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ABSTRACT The concept of reconfiguring wireless propagation environments using intelligent reflecting
surfaces (IRS)s has recently emerged, where an IRS comprises of a large number of passive reflecting
elements that can smartly reflect the impinging electromagnetic waves for performance enhancement.
Previous works have shown promising gains assuming the availability of perfect channel state information
(CSI) at the base station (BS) and the IRS, which is impractical due to the passive nature of the reflecting
elements. This paper makes one of the preliminary contributions of studying an IRS-assisted multi-user
multiple-input single-output (MISO) communication system under imperfect CSI. Different from the few
recent works that develop least-squares (LS) estimates of the IRS-assisted channel vectors, we exploit
the prior knowledge of the large-scale fading statistics at the BS to derive the Bayesian minimum mean
squared error (MMSE) channel estimates under a protocol in which the IRS applies a set of optimal phase
shifts vectors over multiple channel estimation sub-phases. The resulting mean squared error (MSE) is
both analytically and numerically shown to be lower than that achieved by the LS estimates. Joint designs
for the precoding and power allocation at the BS and reflect beamforming at the IRS are proposed to
maximize the minimum user signal-to-interference-plus-noise ratio (SINR) subject to a transmit power
constraint. Performance evaluation results illustrate the efficiency of the proposed system and study its
susceptibility to channel estimation errors.

INDEX TERMS Alternating optimization, channel estimation, intelligent reflecting surface, minimum
mean squared error, multiple-input single-output system.

I. INTRODUCTION

MASSIVE multiple-inputmultiple-output (MIMO) com-
munication, millimeter wave (mmWave) communi-

cation, and network densification are some of the main
technological advancements that are leading the emergence
of Fifth Generation (5G) mobile communication systems.
However, these technologies face two main practical limita-
tions. First, they consume a lot of power, which is a critical

issue for practical implementation and second, they strug-
gle to provide the users with uninterrupted connectivity and
a guaranteed quality of service (QoS) in harsh propagation
environments, due to the lack of control over the wireless
propagation channel. For example: the network’s total energy
consumption scales linearly as more base stations (BS)s are
added to densify the network, while each active antenna
element in a massive MIMO array is connected to a radio
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frequency (RF) chain comprising of several active compo-
nents, rendering the total cost and energy consumption to be
very high.Moreover, massiveMIMO performance is known to
suffer when the propagation environment exhibits poor scat-
tering conditions [1], whereas, communication at mmWave
frequencies suffers from high path and penetration losses.
These two limitations have resulted in the need for green
and sustainable future cellular networks, where the network
operator has some control over the propagation environment.
An emerging concept that addresses this need is that of

a smart radio environment, where the wireless propagation
environment is turned into an intelligent reconfigurable space
that plays an active role in transferring radio signals from the
transmitter to the receiver [2]–[5]. This concept is enabled by
the use of intelligent reflecting surfaces (IRSs) in the environ-
ment, that shape the impinging electromagnetic (EM) waves
in desired ways in a passive manner, without generating new
radio signals and thereby without incurring any additional
power consumption. Several current research activities focus
on developing different converging solutions to implement
these IRSs, including fabricating new meta-surfaces and
reflect arrays, making them re-configurable, implementing
testbeds and generating experimental results [2], [6]–[12].
Very recently, works approaching this subject from the

wireless communication design and analysis perspective have
appeared, which view the IRS as a planar array of a large
number of passive reflecting elements, each of which can
independently induce a phase shift onto the incident EM
waves and reflect them passively. By adaptively and intel-
ligently adjusting the phase shifts of all the IRS elements,
referred to as passive beamforming or reflect beamform-
ing [13], [14], desired communication objectives can be
realized. In the last year, several joint designs for precoding
at the BS and phase shifts matrix at the IRS have been
proposed to achieve different communication goals, for
example: maximize the system’s energy efficiency subject to
the individual signal-to-interference-plus-noise ratio (SINR)
constraints at the users in [15], maximize the minimum user
rate subject to a transmit power constraint in the asymp-
totic regime in [16], minimize the transmit power at the
BS subject to users’ individual SINR constraints in [14]
and maximize the sum-rate subject to a transmit power con-
straint in [17], [18]. Moreover the use of IRS to maximize
the minimum secrecy rate for physical layer security has
been studied in [19] and to assist in simultaneous wireless
information and power transfer has been studied in [20].
IRSs have also found applications in wide-band orthogonal
frequency division multiplexing (OFDM) systems in [21]
and non-orthogonal multiple-access systems in [22].
A vast majority of the existing works assume the avail-

ability of perfect channel state information (CSI) to design
the precoding vectors at the BS and phase shifts matrix
at the IRS. However, this assumption is highly unlikely to
hold in practice for an IRS-assisted system. This is because
as opposed to conventional multi-antenna and relay-assisted
communication systems, where channels can be estimated

by actively sending, receiving and processing pilot sym-
bols, the IRS has no radio resources of its own to send and
receive pilot symbols and no signal processing capability to
estimate the channels. Therefore, it is critical to re-evaluate
the promising gains shown by IRS-assisted communication
systems under an imperfect CSI model.
Recently [23] and [24] have proposed channel estimation

protocolsforanIRS-assistedsingle-userMISOsystembasedon
theleastsquares(LS)estimationcriteria,wheretheformerpaper
estimates the IRS-assisted channels one-by-onebykeepingone
IRSelement active and the other elements off in each sub-phase
of the channel estimation period, while the latter improves this
protocol by keeping all the IRS elements active and reflecting
throughout the channel estimation phase, under an optimal
solution for the IRS phase shifts matrix. The method in [23],
[24] is extended in [25], [26], where the authors derive LS
estimates for a single-user system assuming that the surface
can be divided into multiple sub-surfaces of adjacent strongly
correlated reflecting elements that apply the same reflection
coefficient.Theworkisalsoextendedin[27], thataimstoreduce
the channel training time by developing a three stage channel
estimation protocol which exploits the strong correlation in the
IRS-assisted channels due to the common BS-to-IRS channel.
However, the protocol assumes an ideal environment where
there is no received noise at the BS in the channel estimation
phase, which is definitely not going to hold under any practical
setting. Channel estimation using compressive sensing and
deep learning techniques have been proposed in [28] for a
single-user system by requiring a few elements of the IRS to
be active. The authors in [29] focus on an IRS-assisted multi-
user MISO system and leverage the sparsity of the cascaded
channel, which consists of the BS-IRS channel and the IRS-
user channel, to formulate the channel estimation problem as
a sparse channel matrix recovery problem using compressive
sensing techniques. The problem is solved using a two-step
procedurebasedmulti-user joint channelestimator.Theauthors
in[30]exploit therank-deficientstructureof themassiveMIMO
channel to formulate and solve the cascaded channel estimation
problem. To induce sparsity, some randomly selected IRS
elements are switched off at each time.
With the exception of [23]–[26] that derive LS channel

estimates for a single-user IRS-assisted system, the proposed
protocols are based on approximate algorithms that do not
yield analytical expressions for the channel estimates which
could facilitate future theoretical analysis of IRS-assisted
systems. Moreover, the contributions of most of these works
are limited to developing channel estimation protocols and
numerically evaluating them in terms of the mean squared
error (MSE). They do not utilize the estimates to develop
joint precoding and reflect beamforming designs for different
downlink communication scenarios of interest, where the
downlink rate loss caused by channel training is an important
issue especially in IRS-assisted systems. The most notable
work that proposes beamforming design under imperfect CSI
is [18], that deals with the sum-rate maximization problem
under a transmit power constraint bymodeling the true channel
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coefficients as realizations from the sample space that is
dominated by the knowledge of the imperfect CSI. However,
the authors do not exploit any practical channel estimation
protocol but rather assume a distribution for the channel
estimation noise in the development of their algorithms.
Motivated by these gaps in research, we study the channel

estimation and beamforming design problem for an IRS-
assisted multi-user MISO communication system. We first
outline the IRS-assisted system model, considering corre-
lated Rayleigh fading channels between the IRS and the
users, which are practically more relevant than the indepen-
dent Rayleigh fading channels considered in most existing
works. We then propose an optimal minimum mean squared
error (MMSE) based channel estimation protocol to estimate
the direct BS-to-users channel vectors as well as the cas-
caded channel vectors consisting of the BS-to-IRS link and
the IRS-to-users links. The proposed protocol divides the
channel estimation phase into multiple sub-phases, where
in each sub-phase an optimal reflect beamforming vector
is applied across the IRS elements. It turns out that the
optimal IRS configuration in the training phase is to choose
the reflect beamforming vectors as columns of the discrete
Fourier transform (DFT) matrix. The proposed DFT-MMSE
estimation protocol utilizes prior information on the large-
scale fading statistics, that change very slowly as compared
to the fast-fading process and can be easily tracked at the
BS [1], [31], [32], to derive closed-form expressions of the
MMSE estimates of the direct channel and the IRS-assisted
channels. A detailed analytical comparison in terms of the
normalized MSE confirms the superiority of the MMSE-
DFT protocol over the LS-DFT protocol in [24] and the
LS-ON/OFF protocol in [23].
To study the performance of the IRS-assisted commu-

nication system, we focus on solving the maximization of
the minimum SINR (max-min SINR) problem by jointly
designing the precoding vectors and power allocation at the
BS and the phase shifts vector at the IRS, subject to a trans-
mit power constraint at the BS and non-convex unit-modulus
constraints on the IRS elements. The objective function is
also non-convex in which the precoding vectors, allocated
powers and phase shifts are coupled and no optimal design is
known. We tackle the problem using alternating optimization
(AO) where the precoding vectors and allocated powers at the
BS are optimized iteratively with the phase shifts at the IRS,
until convergence is achieved. For fixed IRS phase shifts vec-
tor, the optimal solution to the max-min SINR sub-problem
with respect to precoding vectors and allocated powers is
given by the optimal linear precoder (OLP) [32], while for
fixed precoding and power allocation, the solution to max-
min SINR sub-problem with respect to IRS phase shifts
is obtained by applying semi-definite relaxation and solving
the resulting fractional optimization problem optimally using
the generalized Dinkelbach’s algorithm. The proposed AO
algorithm is proved to converge. We then extend the AO
algorithm to the imperfect CSI scenario, where the MMSE
estimates are utilized to design the precoder and the IRS

phase shifts vector. The max-min SINR problem has only
been dealt with in the context of IRS-assisted systems in [16],
where the authors approximate and solve this problem in the
asymptotic regime under perfect CSI using project gradient
ascent. Our work accounts for CSI errors and focuses on
the exact problem. Simulation results are provided towards
the end of the work that show the IRS-assisted system to be
highly efficient but also sensitive to CSI errors as compared
to the conventional MISO communication system.
The paper is organized as follows. The communication

model for an IRS-assisted MISO system is introduced in
Section II. We propose and analyze the MMSE-DFT channel
estimation protocol in Section III. Joint design for precoding
vectors and power allocation at the BS and phase shifts
vector at the IRS are developed to solve the max-min SINR
problem in Section IV. Simulation results are provided in
Section V and conclusions are presented in Section VI.
Notation: The following notation is used throughout this

work. The notation x ∈ [a, b] implies that the scalar x lies
in the closed interval between a and b as a ≤ x ≤ b.
Boldface lower-case and upper-case characters denote vec-
tors and matrices respectively. The notations x ∈ C

N×1 and
X ∈ C

N×N represent a vector of dimension N and a matrix
of dimension N ×N respectively with complex entries. The
superscripts (·)T and (·)H represent the transpose and conju-
gate transpose respectively, E[ · ] represents the expectation
and log(·) represents the logarithm. The operators tr(X) and
||X|| denote the trace and the spectral norm respectively of
the matrix X. Also X−1 denotes the inverse of a non-singular
matrix X. The N × N identity matrix is denoted by IN and
the N × N diagonal matrix of entries {xn} is denoted by
X = diag(x1, x2, . . . , xN). A random vector x ∼ CN (m,�)

is complex Gaussian distributed with mean vector m and
covariance matrix �. The Kronecker product of two matrices
X and Y is denoted as X ⊗ Y.

II. COMMUNICATION MODEL
In this section, we outline the transmission model and chan-
nel model utilized to study the IRS-assisted system. To
improve the clarity of mathematical exposition, the important
symbols used in this section are listed in Table 1.

A. TRANSMISSION MODEL
The proposed IRS-assisted multi-user MISO system is illus-
trated in Fig. 1, which consists of a BS equipped with M
antennas serving K single-antenna users. This communica-
tion is assisted by an IRS, comprising of N nearly passive
reflecting elements which introduce phase shifts onto the
incoming signal waves. The IRS is attached to the facade of
a building located in the line-of-sight (LoS) of the BS. The
reflection configuration of the IRS, that governs the phase
shifts applied by individual IRS elements, is controlled by
a micro-controller, which gets this information from the BS
over a backhaul link.
The BS employs Gaussian codebooks and linear

precoding, where pk, gk ∈ C
M×1 and sk ∈ C are the allocated
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TABLE 1. Important symbols defining the communication model.

power, digital precoding vector and data symbol of user k
respectively. Based on these definitions, the transmit signal
vector x ∈ C

M×1 is given as

x =
K∑

k=1

√
pk
K
gksk. (1)

Given sk’s are independent and identically distributed (i.i.d.)
CN (0, 1) variables, x has to satisfy the average transmit (Tx)
power per user constraint as

E

[
||x||2

]
= 1

K
tr
(
PGHG

)
≤ Pmax, (2)

where Pmax > 0 is the Tx power constraint at the BS, P =
diag(p1, . . . , pK) ∈ C

K×K is the power allocation matrix,

FIGURE 1. IRS-assisted multi-user MISO system. Red dashed lines represent the
uplink channel vectors estimated in the proposed protocol.

G = [g1, . . . , gK] ∈ C
M×K is the precoding matrix, and

s = [s1, . . . , sK]T is the vector of users’ data symbols.
We consider the block-fading model for the channels,

which stay constant over the coherence interval of length
T symbols. The received complex baseband signal yk(t) ∈ C

at user k in time-slot t is given as

yk(t) =
(
hHd,k + hH2,k�

HHH
1

)
x(t) + nk(t),

=
(
hHd,k + vHHH

0,k

)
x(t) + nk(t), t = 1, . . . ,T, (3)

where H1 = [h1,1, . . . ,h1,N] ∈ C
M×N is the LoS channel

between the BS and the IRS, h2,k ∈ C
N×1 is the channel

between the IRS and user k, hd,k ∈ C
M×1 is the direct

channel between the BS and user k and nk(t) ∼ CN (0, σ 2
n ) is

the noise at the user. The IRS is represented by the diagonal
matrix � = diag(α1 exp(jθ1), . . . , αN exp(jθN)), where θn ∈
[0, 2π ] and αn ∈ [0, 1] represent the phase-shift and the
amplitude coefficient for element n respectively. Note that
� is not updated on a symbol-duration level, but rather on
a coherence-time level, i.e., after every T symbols.
The uplink channel through the IRS given by H1�h2,k

can be equivalently expressed as H0,kv, where v =
[α1 exp(jθ1), . . . , αN exp(jθN)]T ∈ C

N×1 is the reflect beam-
forming vector of the IRS and H0,k = H1diag(hT2,k) ∈ C

M×N
is the cascaded channel matrix. The cascaded matrix H0,k has
N column vectors of dimensionM, where each column vector
h0,n,k, n = 1, . . . ,N, can be written as h0,n,k = h1,nh2,k(n),
where h2,k(n) denotes element n of h2,k. This formulation
in (3) enables the separation of the response of the IRS in v
from the cascaded channel outside the IRS control in H0,k,
and will assist us in the design of the channel estimation
protocol.
In terms of CSI acquisition, the IRS-assisted system is dif-

ferent from existing popular communication systems, like the
conventional MISO system and relay-assisted MISO system,
since unlike BS and relay, the IRS has no radio resources
of its own to send pilot symbols to help the BS estimate
H1 nor can it receive and process pilot symbols from the
users to estimate h2,ks. This is one of the biggest challenges
in the practical design of IRS-assisted systems. In terms
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of precoding/beamforming design, the IRS-assisted system
model is much more difficult to analyze than existing mod-
els, due to the constant-modulus constraints on elements
of the reflect beamforming vector v. Although beamforming
optimization under unit-modulus constraints has been studied
in the context of hybrid digital/analog mmWave architec-
tures [33], [34], such designs are mainly restricted to the BS
side, and are not directly applicable to the joint design of
the precoding at the BS and reflect beamforming at the IRS.

B. CHANNEL MODEL
The design of IRS-assisted systems also requires the correct
modeling of h2,k and H1. Existing works (e.g., [13]–[15],
[17]–[20]) utilize the independent Rayleigh and Rician mod-
els to analyze the system performance, which are only
practical if the IRS elements are spaced far enough and the
environment has rich scattering. In most practical settings,
the channels with respect to IRS elements will be spatially
correlated which will impact the performance. In this work,
we will evaluate the performance of the IRS-assisted system
under the correlated Rayleigh channel model for h2,k and
hd,k given as

h2,k = √β2,kR
1/2
IRSk

zk, (4)

hd,k = √βd,kR
1/2
BSk

zd,k, (5)

where RIRSk ∈ C
N×N and RBSk ∈ C

M×M are the correlation
matrices at the IRS and the BS respectively with respect
to (w.r.t.) user k, with tr(RIRSk) = N and tr(RBSk) = M.
Moreover, zk ∼ CN (0, IN) and zd,k ∼ CN (0, IM) are the
fast fading vectors for IRS-to-user k link and BS-to-user k
link respectively, and β2,k and βd,k are the path loss factors
for the IRS-to-user k link and BS-to-user k link respectively.
We will adopt the correlation model developed for arrays of
discrete antennas in [35], [36], assuming that the underlying
IRS technology is a reflective antenna array or a reflect-array.
It is important to note that the conventional statistical corre-
lation models for arrays of discrete antennas are not directly
applicable if the IRS is realized using a reconfigurable meta-
surface. The correct modeling of the spatial correlation for
this implementation still requires significant attention from
researchers who are conversant in both communication and
electromagnetic theory.
The IRS is envisioned to be installed on a high rise build-

ing close to the BS, which will result in a LoS channel
between the BS and the IRS [13], [16]. Since the BS and
the IRS have co-located elements, so the channel matrix H1
is likely to have rank one, i.e., H1 = abH , where a ∈ C

M×1

and b ∈ C
N×1 are the array responses at the BS and IRS

defined in [16]. Under such a setting, the degrees of free-
dom offered by the overall IRS-assisted link H0,k will be
one and the IRS will only yield performance gains when
K = 1 [16]. To benefit from the IRS in a multi-user setting,
we must have rank(H1) ≥ K. One way to introduce this
rank is to have deterministic scattering between the BS and
the IRS or place the IRS close to the BS such that the LoS

channel could be made of high rank. The high-rank LoS
BS-to-IRS channel matrix H1 for a multi-user setting can
be generated as [16]

[H1]m,n = √β1 exp

(
j
2π

λ
(m− 1)dBS sin θLoS1,n sin φLoS1,n

+ (n− 1)dIRS sin θLoS2,m sin φLoS2,m

)
,

(6)

m = 1, . . . ,M, n = 1, . . . ,N, where λ is the carrier wave-
length, θLoS1,n and φLoS1,n represent the elevation and azimuth
LoS angles of departure (AoD) respectively at the BS w.r.t
IRS element n, and θLoS2,m and φLoS2,m represent the elevation
and azimuth LoS angles of arrival (AoA) respectively at the
IRS. Moreover β1 is the path loss factor for the BS-to-IRS
link, dBS is the inter-antenna separation at the BS and dIRS
is the inter-element separation at the IRS.

III. CHANNEL ESTIMATION PROTOCOL
Channel estimation is necessary to compute the precoding
vectors at the BS and the reflect beamforming vector v at the
IRS. The real difficulty is in the estimation of H1 and h2,ks as
the IRS has no radio resources and signal processing capabil-
ity to send pilot symbols to the BS to enable the estimation of
H1 or to receive pilot symbols from users and estimate h2,k.
Recently a few papers have proposed LS estimates for the
IRS-assisted channels assuming a single-user IRS-assisted
MISO system in [23] and [24]. More specifically, [23] pro-
poses an ON/OFF channel estimation protocol, where first
the direct channel is estimated by keeping all IRS elements
OFF and then the IRS-assisted channels h0,n,k, n = 1, . . . ,N,
are estimated one-by-one by switching one element of the
IRS ON at a time. In [24], LS channel estimates are derived
keeping all the IRS elements active throughout the chan-
nel estimation phase with an optimal IRS phase shift matrix
given as the DFT matrix. The idea was extended in [25] to an
OFDM system and in [26] to an IRS-assisted system with
discrete phase shifts while focusing on a single-user sce-
nario. In parallel to these works, a few channel estimation
algorithms exploiting the sparsity of the cascaded channel
matrix H0,k have also been recently proposed as discussed
in the introduction.
In this section, we will outline our channel estimation

protocol where the BS computes the MMSE estimates of
the IRS-assisted channel vectors based on the received pilot
sequences from users over multiple sub-phases, where in
each sub-phase the IRS applies an optimal reflect beamform-
ing vector v. MMSE estimator significantly outperforms the
LS estimator since it is based on the Bayesian estimation
technique which achieves the minimum MSE between the
true and estimated channel by exploiting prior knowledge of
the channel’s large scale fading statistics [37]. These statis-
tics stay constant over several coherence intervals and can be
accurately learned and tracked at the BS as discussed later
in this section. After deriving the MMSE estimates, we will
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TABLE 2. Important symbols defining the channel estimation protocol.

analytically compare the normalized MSE of both the LS
and MMSE estimates. Simulation results are also provided
to compare the MSE and bit error rate (BER) performance
of the proposed protocol with existing methods. The impor-
tant symbols used in this section are summarized in Table 2
for readers’ convenience.

A. PROPOSED MMSE-DFT CHANNEL ESTIMATION
PROTOCOL
Given the passive nature of the IRS, we exploit channel reci-
procity under the TDD protocol in estimating the downlink

channels using the received uplink pilot signals from the
users. For this purpose, we divide the channel coherence
period of τ seconds (sec) into an uplink training phase of τC
sec and a downlink transmission phase of τD sec. Throughout
the uplink training phase, the users transmit mutually orthog-
onal pilot symbols. Since the IRS has no radio resources to
send or receive and process pilot symbols, the BS has to
estimate all the channels. To this end, note that H1 and
h2,k have been cascaded as H0,k ∈ C

M×N in (3), where
H0,k = [h0,1,k, . . . ,h0,N,K] is a matrix of N column vectors.
Since the estimation of h2,k separately is extremely difficult
due to the passive nature of IRS elements, we will focus on
the MMSE estimation of the cascaded IRS-assisted chan-
nels h0,n,k, n = 1, . . . ,N and the direct channel hd,k for all
k = 1, . . . ,K users at the BS.

In the considered channel estimation protocol, the total
channel estimation period of τC sec is divided into S sub-
phases,1 each of length τS = τC

S sec. The IRS applies the
reflect beamforming vector vs = [vs,1, . . . , vs,N]T ∈ C

N×1

throughout sub-phase s, s = 1, . . . , S, where vs,n =
αs,n exp(jθs,n). In each sub-phase, the users transmit TS = τS

τ̃
pilot symbols, where τ̃ is the duration of each symbol. Users
transmit S copies of orthogonal pilot sequences across the S
sub-phases, where the pilot sequence of user k is denoted as
xp,k = [xp,k,1, . . . , xp,k,TS ]T ∈ C

TS×1, such that xHp,kxp,l = 0,
for k �= l, k, l = 1, . . . ,K and xHp,kxp,k = PCTSτ̃ = PCτS
Joules, where PC is the transmit power of user. The received
training signal, Ytr

s ∈ C
M×TS in sub-phase s is given as

Ytr
s =

K∑

k=1

(
hd,k + H0,kvs

)
xHp,k + Ntr

s , s = 1, . . . , S, (7)

where Ntr
s ∈ C

M×TS is the matrix of noise vectors at the BS,
with each column distributed independently as CN (0, σ 2IM).
To get the observation vector with respect to each user,
the BS correlates the received training signal with the pilot
sequence of user k to obtain the observation vector, rtrs,k ∈
C
M×1, for user k in sub-phase s as

rtrs,k = (hd,k + H0,kvs
)+ ntrs,k

PCτS
, k = 1, . . . ,K, (8)

where ntrs,k = Ntr
s xp,k. Let rtrk = [rtr

T

1,k, . . . , r
trT
S,k]

T ∈
C
MS×1, h̄k = [hTd,k,h

T
0,1,K, . . . ,hT0,N,k]

T ∈ C
M(N+1)×1 and

ntrk = [ntr
T

1,k, . . . ,n
trT
S,k]

T ∈ C
MS×1. Collecting the observation

vectors in (8) across S training sub-phases, we obtain

rtrk = (Vtr ⊗ IM
)
h̄k + ntrk

PCτS
, k = 1, . . . ,K, (9)

where,

Vtr =
⎡

⎢⎣
1 vT1
...

...

1 vTS

⎤

⎥⎦ ∈ C
S×N+1. (10)

1. We will see later that S ≥ N+1 to obtain the LS and MMSE estimates
under the proposed protocol.
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The received observation vector in (9) is processed at the
BS with the left pseudo-inverse of V̄tr = Vtr ⊗ IM ∈
CMS×M(N+1), provided that S ≥ N + 1,2 as

r̃trk =
(
V̄trH V̄tr

)−1
V̄trHrtrk . (11)

Performing the pseudo-inverse operation in (11) will result in

r̃trk = h̄k︸︷︷︸
True channels

+
(
V̄trH V̄tr

)−1
V̄trH ntrk

PCτS︸ ︷︷ ︸
Noise vector ñtrk ∈ C

M(N+1)×1

k = 1, . . . ,K,

(12)

which is the function of the true channel vectors hd,k and
h0,n,k, n = 1, . . . ,N collected in h̄k and the noise ñtrk in
the received observation vector. The remaining task before
proceeding to the derivation of the MMSE estimates is to
design Vtr. The appropriate design criteria is to minimize
the variances of the elements of the noise vector ñtrk , while
keeping the noise across the estimation of different channel
vectors uncorrelated. The covariance matrix of the noise ñtrk
denoted as Cñtrk

= E[ñtrk ñ
trH
k ] ∈ C

M(N+1)×M(N+1) is given as

Cñtrk
=
(
V̄trH V̄tr

)−1
V̄trH

E

[
ntrk n

trH
k

]

(PCτS)
2

V̄tr
(
V̄trH V̄tr

)−1
, (13)

= σ 2PCτS

(PCτS)
2

(
V̄trH V̄tr

)−1 = σ 2

PCτS

(
VtrHVtr

)−1 ⊗ IM.

(14)

To ensure uncorrelated noise across the estimated chan-
nels, Cñtrk

should be a scaled identity matrix and therefore
Vtr should have orthogonal columns. Furthermore, we will
aim to achieve the same noise variance in the estimation
of all channels, which will require equally scaled orthogo-
nal columns of Vtr, i.e., (VtrHVtr)−1 = ζ IN+1. Minimizing
the variance of the noise is then equivalent to minimizing
ζ with the constraints that 1) Vtr has the structure in (10),
2) vs,n = αs,n exp(jθs,n), 3) αs,n ∈ [0, 1], 4) θs,n ∈ [0, 2π ],
and 5) (VtrHVtr)−1 = ζ IN+1. To this end, note that the last
constraint implies ζ = N+1

tr(VtrHVtr)
= N+1∑N+1

n=1
∑S

s=1 |[Vtr]s,n|2 . The
maximum value of |[Vtr]s,n| under the third constraint is 1.
Therefore a lower bound on ζ can be obtained as

ζ ≥ 1

S
. (15)

Under the outlined constraints on Vtr, a possible optimal
design that attains the lower bound in (15) is the N + 1
leading columns of a S× S DFT matrix given as [24]

[
Vtr]

s,n = exp

(
−j2π(s− 1)(n− 1)

S

)
, (16)

s = 1, . . . , S, n = 1, . . . ,N + 1. Under the DFT design, we
have (VtrHVtr)−1 = 1

S IN+1 and therefore ζ = 1
S . This choice

2. The full column rank condition, i.e., S ≥ N+ 1, is needed for the left
pseudo-inverse of V̄tr to exist.

for Vtr indeed attains the lower bound in (15) while meeting
all constraints.
We now derive the MMSE estimates based on the received

observation vector r̃trk in (12), which can be simplified under
the DFT design in (16) as

r̃trk = h̄k + 1

S
V̄trH ntrk

PCτS
. (17)

We can write (17) as r̃trk = [r̃tr
T

1,kr̃
trT
2,k, . . . , r̃

trT
N+1,k]

T , where
r̃tri,k ∈ C

M×1 is given as r̃trk ([M(i − 1) + 1 : Mi]), i =
1, . . . ,N + 1. To derive the MMSE-DFT estimate of hd,k,
we exploit the relationship between r̃tr1,k and hd,k given as

r̃tr1,k = hd,k + 1

S

(
vtr1 ⊗ IM

)H ntrk
PCτS

, k = 1, . . . ,K. (18)

where vtr1 is the first S × 1 column of Vtr. Based on the
observation vector in (18), the BS can compute the estimate
of hd,k and the result is stated in the following lemma.
Lemma 1: The MMSE estimate ĥd,k of hd,k is given as

ĥd,k = βd,kRBSkQd,kr̃tr1,k, (19)

which is distributed as ĥd,k ∼ CN (0, �d,k), where

�d,k = β2
d,kRBSkQd,kRBSk . (20)

and Qd,k = (βd,kRBSk + σ 2

SPCτS
IM)−1.

Proof: The proof is provided in Appendix A.
Invoking the orthogonality property of the MMSE esti-

mate [38], we can decompose the channel hd,k as hd,k =
ĥd,k + h̃d,k, where h̃d,k ∼ CN (0, �̃d,k) is the uncorre-
lated estimation error (which is also statistically independent
of ĥd,k due to the joint Gaussianity of both vectors) and
�̃d,k = βd,kRBSk − �d,k.
We now find the MMSE-DFT estimate of h0,n,k, n =

1, . . . ,N using the received observation vector r̃trn+1,k, which
is given using (17) as

r̃trn+1,k = h0,n,k + 1

S

(
vtrn+1 ⊗ IM

)H ntrk
PCτS

, (21)

where vtrn+1 is the (n+ 1)th column vector of Vtr. Based on
this observation vector, the BS can compute the estimate of
h0,n,k and the result is stated in the following lemma.
Lemma 2: The MMSE estimate ĥ0,n,k of h0,n,k is given as

ĥ0,n,k = rn,kβ2,kh1,nhH1,nQn,kr̃trn+1,k, (22)

for n = 1, . . . ,N, k = 1, . . . ,K, which is distributed as
ĥ0,n,k ∼ CN (0, �n,k), where

�n,k = rn,kr
∗
n,kβ

2
2,kh1,nhH1,nQn,kh1,nhH1,n, (23)

and

Qn,k =
(
rn,kβ2,kh1,nhH1,n + σ 2

SPCτS
IM

)−1

. (24)

Also rn,k is the (n, n)th entry of the matrix RIRSk and h1,n

is the nth column of H1.
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Proof: The proof is provided in Appendix B.
Invoking the orthogonality property of the MMSE esti-

mate, we can decompose h0,n,k as h0,n,k = ĥ0,n,k + h̃0,n,k,
where h̃0,n,k ∼ CN (0, �̃n,k) is the uncorrelated estima-
tion error, where �̃n,k = β2,krn,kh1,nhH1,n − �n,k. Under the
proposed design in (16), the MMSE estimates do not depend
on the cross-correlation between IRS elements, so knowledge
of RIRS is not required at the BS.3

To calculate the MMSE estimates, the BS will require
knowledge of the correlation matrices RBSk , k = 1, . . . ,K,
and the LoS BS-to-IRS channel vectors h1,n, n = 1, . . . ,N.
The LoS channel vectors are deterministic which depend
only on the LoS angles between the BS and IRS. These
angles need to be calculated only once at the BS using
knowledge of the IRS location, which is fixed. The correla-
tion matrices vary very slowly as compared to the fast fading
process and stay constant over many coherence intervals. As
discussed in several works, they can be calculated based on
knowledge of only the users’ AoAs (which depend on their
locations) and angular spread in the environment, both of
which can be accurately learned and tracked at the BS [1],
[31].4 In fact, second-order channel statistics are generally
assumed to be perfectly known at the BS in massive MIMO
literature [39].
Unlike LS estimates, the MMSE estimates depend on the

distribution of H1, h2,k and hd,k. The derived results can
be easily generalized to other channel fading models. For
example, the MMSE estimates under independent Rayleigh
fading h2,ks and hd,ks can be obtained by setting RBS = IM .
The estimates when H1 is not fixed but rather follows
a fading model can be similarly developed. After obtain-
ing the MMSE estimates, the BS uses them to design the
precoder G∗, power allocation matrix P∗ as well as the reflect
beamforming vector v∗ in (3) based on the performance cri-
teria of interest. The BS then provides information on the
required IRS phase shifts vector v∗ for downlink transmis-
sion to the IRS micro-controller. Wireless backhaul links in
mmWave and THz bands are suitable candidates for the BS
to communicate with the IRS controller under strict latency
requirements [2].

B. NMSE COMPARISON WITH LEAST SQUARES
ESTIMATION
The LS estimates are obtained by correlating the received
training signal Ytr

s with the pilot sequence of user k as
shown in (8) and applying the pseudo-inverse of V̄tr on the
resulting observation vector as done in (11) [24]. Under the

3. The diagonal elements of the correlation matrix of a correlated
Rayleigh channel vector equal unity so rn,k = 1, ∀n.

4. Even for nomadic users, the AoA and angular spread which determine
the channel correlation evolve in time much slower than the actual channel
fading process, and can be considered “locally constant”. Algorithms for
covariance tracking are well known and widely investigated, and could be
employed here to track the slow variations of the users’ channel covariance
matrices [31]. However, the covariance tracking aspect of the system is out
of the scope of this work.

DFT design for Vtr in (16), the LS estimates are given as

ĥLSd,k = hd,k + 1

S

(
vtr1 ⊗ IM

)H ntrk
PCτS

, (25)

ĥLS0,n,k = h0,n,k + 1

S

(
vtrn+1 ⊗ IM

)H ntrk
PCτS

, (26)

where vtrn+1 is the (n+ 1)th column of Vtr.
We develop analytical expressions for the normalized MSE

(NMSE) in the LS and MMSE estimates of direct and IRS-
assisted channel vectors. The NMSE is defined as

NMSE
(
ĥd,k

)
=

tr

(
E

[(
ĥd,k − hd,k

)(
ĥd,k − hd,k

)H])

tr
(
E

[
hd,khHd,k

]) ,

(27)

NMSE
(
ĥ0,n,k

)
=

tr

(
E

[(
ĥ0,n,k−h0,n,k

)(
ĥ0,n,k−h0,n,k

)H])

tr
(
E

[
h0,n,khH0,n,k

]) .

(28)

To enable an analytical comparison, we set RBSk = IM ,
k = 1, . . . ,K.5 Noting that tr(E[hd,khHd,k]) = βd,ktr(RBSk) =
Mβd,k, the NMSE in the LS-DFT estimate of hd,k is given as

NMSE
(
ĥLSd,k

)
=

tr
((
vtr1 ⊗ IM

)H
E

[
ntrk n

trH
k

](
vtr1 ⊗ IM

))

Mβd,kS2(PCτS)
2

,

= 1

Mβd,k

σ 2PCτS

S2(PCτS)
2
tr
((
vtr1 ⊗ IM

)H(vtr1 ⊗ IM
))

(29)

= σ 2

βd,kSPCτS
. (30)

The result follows from using E[ntrk n
trH
k ] = σ 2PCτSIMS as

proved in (65) and that tr((vtr1 ⊗IM)H(vtr1 ⊗IM)) = tr(vtr
H

1 vtr1 ⊗
IM) = MS. The expression reveals that the NMSE in the LS
estimate increases linearly as σ 2 grows large or βd,k, PC,
τS grow small. This result can also be derived directly as
the trace of the first M × M block diagonal matrix of Cñtrk
in (14).
The NMSE in the MMSE-DFT estimate of hd,k in

Lemma 1 can be computed as NMSE(ĥd,k) = 1
Mβd,k

tr(�̃d,k)

resulting in

NMSE
(
ĥd,k

)
= 1

Mβd,k

(
βd,ktr(IM) − β2

d,ktr

(
βd,kIM

+ σ 2

SPCτS
IM

)−1)
, (31)

5. This assumption does not affect the NMSE in LS estimates. Under the
MMSE-DFT protocol, the NMSE in the estimation of IRS-assisted channels
is independent of the structure of the correlation matrix RIRSk as discussed
in Lemma 2. Only the NMSE in the MMSE estimation of direct channel
is affected by RBSk and this effect will be studied through simulations.
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= 1

Mβd,k

Mβd,k
σ 2

SPCτS(
βd,k + σ 2

SPCτS

) =
σ 2

SPCτS

βd,k + σ 2

SPCτS

.

(32)

We observe that the NMSE in the MMSE estimate
approaches 1 as σ 2 grows large or βd,k, PC, τS grow small.
The NMSE value of 1 signifies that the error in the channel
estimate has the same power as the true channel itself. Any
beamforming transmission under estimates having NMSE
values of 1 or beyond will correspond to isotropic transmis-
sion, i.e., as if the BS and IRS beamform with no CSI at
all [23]. However, as compared to the LS estimate, the NMSE
in MMSE-DFT estimate will increase to 1 much slowly (i.e.,
when the noise becomes very high or βd,k becomes very
small) as can be seen by comparing (30) and (32). This
implies that MMSE-DFT estimates will be more accurate
even at low values of training signal-to-noise ratio (SNR).
Finally denoting c = σ 2

SPCτS
we have

NMSE
(
ĥLSd,k

)
− NMSE

(
ĥd,k

)
= c

βd,k
− c

βd,k + c

= 1

βd,k

c2
(
βd,k + c

) ≥ 0,

(33)

since c and βd,k are non-negative. Therefore, the MMSE-
DFT estimate of the direct channel will always outperform
the LS-DFT estimate for any value of σ 2, Pc, S, τS and βd,k.

Next we compute the NMSE in the LS-DFT esti-
mates of h0,n,k in a similar manner as (30). Noting that
tr(E[h0,n,khH0,n,k]) = Mβ1β2,k = Mβk, we obtain

NMSE
(
ĥLS0,n,k

)
=

tr
((
vtrn+1 ⊗ IM

)H
E

[
ntrk n

trH
k

](
vtrn+1 ⊗ IM

))

MβkS2(PCτS)
2

(34)

= 1

Mβk

σ 2PCτS

S2(PCτS)
2
tr
(
vtr

H

n+1v
tr
n+1 ⊗ IM

)

= 1

βk

σ 2

SPCτS
. (35)

The NMSE in the LS estimation of each h0,n,k is the same
as the NMSE in the LS estimation of the direct channel
in (30).
The NMSE in the MMSE-DFT estimates of h0,n,k in

Lemma 2 can be computed as 1
Mβk

tr(�̃n,k) resulting in

NMSE
(
ĥ0,n,k

)

= 1

Mβk

(
β2,ktr

(
h1,nhH1,n

)
− β2

2,ktr

(
h1,nhH1,n

(
β2,kh1,nhH1,n + σ 2

SPCτS
IM

)−1

h1,nhH1,n

))
,

= 1

Mβk

⎛

⎜⎝Mβk − β2
kM

2

σ 2

SPCτS

+ β3
kM

3

(
σ 2

SPCτS

)2 +M σ 2

SPCτS
βk

⎞

⎟⎠, (36)

= 1

Mβk

⎛

⎝ Mβk
σ 2

SPCτS

Mβk + σ 2

SPCτS

⎞

⎠ =
σ 2

SPCτS

Mβk + σ 2

SPCτS

. (37)

where (36) follows from applying the Sherman–Morrison
formula on the inverse term and noting that tr(h1,nhH1,n) =
β1M under the definitions in Section II-B.
Denoting c = σ 2

SPCτS
and using straightforward calculation

we can show that

NMSE
(
ĥLS0,n,k

)
− NMSE

(
ĥ0,n,k

)
= c

βk
− c

Mβk + c

= c2 + cβk(M − 1)

βk(c+Mβk)
≥ 0,

(38)

since c ≥ 0, βk ≥ 0 and M ≥ 1. Therefore the NMSE
in the MMSE-DFT estimate of h0,n,k will always be lower
than the NMSE in the LS-DFT estimate for any value of
noise, power, sub-phase duration and path loss factor. Also
NMSE(ĥ0,n,k) approaches 1 as c grows large or βk grows
small.

C. PERFORMANCE EVALUATION OF THE PROPOSED
PROTOCOL
The NMSE in the LS-DFT and the MMSE-DFT estimates of
the direct and IRS-assisted channels are compared in Fig. 2
versus the noise variance σ 2. Fig. 2(a) shows the Monte-
Carlo simulated NMSE(ĥd,k) as well as the theoretical (Th.)
expressions in (30) and (32) for LS-DFT and MMSE-DFT
estimates respectively. Fig. 2(b) shows the simulated quantity
1
N

∑N
n=1 NMSE(ĥ0,n,k) as well as the theoretical expressions

in (35) and (37) for LS-DFT and MMSE-DFT estimates
respectively. The parameter values are set as M = 4, N = 10,
PC = 1, TS = K = 1, τ̃ = 50μs, τS = TSτ̃ and S = N + 1.
The simulated NMSE matches the theoretical expressions
perfectly. Moreover, the MMSE-DFT estimates achieve a
lower NMSE than the LS-DFT estimates especially for mod-
erate to high values of σ 2 (i.e., low SNR regime). We observe
that the NMSE in the MMSE-DFT and LS-DFT estimates
of hd,k becomes the same for very low values of noise
while the NMSE in the MMSE-DFT estimates of h0,n,ks is
always lower as compared to that in LS-DFT estimates. The
NMSE in the MMSE estimates approaches 1 for both the
direct channel and the IRS-assisted channels as the noise
variance increases, while the NMSE in the LS estimates
grows even beyond 1. However, as we discussed earlier,
the NMSE value of 1 implies that the estimation error has
the same power as the actual channel being estimated. For
NMSE values of 1 and beyond under any estimation protocol,
the performance of the IRS-assisted system will correspond
to isotropic transmission, i.e., transmission without any CSI,
which actually provides the worst bound on the performance
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FIGURE 2. NMSE comparison between MMSE-DFT and LS-DFT estimates against σ2 for M = 4, N = 10 under independent Rayleigh fading and correlated (Corr.) Rayleigh
channels.

under estimation errors [23]. However, the NMSE under LS-
DFT protocol grows to one much quicker than MMSE-DFT
protocol, making LS-DFT more prone to estimation errors.
We also plot the NMSE for the correlated (Corr.) scenario

where [RBSk ]m,m′ = η|m−m′| and [RIRSk ]n,n′ = η|n−n′| and
η is set as 0.95. The NMSE in the LS-DFT estimates is
unaffected and the NMSE in the MMSE-DFT estimates of
h0,n,ks is also unaffected by the structure of correlation. The
NMSE in the MMSE-DFT estimate of the direct channel
hd,k actually reduces with the introduction of correlation.
We also compare the results against the LS-ON/OFF pro-

tocol in [23], which sets S = N + 1 and uses Vtr =[
1 0TN
1N IN

]
∈ C

N+1×N+1. The drawbacks of this approach is

that the cascaded channel is only estimated one-by-one such
that the noise variance in each element of the received obser-
vation vector given in (14) is σ 2

PCτS
instead of σ 2

SPCτS
, and the

error in the estimation of hd,k is propagated to the estimation
of h0,n,ks. The NMSE in the LS estimates of hd,k and h0,n,k

under ON/OFF protocol can be straightforwardly calculated
to be σ 2

βd,kPCτS
and 2σ 2

βd,kPCτS
respectively. Compared to (30)

and (35), we see a factor of S and 2S increase respectively
in the NMSE in ĥLSd,k and ĥLS0,n,k under ON/OFF protocol,
which can also be observed by comparing the LS-DFT and
LS-ON/OFF curves in Fig. 2.
Furthermore, the MMSE estimates under ON/OFF proto-

col can be derived in a similar manner as done in this work
(details have been skipped for brevity in writing). The NMSE

in the MMSE-ON/OFF estimates can be derived as
σ2
PcτS

βd,k+ σ2
PcτS

for hd,k and 1⎛

⎜⎝1+
Mβk

(
1+ σ2

PcτS

)

(
σ2
PcτS

)2
+ σ2
PcτS

(βd,k+1)

⎞

⎟⎠

for h0,n,ks. Compared

to (32) and (37), we can see that the MMSE-ON/OFF pro-
tocol causes a factor of S and S(1 + βd,k) increase in the
NMSE in ĥd,k and ĥ0,n,k respectively in the low noise regime.
In the high noise regime, the NMSE in MMSE-ON/OFF
estimates and MMSE-DFT estimates becomes close. These
results can also be observed by comparing the MMSE-DFT
and MMSE-ON/OFF curves in Fig. 2.
In Fig. 3(a), we compare the NMSE in the estimation of

hd,k against βd,k and in Fig. 3(b), we compare the NMSE
in the estimation of h0,n,k (we plot 1

N

∑N
n=1 NMSE(ĥ0,n,k))

against βk under both MMSE-DFT and LS-DFT protocols.
The value for σ 2 is set as 5 × 10−4J in these results. The
match between the theoretical expressions of the NMSE
derived in this section and the simulated values is per-
fect. The NMSE in MMSE-DFT estimates is always lower
than that in LS-DFT estimates. We also show the effect of
increasing the number of sub-phases S beyond N + 1. As
evident in (30) and (35) there is a factor of S decrease
in the NMSE in LS estimates over the entire range of
βd,k and βk. The NMSE in MMSE estimates decreases by
a factor of less than S in the low path loss (high SNR)
regime while it approaches 1 in the high path loss regime
irrespective of the value of S. However, the MMSE-DFT
estimates are seen to outperform LS-DFT estimates for the
considered values of S, with the performance gap becoming
small as S increases. It is important to note that although
we see a significant NMSE improvement by increasing the
number of sub-phases S, there will also be a rate loss
due to channel training as S increases. This is because
the time left for downlink transmission reduces with S
under the relation τD = τ − SτS. Therefore, the system
will suffer a rate loss factor of 1 − SτS

τ
during downlink

transmission, rendering the IRS-assisted system performance
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FIGURE 3. NMSE comparison between MMSE-DFT and LS-DFT estimates against path loss.

sensitive to the value of S and the quality of estimates.
This trade-off will be studied in the simulation results in
Section V.
To gain further insights into how these NMSE values are

related to the system performance, we numerically study
the bit error rate (BER) achieved by an IRS-assisted system
with M = 4 antennas and N = 10 reflecting elements serv-
ing a single-antenna user. For a single-user, it is well-known
that the optimal precoding strategy at the BS is maximum
ratio transmission (MRT), i.e., the precoding vector is set

as gk = ĥk
||ĥk|| , where ĥk = ĥd,k + Ĥ0,kv. The estimates

ĥd,k and ĥ0,n,k, n = 1, . . . ,N, are given by (19) and (22)
respectively under MMSE-DFT protocol, while under the
LS-DFT protocol, they are given by (25) and (26) respec-
tively. A close to optimal design for v that maximizes the
received signal power at the user is proposed in [23] as
v = exp(j∠(ĤH

0,kĥd,k)).
Under these designs for precoding at the BS and reflect

beamforming at the IRS, we plot in Fig. 4 the BER achieved
by the IRS-assisted system under binary phase-shift keying
(BPSK) signaling, against the SNR defined as the ratio of
the transmit power to the noise variance. The BER curves
under perfect CSI and imperfect CSI with MMSE-DFT esti-
mation as well as LS-DFT estimation are shown. We also
plot the BER achieved by a conventional MISO system hav-
ing 4 antennas at the BS and no IRS. As expected, the BER
decreases with increasing SNR while it approaches the max-
imum value of 0.5 for very low values of SNR. We observe
that the IRS-assisted system achieves a significantly better
BER performance as compared to the conventional system
without IRS, with the BER for the former decreasing to
10−6 at SNR level of near 0 dB, similar to the observation
made in [5]. In fact, the SNR gap between the IRS-assisted

FIGURE 4. BER performance of an IRS-assisted (IRS-ass.) MISO system under the
proposed channel estimation protocol.

system and the conventional system to achieve the BER
rate of 10−6 is around 17 dB, which shows that the IRS is
capable of improving the reliability of the underlying com-
munication channel by manipulating the propagation of radio
waves in the environment. This superior BER performance is
explained in [5] using the analytical result that the received
signal power at the user scales quadratically as N2 with
the number of IRS elements N, whereas in the conven-
tional MISO system it scales linearly with the number of
BS antennas M. As a result the IRS provides approxi-
mately a factor of N2 improvement in the received signal
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power,6 because of which even when the SNR is relatively
low, the BER achieved by the IRS-assisted system is quite
low.
Under channel estimation errors in an IRS-assisted system,

the BER performance of the MMSE-DFT protocol is sig-
nificantly better than the LS-DFT protocol, with an SNR
gap of almost 8 dB to achieve the BER of 10−6. This is in
accordance with the insights drawn earlier from the NMSE
analysis where we showed the MMSE-DFT estimates to
always achieve a lower NMSE. Further, we note that the
BER under LS-DFT protocol approaches the maximum value
at SNR level of −15 dB whereas under MMSE-DFT proto-
col, it will reach the maximum BER slower (in fact it does
not reach the maximum value for the SNR range considered
in the figure). This can also be confirmed from Fig. 2(a)
and 2(b), where we see that the NMSE values in MMSE-
DFT estimates approach 1 much slower (at higher values of
noise) than the LS-DFT estimates. Finally, we see that the
BER decreases with increasing number of sub-phases S for
both protocols. This is due to the decrease in NMSE with
increasing S as observed earlier in Fig. 3(a) and Fig. 3(b).
It is important to remark here that both ON/OFF and

DFT protocols require long channel training times when N
is very large since the number of sub-phases S has to be
greater than N + 1. As an extension, the scenario where
IRS elements that experience strong correlation and there-
fore similar channels are grouped together can be studied.
The number of sub-phases needed can then be reduced to the
number of groups instead of the number of IRS elements.
However this will also reduce the degrees of freedom offered
by the IRS for performance improvement since elements in
the same group will apply the same reflection coefficient.
We stress that MMSE estimates yield convenient analyti-
cal expressions unlike the algorithms in [29], [30] and can
be extended under future channel estimation protocols that
reduce training overhead.

IV. JOINT ACTIVE AND PASSIVE BEAMFORMING
DESIGN
In this section, we design the precoding vectors and power
allocation at the BS and the phase shifts vector at the IRS.
The amplitude reflection coefficients αn, ∀n are assumed to
be unity as done in almost all existing works, motivated by
the recent advances in the design and development of lossless
metasurfaces [40], [41]. Similar to channel estimation, we
assume that all the design computations take place at the BS
since the IRS has no signal processing capability. The BS
then informs the IRS controller about the required optimal
reflect beamforming vector v∗ through a backhaul link, and
the controller triggers the elements of the IRS to apply the
required phase-shifts.

6. This improvement is compromised to some extent by the double path
loss effect in the IRS-assisted link, which suffers from the product of the
path loss in BS-to-IRS and IRS-to-user links. In generating this simulation
result, we set the path loss factor for each link as 0.25 and still observe the
positive effect of N2 gain to dominate over the negative effect of double
path loss in the IRS-assisted link resulting in significant BER improvement.

The performance metric employed is the max-min rate,
which provides a good balance between system throughput
and user fairness. The rate of user k is defined as Rk =
log2(1 + γk), where γk is the SINR of user k given as

γk =
pk
K |hHk gk|2∑

i �=k
pi
K |hHk gi|2+σ 2

n
, (39)

where hk = hd,k + H0,kv is the overall channel from BS to
user k as defined in (3). Since logarithm is a monotonically
increasing function so max-min rate problem is equivalent
to solving the max-min SINR problem.

A. PROBLEM FORMULATION
The BS utilizes the information it has on the direct and the
IRS-assisted channels to find the optimal precoding vectors
G∗ = [g1, . . . , gK], allocated powers p∗ = [p1, . . . , pK]T ,
and the IRS reflect beamforming vector v∗ as the solution
of the following max-min SINR problem.

(P1) max
p,G,v

min
k

γk (40a)

subject to
1

K
1TKp ≤ Pmax, (40b)

||gk|| = 1,∀k, (40c)

|vn| = 1, n = 1, . . . ,N, (40d)

where vn = exp(jθn) is the nth element of v. Note that the
constraints in (40b) and (40c) meet the constraint in (2).
We would like to highlight that with the exception of [16],
the max-min SINR problem has not been dealt with in the
context of IRS-assisted systems. In contrast to [16] which
focuses on the problem formulation and solution under per-
fect CSI in the asymptotic regime where M, N and K grow
infinitely large, we focus on the exact problem in (P1) and
deal with both perfect and imperfect CSI.
Due to the non-convex nature of the problem in which the

precoding vectors, allocated powers and phase shifts are cou-
pled, we will adopt an AO technique, where the precoding
vectors and power allocation at the BS are optimized itera-
tively with the phase shifts at the IRS, until convergence is
achieved. For fixed v, we have the following sub-problem

(P2) max
p,G

min
k

γk (41a)

subject to
1

K
1TKp ≤ Pmax, (41b)

||gk|| = 1,∀k. (41c)

It was shown in [16] that the optimal linear precoder (OLP)
that solves (P2) optimally with respect to G and p takes the
form

g∗
k =

(∑
i �=k

q∗
i
K hihHi + σ 2

n IM
)−1

hk

||
(∑

i �=k
q∗
i
K hihHi + σ 2

n IM
)−1

hk||
, (42)
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where q∗
ks are obtained as the unique positive solution of

the following fixed-point equations

q∗
k = τ ∗

1
Kh

H
k

(∑
i �=k

q∗
i
K hihHi + σ 2

n IM
)−1

hk
, (43)

with τ ∗ = KPmax
∑K

k=1(
1
K h

H
k (
∑

i �=k
q∗i
K hihHi +σ 2

n IM)−1hk)−1
. The optimal

powers p∗
ks are obtained as

p∗ = (IK − τ ∗DF)−1τ ∗σ 2
nD1K, (44)

where D = diag( 1
1
K |hH1 g∗

1|2 , . . . , 1
1
K |hHKg∗

K |2 ) and [F]k,i =
1
K |hHk g∗

i |2, if k �= i and 0 otherwise.
On the other hand, for fixed gks and pks, (P1) is reduced to

(P3) max
v

min
k

γk (45a)

subject to |vn| = 1, n = 1, . . . ,N. (45b)

We will propose a solution for (P3) in the next subsection.
The proposed AO algorithm will then solve problem (P1)
by solving problems (P2) and (P3) alternatively. The exten-
sion to imperfect CSI is summarized in Section IV-C. The
AO technique has been utilized in [13] to solve the transmit
power minimization problem and in [15] for energy effi-
ciency maximization problem. However, the sub-problems
constituting the AO algorithm in this work are different.

B. PROBLEM SOLUTION
The optimal solution for the precoding vectors and allocated
powers in (P2) are already provided in (42) and (44) respec-
tively. Here, we develop a solution for the design of reflect
beamforming vector in (P3), which is a non-convex problem.
However, we observe that the numerator and denominator
of γk in (39) which is the objective function in (45a) can be
transformed into quadratic forms. To see this note that the
terms |hHk gi|2 in (39) can be written as

|hHk gi|2 = vHak,iaHk,iv + vHak,ib∗
k,i + bk,iaHk,iv + bk,ib∗

k,i,

(46)

where ak,i = HH
0,kgi and bk,i = hHd,kgi. By introducing an

auxiliary variable t, (P3) can be reformulated in terms of
quadratic forms as

(P4) max
v̄

min
k

pk
K

(
v̄HRk,kv̄ + |bk,k|2

)
∑K

i �=k
pi
K

(
v̄HRk,iv̄ + |bk,i|2

)+ σ 2
n

(47a)

subject to |v̄n|2 = 1, n = 1, . . . ,N + 1, (47b)

where Rk,i =
[
ak,iaHk,i ak,ib

∗
k,i

bk,iaHk,i 0

]
and v̄ =

[
v
t

]
.

However the problem (P4) is NP-hard in general [42].
Note that v̄HRk,iv̄ = tr(Rk,iv̄v̄H). Therefore, we can refor-
mulate (P4) by defining V̄ = v̄v̄H , which needs to satisfy
V̄ � 0 and rank(V̄) = 1. Since the rank-one constraint is
non-convex, we apply semi-definite relaxation to relax this

constraint by letting V̄ be a positive semi-definite matrix of
arbitrary rank. The semi-definite relaxed problem is given as

(P5) max
V̄

min
k

pk
K

(
tr
(
Rk,kV̄

)+ |bk,k|2
)

∑K
i �=k

pi
K

(
trRk,iV̄ + |bk,i|2

)+ σ 2
n

(48a)

subject to V̄ � 0, (48b)

V̄n,n = 1, n = 1, . . . ,N + 1. (48c)

Problem (P5) is efficiently solved using fractional program-
ming, which provides tools to maximize the minimum of
ratios in which the numerator is a concave function, the
denominator is a convex function, and the constraint set is
convex [43], [44]. An efficient method to do so is the general-
ized Dinkelbach’s algorithm, outlined in Appendix A of [44],
which is guaranteed to converge to the global solution of
the max-min fractional problem with limited complexity. The
objective function in (48a) considers a set of ratios of two
functions, where we denote the numerator by nk(V̄) and the
denominator by dk(V̄), k = 1, . . . ,K. By exploiting the fact
that tr(AB) = vec(AT)Tvec(B), we write nk(V̄) and dk(V̄)

as

nk
(
V̄
) = pk

K

(
vec
(
RT
k,k

)T
vec
(
V̄
)+ |bk,k|2

)
, (49)

dk
(
V̄
) =

K∑

i �=k

pi
K

(
vec
(
RT
k,i

)T
vec
(
V̄
)+ |bk,i|2

)
+ σ 2

n . (50)

It can be seen from (49) and (50) that nk(V̄) and dk(V̄) are
linear functions of V̄. Problem (P5) therefore considers a set
of ratios { nk(V̄)

dk(V̄)
}Kk=1, where each ratio has an affine numera-

tor nk(V̄), affine denominator dk(V̄) and convex constraints
and can therefore be solved optimally using the general-
ized Dinkelbach’s algorithm [44]. Once the optimal V̄∗ is
obtained, the corresponding vector v̄ that solves (P4) needs
to be extracted. If the resulting matrix V̄∗ turns out to have
rank-one, the optimal solution v̄∗ can be obtained as

v̄∗ = umax
(
V̄∗), (51)

where umax(A) is the eigenvector corresponding to maximum
eigenvalue of A. If the rank turns out to be greater than
one, then Gaussian randomization can be applied to find
v̄∗ by using the eigenvalue decomposition V̄∗ = U�UH

and computing v̄l = U�1/2rl, where rl ∼ CN (0, IN+1) for
l = 1, . . . ,L. The solution v̄∗ can then be found as

l∗ = max
l

min
k

pk
K

(
v̄Hl Rk,kv̄l + |bk,k|2

)
∑K

i �=k
pi
K

(
v̄Hl Rk,iv̄l + |bk,i|2

)+ σ 2
n

, (52)

v̄∗ = v̄l∗ . (53)

With a sufficiently large number of randomizations L, we
can guarantee a very accurate approximation of the optimal
objective value of (P4) [14], [42]. In our extensive simu-
lations, we have always observed the optimal solution of
Problem (P5) to have rank-one and therefore v̄∗ in (51) is
indeed optimal for (P4). The same observation was reported
in some other works including [45], [46].
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Algorithm 1 Alternating Optimization Algorithm

1: Input: ε > 0, ε1 > 0, σ 2
n , hd,k and h0,n,k ∀n ∀k.

2: Set the iteration number r = 1 and initialize the phase
shifts vector vr.

3: repeat
4: procedure SOLUTION TO (P2) FOR GIVEN

vr(Output: gr
∗
k , p

r∗
k , k = 1, . . . ,K)

5: Compute gr
∗
k and pr

∗
k , ∀k, as the solution to (42)

and (44).
6: procedure SOLUTION TO (P3) FOR GIVEN gr

∗
k ,

pr
∗
k (Output: v

(r+1)∗ )
7: Initialize λ = 0;
8: repeat
9: V̄∗ = max

V̄∈CN+1×N+1
{ min
1≤k≤K[nk(V̄) − λdk(V̄)]},

where nk(V̄) and dk(V̄) are given by (49) and (50)
respectively, subject to V̄ � 0 and V̄n,n = 1, n =
1, . . . ,N + 1;

10: F = min1≤k≤K{nk(V̄∗) − λdk(V̄∗)};
11: λ = min1≤k≤K{nk(V̄∗)/dk(V̄∗)};
12: until F < ε1.
13: v̄∗ computed using (51) or (53);

14: v(r+1)∗ = exp

(
j∠
([

v̄∗
v̄∗
N+1

]

(1:N)

))
;

15: r = r + 1;
16: until the fractional increase in min

k
γk is below ε.

Finally, the solution to (P3) can be recovered by account-
ing for the constraint that the last element of v̄∗ (which is t)
should equal one and the first N elements of v̄∗ need to sat-
isfy the constraint (45b). The resulting solution as outlined
in [13], [14] is v∗ = exp(j∠([ v̄∗

v̄∗
N+1

](1:N))), where [x](1:N)

denotes the vector of first N elements of x and v̄∗
N+1 is the

last entry of v̄∗. The Dinkelbach’s procedure to solve (P3)
as well as the overall AO algorithm to solve (P1) is outlined
in Algorithm 1.
The convergence of Algorithm 1 is ensured by the noting

that the objective value of (P1), i.e., min
k

pk
K |hHk gk|2∑

i �=k
pi
K |hHk gi|2+σ 2

n
,

is upper-bounded due to the constraint set in (P1) and is
non-decreasing over the iterations by applying Algorithm 1.
To see this, denote the objective value of (P1) based on
a solution (G∗,p∗, v∗) as f (G∗,p∗, v∗). Let (Gr∗ ,pr

∗
, vr

∗
)

and (Gr+1∗
,pr+1∗

, vr+1∗
) be the solutions to (P2) in the

rth and (r + 1)th iterations, respectively in step 5 of the
algorithm. It then follows that f (Gr+1∗

,pr+1∗
, vr+1∗

) ≥
f (Gr∗ ,pr

∗
, vr+1∗

) ≥ f (Gr∗ ,pr
∗
, vr

∗
), where first inequal-

ity holds since for given vr+1∗
in step 5 of Algorithm 1,

Gr+1∗
, pr+1∗

is the optimal solution to problem (P2),
and second inequality holds because vr+1∗

increases
the objective value of (P3) for given Gr∗ , pr

∗
in

step 14. However, no global optimality claim can be
made since (P1) is not jointly convex with respect to G,
P and v.

C. IMPERFECT CSI SCENARIO
When only imperfect CSI is available at the BS, the BS can
implement the AO algorithm by using max

p,G,v
min
k

γ̂k as the

objective function in (P1), where

γ̂k =
pk
K |ĥHk gk|2∑

i �=k
pi
K |ĥHk gi|2 + σ 2

n

, (54)

where ĥk = ĥd,k+Ĥ0,kv with ĥd,k and Ĥ0,k being the MMSE
estimates defined in (19) and (22) respectively. The BS can
not compute the true SINR values in (39) since it only has the
estimates of hk’s available. As a consequence the solutions
for (P2) and (P3) will be optimal in terms of the estimated
minimum SINR in (54) instead of the true minimum SINR
in (39). Finding the optimal solution to (P1) under imperfect
CSI using the true minimum SINR as an objective function is
extremely difficult with no optimal solution in the literature.
Therefore, replacing hd,ks and H0,ks with their estimates is
a reasonable approach to tackle this problem and is similar
to what is done in [23], [47] that deal with the design of
IRS-assisted system under CSI errors.7

Solving (P2) with max min γ̂k as the objective function
for fixed v will result in

g∗
k =

(∑
i �=k

q̂∗i
K ĥiĥHi +σ 2

n IM

)−1

ĥk

||
(∑

i �=k
q̂∗i
K ĥiĥHi +σ 2

n IM

)−1

ĥk||
, (55)

where q̂∗
ks are obtained as the unique positive solu-

tion to q̂∗
k = τ̂∗

1
K ĥ

H
k (
∑

i �=k
q̂∗i
K ĥiĥHi +σ 2

n IM)−1ĥk
with τ̂ ∗ =

KPmax
∑K

k=1(
1
K ĥ

H
k (
∑

i �=k
q̂∗i
K ĥiĥHi +σ 2

n IM)−1ĥk)−1
. The allocated powers p∗

k

are given as

p∗ = [p∗
1, . . . , p

∗
K

]T =
(
IK − τ̂ ∗D̂F̂

)−1
τ̂ ∗σ 2

n D̂1K, (56)

where D̂ = diag( 1
1
K |ĥH1 g∗

1|2 , . . . , 1
1
K |ĥHKg∗

K |2 ) and [F̂]k,i =
1
K |ĥHk g∗

i |2, if k �= i and 0 otherwise.
The optimization with respect to v in (P3) using

max min γ̂k as the objective function can be performed by
expressing the numerator and denominator of (54) in terms
of quadratic forms, with the difference being that hd,ks and
H0,ks will be replaced with their estimates in the defini-
tions of ak,i and bk,i in (47a). The resulting problem can be
relaxed using semi-definite relaxation and then solved using
the Dinkelbach’s algorithm.

7. As an extension, maximizing the expected minimum SINR where the
expectation is performed with respect to the distribution of the sample space,
which is dominated by knowledge of channel estimates and distribution of
channel estimation error, can be considered as an objective function to make
the algorithm robust to CSI errors. This will yield a stochastic optimization
problem with two sub-problems both of which are non-convex. Moreover,
the objective function will contain the expectation operator, and the prob-
ability density function of the sample space is usually very complicated
with no closed-form expression as well. Therefore, designing an algorithm
to solve such a stochastic problem is a really challenging task and has been
left for future work.

674 VOLUME 1, 2020



TABLE 3. Simulation parameters.

The overall AO algorithm will be the same as Algorithm 1,
with the difference being that the input channel vectors hd,k
and h0,n,ks in step 1 will be replaced by their estimates
ĥd,k and ĥ0,n,ks in (19) and (22) respectively and the stop-
ping criteria in step 16 will be applied on min

k
γ̂k where

γ̂k is defined in (54). The algorithm will therefore alternate
between the computation of g∗

ks and p∗
ks in (55) and (56)

respectively for fixed v and the computation of v∗ for fixed
gks and pks, until convergence is reached, which happens
when the fractional increase in min

k
γ̂k is below a threshold

value. We would stress that the performance of the proposed
design is shown in terms of the true minimum SINR in the
simulation results and not the estimated minimum SINR.

V. SIMULATION RESULTS
We utilize the parameter values described in Table 3 in
generating the simulation results. The path loss parame-
ters are computed at 2.5 GHz operating frequency for the
3GPP Urban Micro (UMi) scenario from TR36.814 (detailed
[16, Sec. V]). We use the LoS version to generate path loss
for H1 and the non-LOS (NLOS) version to generate path
losses for h2,k and hd,k. Moreover, 5 dBi antennas are con-
sidered at the BS and IRS. Note that the IRS is deployed
much higher than the BS to avoid the penetration losses
and blockages caused by ground structures like buildings.
Therefore, we assume a penetration loss of 15 dB in each
BS-to-user link, whereas we assume negligible penetration
loss in the IRS-to-user links.
We first focus on the single-user IRS-assisted system

shown in Fig. 5 and plot in Fig. 6 the rate achieved by
the user for varying values of du. Note that for a single-
user system, the SINR in (39) is simplified to SNR given as

FIGURE 5. IRS-assisted single-user MISO system. The BS and IRS are marked with
their (x, y) coordinates.

FIGURE 6. Performance of an IRS-assisted single-user MISO system under perfect
(per.) and imperfect (imper.) CSI for M = 4, N = 40 and S = N + 1.

γk = pk|hHk gk|2 and the user rate is related to the SNR as
Rk = (1− τC

τ
) log2(1+γk), where the factor (1− τC

τ
) accounts

for the rate loss due to channel training. The results are plot-
ted under the optimized precoding vector g∗

k and phase-shifts
vector v∗.8 For the imperfect CSI case, we plot the results
under both LS-DFT and MMSE-DFT estimates derived in
Section III. We observe that in an IRS-assisted system, the
user farther away from the BS can still be closer to the IRS
and receive stronger reflected signals from it resulting in an
improvement in the performance as observed for du > 30.
Consequently, the IRS-assisted system is able to provide a
higher QoS to a larger region. For example, under perfect
CSI it will cover 120m with a rate at least 2.3 bps/Hz,
whereas the system without the IRS can cover about 95m to
achieve the same rate. Moreover, the users placed close to
the IRS, e.g., located in 42 < du < 70 range will see gains
ranging from 2 to 4 bps/Hz. Although the rate decreases
due to increasing signal attenuation when du > 50 but it is
still better than what would have been achieved without the

8. Note that for a single-user setting, the solution in step 5 of Algorithm
1 for g∗

k can be simplified to MRT precoding and the solution to (P3) can be
given as v∗ = exp(j∠(HH

0,khd,k)). Details have been omitted from this work
since similar results have appeared in [13]. Moreover, for a single-user, we
let H1 be a rank-one LoS channel as generated in [16].

VOLUME 1, 2020 675



NADEEM et al.: INTELLIGENT REFLECTING SURFACE-ASSISTED MULTI-USER MISO COMMUNICATION

IRS unless the user is so far away that the path loss becomes
dominant over the gain provided by the IRS.
Doubling N at the IRS to 80, the achieved rate scales by

about 2 bps/Hz for users close to the IRS, which implies
that the SNR scales by around 6 dB. This corresponds to
the scaling of SNR in the order of N2, corresponding to an
array gain of N and the reflect beamforming gain of N as
analytically proved in [14]. However, the gain is negligible
for 10 < du < 25 because the BS-to-user direct channel is
much stronger than the channel through the IRS. Moreover,
higher coverage is possible with large number of reflecting
elements as shown through the higher values of achieved
rate for N = 80 under perfect CSI.

The curves under imperfect CSI show that the IRS-assisted
system is more sensitive to channel estimation errors than the
conventional MISO (without IRS) system. This is because
the IRS-assisted system has to estimate N+ 1 = 41 channel
vectors whereas the direct system only needs to estimate one
channel vector. Moreover, the error becomes more significant
as the user moves away from the IRS because the channel
vectors become weaker and more difficult to estimate. The
IRS-assisted system designed using MMSE-DFT estimates
outperforms the system that relies on LS-DFT estimates
especially for higher channel estimation noise, as discussed
in Fig. 2 as well.
Next we study the minimum user rate performance of a

multi-user system under imperfect CSI with the BS placed
at (0, 0), IRS placed at (0, 100) and users distributed
uniformly in the square (x, y) ∈ [−30, 30] × [70, 130].
Accounting for the rate loss due to channel training, the net
achievable rate of user k is given as

Rk =
(

1 − τC

τ

)
log2(1 + γk)

=
(

1 − SτS
τ

)
log2(1 + γk), (57)

where γk is defined in (39). Note that the total channel
estimation τC sec is related to the number of estimation
sub-phases S and the duration of each sub-phase τS sec as
τC = SτS. In Section III we saw that increasing S improves
the quality of channel estimates by reducing the NMSE by
a factor of approximately S. Moreover, under the proposed
channel estimation protocol the minimum number of required
sub-phases S is N+ 1, to ensure that the left pseudo-inverse
of V̄tr in (11) exists. At the same time, the total channel
estimation time τC increases linearly with S, which reduces
the time left for downlink transmission causing the rate loss
factor of (1 − SτS

τ
) that we see in (57). Therefore, S has the

positive effect of improving the channel estimates quality and
the adverse impact of increasing the total channel estimation
time and should be selected carefully to strike a balance. The
next figure will study this trade-off.
In Fig. 7 we plot the net achievable minimum rate against

S for an IRS-assisted system serving 4 users with M = 8
antennas at the BS, while optimizing the precoding vec-
tors, power allocation and IRS phase shifts vector using

FIGURE 7. Number of sub-phases S that maximizes the minimum user rate
achieved by the IRS-assisted multi-user MISO system under MMSE-DFT protocol.

Algorithm 1 with the MMSE channel estimates as the input.
For the two considered IRS-assisted MISO systems, we find
that S ≈ N + 1 is the optimal number of sub-phases that
maximizes the achieved minimum user rate, i.e., S ≈ 9 is
optimal for the system with N = 8 reflecting elements, while
S ≈ 17 is optimal for the system with N = 16 reflecting
elements. For S < N + 1, the NMSE in the channel esti-
mates becomes very high since the left pseudo-inverse of V̄tr

utilized in (11) becomes singular as V̄tr does not have full
column rank.9 As a result the rate obtained for S < N + 1
will be lower than that for S = N + 1, since the computed
pseudo-inverse becomes inaccurate.
Increasing S above N+1 has the positive effect of reduced

channel estimation error as shown earlier in Fig. 3(a) and
Fig. 3(b). However, increasing S also increases the channel
training time causing a rate loss factor of (1− SτS

τ
) since the

total time left for downlink transmission decreases as τ−SτS.
The decrease in downlink transmission time is linear with
increasing S as can be seen from (57), whereas the impact
of improvement in estimation quality is only logarithmic
with increasing S since the SINR γk appears inside the log
function in (57). The negative effect of decrease in down-
link transmission time dominates over the positive effect of
improvement in channel estimates quality as S increases.
Therefore, S ≈ N + 1 is the optimal number of sub-phases
for both considered settings.
Fig. 8 plots the minimum user rate against N for varying

number of antennas at the BS in an IRS-assisted system,
where the precoding vectors, allocated powers and IRS
phases are optimized under Algorithm 1 for both perfect
CSI and imperfect CSI cases (where for the latter we use

9. In fact, we are unable to plot the performance for S < N because the
pseudo-inverse of V̄tr needed to implement (11) does not exist.
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FIGURE 8. Performance of an IRS-assisted multi-user system against N under
perfect (per.) and imperfect (imper.) CSI with σ2 = 10−20J.

the channel estimates as input in step 1 of the algorithm).
The number of sub-phases S = N+1 under the MMSE-DFT
channel estimation protocol. The performance is compared
to that of a conventional large MISO system having 20
antennas at the BS and no IRS. We show that by appro-
priately selecting the number of reflecting elements N at
the IRS, the IRS-assisted system can perform as well as
the large MISO system with a reduced number of anten-
nas at the BS. Under perfect CSI, the IRS-assisted MISO
system with 28 passive reflecting elements at the IRS and
only 12 active antennas at the BS can achieve the same
performance as the considered large MISO system of 20
antennas. The same performance can also be achieved with
M = 15 antennas using N = 19 reflecting elements at the
IRS. We also notice that under channel estimation errors,
larger array sizes are needed at the IRS to achieve the same
performance as the conventional large MISO system. For
example, under imperfect CSI an IRS-assisted system with
M = 12 antennas at the BS can achieve nearly the same
performance using N = 48 instead of N = 28 reflecting ele-
ments. Moreover, as the value of N increases the performance
gap between perfect and imperfect CSI curves for the IRS-
assisted system significantly increases since the minimum
number of required sub-phases S increases linearly in N.
This causes a rate loss due to the time spent in channel
training. Therefore, accurate and quick CSI acquisition is
a critical issue in IRS-assisted communication systems that
needs to be addressed to reap the full potential of this tech-
nology. However, IRS-assisted communication also has the
potential to be an energy-efficient alternative to technologies
like massive MISO and network densification by reducing
the number of active antennas and RF chains needed at
the BS.

FIGURE 9. Convergence behaviour of the proposed AO algorithm.

To test the performance of the proposed Algorithm 1, we
consider the benchmark Centre of Means (CoM) scheme
from [16], where the IRS phase-shifts are set as the mean
of the LoS angles of all users.10 The proposed algorithm is
shown to outperform the benchmark scheme considerably.
Finally, we show the convergence behaviour of

Algorithm 1 in Fig. 9 by setting M = 8, N = 16, K = 4
and ε = ε1 = 10−4. The phase shifts are initialized using
the CoM scheme. The minimum user rate, computed using
the SINR defined in (39), is plotted against the number of
iterations. It is observed that the minimum rate yielded by
the proposed algorithm under both perfect and imperfect
CSI increases quickly with the number of iterations and the
algorithm converges in less than 15 iterations.

VI. CONCLUSION
In this paper, IRS-assisted wireless communication is envi-
sioned to be an important energy-efficient paradigm for
beyond 5G networks, achieving massive MISO like gains
with a lower number of active antennas at the BS. The
passive elements constituting the IRS smartly re-configure
the signal propagation by introducing phase shifts onto the
impinging electromagnetic waves. This paper proposed
the MMSE-DFT channel estimation protocol to estimate
the direct and IRS-assisted links and compared it with the
existing LS based channel estimation protocols. The MMSE
estimates were both analytically and numerically shown to
achieve a much lower NMSE than the LS estimates. We then
proposed an AO algorithm to maximize the minimum SINR,
subject to a transmit power constraint and unit-modulus con-
straints on the IRS elements. The AO algorithm is proved to
converge and is shown to yield excellent performance gains
in the simulation results that compared the performance of

10. The max-min SINR has not been the subject of any work on IRS-
assisted communication systems except [16].
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the proposed IRS-assisted system to the conventional MISO
system under imperfect CSI. However, the results also high-
lighted the high sensitivity of the IRS-assisted systems to
the quality of the estimates and the rate loss due to channel
training.
For future research, it is important to develop low overhead

channel estimation protocols where the number of required
sub-phases can be reduced to avoid long channel training
times. It is also important to make the channel estimation
protocols robust in high-speed environments. Another impor-
tant direction is to study the impact of discrete phase shifts on
the performance of the IRS-assisted systems under imperfect
CSI. The work can also be extended to multiple IRSs-assisted
communication systems as well as IRS-assisted multi-cell
systems, where pilot contamination will play a detrimental
role in channel estimation.

APPENDIX A
PROOF OF LEMMA 1
Since both r̃tr1,k and hd,k are jointly Gaussian, the MMSE
estimator is linear. Given the observed training signal, r̃tr1,k
in (18), the MMSE estimate of hd,k is given as

ĥd,k = Wr̃tr1,k, (58)

where W is found as the solution to minWtr(E[(ĥd,k −
hd,k)(ĥd,k − hd,k)H]) and turns out to be

W = E

[
r̃tr1,kh

H
d,k

](
E

[
r̃tr1,kr̃

trH
1,k

])−1
. (59)

Noting that ntrk and hd,k are independent random vectors we
obtain

E

[
r̃tr1,kh

H
d,k

]
= E

[(
hd,k + 1

S

(
vtr1 ⊗ IM

)H ntrk
PCτS

)
hHd,k

]
,

= E

[
hd,khHd,k

]
= βd,kRBSk , (60)

and E[r̃tr1,kr̃
trH
1,k ] =

E

[
hd,khHd,k

]
+
(
vtr1 ⊗ IM

)H
E

[
ntrk n

trH
k

](
vtr1 ⊗ IM

)

S2(PCτS)
2

(61)

= βd,kRBSk + 1

S2

σ 2PCτS

(PCτS)
2

(
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)HIMS
(
vtr1 ⊗ IM

)
,

(62)

= βd,kRBSk + 1

S2

σ 2

PCτS

(
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H

1 vtr1 ⊗ IM
)

(63)

= βd,kRBSk + 1

S

σ 2

PCτS
IM, (64)

where (62) follows by noting that E[ntrk n
trH
k ] =

E

[
IS ⊗ ntrs,kn

trH
s,k

]
= IS ⊗ E

[
Ntr
s xp,kx

H
p,kN

trH
s

]
, (65)

= IS ⊗ σ 2IMtr
(
xp,kxHp,k

) = σ 2PCτSIMS, (66)

and (64) follows from vtr
H

1 vtr1 = S under the DFT design
for Vtr.

Therefore using (60) and (64) in (59) we obtain

ĥd,k = βd,kRBSk

(
βd,kRBSk + σ 2IM

SPCτS

)−1

r̃tr1,k. (67)

Moreover it is clear that ĥd,k is a complex Gaussian vector,
the covariance matrix for which can be computed as

E

[
ĥd,kĥHd,k

]
= βd,kRBSk

(
E

[
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trH
1,k
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= β2
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SPSτS

)−1

RH
BSk . (68)

This completes the proof of Lemma 1.

APPENDIX B
PROOF OF LEMMA 2
Given the observed training signal, r̃trn+1,k in (21), we can
write the MMSE estimate of h0,n,k as

ĥ0,n,k = Wr̃trn+1,k, (69)

where W = E[r̃trn+1,kh
H
0,n,k](E[r̃trn+1,kr̃

trH
n+1,k])

−1. Noting that
ntrk and h0,n,k are independent random vectors we obtain

E

[
r̃trn+1,kh

H
0,n,k

]
= E

[(
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∗], (70)

= rn,kβ2,kh1,nhH1,n, (71)

where h1,n is the nth column of H1 and rn,k is element (n, n)
of RIRSk . Next we obtain the expression of E[r̃trn+1,kr̃

trH
n+1,k] =

E

[
h0,n,khH0,n,k

]
+
(
vtrn+1 ⊗ IM

)H
E

[
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,

(72)

= rn,kβ2,kh1,nhH1,n + σ 2IM
SPCτS

. (73)

where E[ntrk n
trH
k ] is computed using similar steps as done

in (65). The expression in (73) then follows from realizing
that vtr

H

n+1v
tr
n+1 = S under the proposed DFT design for Vtr.

Using (71) and (73) in (69) we obtain

ĥ0,n,k = rn,kβ2,kh1,nhH1,n

(
rn,kβ2,kh1,nhH1,n+

σ 2IM
SPCτS

)−1

r̃trn+1,k.

(74)

Moreover it is clear that ĥ0,n,k is a complex Gaussian vector,
the covariance matrix �n,k = E[ĥ0,n,kĥH0,n,k] for which can
be straightforwardly computed.
This completes the proof of Lemma 2.
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