifications: Intel Core i5-8250U CPU
@1.6 GHz, 8.00 GHz RAM, x64 based processor in the same
load condition without any background processing. The time
complexities of both statistical and machine learning models
are presented in Fig. 17.
The theoretical expressions of training (data fitting) TC

for our models, according to [59]–[63], are presented in
Table 14, where Ntr is the number of training samples, m is
the order of SARIMA such as m = max(p, q+ 1,P,Q+ 1),
Nij is the number of input samples of jth layer, Hj is the
number of hidden units of jth layer, Noj is the number
of output samples of jth layer, Ttr is the number of time
steps to train all of the training samples, L is the num-
ber of layers, input samples size (M × N) of CNN, Fj is
the number of filters with filter size (m × n) of jth layer
and Fp is the filter size of max pooling layer in CNN.
We assumed the theoretical TC of GRU as in Table 14

based on the theoretical expression of LSTM according to
equations (4), (5), (6) and [61]. Moreover, theoretical TC for
CNN model with one input channel [63] is also expressed
in Table 14.
As expected, the results in Fig. 17 show that LSTM has

the highest TC in all scenarios. Holt-Winters and SARIMA
have very low complexity compared to neural network-based
models. For LSTM and GRU, TC is increasing with different
scenarios. This is due to two reasons: 1) the results in Fig. 17
for 1-day FH cases are for the last FI (last day) prediction
which has updated training dataset with higher number of
samples, and 2) the optimal number of hidden units for
LSTM/GRU are higher for filtered aggregated time series
of High group. However, there is not much difference in
TC of CNN for both types of time series since we are
using the same hyperparameters in all cases except having
more samples in training dataset for the last FI of 1-day
FH cases. In Table 14, the theoretical time complexities of
LSTM and GRU are also obviously higher than HW and
SARIMA. Moreover, despite of having similar architectures,
the theoretical TC of LSTM is higher than GRU since GRU
has less gating units and it is simpler than LSTM. In general,
the theoretical TC of CNN mainly depends on the input
samples size and filter size. Hence, with the hyperparameter
values of CNN used in our work, its theoretical TC is lower
than LSTM and GRU.

C. PERFORMANCE COMPARISON FOR
SPATIO-TEMPORAL FORECASTING METHODS
A target AP with high utilization from a focus area has
the significant spatial correlations to its neighboring APs
according to spatial analysis results and is included in High
group so that it has the similar pattern of filtered aggregated
time series of representative APs of High group. Hence,
we only focused on spatio-temporal forecasting with 1-day
FH scenario in which machine learning methods did not
outperform the statistical methods in temporal forecasting.
Before training the model, we needed to prepare the input
data into the grids for 2D-CNN to be able to extract the
spatial dependencies. As in [23], we prepared a data patch
in the form of (2x4) grids for total 8 APs which has the same
placements as their actual locations on map. One data patch
for one time instant is applied for spatial feature extraction,
then, the model is trained and updated in the same way as
in 1-day FH scenario of temporal forecasting.
It can be seen from Table 15 that one of the spatio-

temporal forecasting methods considering spatial dependen-
cies of its neighboring APs, CNN-LSTM, has the highest
performance and the highest TC for forecasting traffic usage
of a target AP. The first 4 methods are only temporal fore-
casting without considering spatial dependencies for filtered
time series of a target APs with no aggregation of different
APs. CNN is excluded in this case due to its low performance
for temporal forecasting. However, when CNN is applied to
extract spatial features of the neighboring APs and combined
with LSTM or GRU, the combined spatio-temporal models
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TABLE 15. Comparison for the target AP of study and conference lounge for
1-day FH.

outperformed all of the temporal forecasting models. On the
other hand, GRU outperformed LSTM in temporal forecast-
ing for 1-day FH scenario as in Table 13 while CNN-LSTM
outperformed CNN-GRU in spatio-temporal forecasting for
1-day FH scenario. However, CNN-GRU has the advan-
tage of lower computation complexity than CNN-LSTM.
The empirical TC of the models for 1-day FH (last day)
scenario are also presented in Table 15.

VIII. CONCLUSION AND FUTURE WORK
The analysis and forecasting results from our work can be
helpful to perform traffic usage forecasting of an individ-
ual AP (or a group of APs) and of the entire network at
a resource controller for network management and proac-
tive resource allocation in an enterprise network. In this
paper, we have used real network traffic data of an enter-
prise wireless network comprising 470 APs. The collected
dataset is separated and classified into different groups. In
temporal analysis, AC tell that only High and Low groups
of weekdays data have long-term predictive pattern and CC
show that only High and Low groups have strong similari-
ties within and across the groups. Our temporal and spatial
analysis tell us the different behaviors and characteristics in
the real traffic utilization of APs from an enterprise wireless
network.
We compare five temporal forecasting methods with

two different scenarios, which are 5-day FH and 1-day
FH. According to the results explained in Section VII-A,
Holt-Winters is the best for smoother series in short-term
forecasting and good for the series with unusual fluctu-
ations in long-term forecasting. SARIMA works well for
spiky series in short-term forecasting due to its insensitiv-
ity of outliers from updated training dataset. LSTM is good
to forecast smoother series which do not have much noise
(fluctuations) for long-term FH since LSTM can keep the
important data and forget the unnecessary data from the long-
term training data [38]. GRU has the better performance than
LSTM in short-term forecasting of spiky series with advan-
tage of having low computational complexity. CNN is better
than SARIMA in long-term forecasting of smoother series.
However, CNN would not be the good option to use for
temporal forecasting wireless traffic time series compared
to the other machine learning methods. The performance
of different time series temporal forecasting methods tested

on the real network data explains that there is no uni-
versally best temporal forecasting method for traffic time
series in an enterprise wireless network. We also exam-
ine two spatio-temporal forecasting methods and compare
with four temporal forecasting methods for a target AP. The
performance of spatio-temporal forecasting methods explains
that considering spatial dependencies of the neighboring APs
helps to improve the forecasting performance of a single AP.
As the future direction of our work, mutual information

(MI) which requires calculation of joint probability density
function (PDF) can be used for time series data temporal
analysis instead of correlation functions. Although correla-
tion functions are commonly used for wireless traffic time
series [11], [13], MI is stated as a better quantity to measure
the dependence between two quantities since the correlation
function measures only linear dependence while MI mea-
sures the general dependence [64]. On the other hand, despite
being able to describe both linear and nonlinear dependence
of the data, MI is difficult to calculate since it is still chal-
lenging to compute joint PDF of the data unless they are
jointly normal and results are prone to under/over-estimation
bias with no clear interpretation [65]. However, utilizing
MI instead of correlation functions would lead to a more
comprehensive analysis.
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