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ABSTRACT The demand for mobile data is likely to grow at a pace more than envisaged in the coming
years. Further, as applications such as the Internet of Things (IoT) come to fruition, there will be increased
diversity in the types of devices demanding Internet connectivity and their requirements. Significant
increase in data rate requirements is also expected due to services such as Ultra High Definition (UHD)
video streaming and cloud computing. To meet all these demands, physical layer waveform candidates for
future generations of communications need to be robust and inherently capable of extending into multiple
domains (space, time, frequency, users, transmission media, code etc.) to ensure efficient utilization of
resources. Multiple domains can be innately integrated into the design process of modulation schemes by
using tensors, which are multi-way arrays. This paper introduces a unified tensor framework, providing
a foundation for multi-domain communication systems that can be used to represent, design and analyse
schemes that span several domains. Transmitted signals are represented by Nth order time function tensors
which are coupled, using a system tensor of order N+M, with the received signals which are represented
by another tensor of order M through the contracted convolution. We begin with the continuous time
representation of the tensor system model and present both the strict multi-domain generalization of the
Nyquist criterion for zero interference (inter-tensor and intra-tensor interference) as well as a relaxation.
We present an equivalent discrete time system model, and as an example of using the tensor framework
we derive tensor based linear equalization methods to combat multi-domain interference. An application
to multi-user MIMO-GFDM illustrates the utility of this novel framework for derivation of joint domain
signal processing techniques.

INDEX TERMS Linear equalization, MIMO, multi-domain communication systems, tensor modelling,
wireless communication systems.

I. INTRODUCTION

WIRELESS communications and the Internet have been
two of the most disruptive technologies in recent his-

tory and the synergetic relationship between them has led to
exponential demand for mobile communication services. As
presented in the visual network index (VNI) report released
by Cisco [1], the amount of wireless data has exploded
and it is predicted to further grow exponentially in the
coming years. Significant increase in data rate requirements
are expected due to services such as Ultra High Definition
(UHD) video streaming and cloud computing. Hence, future
generations of wireless communications will need to provide
data rates that are orders of magnitude higher than cur-
rent 4G technologies. Moreover, with the Internet of Things
(IoT) poised to become a reality, many diverse devices with

an eclectic mix of requirements will soon demand wire-
less connectivity to the Internet. In order to service such a
vast audience while constrained by radio spectrum scarcity,
future communication systems will need to be extremely
bandwidth efficient. Given these demands, it is clear that
a paradigm shift is required in communication systems of
the coming generations (5G and beyond) since incremental
improvements on current (4G) systems will not suffice [2].
The use of additional domains in the design process of a

communication system is an important means to improve its
performance via added robustness from diversity or higher
data rates from multiplexing. For example, the addition of
the space domain through the utilization of multiple input
and multiple output (MIMO) techniques was the logical suc-
cessor of single input single output (SISO) systems. The use
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of MIMO technology boasts improved link performance as
in the case of space-time coding [3], or higher data rates via
spatial multiplexing such as V-BLAST [4]. Multicarrier (MC)
systems such as OFDM, GFDM and FBMC are examples
of frequency domain utilization and are significant improve-
ments over single carrier (SC) systems. The two-dimensional
structure of these systems are well represented through the
use of matrices. In recent years, communication systems that
exploit several domains have gained popularity. For instance,
multi-domain index modulation in the context of vehicle-
to-infrastructure (V2I) and high speed train communication
systems is discussed in [5]. Here, the domains used for
transmission include the indices of transmit antennas, receive
antennas, code type, channel impulse response taps and many
more (listed in detail in [5]). Inter-domain communications
for in-house networks where a single transmission scheme
can be used for multiple types of wires are gaining pop-
ularity in [6]. The International Telecommunication Union
(ITU) G.hn standard identified the classical in-house medi-
ums such as power lines, twisted-pairs and coax, to enable
broadband data communication [7]. Future communication
systems are expected to follow this trend of multi-domain
communication systems and it is crucial that waveform can-
didates for future generations of wireless communications be
natively capable of extending into multiple domains (space,
time, frequency, users, transmission media and code to name
a few) to ensure efficient utilization of resources.
The use of tensors, which are multidimensional arrays [8],

allows innate integration of several domains into the design
process of modulation schemes. The notions of tensors and
tensor decompositions date back to 1927 with the work
of Hitchcock [9]. Cattell [10] is credited for introducing
the notion of the multi-way model. However, tensors and
their decompositions first gained popularity in psychomet-
rics through the works of Tucker [11], and Carroll and
Chang [12]. Since then, tensors have been extensively used
in chemometrics in the food industry, in fluorescence spec-
troscopy and flow injection analysis [13]–[15]. In the last
years, tensor applications have gained significant interest in
various fields such as signal processing [16], [17], data min-
ing [18], graph analysis [19], neuroscience and computer
vision [20], [21]. A tensor approach for multidimensional
data filtering is presented in [22]. Cumulant-Based Blind
Identification of Under determined Mixtures is explored
in [23]. A comprehensive overview of multi-linear alge-
bra, tensor products and their decompositions is provided
in [8]. Solution of multi-linear equations using tensor inver-
sion is studied in [24], and a higher-order generalization
of the Moore-Penrose pseudoinverse is derived in [25]. The
notion of the various transpose operations of a tensor is
presented in [26].
Matrix decompositions are not unique in general, mean-

ing that a particular matrix may be decomposed in a
number of different ways. In order to ensure uniqueness
of a matrix decomposition, additional constraints such as
positive-definiteness or orthonormality must be imposed. In

contrast, such strong constraints are not required for a ten-
sor to offer a unique decomposition due to the use of higher
dimensions [27], [28]. This is one of the reasons for the
gain in popularity of tensor based approached in wireless
communications over recent years. A blind receiver using
PARAFAC decompositions for DS-CDMA systems is con-
sidered in [29]. Multiple invariance sensor array processing
(MI-SAP) is linked to parallel factor (PARAFAC) analysis
for both data-domain and subspace formulations in [30]. A
blind receiver that uses tensor decompositions for SIMO and
MIMO OFDM systems is presented in [31]. A space-time
coding model based on a Khatri-Rao product, dubbed KRST,
was derived by combining spatial multiplexing and temporal
spreading through linear pre-coding and linear post-coding
respectively [32]. Tensor based receivers for MIMO commu-
nication systems are presented in [33] and [34]. In [35], it is
shown that the received signal in over sampled CDMA and
OFDM has a multidimensional structure and a constrained
Block-PARAFAC model is used for blind equalization where
the constraints of the tensor model vary based on the system
that is being used. Three dimensional tensors are used to
combine space-time coding with spatial multiplexing, dubbed
space-time multiplexing (STM) coding, in [36]. Two con-
strained tensor models dubbed the PARATUCK-(N1,N) and
Tucker-(N1,N) are introduced in [37], which are then used
to derive semi-blind receivers for MIMO OFDM-CDMA
systems. A modified alternating least squares (ALS) algo-
rithm for estimating the matrix factors of the Kronecker
product is considered in [38], that is used for the design
of MIMO wireless communication systems using tensor
modelling. Multidimensional Weiner filtering, where the n-
mode unfolding of the desired signal is expressed as a
weighted combination of orthogonal vectors from the n-mode
signal subspace basis is used to determine the theoretical
expression of the n-mode Wiener filter, is described in [22].

In this paper, we present a unified tensor framework for
multi-domain communication systems. In Section II, we
present the basics of tensors and some important defini-
tions that are used in our work. In Section III we introduce
the Tensor Framework. Using this framework, we present
the foundations for a multi-domain communication system
that can be used to represent, design and analyse future
wireless or wired communication systems. In Section IV, to
demonstrate the efficacy of the tensor framework, we present
examples, such as OFDM, GFDM and FBMC to show how
this framework can encapsulate such modulation formats. In
Section V, we present both the strict multi-domain gen-
eralization of the Nyquist criterion for zero interference
(inter-tensor and intra-tensor interference) as well as a relax-
ation. Then we derive tensor based zero forcing (ZF) and
minimum mean squared error (MMSE) linear equalization
schemes for multi-domain interference and compare their
performance for different system parameters. In Section VI,
we study three different types of equalizers that treat inter-
tensor interference differently in Multi-user MIMO GFDM
systems. Section VII presents the conclusions of this work.
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In Appendix A, we present the proof for a tensor Cauchy
Schwartz inequality and Appendix B contains the proof of
Theorem 2.

II. BASICS OF TENSORS WITH APPLICATIONS TO
SIGNALS AND SYSTEMS
A tensor is a multi-dimensional array of data [8]. The order
of a tensor is the number of domains. A vector is a tensor
of order one, a matrix is a tensor of order two and tensors
of order greater than two are known as higher order tensors.
Definition 1 (The Contracted Product): The contracted

product over K dimensions, or modes, of an Nth order
tensor A ∈ C

I1×I2×···×IN and an Mth order tensor B ∈
C
J1×J2×···×JM where I1 = J1, . . . , IK = JK with K ≤

min(N,M) is a (N + M − 2K)th order tensor C ∈
C
IK+1×IK+2×···×IN×JK+1×JK+2×···×JM defined as [8]

C = {A,B}(1,...,K;1,...,K) (1)

with CiK+1...iN jK+1...jM= ∑

i1...iK

Ai1...iK iK+1...iNBi1...iK jK+1...jM .

In (1), the modes of contraction are the first K modes of
A and B. However, it should be noted that the modes of
contraction do not have to be the same in both tensors,
since any two modes of same size can be contracted. For
example, the first and second modes of tensor A ∈ C

3×4×5

and the second and third modes of tensor B ∈ C
2×3×4 can

be contracted to give a tensor X = {A,B}(1,2;2,3) with

components Xi3,j1 =
3∑

i1=1

4∑

i2=1
Ai1,i2,i3Bj1,i1,i2 . A contraction

that appears commonly throughout this paper is one where
the modes of contraction appear at the end of the first tensor
and the beginning of the second. Consider a (P + N)th
order tensor A ∈ C

I1×···×IP×J1×···×JN and a (N+Q)th order
tensor B ∈ C

J1×···×JN×K1×···×KQ . The contracted product
over the last N modes of A and the first N modes of B is
a (P+ Q)th order tensor C

C = {A,B}(P+1,...,P+N;1,...,N) (2)

and Ci1...iPk1...kQ= ∑

j1...jN

Ai1...iPj1...jNBj1...jNk1...kQ . In the rest

of this paper, for the sake of brevity, we use the shorthand
notation

C = {A,B}(N) (3)

to denote the contraction in (2). For tensors A ∈
C
I1×···×IM×J1×···×JN , B ∈ C

J1×···×JN×K1×···×KP and C ∈
C
K1×···×KP×L1×···×LQ , we have

{{A,B}(N),C
}
(P) = {

A, {B,C}(P)
}
(N). (4)

Definition 2 (Outer Product): The outer product of two
tensors A ∈ C

I1×I2···×IN and B ∈ C
J1×J2···×JM is denoted by

A ◦ B ∈ C
I1×···×IN×J1×···×JM with components

(A ◦ B)i1,...,iN ,j1...,jM = Ai1,...,iNBj1,...,jM (5)

FIGURE 1. Pseudo-diagonal (gray) and diagonal (black) elements of a tensor of size
3 × 3 × 3 × 3.

The tensor outer product is distributive and associative. It
is not in general commutative. For tensors A ∈ C

I1×···×IN ,
B ∈ C

I1×···×IN and C ∈ C
J1×···×JM we have

(A + B) ◦ C = A ◦ C + B ◦ C (6)

Similarly, For tensors A ∈ C
I1×···×IN ,B ∈ C

J1×···×JM and
C ∈ C

K1×···×KP we have

(A ◦ B) ◦ C = A ◦ (B ◦ C). (7)

Definition 3 (Diagonal and Pseudo-Diagonal Tensors): A
tensor A ∈ C

I1×I2···×IN is diagonal if

Ai1,...,iN =
{
ki1,...,iN if i1 = i2 = . . . iN
0 otherwise

(8)

where ki1...iN is an arbitrary scalar. A pseudo-diagonal tensor
is a tensor B ∈ C

I1×···×IN×I1×···×IN with components

Bi1,...,iN ,j1,...,jN =
{
ki1,...,iN ,j1,...,jN if i1 = j1 . . . iN = jN
0 otherwise

(9)

Authors in [24] and [25] define tensors of the form (9) as
diagonal tensors. However, given the stricter, more prevalent,
definition of a diagonal tensor [8] the notion of pseudo-
diagonality is used in this paper. The non-zero entries of
a pseudo-diagonal tensor are known as its pseudo-diagonal
entries. A diagonal tensor is a pseudo-diagonal tensor with
zeros in some specific pseudo-diagonal entries. Fig. 1 shows
a fourth order tensor of size J1 × J2 × I1 × I2 with I1 = I2 =
J1 = J2 = 3 with the pseudo-diagonal elements highlighted
in gray and diagonal elements highlighted in black. We can
see that all the diagonal elements are also pseudo-diagonal
elements. We define an identity tensor of order 2N as a
pseudo-diagonal tensor IN ∈ C

I1×I2×···×IN×I1×I2×···×IN with
entries

INi1,...,iN ,i′1,...,i′N
= δi1,i′1 · · · δiN ,i′N (10)

where δx,y is the Kronecker delta defined as

δx,y =
{

1 if x = y
0 otherwise

(11)
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The sub-script N is used to denote the order of the
identity tensor. For example, an identity tensor IN is of
order 2N while IM is of order 2M. For a tensor X ∈
C
I1×I2···×IN×J1×I2···×JM we have

{X,IM}(M) = {IN,X}(N) = X. (12)

Definition 4 (Inner Product and Frobenium Norm of a
Tensor): The inner product of two tensors A,B ∈ C

I1×···×IN
is defined as

〈A,B〉 = {A,B}(1,...,N;1,...,N)
=
∑

i1

· · ·
∑

iN

Ai1,...,iNBi1,...,iN (13)

The Frobenium norm of a tensor X ∈ C
I1×···×IN is defined

as

‖X‖F =
⎛

⎝
∑

i1

· · ·
∑

iN

∣
∣Xi1,...,iN

∣
∣2

⎞

⎠

1
2

. (14)

Definition 5 (Transpose and Hermitian of a Tensor): A
matrix has two indices and the transpose of a matrix is a
permutation of these two indices. Since there are several
dimensions in a tensor, there are many permutations of its
indices and hence there are several ways to write the trans-
pose of a tensor. Authors in [26] define the transpose of
a tensor using permutations. For the purpose of this work,
we define the transpose of a tensor in the following way.
Consider a tensor Y ∈ C

I1×···×INJ1×···×JM with a transposi-
tion such that the final M modes are swapped with the first
N modes such that YTj1,...,jM,i1,...iN = Yi1,...,iN ,j1,...,jM . For ten-
sors A ∈ C

I1×···×IN×J1×···×JM and B ∈ C
J1×···×JM×K1×···×KP

we have
({A,B}(M)

)H =
{
BH,AH

}

(M)
(15)

where superscript H denotes the Hermitian operation.
For tensors A ∈ C

I1×···×IN and B ∈ C
J1×···×JM×I1×···×IN

we have

{B,A}(N) =
{
A,BT

}

(N)
. (16)

Definition 6 (Tensor to Matrix Transformation): For a ten-
sor A ∈ C

I1×···×IN×J1×···×JM , we define a transformation fN
that transforms A to a matrix A ∈ C

I1...IN×J1...JM such that
f (A) = A. Component-wise we have

Ai1,i2,...,iN ,j1,...,jM
fN−→ A

[i1+
N∑

k=2
(ik−1)

k−1∏

l=1
Il],[j1+

M∑

k=2
(jk−1)

k−1∏

l=1
Jl]

(17)

The subscript in fN denotes a partition of the modes of
the tensor being transformed. The product of the first N
modes of the tensor becomes the number of rows of the
matrix and the product of the remaining modes of the tensor
becomes the number of columns of the matrix. For example,
consider a tensor B ∈ C

2×3×4×5×6 and a transformation
f3 such that f3(B) = B. The size of B is (2 · 3 · 4) ×

(5 · 6) and Bi,j,k,l,m
f3−→ B(i+2(j−1)+6(k−1)),(l+5(m−1)). These

transformations are called column or row major formats in
many computer languages and represent a particular type of
matrix unfolding of a tensor. It is shown in [24], for the
case of fourth-ordered tensors of the form X ∈ C

I×J×I×J ,
that the above transformation function is a bijection with a
bijective inverse mapping f−1

N to convert the matrix A back
into the original tensor A. Authors in [39] extend this result
to the case of tensors of any order.
Definition 7 (Tensor Inverse): The group of invertible N×

N matrices with matrix multiplication is called the general
linear group denoted by MN,N(C) [24]. Denote

TI1,I2,...,IN ,I1,I2,...,IN (C)

=
{
A ∈ C

I1×···×IN×I1×···×IN : det(fN(A)) 
= 0
}

(18)

Authors in [39] and [24] (for the special case of fourth
order tensors) have shown that the set TI1,I2,...,IN ,I1,I2,...,IN (C)
forms a group equipped with the contraction {}(N) as defined
in (3) and the transformation fN is an isomorphism between
TI1,I2,...,IN ,I1,I2,...,IN (C) and M(I1I2···IN ),(I1I2···IN )(C). This indi-
cates that for any tensor A ∈ TI1,I2,...,IN ,I1,I2,...,IN (C) there
exists a tensor B ∈ TI1,I2,...,IN ,I1,I2,...,IN (C) such that [39]:

{A,B}(N) = {B,A}(N) = IN . (19)

where IN is the identity tensor. B is called the inverse
of A and is denoted by A−1. The Moore-Penrose inverse
of a tensor A ∈ C

I1×I2···×IN×J1×J2×···×JN ,which is a gener-
alization of the matrix Moore-Penrose inverse, is a tensor
A+ ∈ C

J1×J2···×JN×I1×I2×···×IN that satisfies [25]:
{{

A,A+}
(N),A

}

(N)
= A

{{
A+,A

}
(N),A

+}

(N)
= A+

{
A,A+}H

(N) = {
A,A+}

(N)
{
A+,A

}H
(N) = {

A+,A
}
(N).

Definition 8 (Pseudo-Triangular Tensor): A tensor A ∈
C
I1×···×IN×I1×···×IN is defined to be pseudo-lower triangu-

lar if

Ai1,...,iN ,i′1,...,i′N

=

⎧
⎪⎨

⎪⎩

0 if (i′1 +∑N
k=2(i

′
k − 1)

∏k−1
l=1 Il)

≥ (i1 +∑N
k=2(ik − 1)

∏k−1
l=1 Il)

ai1,...,iN ,i′1,...,i′N otherwise

(20)

where ai1,...,iN ,i′1,...,i′N are arbitrary scalars. Similarly, the ten-
sor is said to be pseudo-upper triangular if the inequality
in (20) is reversed. It can be readily seen that a lower tri-
angular tensor becomes a lower triangular matrix under the
tensor to matrix transformation defined in (17) and a pseudo-
upper triangular tensor becomes an upper triangular matrix.
In Fig. 2 we illustrate a tensor of size J1 × J2 × I1 × I2,
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FIGURE 2. Pseudo-Lower Triangular Tensor.

I1 = I2 = J1 = J2 = 3 with the pseudo-lower triangular ele-
ments highlighted in gray along with the pseudo-diagonal
elements shown in black.
Definition 9 (Function Tensor): A function tensor A(x)

is a tensor whose components are functions of x. Using a
third order function tensor as an example, each component of
A(x) is written as Ai,j,k(x). A generalization of this would
be the multivariate function tensor A(x1, . . . , xp), which is
a tensor whose components are functions of the variables
x1, . . . , xp. Using the same example of a third order tensor,
each component can be written as Ai,j,k(x1, x2, . . . , xp). For
example, a tensor A(t, u) is a multivariate function tensor
whose components are functions of t and u.
Definition 10 (Signal Tensor and System Tensors): A sig-

nal tensor X(t) is a function tensor whose components are
functions of time. A system tensor H(t, u), used to describe
linear time varying multidomain systems, is a tensor of
order N + M that couples two signal tensors of orders N
and M respectively through a contracted linear functional.
For example, let H(t, u) ∈ C

Y1×Y2×···×YM×X1×X2×···×XN
t be

a system tensor that couples X(t) ∈ C
X1×X2×···×XN
t with

Y(t) ∈ C
Y1×Y2×···×YM
t . Here, CA×B

t is used to denote the set
of tensors of size A × B whose components are complex
functions of t. The output tensor Y(t) has components

Yy1y2...yM (t)

=
∑

x1x2...xN

∫ ∞

−∞
Hy1y2...yMx1x2...xN (t, u)Xx1x2...xN (u)du. (21)

Definition 11 (The Contracted Convolution and Time
Invariant System Tensor): A linear time invariant system
tensor H(t) is a tensor of order N + M that couples two
signal tensors of orders N and M respectively. Extending
the contracted product to a contracted convolution allows
us to define the coupling of the input and output signal
tensors by a linear time invariant system tensor. Consider
a signal tensor X(t) ∈ C

X1×X2×···×XN
t and a system ten-

sor H(t) ∈ C
Y1×Y2×···×YM×X1×X2×···×XN
t . The contracted

convolution of tensor X(t) and tensor H(t) is a tensor

Y(t) ∈ C
Y1×Y2×···×YM
t defined as

Y(t) = {H(t) ∗ X(t)}(M+1,...,M+N;1,2,...N), (22)

where

Yy1...yM (t) =
∑

x1...xN

∫ ∞

−∞
Hy1...yMx1...xN (t − τ)Xx1...xN (τ )dτ.

(23)

Let X(t) ∈ C
X1×···×XN
t be a signal tensor and H(t) ∈

C
Y1×···×YM×X1×···×XN
t and G(t) ∈ C

Z1×···×ZP×Y1×···×YM
t be

system tensors. It can readily be seen that the conditions for
associativity from (4) are also valid for function tensors since
the only change is that multiplications are replaced by convo-
lutions and scalars with functions. If the output of the cascade
of these two systems is denoted by Z(t) ∈ C

Z1×Z2×···×ZP
t ,

we have

Z(t) = {{G(t) ∗ H(t)}(M) ∗ X(t)
}
(N)

= {
G(t) ∗ {H(t) ∗ X(t)}(N)

}
(M). (24)

Definition 12 (The Fourier Transform of Signal Tensors):
The Fourier transform of a signal tensor is a tensor of
the Fourier transforms of its individual components. If the
Fourier transforms of all the individual functions exist,
then X̆(f ) the Fourier transform of X(t) ∈ C

I1×···×IN
t has

components

X̆x1...xN (f ) =
∞∫

−∞
Xx1...xN (t)e

−j2π ftdt = F[Xx1...xN (t)
]
.(25)

Definition 13 (Random Tensor): A tensor X ∈ C
I1×···×IN

is said to be random if its components Xi1,...,iN are ran-
dom variables. Similarly, a function tensor A(x) ∈ C

I1×···×IN
x

is a random function tensor if its components are random
processes.
Definition 14 (Mean): The mean of a random tensor

sequence X[k] ∈ C
I1×···×IN
k is defined as

μX[k] = E
[
X[k]

]
(26)

with components μXi1,...,iN [k] = E [Xi1,...,iN [k]].
Definition 15 (Auto-Correlation and Cross-Correlation of

a Random Tensor Sequence): The auto-correlation function
of a random tensor sequence X[k] ∈ C

I1×···×IN
k is a tensor

RX[k, i] ∈ C
I1×···×IN×I1×···×IN
(k,i) defined as

RX[k, i] = E
[
X[k] ◦ X∗[k − i]

]
(27)

The pseudo-diagonal elements of RX[k, i],
RXi1,...,iN ,i1,...,iN

[k, i], are the auto-correlation functions
of Xi1,...,iN [k] and the cross-correlation between two
different components Xi1,...,iN [k] and Xi′1,...,i′N [k] is
RXi1,...,iN ,i

′
1,...,i

′
N

[k, i]. The cross-correlation of two random

tensor sequences X[k] ∈ C
I1×···×IN
k and Y[k] ∈ C

J1×···×JM
k is

a tensor RX,Y[k, i] ∈ C
I1×···×IN×J1×···×JM
k defined as

RX,Y[k, i] = E
[
X[k] ◦ Y∗[k − i]

]
(28)
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where RX,Yi1,...,iN ,j1,...,jM
[k, i] = E [Xi1,...,iN [k]Yj1,...,jM [k− i]].

Definition 16 (Wide Sense Stationary Tensor Sequence):
A random tensor sequence X[k] ∈ C

I1×···×IN
k is said to be

wide sense stationary (WSS) if its mean E [X[k]] is indepen-
dent of k and its auto-correlation E [X[k]◦X∗[k−i]] depends
only on i. Two random tensor sequences X[k] ∈ C

I1×···×IN
k

and Y[k] ∈ C
J1×···×JM
k are jointly WSS if both X[k] and

Y[k] are WSS and their cross-correlation E [X[k]◦Y∗[k− i]]
depends only on i. In the rest of this paper, auto-correlation
and cross-correlation tensors of WSS and jointly WSS tensor
sequences are indexed by one variable (RX[i] and RX,Y[i]
respectively). It can be shown that if the input to a lin-
ear time invariant system tensor is a WSS tensor sequence,
then the output is also WSS and the input and output tensor
sequences are jointly WSS.
Definition 17 (Discrete System Tensors): A discrete

system tensor is a tensor H[n] ∈ C
I1×...IN×J1×···×JM
n that

couples an input tensor sequence X[n] ∈ C
J1×···×JM
n with an

output tensor sequence Y[k] ∈ C
I1×···×IN
k through a discrete

contracted convolution defined as:

Y[k] =
∑

n

{H[n],X[k − n]}(M). (29)

III. THE TENSOR FRAMEWORK FOR A COMMUNICATION
SYSTEM
A. TENSOR MODEL
Consider a tensor communication system where D[n] ∈
C
I1×···×IN
n represents the data to be transmitted by the nth

tensor symbol. The components of D[n] may be constella-
tion mapped data symbols or may be precoded data symbols.
Let the tensor symbol rate be T , i.e., a data tensor is trans-
mitted at intervals of time T . Then we can represent such
a data symbol by D[n]δ(t − nT) where δ(t) is Dirac’s
delta function. Let the transmit filters, the channel and
the receive filters be represented by three system tensors
HT(t) ∈ C

J1×···×JP×I1×···×IN
t , HC(t) ∈ C

K1×···×KQ×J1×···×JP
t

and HR(t) ∈ C
I1×···×IN×K1×···×KQ
t . The overall system model

is presented in Figure 3. In this section, we assume that there
is no noise (i.e., N(t) = 0T ). The input to the transmit filter

is
+∞∑

n=−∞
D[n]δ(t−nT). The dimension of the transmit signal

tensor being different from the data tensor allows a unifying
representation of various schemes. For example, P would
be greater than N if the same data symbol may be sent on
multiple components of X(t). Similarly, when multiple data
symbols are sent on a single component of X(t) then P
would be smaller than N. If there is a one-to-one mapping
between the symbols and waveforms then P would be equal
to N.
The transmit signal tensor of order P is

X(t) =
+∞∑

n=−∞
{HT(t) ∗ D[n]δ(t − nT)}(N)

=
+∞∑

n=−∞
{HT(t − nT),D[n]}(N) (30)

FIGURE 3. System Model.

The effects of the channel on the transmit signal tensor is rep-
resented by a contraction with a channel system tensorHC(t)
of order (Q+ P). The received signal R(t) ∈ C

K1×···×KQ
t is

R(t) = {HC(t) ∗ X(t)}(P) (31)

The receive system tensor HR(t) of order (N+Q) transforms
the received signal tensor R(t) into a signal tensor of the
same size as the data tensor. The output of the receive filter
tensor Y(t) ∈ C

I1×I2×···×IN
t is

Y(t) = {HR(t) ∗ R(t)}(Q) (32)

From (32), (31) and (30) we get

Y(t)

= {
HR(t) ∗ {HC(t) ∗ X(t)}(P)

}
(Q)

=
⎧
⎨

⎩
HR(t)∗

{

HC(t)∗
+∞∑

n=−∞
{HT(t)∗D[n]δ(t−nT)}(N)

}

(P)

⎫
⎬

⎭
(Q)

=
+∞∑

n=−∞

{
HR(t)∗

{
HC(t)∗{HT(t)∗D[n]δ(t − nT)}(N)

}
(P)

}

(Q)

Using the associativity property (4) we have

Y(t) =
+∞∑

n=−∞

{{
HR(t) ∗ {HC(t) ∗ HT(t)}(P)

}
(Q)

× D[n]δ(t − nT)
}

(N)

=
+∞∑

n=−∞
{H(t) ∗ D[n]δ(t − nT)}(N)

=
+∞∑

n=−∞
{H(t − nT),D[n]}(N) (33)

where H(t) = {HR(t)∗{HC(t)∗HT(t)}(P)}(Q) is the overall
system tensor of order 2N that couples the input data stream
with the output of the receiver. Sampling the received signal

tensor Y(t) at a rate of
1

T
gives us the estimate of the data

tensor

Y[k] = Y(kT) =
+∞∑

n=−∞
{H(kT − nT),D[n]}(N). (34)
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B. TENSOR NYQUIST CRITERION
The Nyquist criterion for distortionless transmission for the
scalar case is well known. A waveform x(t) is said to satisfy
the Nyquist criterion for signal interval T if

x(nT) = δn (35)

where δn is the delta function defined as

δn =
{

0 if n 
= 0
1 if n = 0

(36)

Denoting the Fourier transform of x(t) by X(f ), and using
the Poisson Sum Formula [40]

1

T

+∞∑

k=−∞
X

(

f − k

T

)

=
+∞∑

k=∞
x(nT)e−j2π fnT (37)

we have

1

T

+∞∑

k=−∞
X

(

f − k

T

)

= 1 (38)

For the matrix-vector case, a generalized Nyquist criterion
has been derived in the literature by authors of [41]–[43].
In this section we derive a generalization of (35) and (38),
called the Tensor Nyquist Criterion, for the multi-domain
case with higher-order signal and system tensors. We then
show that the existing generalizations are specific cases of
the Tensor Nyquist Criterion.

1) THE TENSOR POISSON SUM FORMULA AND
NYQUIST’S CRITERION FOR ZERO INTER-SYMBOL
INTERFERENCE

To find the multi-domain criterion for zero inter-symbol
interference we begin by generalizing the ordinary Poisson
sum formula [40]. Consider a signal tensor A(t) ∈
C
I1×I2×···×IK
t . Define

As(t) = A(t)
+∞∑

n=−∞
δ(t − nT) (39)

=
+∞∑

n=−∞
A(nT)δ(t − nT) (40)

Taking the Fourier transform of (39) we get

Ăs(f ) = F
[

A(t)
+∞∑

n=−∞
δ(t − nT)

]

= Ă(f ) ∗ F
[ +∞∑

n=−∞
δ(t − nT)

]

= Ă(f ) ∗
(

1

T

+∞∑

n=−∞
δ
(
f − n

T

)
)

(41)

= 1

T

+∞∑

n=−∞
Ă
(
f − n

T

)
(42)

Taking the Fourier transform of (40) we get

Ăs(f ) = F
[ +∞∑

n=−∞
A(nT)δ(t − nT)

]

=
+∞∑

n=−∞
A(nT)e−j2π fnT

(43)

Equating (42) and (43) we get the Tensor Poisson Sum
Formula:

1

T

+∞∑

n=−∞
Ă
(
f − n

T

)
=

+∞∑

n=−∞
A(nT)e−j2π fnT (44)

Expanding (34) we get

Y[k] =
+∞∑

n=−∞
{H(kT − nT),D[n]}(N)

= {H(0),D[k]}(N) +
+∞∑

n=−∞,n 
=k
{H(kT − nT),D[n]}(N) (45)

A sufficient condition to get zero interference between
symbols is

H(iT) =
{
H(0) if i = 0
0T if i 
= 0

(46)

where 0T is the all zero tensor. Using the Tensor Poisson’s
sum formula (44) we obtain the Tensor Nyquist Criterion
for zero inter-symbol interference:

1

T

+∞∑

n=−∞
H̆
(
f − n

T

)
= H(0) = K (47)

where K is a non-zero tensor.
Assuming that (46) is satisfied we have

Y[k] = {H(0),D[k]}(N) (48)

whose elements are

Yl1,...,lN [k] =
∑

i1,...,iN

Hl1,...,lN ,i1,...,iN (0)Di1,...,iN [k]

= Hl1,...,lN ,l1,...,lN (0)Dl1,...,lN [k]

+
∑

i1,...,iN
i1 
=l1,...,iN 
=lN

Hl1,...,lN ,i1,...,iN (0)Di1,...,iN [k] (49)

We see that the first term in (49) is a scaled version of
the required data symbol and the second term represents
intra-symbol interference from other data symbols within
the same data tensor. A rather strict condition which will
ensure that we are able to retrieve the transmitted data from
Y[k] without any interference is

Hl1,...,lN ,i1,...,iN (0) =
{

1 if i1 = l1, . . . , iN = lN
0 otherwise

(50)

This means that the tensor H(0) is an identity tensor.
Combining (46) and (50) we get

Hl1,...,lN ,i1,...,iN (iT) = δi,0

N∏

k=1

δik,lk (51)
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where

δn,m =
{

1 if m = n
0 otherwise

(52)

Using this in (47) we get

1

T

+∞∑

n=−∞
H̆
(
f − n

T

)
= H(0) = IN (53)

Even if the strict criterion is not met, it is still possible to
recover the transmitted data from Y[k] if certain conditions
are met. Assuming that (46) holds then recovering the data
reduces to solving the multi-linear tensor system (48) for
D[k]. If the inverse of H(0) exists, we have

D[k] =
{
H−1(0),Y[k]

}

(N)
(54)

where H−1(0) can be approximated by using iterative algo-
rithms, such as the biconjugate gradient or Jacobi methods
using tensor computations [24].
If the inverse does not exist, pseudo-inversion can be

used to find the solution to the multi-linear system (48).
The tensors D̂[k] minimizing

∥
∥{H(0),D[k]}(N) − Y[k]

∥
∥2
F

are called the least-square solutions of (48) and D̃[k] =
min
D̂[k]

‖D̂[k]‖2
F is called the minimum-norm least square solu-

tion of (48) [25]. If {HH(0),H(0)}(N) is invertible then
the least-square solution has a unique minimizer and the
multilinear system is solved as [24]

D[k] =
{{{

HH(0),H(0)
}−1

(N)
,HH(0)

}

(N)
,Y[k]

}

(N)

(55)

Finally, if such an inversion does not exist, then the
minimum-norm least square solution of (48) is

D[k] = {
H+(0),Y[k]

}
(N) (56)

where H+(0) is the Moore-Pensore pseudoinverse of
H(0) [25].

2) COMPARISON WITH EXISTING GENERALIZATIONS OF
NYQUIST’S CRITERION

This section surveys existing generalizations of the Nyquist
Criterion and compares them to the Tensor Nyquist Criterion
presented in this paper. The problem of interference in a
multi-carrier system is considered in [41] and [42], that pro-
pose a constraint on the overall system impulse response
to simultaneously eliminate both ISI and cross-talk. Based
on previous work, [43] presents a multidimensional Nyquist
criterion. The general system considered in [41]–[43] is a
multi-carrier system specified as

br(t) =
+∞∑

n=−∞

M∑

m=1

anmvmr(t − nT) r = 1, 2, . . . ,M (57)

where anm is the data transmitted on the mth sub-carrier dur-
ing the nth symbol and vmr(t) represents the overall system
impulse response consisting of the mth transmit filter, the

channel and the rth receive filter, vmr(t) = pm(t)∗b(t)∗ rr(t)
where pm(t) is the mth transmit filter, b(t) is the channel
and rr(t) is the rth receive filter. Representing (57) in vector
matrix form we get

b(t) =
∑

n

V(t − nT)an (58)

where b(t) = [b1(t), . . . bM(t)]T, an = [an1, . . . anM]T and

V(t) =

⎡

⎢
⎢
⎢
⎣

v11(t) v21(t) . . . vM1(t)
v12(t) v22(t) . . . vM2(t)
...

...
...

...

v1M(t) v2M(t) . . . vMM(t)

⎤

⎥
⎥
⎥
⎦

Sampling b(t) at rate 1
T we get [41]

b(kT) =
∑

n

V(kT − nT)an (60)

For no interference, it is required that b(kT) = ak. The
generalized Nyquist criterion to achieve this is [41], [42]

V(iT) = δi,0I (61)

where I is the identity matrix. Taking the Fourier transform
of V(t) and using the Poisson’s sum formula we get the
frequency domain conditions for zero interference as [42]

1

T

∑

n

V̆
(
f − n

T

)
= 1

T

∑

n

p̆
(
f − n

T

)
b̆
(
f − n

T

)
r̆T
(
f − n

T

)

=
+∞∑

n=−∞
V(nT)e−j2π fnT = δn,0I (62)

where p̆(f ) = [p̆1(f ) p̆2(f ) . . . p̆M(f )]T , b̆(f ) and r̆T(f ) =
[r̆1(f ) r̆2(f ) . . . r̆M(f )]T are the Fourier transforms of
the transmit filters, channel and receive filters respectively.
Comparing (62) with (53) we can see that it is a spe-
cial case of the generalized Nyquist criterion where the
overall system tensor is of size M × M with components
Hi1,i2(t) = pi2(t)∗b(t)∗ ri1(t) and the data tensor is of order
one (a vector of size M) with components d[n] = an.

IV. SYSTEMS MODELED USING THE TENSOR
FRAMEWORK
This section presents models for selected waveforms using
the tensor framework as examples. Representation using the
tensor framework preserves the multi-domain structure of the
transmitted data and allows extensions to higher domains,
such as MIMO, of waveforms that were not originally
designed for this.

A. OFDM
In Release 15 of 3GPP [44] it is mentioned that an
Orthogonal Frequency Division Multiplexing (OFDM) based
scheme will be used for the 5G New Radio (NR) uplink
and downlink as the main candidate, with Discrete Fourier
Transform Spread OFDM (DFT-S-OFDM) being used in
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some cases. OFDM is a multi-carrier transmission tech-
nique which uses F orthogonal sub-carriers simultaneously
to transmit data. By making all the sub-channels narrowband,
they experience almost flat fading, making equalization very
simple. The orthogonality of the sub-carriers ensures that
there is no intrinsic inter-carrier interference (ISI). There

are F sub-carriers with spacing F0 = 1

T
that carry data in

one OFDM symbol. The transmit signal is

x(t) =
+∞∑

n=−∞

F∑

κd=1

dn,κdw(t − nT)ej2π(κd−1)F0t

=
+∞∑

n=−∞

F∑

κd=1

dn,κdpTκd (t − nT) (63)

where dn,κd is the complex data symbol transmitted during
the nth OFDM symbol on the κdth (κd = 1, . . . ,F) sub-
carrier. The filter pTκd (t) = w(t)ej2π(κd−1)F0t where w(t) is a
rectangular window of duration T defined as

w(t) =
{

1 for − T
2 ≤ t ≤ T

2
0 otherwise

(64)

Under the assumption of an ideal channel, the received signal
r(t) is the same as the transmitted signal x(t). The receive
filter, for the κyth subcarrier, pRκy (t) = p∗

Tκy
(−t) is matched

to the transmit filter, i.e., pRκy (t) = w(−t)ej2π(κy−1)F0t. The
output of the receive filter pRκy (t) is

yκy(t) = x(t) ∗ pRκy (t) =
+∞∑

n=−∞

F∑

κd=1

∫ +∞

−∞
dn,κdw(τ − nT)

× ej2πF0(κd−1)τw(−(t − τ))ej2πF0(κy−1)(t−τ)dτ
(65)

Sampling yκy(t) at intervals of T and using w(t) = w(−t)
gives

yκy(kT)

=
+∞∑

n=−∞

F∑

κd=1

∫ +∞

−∞

(
dn,κdw(τ − nT)ej2πF0(κd−1)(τ )

× w(kT − τ)ej2πF0(κy−1)(kT−τ))dτ

=
+∞∑

n=−∞

F∑

κd=1

∫ +∞

−∞
dn,κdw(τ−nT)w(τ−kT)ej2πF0(κd−κy)(τ)dτ

(66)

Since w(t) is a rectangular window of duration T we have
yκy(kT) = dk,κy .
Using the tensor framework, the complex data to be

transmitted on the nth OFDM symbol D[n] ∈ C
F
n is

D[n] = [
dn,1, dn,2, . . . , dn,F

]T (67)

with components Di[n] = dn,i for i = 1, . . . ,F. The transmit
system tensor HT(t) ∈ C

1×F
t is

HT(t) = [
pT1(t), pT2(t), . . . , pTF (t)

]
(68)

and has components HT1,i(t) = pTi(t) for i = 1, . . . ,F. The
transmit tensor HT(t) converts D[n] into a signal X(t) ∈ Ct.
We can write (63) using the components of (67) and (68) as
X(t) = ∑+∞

n=−∞
∑F

i=1 HT1,i(t − nT)Di[n] which, in tensor
notation, becomes

X(t) =
+∞∑

n=−∞
{HT(t − nT),D[n]}(1) (69)

Under the assumption of an ideal channel the channel tensor
is HC(t) ∈ Ct = δ(t) and the received signal is R(t) = X(t).
The receive system tensor HR(t) ∈ C

F×1
t is

HR(t) = [
pR1(t), pR2(t), . . . , pRF (t)

]T (70)

Using (68) and (70), we get the overall system tensor H(t) ∈
C
F×F
t as H(t) = {HR(t) ∗ HT(t)}(1) with components

Hκy,κd (t) = HRκy (t) ∗ HTκd
(t) = pRκy (t) ∗ pTκd (t). (71)

Collecting the outputs of the received filters from (65) for
all sub-carriers into a vector we may now write the received

signal tensor Y(t) ∈ C
F
t as Y(t) =

+∞∑
n=−∞

{H(t−nT),D[n]}(1)
with components

Yκy(t) =
+∞∑

n=−∞

∑

κd

Hκy,κd (t − nT)Dκd [n] (72)

Comparing Y(t) with (33), we can see that this is a specific
case when N = 1.

B. FBMC
Filter Bank Multi-carrier is a scheme considered for 5G.
There are two types of FBMC schemes, Staggered Multitone
(SMT) and Cosine-Modulated Multitone (CMT) [45]. This
section describes SMT, also known as OQAM/OFDM. The
number of sub-carriers K is assumed to be even (K = 2M)
and for two consecutive sub-carriers, the time offset is
applied to the imaginary part of the QAM symbol on
one sub-carrier while it is applied to the real part of the
QAM symbol on the other sub-carrier. The transmitted signal
is [46]

x(t) = √
2

+∞∑

n=−∞

M−1∑

m=0

(

cR2m,np(t − nT)

+ jcI2m,np

(

t − T

2
− nT

))

ej2π(2m)Ft

+
(

jcI2m+1,np(t − nT)+ cR2m+1,np

(

t − T

2
− nT

))

× ej2π(2m+1)Ft (73)

where T is the signalling interval, F = 1
T is the sub-carrier

spacing, cRm,n and c
I
m,n are the real and imaginary components

of the QAM symbol cm,n to be transmitted on the mth sub-
carrier during the nth multi-carrier symbol, and p(t) is a real
symmetric prototype filter of duration KT where K is the
overlapping factor that denotes the number of multi-carrier
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symbols that overlap in time. We introduce the following
notations, as in [46], to simplify the expression in (73):

d2m,2n = cR2m,n, d2m,2n+1 = cI2m,n,

d2m+1,2n = cI2m+1,n, d2m+1,2n+1 = cR2m+1,n (74)

ψ2m,2n = 0 ψ2m,2n+1 = π

2
ψ2m+1,2n = π

2
ψ2m+1,2n+1 = 0

(75)

Using (74) and (75) in (73) we get

x(t)

= √
2

+∞∑

n=−∞

{
M−1∑

m=0

(

d2m,2np

(

t − (2n)
T

2

)

eψ2m,2n

+ d2m,2n+1p

(

t − (2n+ 1)
T

2

)

× eψ2m,2n+1
)
ej2π(2m)Ft

+
(

d2m+1,2np

(

t − (2n)
T

2

)

eψ2m+1,2n

+ d2m+1,2n+1p

(

t − (2n+ 1)
T

2

)

eψ2m+1,2n+1

)

× ej2π(2m+1)Ft

}

(76)

Defining λm,n(t) = √
2p(t−nT2 )e

j2πmFteψm,n and substituting
in (76) we get

x(t) =
+∞∑

n=−∞

M−1∑

m=0

(
d2m,2nλ2m,2n(t)+ d2m,2n+1λ2m,2n+1(t)

+ d2m+1,2nλ2m+1,2n(t)

+ d2m+1,2n+1λ2m+1,2n+1(t)
)

(77)

Since
k=Q∑
k=−P

(x2k + x2k+1) =
k=2Q+1∑

k=−2P
xk, we have from (77)

x(t) =
+∞∑

n=−∞

2M−1∑

m=0

(
dm,2nλm,2n(t)+ dm,2n+1λm,2n+1(t)

)

=
+∞∑

n=−∞

2M−1∑

m=0

dm,nλm,n(t)

=
+∞∑

n=−∞

2M−1∑

m=0

dm,npm

(

t − n
T

2

)

ejψm,n (78)

where pm(t) = √
2p(t)ej2πmFt. The received signal is passed

through an analysis filter bank (AFB) to separate the data
from different sub-carriers. The receive filter for the rth
sub-carrier, pRr (t) is matched to the transmit filter for the
rth sub-carrier pr(t), i.e., we have pRr (t) = p∗

r (−t) =√
2p(−t)ej2πmFt (p∗(−t) = p(−t) as the prototype filter p(t)

is real). Let

〈λm,n(t), λp,q(t)〉 =
∫ +∞

−∞
pm

(

t − n
T

2

)

ejψm,np∗
p

(

t − q
T

2

)

× e−jψp,qdt (79)

where 〈,〉 denotes the inner product. In a distortion free
channel, perfect reconstruction of the data is obtained if
the transmit and receive filters satisfy the real orthogonality
condition [47]:

�{〈λm,n(t), λp,q(t)〉
}

= �
{∫ +∞

−∞
pm

(

t − n
T

2

)

ejψm,np∗
p

(

t − q
T

2

)

e−jψp,qdt
}

= δm,pδn,q (80)

In other words, this means that for (m, n) 
= (p, q),
〈λm,n(t), λp,q(t)〉 can be purely imaginary or zero. The
received signal after passing through the receive filter
corresponding to the rth sub-carrier is

yr(t) = x(t) ∗ p∗
r (−t)

=
+∞∑

n=−∞

2M−1∑

m=0

dm,ne
jψm,n

∫ +∞

−∞
pm

(

τ − n
T

2

)

p∗
r (τ − t)dτ

(81)

Using the tensor framework, the data to be transmitted
on the nth multicarrier symbol is a tensor D[n] ∈ C

2M
n

with components Dm[n] = d(m−1),nejψ(m−1),n and the over-
all channel is H(t) ∈ C

2M×2M
t with components Hr,m(t) =∫ +∞

−∞ p(m−1)(τ )p∗
(r−1)(τ − t)dτ . We may now re-write (81)

in tensor form as

Yr(t) =
+∞∑

n=−∞

2M∑

m=1

Hr,m

(

t − n
T

2

)

Dm[n] (82)

where Yr(t) = y(r−1)(t). In tensor notation (82) becomes
Y(t) = ∑+∞

n=−∞{H(t − nT2 ),D[n]}(1). The signal yr(t) is

sampled at intervals of k
T

2
and multiplied by the phase term

e−jψr,k . This gives

yr,k = yr

(

k
T

2

)

e−jψr,k

=
∑

n

∑

m

dm,ne
jψm,ne−jψr,k

∫ +∞

−∞
pm

(

τ − n
T

2

)

× p∗
r

(

τ − k
T

2

)

dτ

=
∑

n

∑

m

dm,n〈λm,n(t), λr,k(t)〉

=
∑

n

∑

m

dm,n�
{〈λm,n, (t)λr,k(t)〉

}

+
∑

n

∑

m

dm,n�
{〈λm,n(t), λr,k(t)〉

}
(83)

Using (80) we get

yr,k = dr,k + j

(
∑

n

∑

m

dm,n�
{〈λm,n(t), λr,k(t)〉

}
)

(84)

Since the interference in (84) is imaginary, the estimate of
the transmitted data is d̂r,k = �{yr,k}. Using tensor notation,
this becomes D̂[k] = �{Y(k T2 )}.
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Next, we consider the MIMO extension of FBMC. In
each FBMC symbol, let there be P independent streams of
data transmitted using 2M sub-carriers, NT transmit and NR
receive antennas. There are P synthesis filter banks, one
for each stream of data. Denote the filter for the mth sub-
carrier for the pth synthesis filter bank by pp,m(t). A weight
wnt,p is assigned to the pth SFB output for the ntth antenna.
The weights wnt,p are the coefficients of a linear precoder
that couples the P streams of data with the NT transmit
antennas. Denote the data symbol for the pth stream, mth
sub-carrier and nth FBMC symbol by dp,m,n. As for the
scalar case in (78), each data symbol dp,m,n is multiplied by
a phase term ejψm,n . We get the transmit signal from the ntth
antenna as

xnt(t) =
+∞∑

n=−∞

2M−1∑

m=0

P−1∑

p=0

wnt,ppp,m

(

t − n
T

2

)

ejψm,ndp,m,n

(85)

Denoting the channel between the ntth transmit and the nrth
receive antenna by hnr,nt(t), the received signal on the nrth
antenna is

rnr (t) =
∑

nt

hnr,nt (t) ∗ xnt (t) =
∑

nt

hnr,nt (t)

×
⎛

⎝
+∞∑

n=−∞

2M−1∑

m=0

P−1∑

p=0

wnt,ppp,m

(

t − n
T

2

)

ejψm,ndp,m,n

⎞

⎠

(86)

Let cnr,p,m(t) = ∑

nt
hnr,nt(t) ∗ wnt,ppp,m(t). We can then re-

write (86) as

rnr (t) =
+∞∑

n=−∞

2M−1∑

m=0

P−1∑

p=0

cnr,p,m

(

t − n
T

2

)

ejψm,ndp,m,n (87)

There are P analysis filter banks (AFB) at the receiver,
one corresponding to each transmit SFB, that filter the NR
received signals rnr (t) and produce outputs yp,m(t). Denote
the filter for the pth AFB, nrth receive antenna and mth
sub-carrier by pRp,m,nr (t). The output of the AFB is

yp,m(t) =
∑

nr

pRp,m,nr (t) ∗ rnr (t)

=
∑

nr

+∞∑

n=−∞

2M−1∑

m=0

P−1∑

p=0

pRp,m,nr (t) ∗

cnr,p,m

(

t − n
T

2

)

ejψm,ndp,m,n (88)

If the AFB is designed to be matched to the combined
channel and transmit filter banks, then we have pRp,m,nr (t) =
c∗nr,p,m(−t). Using the Tensor Framework, the data to be
transmitted on the nth multi-carrier symbol isD[n] ∈ C

P×2M
n

with components

Dp,m[n] = eψ(m−1),nd(p−1),(m−1),n (89)

where p = 1, . . . ,P;m = 1, . . . , 2M. As discussed in
Section III, the data tensor in the tensor framework may
be constellation mapped data symbols or data symbols with
some form of precoding. In this case, the data tensor is the
latter due to the multiplication by the phase term. The trans-
mit system tensor HT(t) ∈ C

NT×P×2M
t converts D[n] into a

signal tensor X(t) ∈ C
NT
t . The components of the transmit

system tensor are

HTnt ,p,m(t) = wnt,(p−1)p(p−1),(m−1)(t) (90)

where p = 1, . . . ,P;m = 1, . . . , 2M; nt = 1, . . . ,NT .
We may now re-write (85) in tensor notation as X(t) =
{HT(t − n

T

2
),D[n]}(2). The channel system tensor is

HC(t) ∈ C
NR×NT
t whose components

HCnr ,nt (t) = hnr,nt(t) for nr = 1, . . . ,NR; nt = 1, . . . ,NT
(91)

are the channel between the ntth transmit and nrth receive
antenna. The output of the channel tensor R(t) ∈ C

NR
t is

R(t) = {HC(t) ∗ X(t)}(1) and the combined channel and
transmit system tensor is C(t) = {HC(t) ∗ HT(t)}(1) ∈
C
NR×P×2M
t with components Cnr,p,m(t) = ∑

nt
HCnr ,nt (t) ∗

HTnt ,p,m(t) = ∑

nt
hnr,nt(t) ∗ wnt,(p−1)p(p−1),(m−1)(t) =

cnr,(p−1),(m−1)(t). If a system matched to the combined chan-
nel and synthesis filter bank is used, then the receive system
tensor HR(t) ∈ C

P×2M×NR
t is HR(t) = CH(−t) and converts

R(t) into a signal tensor Y(t) ∈ C
P×2M
t . The overall system

tensor H(t) ∈ C
P×2M×P×2M
t is

H(t) = {
HR(t) ∗ {HC(t) ∗ HT(t)}(1)

}
(1)

=
{
CH(−t) ∗ C(t)

}

(1)
(92)

with components Hp′,m′,p,m(t) =
NR∑

nr=1
C∗
p′,m′,nr (−t) ∗

Cnr,p,m(t) = c∗
(p′−1),(m′−1),nr

(−t) ∗ cnr,(p−1),(m−1)(t). We
may now re-write (88), for the case when pRp,m,nr (t) =
c∗p,m,nr (−t), as
y(p′−1),(m′−1)(t)

=
+∞∑

n=−∞

NR∑

nr=1

2M∑

m=1

P∑

p=1

[
c∗(p′−1),(m′−1),nr (−t)

× cnr,(p−1),(m−1)

(

t − n
T

2

)

ejψ(m−1),nd(p−1),(m−1),n

]

=
+∞∑

n=−∞

2M∑

m=1

P∑

p=1

Hp′,m′,p,m

(

t − n
T

2

)

Dp,m[n] = Yp′,m′(t)

(93)

Writing Yp′,m′(t) =
+∞∑

n=−∞

2M∑

m=1

P∑

p=1
Hp′,m′,p,m(t−nT2 )Dp,m[n]

in tensor notation gives

Y(t) =
+∞∑

n=−∞
{H(t − nT0),D[n]}(2) (94)
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where T0 = T
2 . Sampling (94) at intervals kT0 we get

Y[k] = Y(kT0) =
+∞∑

n=−∞
{H((k − n)T0),D[n]}(2) (95)

An estimate of the data tensor D̂[k] ∈ C
P×2M
k is found by

feeding Y[k] into a tensor detector G[k] ∈ C
P×2M×P×2M
k ,

some of which are derived in the next section, such that
D̂[k] = {G[k],Y[k]}(2).

C. GENERALIZED FREQUENCY DIVISION
MULTIPLEXING (GFDM)
Generalized frequency division multiplexing (GFDM) [48] is
a block-based multicarrier modulation scheme that employs
circular filtering. Consider a time-frequency resource block
of duration T and bandwidth B. The available bandwidth
is divided into K equally-spaced subcarriers with subcarrier
spacing �f = B

K [48], and the time slot is divided into M
subsymbols with subsymbol spacing Tsub = T

M . The relation
between the subcarrier spacing and the subsymbol spacing
is given by �f Tsub = 1. The data symbol transmitted on the
mth subsymbol, and kth sub-carrier is modulated by a pulse
pk,m(t) given by

pk,m(t) = wT(t)pT(t − mTsub)e
j2π�f kt (96)

where m = 0, . . . ,M − 1; k = 0, . . . ,K − 1 and pT(t) is
a prototype pulse shape of period T , Tsub is the duration
of one sub-symbol, T is the duration of the entire GFDM
symbol, and wT(t) is a rectangular window of duration T
such that

wT(t) =
{

1 for t ∈ [0, T]
0 elsewhere

(97)

The rectangular window wT(t) is used to limit the final
modulating pulse pk,m(t) to the interval t ∈ [0, T]. A GFDM
block hence comprises of pulse shapes generated by time
and frequency shifts of a prototype pulse shape followed by
multiplication by a finite time window. The transmit signal
is given by

x(t) =
+∞∑

n=−∞

K−1∑

k=0

M−1∑

m=0

pk,m(t − nT)dk,m,n (98)

where dk,m,n is the complex data transmitted during the mth
subsymbol on the kth subcarrier and the nth GFDM symbol.
Denoting the channel by c(t) and the additive white Gaussian
noise (AWGN) process by v(t), the received signal is

r(t) = c(t) ∗ x(t)+ v(t)

=
+∞∑

n=−∞

K−1∑

k=0

M−1∑

m=0

(
c(t) ∗ pk,m(t − nT)

)
dk,m,n + v(t) (99)

Defining second order tensors D[n] ∈ C
K×M
n and H(t) ∈

C
K×M
t with components Dk,m[n] = dk,m,n and Hk,m(t) =

c(t) ∗ pk,m(t), we re-write (99) using the tensor representa-
tion as

r(t) =
+∞∑

n=−∞
{H(t − nT),D}(2) + v(t) (100)

The signal r(t) is the input to a system tensor HR(t) ∈
C
K×M×1
t where the singleton dimension is used to indicate

that the input to this system is a scalar function (r(t)). If
there is a bank of filters matched to the transmit filters at
the receiver then we have HRk,m(t) = p∗

k,m(−t) whose output
Y ∈ C

K×M has components Yk,m(t) = p∗
k,m(−t) ∗ r(t).

Extending this to the MIMO case, let P independent
streams of data be transmitted using K sub-carriers, M sub-
symbols and NT transmit antennas. Let there be NR receive
antennas. Assuming that different banks of filters are used
at each transmit and receive antenna, we get the signal
transmitted by the ntth antenna as

xnt(t) =
+∞∑

n=−∞

P∑

p=1

K∑

k=1

M∑

m=1

wnt,pdn,p,k,mpTnt ,k,m(t − nT) (101)

where dn,p,k,m is the data transmitted on the nth GFDM
symbol, during the mth sub-symbol, on the kth sub-carrier
and on the pth stream. Using the Tensor Framework, the
complex data to be transmitted on the nth GFDM symbol is
D[n] ∈ C

P×K×M
n with components Dp,k,m[n] = dn,p,k,m. The

transmit tensor HT(t) ∈ C
NT×P×K×M
t whose (nt, p, k,m)th

component is HTnt ,p,k,m = wnt,ppTnt ,k,m(t) converts the data
tensor into a signal tensor X(t) ∈ C

NT
t . We write (98) using

tensor notation as X(t) = ∑+∞
n=−∞{HT(t − nT),D[n]}(3).

The channel system tensor is HC(t) ∈ C
NR×NT
t whose

components HCnr ,nt (t) are the channel between the ntth
transmit and nrth receive antenna. The output of the channel
R(t) ∈ C

NR
t is R(t) = {HC(t) ∗ X(t)}(1) and the combined

channel and transmit tensor C(t) ∈ C
NR×P×K×M
t is C(t) =

{HC(t)∗HT(t)}(1). If a matched filter is used at the receiver,
the receive system tensor HR(t) = CH(−t) ∈ C

P×K×M×NR
t

converts R(t) into a signal tensor Y(t) ∈ C
P×F×K
t . The

overall system tensor H(t) ∈ C
P×K×M×P×K×M
t is

H(t) = {
HR(t) ∗ {HC(t) ∗ HT(t)}(1)

}
(1)

=
{
CH(−t) ∗ C(t)

}

(1)
(102)

and

Y(t) =
+∞∑

n=−∞
{H(t − nT),D[n]}(3) (103)

Sampling (103) at intervals of T gives Y[k] = Y(kT) =
{H(kT − nT),D[n]}(3). An estimate of the data tensor
D̂[k] ∈ C

P×K×M
k is found by feeding Y[k] into a tensor

detector G[k] ∈ C
P×K×M×P×K×M
k , some of which are derived

in the next section, such that D̂[k] = {G[k],Y[k]}(3).
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V. MULTI-DOMAIN EQUALIZATION
A. EQUIVALENT DISCRETE TIME MODEL
Consider the system in Figure 3. The data transmit-
ted on the nth tensor symbol is D[n] ∈ C

I1×···×IN
n .

The transmit, channel and receive system ten-
sors are HT(t) ∈ C

J1×···×JM×I1×···×IN
t , HC(t) ∈

C
K1×···×KO×J1×···×JM
t , HR(t) ∈ C

L1×···×LP×K1×···×KO
t

respectively, N(t) ∈ C
K1×···×KO
t is an additive noise tensor,

X(t) ∈ C
J1×···×JM
t is the output of the transmit system

tensor and Y(t) ∈ C
L1×···×LP
t is the output of the receive

system tensor. Furthermore, G[n] ∈ C
I1×···×IN×L1×···×LP
n is a

discrete system tensor whose output D̂[n] is the estimate
of the data D[n]. The input to the receive system tensor is

R(t) =
{

{HC(t) ∗ HT(t)}(M) ∗
∑

n

D[n]δ(t − nT)

}

(N)

+ N(t)

= {C(t − nT),D[n]}(N) + N(t) (104)

where the cascade of the transmit tensor and the channel
tensor is represented by C(t) = {HC(t) ∗ HT(t)}(M) ∈
C
K1×···×KO×I1×···×IN
t . The output of the receive system

tensor is

Y(t) = {HR(t) ∗ R(t)}(O) + {HR(t) ∗ N(t)}(O)
=

+∞∑

n=−∞
{H(t − nT),D[n]}(N) + V(t) (105)

where H(t) ∈ C
L1×···×LP×I1×···×IN
t is the overall system ten-

sor comprising the transmit, channel and receive system
tensors, and V(t) = {HR(t) ∗ N(t)}(O) ∈ C

L1×···×LP
t .

Sampling the output Y(t) at a rate of 1
T , we get

Y[k] = Y(kT) =
+∞∑

n=−∞
{H(kT − nT),D[n]}(N) + V[kT]

=
+∞∑

n=−∞
{H[k − n],D[n]}(N) + V[k] (106)

where H[k] = H(kT) is the kth sample of H(t) and
V[k] = {HR(t) ∗ N(t)}(O)|(t=kT) is the sampled noise with
autocorrelation

RV[i] = E
[
V[k] ◦ V∗[k − i]

]
(107)

The output of G[n], which is the estimate of the data tensor
D[k], is

D̂[k] =
∑

m

{G[m],Y[k − m]}(P)

=
∑

m

∑

n

{
G[m], {H[n],D[k − m− n]}(N)

}
(P)

+
∑

m

{G[m],V[k − m]}(P)

=
∑

m

∑

n

{
G[m], {H[n],D[k − m− n]}(N)

}
(P) + Ṽ[k]

(108)

resulting in the equivalent discrete time system model.

Theorem 1: Consider an input X(t) =
+∞∑

n=−∞
X[n]δ(t −

nT) ∈ C
I1×···×IN
t to a system tensor A(t) ∈

C
J1×···×JM×I1×···×IN
t . The output of this filter, corrupted by

additive white Gaussian noise, is R(t) = {A(t) ∗X(t)}(N) +
N(t) where N(t) is a tensor whose components are white
Gaussian noise processes. Let R(t) be the input to a
system tensor B(t) ∈ C

I1×···×IN×J1×···×JM
t with an output

Y(t) ∈ C
I1×···×IN
t . The per component SNR of the samples

Y(kT) = Y[k] is maximized when B(t) = AH(−t).
Proof: The tensor Y(t) can be written as

Y(t) = {
B(t) ∗ {A(t) ∗ X(t)}(N)

}
(M) + {B(t) ∗ N(t)}(M)

=
+∞∑

n=−∞
{C(t − nT),X[n]}(N) + V(t) (109)

where C(t) = {B(t)∗A(t)}(M) and V(t) = {B(t)∗N(t)}(M).
Sampling at intervals of kT gives

Y[k] =
+∞∑

n=−∞
{C[k − n],X[n]}(N) + V[k] (110)

with components

Yi1...iN [k] = Ci1...iN i1...iN [0]Xi1...iN [k] + Ii1...iN [k] + Vi1...iN [k]

(111)

where

Ii1...iN [k] =
∑

i′1...i′N ,i′q 
=iq,q=1,...,N

Ci1...iN i′1...i′N [0]Xi′1...i′N [k]

+
+∞∑

n=−∞
n 
=k

∑

i′1...i′N

Ci1...iN i′1...i′N [k − n]Xi′1...i′N [n]

(112)

We define the per component SNR γi1,...,iN at the sampled
output of the system B(t) as the ratio of the power of
the desired symbol Xi1,...,iN [k] and the power of the noise
Vi1,...,iN [k]. The intra-tensor and inter-tensor interference
is contained in Ii1,...,iN [k] and is not considered in this
definition of the SNR. We have

γi1,...,iN =
∣
∣Ci1,...,iN ,i1,...,iN [0]

∣
∣2Ei1,...,iN

E
[
Vi1,...,iN [k]V∗

i1,...,iN [k]
] (113)

where Ei1,...,iN = E [Xi1,...,iNX
∗
i1,...,iN ]. We may expand

|Ci1,...,iN ,i1,...,iN [0]|2 as

∣
∣Ci1,...,iN ,i1,...,iN [0]

∣
∣2

=
∣
∣
∣
∣
∣
∣

∑

j1,...,jM

∫ +∞

−∞
Bi1,...,iN ,j1,...,jM (t)Aj1,...,jM,i1,...,iN (−t)dt

∣
∣
∣
∣
∣
∣

2

(114)
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The denominator of (113) can be expanded, using
E [Nj1,...,jM (t)Nj′1,...,j′M (p)] = N0δ(t − p) when (j1, . . . , jM) =
(j′1, . . . , j′M) and 0 otherwise, as

E
[
Vi1,...,iN [k]V∗

i1,...,iN [k]
]

= E

⎡

⎣
∑

j1...jM

∫ +∞

−∞
Bi1...iN j1...jM (t)Nj1...jM (kT − t)dt

×
∑

j′1...j′M

∫ +∞

−∞
B∗
i1...iN ,j′1...j′M

(p)N∗
j′1...j′M

(kT − p)dp

⎤

⎦

= N0

∑

j1...jM

+∞∫

−∞

+∞∫

−∞
Bi1...iN j1...jM (t)B

∗
i1...iN j1...jM (p)δ(t − p)dtdp

= N0

∑

j1,...,jM

+∞∫

−∞

∣
∣Bi1,...,iN ,j1,...,jM (t)

∣
∣2dt (115)

Using (114) and (115) in (113) we get

γi1,...,iN

=
∣
∣
∣
∑

j1...jM

∫ +∞
−∞ Bi1...iN j1...jM (t)Aj1...jMi1...iN (−t)dt

∣
∣
∣
2
Ei1...iN

N0
∑

j1...jM

∫ +∞
−∞

∣
∣Bi1,...,iN ,j1,...,jM (t)

∣
∣2dt

(116)

Using the Cauchy-Schwartz inequality from Appendix A this
becomes

γi1,...,iN

≤

⎛

⎝
∑

j1 ...jM

+∞∫

−∞

∣
∣Ai1 ...iN j1 ...jM (t)

∣
∣2dt

∑

j1 ...jM

+∞∫

−∞

∣
∣Bj1 ...jMk1 ...kP (t)

∣
∣2dt

⎞

⎠Ei1 ...iN

N0
∑

j1,...,jM

∫ +∞
−∞

∣
∣Bi1,...,iN ,j1,...,jM (t)

∣
∣2dt

=
∑

j1 ...jM

+∞∫
−∞

∣
∣Ai1 ...iN j1 ...jM (t)

∣
∣2dtEi1,...,iN

N0
(117)

with equality when Bi1,...,iN ,j1,...,jM (t) = A∗
j1,...,jM,i1,...,iN (−t).

This means that the SNR attains its maximum value when
B(t) = AH(−t).
If the receiver employs a tensor matched filter, that is

matched to the combined channel and transmit tensors,
we have HR(t) = CH(−t) ∈ C

I1×···×IN×K1×···×KO
t and the

overall system tensor is H(t) = {CH(−t) ∗ C(t)}(O) ∈
C
I1×···×IN×I1×···×IN
t .

B. LINEAR EQUALIZATION
We now consider linear equalization schemes where the
equalizer has a finite number (M) of tensor taps {G[i] ∈
C
I1×···×IN×L1×···×LP
i }, i = 0, 1, . . . ,M − 1. Assume that

the overall channel contains v + 1 tensor taps {H[i] ∈
C
L1×···×LP×I1×···×IN
i }, i = 0, 1, . . . , v such that the estimate

of the data tensor is given by

D̂[k] =
M−1∑

i=0

{G[i],Y[k − i]}(P) (118)

There is a decision delay �, such that 0 ≤ � ≤ M +
v − 1, to ensure causality. This delay is important when
designing finite-length equalizers as non-causal filters cannot
be implemented in practice. Hence, the tensor D̂[k] is an
estimate of D[k − �]. Collecting the received tensor for
different delays Y[k],Y[k − 1], . . . ,Y[k − (M − 1)] into an
extended tensor Ȳ[k] ∈ C

M×L1×···×LP
k , where the additional

domain is the delay domain, we have

Ȳm,l1,...,lP [k] = Yl1,...,lP[k − (m− 1)] for m = 1, . . . ,M

(119)

Similarly, define extended noise tensor V̄[k] ∈ C
M×L1×···×LP
k

and extended data tensor D̄[k] ∈ C
(M+v)×I1×···×IN
k such that

D̄q,i1,...,iN [k] = Di1,...,iN

[
k − (q− 1)

]
for q = 1, . . . ,M + v

V̄m,l1,...,lP [k] = Vl1,...,lP [k − (m− 1)] for m = 1, . . . ,M

(120)

The slice of a tensor is defined as a two-dimensional
section of a tensor obtained by fixing all but two
indices [8]. For example, a tensor A ∈ C

I1×I2×I3 has three
slices denoted by Ai1,:,:,A:,i2,: and A:,:,i3 . Define H̄ ∈
C
M×L1×···×LP×(M+v)×I1×···×IN
k with two additional domains

corresponding to the delays at the receiver and the transmit-
ter such that the slice H̄:,l1,...,lP,:,i1,...,iN has components as
shown in (121) at the bottom of the next page.
For a channel H[k] with v + 1 non-zero taps, (106)

becomes Y[k] =
v∑

n=0
{H[k],D[k − n]}(N) + V[k] with

components

Yl1...lP [k] =
v∑

n=0

∑

i1...iN

Hl1...lPi1...IN [n]Di1...iN [k − n] + Vl1...lP [k]

(122)

Using (119) and (122) we have

Ȳm,l1,...,lP[k]

= Yl1,...,lP [k − (m− 1)]

=
v∑

n=0

∑

i1...iN

Hl1...lPi1...IN [n]Di1...iN [k − (m− 1)− n]

+ Vl1...lP[k − (m− 1)]

and with (121) this becomes

Ȳm,l1...lP [k]

=
M+v∑

q=1

∑

i1...iN

H̄m,l1...lP,q,i1...IND̄q,i1...iN [k] + V̄m,l1...lP [k] (123)

which in tensor notation gives

Ȳ[k] = {
H̄, D̄[k]

}
(N+1) + V̄[k] (124)

Further, define an augmented tensor Ḡ ∈
C
I1×···×IN×M×L1×···×LP , which is a collection of the tensor

equalizer taps G[0], . . . ,G[M − 1], whose components are

Ḡi1...iNml1...lP = Gi1...iN l1...lP [(m− 1)] for m = 1 . . .M (125)
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The components of D̂[k] from (118) can be written as

D̂i1...iN [k] =
M−1∑

m=0

⎛

⎝
∑

l1...lP

Gi1...iN l1...lP[m]Yl1...lP[k − m]

⎞

⎠

=
∑

l1...lP

Gi1,...,iN ,l1,...,lP [0]Yl1,...,lP [k] + · · ·

+
∑

l1...lP

Gi1,...,iN ,l1,...,lP [M−1]Yl1,...,lP [k−M+1]

=
∑

l1...lP

Ḡi1,...,iN ,1,l1,...,lPȲ1,l1,...,lP [k]

+ · · · +
∑

l1...lP

Ḡi1,...,iN ,M,l1,...,lPȲM,l1,...,lP [k]

=
({

Ḡ, Ȳ[k]
}
(P+1)

)

i1,...,iN
(126)

and (118) becomes

D̂[k] = {
Ḡ, Ȳ[k]

}
(P+1) (127)

The choice of the equalizer taps depends on the crite-
rion used. A zero forcing equalizer aims to remove the
interference introduced by the channel. Define an augmented
identity tensor P ∈ C

I1×···×IN×(M+v)×I1×···×IN such that

P:,...,:,m,:,...,: =
{
0T if m 
= �+ 1
IN if m = �+ 1

(128)

where 0T ∈ C
I1×···×IN×I1×···×IN is the all zero tensor and

IN ∈ C
I1×···×IN×I1×···×IN is the identity tensor. Notice that

{P, D̄[k]}(N+1) = D[k−�]. Substituting for Ȳ[k] from (124)
in (127) gives

D̂[k] =
{{

Ḡ, H̄
}
(P+1), D̄[k]

}

(N+1)
+ {

Ḡ, V̄[k]
}
(P+1)

(129)

This means that if
{
Ḡ, H̄[k]

}
(P+1) = P (130)

then the effects of the interference are completely removed,
and in the absence of noise, D̂[k] = D[k−�]. The solution
to (130) gives

ḠZF =
{
P, H̄

+
[k]
}

(N+1)
(131)

For an equalizer that minimizes the error between the data
and the estimate, we define an error tensor

E[k] = D̂[k] − D[k −�] = {
Ḡ, Ȳ[k]

}
(P+1) − D[k −�]

(132)

The mean squared error is defined as

MSE =
∑

i1,...,iN

E

[∣
∣Ei1,...,iN [k]

∣
∣2
]

=
∑

i1,...,iN

E

[∣
∣Di1,...,iN [k] − D̂i1,...,iN [k]

∣
∣2
]

(133)

= E

[∥
∥
∥D[k] − D̂[k]

∥
∥
∥

2

F

]

. (134)

Theorem 2: The mean squared error between a tensor
D[k] ∈ C

I1×···×IN
k and its estimate D̂[k] ∈ C

I1×···×IN
k is

minimized if and only if the error is uncorrelated with all
the observed tensors Y[k] ∈ C

L1×···×LM
k

E
[
E[k] ◦ Y∗[k − i]

] = 0T ∀i (135)

where E[k] = D[k] − D̂[k].
The proof of this theorem can be found in Appendix B.

Using Theorem 2, we have that the optimal multi-linear
equalizer must satisfy

RE,Y[i] = E

[(
D̂[k] − D[k −�]

)
◦ Y∗[k − i]

]
= 0T

for |i| ≤ M (136)

where 0T ∈ C
I1×···×IN×L1×···×LP , which is equivalent to

E

[(
D̂[k] − D[k −�]

)
◦ Ȳ

∗
[k]
]

= 0T (137)

=⇒ E

[
D̂[k] ◦ Ȳ

∗
[k]
]

= E
[
D[k −�]) ◦ Ȳ

∗
[k]

(138)

where 0T ∈ C
I1×···×IN×M×L1×···×LP . Substituting the value

of D̂[k] from (127), we get

E

[{
Ḡ, Ȳ[k]

}
(P+1) ◦ Ȳ

∗
[k]
]

= E

[
D[k −�] ◦ Ȳ

∗
[k]
]
(139)

Denoting RȲ[0] = E [Ȳ[k] ◦ Ȳ
∗
[k]] = RȲ, we have

RȲ = E

[
Ȳ[k] ◦ Ȳ

∗
[k]
]

= E

[({
H̄, D̄[k]

}
(N+1)+V̄[k]

)
◦
({

H̄, D̄[k]
}
(N+1)+V̄[k]

)∗]

= E

[
{
H̄, D̄[k]

}
(N+1) ◦

{
H̄

∗
, D̄

∗
[k]
}

(N+1)

]

+ E

[{
H̄, D̄[k]

}
(N+1) ◦ V̄

∗
[k]
]

+ E

[

V̄[k] ◦
{
H̄

∗
, D̄

∗
[k]
}

(N+1)

]

+ E

[
V̄[k] ◦ V̄

∗
[k]
]

=
{{

H̄,RD̄

}
(N+1), H̄

H
}

(N+1)
+ RV̄ (140)

H̄:,l1,...,lP,:,i1,...,iN

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Hl1...lPi1...iN [0] . . . Hl1...lPi1...iN [v] 0 . . . . . . 0
0 Hl1...lPi1...iN [0] . . . Hl1...lPi1...iN [v] 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...

0 . . . . . . 0 Hl1...lPi1...iN [0] . . . Hl1...lPi1...iN [v]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(121)
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where RV̄ = E [V̄[k] ◦ V̄∗
[k]] and RD̄ = E [D̄[k] ◦ D̄∗

[k]].
Let E [D[k −�] ◦ Ȳ

∗
[k]] = RD,Ȳ. Using (124) gives

RD,Ȳ = E

[
D[k −�] ◦ Ȳ

∗
[k]
]

= E

[
D[k −�] ◦

({
H̄, D̄[k]

}
(N+1) + V̄[k]

)∗]

=
{
E
[
D[k −�] ◦ D̄[k]

]
, H̄

H
}

(N+1)

=
{
RD,D̄, H̄

H
}

(N+1)
(141)

where RD,D̄ = E [D[k −�] ◦ D̄[k]] and has components

RD,D̄i1 ...iNmi
′
1 ...i

′
N

= E

[
Di1...iN [k −�]D∗

i′1...i′N
[k − m]

]

Assuming the data tensors are uncorrelated, we get

RD,D̄i1 ...iNmi
′
1 ...i

′
N

=
⎧
⎨

⎩

E
[
Di1...iN [k − m] ◦ D∗

i1...iN [k − m]
]

if m = �

and i1 = i′1 . . . iN = i′N
0 otherwise

(142)

Further, we have

RȲ,D = E
[
Ȳ[k] ◦ D∗[k −�]

]

= E

[({
H̄, D̄[k]

}
(N+1) + V̄[k]

)
◦ D∗[k −�]

]

= {
H̄,E

[
D̄[k] ◦ D∗[k −�]

]}
(N+1)

=
{

H̄,
(
E

[
D[k −�] ◦ D̄

∗
[k]
])H

}

(N+1)

=
({

E
[
D[k −�] ◦ D̄[k]

]
, H̄

H
}

(N+1)

)H

= RH
D,Ȳ

(143)

The LHS of (139) becomes

E

[{
Ḡ, Ȳ[k]

}
(P+1) ◦ Ȳ

∗
[k]
]

= E

[{
Ḡ,
(
Ȳ[k] ◦ Ȳ

∗
[k]
)}

(P+1)

]

=
{
Ḡ,
(
E

[
Ȳ[k] ◦ Ȳ

∗
[k]
])}

(P+1)

= {
Ḡ,RȲ

}
(P+1) (144)

and the RHS of (139) becomes

E

[
D[k −�] ◦ Ȳ

∗
[k]
]

= RD,Ȳ (145)

Using (144) and (145), (139) becomes
{
Ḡ,RȲ

}
(P+1) = RD,Ȳ (146)

To find the optimal tap co-efficients, we solve (146) by
contracting both sides of (146) with R−1

Ȳ
. This gives

{{
Ḡ,RȲ

}
(P+1),R

−1
Ȳ

}

(P+1)
=
{
RD,Ȳ,R

−1
Ȳ

}

(P+1)
(147)

Using the associativity property we get
{

Ḡ,
{
RȲ,R

−1
Ȳ

}

(P+1)

}

(P+1)
=
{
RD,Ȳ,R

−1
Ȳ

}

(P+1)
(148)

Since {RȲ,R
−1
Ȳ

}(P+1) = IP+1, we have the optimal tap
coefficients

Ḡopt =
{
RD,Ȳ,R

−1
Ȳ

}

(P+1)
. (149)

C. PERFORMANCE ANALYSIS
We begin by deriving the mean squared error for the linear
equalizers. The auto-correlation of the error tensor can be
written as

RE = E
[
E[k] ◦ E∗[k]

]

= E

[({
Ḡ, Ȳ[k]

}
(P+1) − D[k]

)
◦
({

Ḡ, Ȳ[k]
}
(P+1) − D[k]

)∗]

= E

[
{
Ḡ, Ȳ[k]

}
(P+1) ◦

{
Ḡ

∗
, Ȳ

∗
[k]
}

(P+1)
−{Ḡ, Ȳ[k]

}
(P+1) ◦ D∗[k]

− D[k] ◦
{
Ḡ

∗
, Ȳ

∗
[k]
}

(P+1)
+ D[k] ◦ D[k]∗

]

(150)

Using (16) in (150) we get

RE = E

[
{
Ḡ, Ȳ[k]

}
(P+1) ◦

{
Ȳ

∗
, Ḡ

H
}

(P+1)
+ D[k] ◦ D[k]∗

− {
Ḡ, Ȳ[k]

}
(P+1) ◦ D∗[k] − D[k] ◦

{
Ȳ

∗
[k], Ḡ

H
}

(P+1)

]

(151)

Using the associativitiy property, (151) becomes

RE =
{

Ḡ,
{
RȲ, Ḡ

H
}

(P+1)

}

(P+1)
−
{
Ḡ,RȲ,D

}

(P+1)

−
{
RD,Ȳ, Ḡ

H
}

(P+1)
+ RD (152)

Substituting ḠZF from (131) in (152), we get

REZF

=
{
{
P, H̄

+
[k]
}

(N+1)
,

{

RȲ,
{
P, H̄

+
[k]
}H

(N+1)

}

(P+1)

}

(P+1)

−
{{

P, H̄
+

[k]
}

(N+1)
,RȲ,D

}

(P+1)

−
{

RD,Ȳ,
{
P, H̄

+
[k]
}H

(N+1)

}

(P+1)
+ RD (153)

and the mean squared error is MSEZF = trace(REZF). For
the MMSE equalizer, substituting the optimal system tensor
from (149) in (152), we get

REMMSE

=
⎧
⎨

⎩

{
RD,Ȳ,R

−1
Ȳ

}

(P+1)
,

{

RȲ,

({
RD,Ȳ,R

−1
Ȳ

}

(P+1)

)H
}

(P+1)

⎫
⎬

⎭
(P+1)

−
{{

RD,Ȳ,R
−1
Ȳ

}

(P+1)
,RȲ,D

}

(P+1)

−
{

RD,Ȳ,

({
RD,Ȳ,R

−1
Ȳ

}

(P+1)

)H
}

(P+1)

+ RD (154)

=
{

RD,Ȳ,
{
R−1

Ȳ
,RȲ,D

}

(P+1)

}

(P+1)

− 2

{

RD,Ȳ,
{
R−1

Ȳ
,RȲ,D

}

(P+1)

}

(P+1)
+ RD (155)
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FIGURE 4. Minimum Mean Squared Error versus number of receive domains for a
system with 4 transmit domains of size 2 each and Es = 1.

= RD −
{

RD,Ȳ,
{
R−1

Ȳ
,RȲ,D

}

(P+1)

}

(P+1)
(156)

= RD −
{
Ḡ,RȲ,D

}

(P+1)
(157)

and the minimum mean squared error becomes

MSEMMSE = trace
(
REMMSE

)

= trace

(

RD −
{
Ḡ,RȲ,D

}

(P+1)

)

(158)

Next, we present some simulation results for different
systems using our tensor framework. The energy per ten-
sor component is denoted by Es and the total energy of a
tensor symbol ET is the sum of the energies of its com-
ponents. The SNR is defined as Es

N0
. The signal to noise

ratio (SNR) is varied by changing N0 for a fixed signal
energy. In Fig. 4 we present the mean squared error vs
P, the number of domains at the receiver, for the MMSE
and ZF equalizers. The simulations were carried out at two
fixed SNRs (0dB and 30dB). The results are averaged over
1000 channel realizations. The input D[k] ∈ C

2×2×2×2
k is a

fourth order tensor with components drawn from an i.i.d
source, and 16-QAM is used for modulation. Hence we
have N = 4, implying RD = I4 and RD̄ = I5. The

noise tensor V[k] ∈ C

P︷ ︸︸ ︷
2 × · · · × 2
k , whose components are

complex Gaussian with zero mean and variance N0, has the

same size as the received tensor Y[k] ∈ C

P︷ ︸︸ ︷
2 × · · · × 2
k . The

channels used for the simulation contain three tensor taps
(v = 2) H[0], H[1] and H[2], whose components are ran-
domly generated complex zero-mean uncorrelated Gaussian
random variables with unit variance per complex sample.
The equalizer used for the simulations contains M = 7 taps.

Hence, we have V̄[k] ∈ C
7×2×···×2
k , Ȳ[k] ∈ C

7×2×···×2
k and

H̄ ∈ C
7×2×···×2×9×2×···×2
k , as defined in (120) and (121),

such that (140) and (141) become

RȲ =
{
H̄, H̄

H
}

(5)
+ N0IP+1 (159)

and

RD,Ȳ =
{
RD,D̄, H̄

H
}

(5)
(160)

Substituting the values of RD,Ȳ and RȲ from (159)
and (160) in (153) and (154), and using RD,Ȳ = RH

Ȳ,D
,

gives the analytical mean squared error for the ZF and
MMSE equalizers. The analytical mean squared error for the
MMSE equalizer is shown in (161) at the bottom of the next
page. The expression for the ZF equalizer is omitted here for
the sake of brevity. The simulations we carried out consider
four different number of domains at the receiver which are
summarized in Table 1. The simulated mean squared error
is consistent with the mean squared error values obtained
analytically from (153) and (161). It can be seen that the ZF
and MMSE equalizers perform similarly at the high SNR
value of 30dB regardless of the number of receiver domains.
At the lower SNR value of 0dB, the two equalizers perform
similarly for a small number of domains, but the MMSE
out performs the zero forcing equalizer as the number of
receiver domains is increased. Further, the mean squared
error decreases as the number of domains at the receiver is
increased. Hence performance improvements can be made
to a system by the addition of domains rather than having
to increase the size of the individual domains themselves.
However, the MMSE equalizer harnesses an increased num-
ber of domains better than the ZF equalizer does. We use the
MMSE equalizer at an SNR of 30dB as an example and com-
pute the mean squared error for a system with a channel of
size C

2×2×2×2×8. This system contains only one domain at
the receiver of size 8. The mean squared error for this case, at
SNR = 30dB, was found to be MSE = 8.16. From Fig. 4, we
can see that this value of mean squared error is reached when
there are 3 domains of size 2 each at the receiver. Similarly,
the mean squared error for a system of size C

2×2×2×2×16

at SNR = 30dB was found to be MSE = 1.35. From Fig. 4,
we can see that this value of mean squared error is reached
when there are 4 domains of size 2 each at the receiver.
In summary, the MSE for a system with 3 equal domains
of size 2 reaches the same value as a system with one
large receive domain of size 8, and a system with 4 equal
domains of size 2 has the performance of a system with
one large receive domain of size 16. This is useful when
the size of a domain is constrained. For example in cer-
tain cases, performance improvements through the addition
of frequency or time domains might be more desirable as
compared to the addition of more antennas.
In Fig. 5, we compare the performance of tensor based

multi-domain equalization with a Per Domain Equalizer
(PDE). The input D[k] ∈ C

2×2
k is a second order tensor with

components drawn from i.i.d source, with 16QAM used for
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TABLE 1. Dimension sizes of the receiver.

FIGURE 5. Mean Squared Error versus Interference Power for single domain and
multi domain equalization for SNR = 10dB.

modulation. The energy per tensor component Es = 1. The
channel H[k] ∈ C

2×2×2×2
k is a fourth order tensor with 1

tensor tap (i.e., H[k] = 0 if k 
= 0) and its components
are randomly generated complex zero-mean Gaussian ran-
dom variables. We define the Total Interference Power IT
as the combined energy of those components of the channel
that contribute to inter-domain interference. For example,
consider the component Y1,1[k]. We have

Y1,1[k] = H1,1,1,1D1,1[k] +
intra-domain interference
︷ ︸︸ ︷
H1,1,1,2D1,2[k]

+
inter-domain interference

︷ ︸︸ ︷
H1,1,2,1D2,1[k] + H1,1,2,2D2,2[k] +N1,1[k]

(162)

The inter-domain interference in this case is from the third
and fourth component of (162) and summing the energy of
all such components gives us the total interference power
IT . We compare the performance of multi-domain equaliza-
tion, where the tensor MMSE and ZF equalizers are used
considering both inter-domain and intra-domain interference
vs PDE where only intra-domain interference is considered

for different values of IT in dB. The PDE ignores the inter-
domain interference and hence the third term in the RHS
of (162) is ignored. The equalizers for this case are hence
designed using

Y1,1[k] = H1,1,1,1D1,1[k] + H1,1,1,2D1,2[k] + N1,1[k]

(163)

which generalizes, for component Yi,j, to

Yi,j[k] =
2∑

m=1

Hi,j,i,mDi,m[k] + Ni,j[k] (164)

Define y(i) = [Yi,1,Yi,2]T, d(i) = [Di,1,Di,2]T, n(i) =
[Ni,1,Ni,2]T and

H(i) =
[
Hi,1,i,1 Hi,1,i,2
Hi,2,i,1 Hi,2,i,2

]

(165)

Using (164) we get

y(i) = H(i)d(i) + n(i) (166)

and the MMSE and ZF equalizers for the PDE are

G
(i)
PDMMSE =

(
H(i)

)H
(

H(i)
(
H(i)

)H + N0I
)−1

(167)

G
(i)
PDZF =

(
H(i)

)+
(168)

Hence, each PDE consists of two separate equalizers for
i = 1 and i = 2. Further, to allow us to compare the mean
squared errors of the two types of equalizers we define the
MMSE as the total minimum mean squared error per domain,
i.e., we have

MMSE = 1

2
trace

(
E

[(
D − D̂

)
◦
(
D − D̂

)∗])

MMSEPD = 1

2

2∑

i=1

trace
(
E

[(
d(i) − d̂(i)

)
◦
(
d(i) − d̂(i)

)∗])

(169)

The SNR used for the simulation is 10dB. It can be seen
that the two types of equalizers perform similarly at low
values of IT but there is an aggressive degradation in rel-
ative performance of the single domain equalizers as the
power of the interference is increased. The tensor frame-
work provides an intuitive way to combat interference from
multiple domains simultaneously. Hence, in scenarios where
additional domains are introduced into a system, the tensor
framework can be used to ensure acceptable performance.
In Fig. 6 we present the error rate for different equalizer

tap lengths M = 2K + 1 (K = 3, 5, 7) plotted against the
averaged receive SNR for the finite tap MMSE equalizer.

REMMSE = I4 −
⎧
⎨

⎩

({
RD,D̄, H̄

H
}

(5)

)

,

{({
H̄, H̄

H
}

(5)
+ N0I(P+1)

)−1

,

({
RD,D̄, H̄

H
}

(5)

)H
}

(P+1)

⎫
⎬

⎭
(P+1)

(161)
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FIGURE 6. Finite Tap MMSE Equaliser for L = 2.

Also shown for comparison is the performance for of zero
forcing equalizers with the same number of taps. The input
data tensor D[k] is of size 2 × 2 × 2 with components
drawn from an i.i.d source, with RD[i] = I3, and 4-QAM
is used for modulation. The channel used consists of two
taps (v = 1), i.e., the received tensor Y[k] ∈ C

2×2×2
k only

contains inter-tensor interference from D[k−1]. The channel
is assumed to be time-invariant and known at the receiver.
For each realization of a test channel, the components of
H[k] are drawn from a complex Gaussian distribution such
that each complex sample has zero mean and unit variance.
In this case (140) and (141) become

RȲ =
{
H̄, H̄

H
}

(4)
+ N0I4 (170)

and

RD,Ȳ =
{
RD,D̄, H̄

H
}

(4)
(171)

The coefficients of the equalizer are calculated using (149)
and the error rate is found by averaging MATLAB simula-
tion results over 100 channel realizations, accumulating 250
errors at each SNR. We can see that there is an improve-
ment in error performance as the number of tensor taps
in the equalizer increases. Further, the performance of the
zero forcing equalizer for the same number of taps is worse
than the MMSE equalizer but the difference between their
performance decreases with increased SNR. In Fig. 7 we
present results for a channel with three taps (v = 2). We
can see that the error floors are formed as the SNR is
increased due to the fact that the interference is not com-
pletely removed. The error floors are higher for three channel
taps when compared to the two-tap channel scenario of
Fig. 6. Once again, the zero forcing equalizer performs
worse than the MMSE equalizer and yields a higher error

TABLE 2. Simulation parameters.

FIGURE 7. Finite Tap MMSE Equaliser for L = 3.

FIGURE 8. ZF and MMSE Equalizers for zero inter-tensor interference. The size in
the legend corresponds to the size of the transmit tensor.

floor. Table 2 summarizes the simulation parameters for
Figs. 6 and 7.
The error performance when there is no inter-tensor

interference is illustrated in Fig. 8. We consider the case
when there is only intra-tensor interference, and hence each
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FIGURE 9. MSE for different equalizer number of taps, Es = 1.

component of Y[k] is a linear combination of the com-
ponents of D[k]. It is assumed that RD[0] = I(N) and
RV[0] = N0I(N). The channel contains only one non-zero
tap (v = 0), H = H[0] and the equalizer also contains one
tap G. The simulations are carried out for channels of three
different sizes: (2×2×2×2×2×2), (2×2×2×2×2×2×2×2)
and (2×2×2×2×2×2×2×2×2×2) with corresponding
sizes of transmit tensors: (2 × 2 × 2), (2 × 2 × 2 × 2) and
(2 × 2 × 2 × 2 × 2). We can see that the performance of
the MMSE equalizer is better than the zero forcing equal-
izer. This is attributed to the fact that there is significant
noise enhancement due to the contraction of the noise ten-
sor V[k] with H−1. Further, as the size of the channels, and
hence the number of domains in the receiver, increases, the
MMSE equalizer performs better. This is because increasing
the number of domains, and hence the number of samples,
results in better averaging of the noise. Unlike the MMSE
equalizer that optimizes the mean squared error, the zero
forcing equalizer simply eliminates the interference from the
other components of the data tensor at the expense of noise
enhancement. In the three systems of Fig. 8, the number
of transmit domains increases at the same rate as the num-
ber of receiver domains and any gain in performance from
the additional receive domains is nullified by the additional
data being transmitted on the added transmit domains that
increases the noise enhancement due to channel inversion.
Comparing Fig. 8 with Fig. 6 we can see that the multi-

tap equalizers perform better even though there is more
interference in the system of Fig. 6. The variation of the
mean squared error with the number of equalizer taps at
SNR = 5dB is shown in Fig. 9. As we can see, the equal-
izer for the case where there is no inter-tensor interference
(L = 1) does not benefit from increasing the number of taps
while the equalizer with L = 2 performs worse for K = 1

FIGURE 10. MSE (right) and SER (left) vs SNR for MIMO GFDM, Es = 1.

but improves as the number of taps is increased. As illus-
trated in Fig. 9 we see that as the number of equalizer taps
is increased, the performance improves in the case of the
system with inter-tensor interference. This is not true for the
case where there is only intra-tensor interference.

VI. APPLICATIONS OF THE TENSOR FRAMEWORK TO
MULTI-USER MIMO GFDM
In this section we explore applications of the tensor frame-
work by studying higher order extensions of GFDM in the
form of MIMO GFDM and Multi-user MIMO GFDM.

A. MIMO GFDM
The GFDM system model and its extension to MIMO GFDM
was considered in Section IV-C. In this section we con-
sider the performance of a MIMO GFDM system using a
linear MMSE equalizer. The data being transmitted in the
nth MIMO GFDM symbol (which contains P streams of
K subcarriers and M subsymbols) is a third order tensor
D[n] ∈ C

K×M×P
n with RD = I3. There are 2 transmit

and 2 receive antennas. We have assumed that there is no
interference between successive MIMO GFDM symbols due
to the use of a cyclic prefix and hence there is only intra-
tensor interference. Hence, the discrete time channel model is
given by (106), where the overall channel is a sixth order ten-
sor H[n] ∈ C

K×M×P×K×M×P
n that couples the input with an

output, which is another third order tensor Y[n] ∈ C
K×M×P
n .

The transmit and receive system tensors are as described
in Section IV and the components of the channel tensor

are HCnr ,nt (t) = ∑15
q=0 aq,nr,ntδ(t− q

T

KM
) where aq,nr,nt are

independent complex Gaussian random variables with zero
mean and unit variance. The equalizer consists of one tap
and the delay used is � = 0. Monte-Carlo simulation results
assessing performance are presented in Fig. 10. Results from
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FIGURE 11. System Model for two user MIMO GFDM.

TABLE 3. Simulation parameters for MIMO GFDM.

1000 different channel realizations were averaged to find the
mean squared error. The error rate is found by averaging
MATLAB simulation results over 100 channel realizations,
accumulating 250 errors at each SNR. The other parameters
used for the simulations are defined in Table 3. Our results
show that the SER decreases as the SNR increases, and there
is no error floor. This is because there is no inter-tensor
interference.
Using the tensor framework allows us to maintain the

structure of the system and this becomes important as the
number of domains increases. For instance, as we shall
see in the next sub-section, if we add an additional user
domain then the transmitted data becomes four dimensional
and representing this using matrices becomes increasingly
more difficult to comprehend. On the other hand, as seen
before, the addition of domains using the tensor framework
is achieved more naturally and intuitively.

B. MULTI-USER MIMO-GFDM
Next, we explore the addition for a fourth domain to the
MIMO-GFDM system discussed previously by considering

FIGURE 12. MSE vs SNR for the three different equalizers.

Multi-User MIMO-GFDM. Assume U users with data trans-
mitted by the ith user represented by a third order tensor
D(i) ∈ C

P×M×K where P is the number of GFDM streams
per user, M is the number of time-slots and K is the number
of sub-carriers. There is no interference between two succes-
sive data tensors and hence we have dropped the index [n]
for ease of representation. The components of the data tensor
are i.i.d and RD(i) = I(3). The channel tensor that couples
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FIGURE 13. SER vs SNR for the three different equalizers.

the data of user i with the received tensor corresponding
to user j is H(i,j) ∈ C

P×K×M×P×K×M . Each component of
H(i,j) is an independent realization of a complex Gaussian
random variable with zero mean and unit variance. To quan-
tify the interference between users we have assumed that the
channel tensor H(i,j), i 
= j is scaled by

√
α. The received

tensor corresponding to user j is

Y(j) =
{
H(j,j),D(j)

}

(3)
+ √

α

U∑

i=1
i 
=j

{
H(j,i),D(i)

}

(3)
+ N(j)

(172)

where the first term on the RHS is the desired data
corrupted by intra-user interference due to the contraction
with H(j,j), the second term is the interference from other
users and the third term is additive thermal noise whose
components are complex Gaussian random variables with
zero mean and variance N0. The system model for 2 users
is illustrated in Fig. 11.
We study the performance of three types of equalizers for

the above system. The first type of equalizer is a per-user
equalizer that equalizes only the intra-tensor interference
without considering the interference from other users. The
equalizer for this case is designed by considering only
the first and third terms on the RHS of (172). Hence the
equalizer for user i becomes G(i)MMSE = {RD(i),Y(i) ,R

−1
Y(i)

}(3).
We can write

RD(i),Y(i)

= E

[

D(i) ◦
({

H(i,i),D(i)
}

(3)
+ N(i)

)∗]

=
(
H(i,i)

)H
(173)

RY(i)

= E

[({
H(i,i),D(i)

}

(3)
+N(i)

)

◦
({

H(i,i),D(i)
}

(3)
+N(i)

)∗]

=
{

H(i,i),
(
H(i,i)

)H
}

(3)
+ N0I3 (174)

Hence

G
(i)
MMSE1 =

⎧
⎨

⎩

(
H(i,i)

)H
,

[{

H(i,i),
(
H(i,i)

)H
}

(3)
+N0I3

]−1
⎫
⎬

⎭
(3)

(175)

The second type of equalizer considers the inter-user
interference as noise and uses the second order statistics of
the inter-user interference to aid in the equalization. Hence
we have

RD(i),Y(i)

= E

⎡

⎢
⎢
⎣D

(i) ◦

⎛

⎜
⎜
⎝

{
H(i,i),D(i)

}

(3)

+ √
α

U∑

j=1
j 
=i

{
H(i,j),D(j)

}

(3)
+ N(i)

⎞

⎟
⎟
⎠

∗⎤
⎥
⎥
⎦

=
(
H(i,i)

)H
(176)

RY(i)

= E

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

{
H(i,i),D(i)

}

(3)
+ √

α

U∑

j=1
j 
=i

{
H(i,j),D(j)

}

(3)
+ N(i)

⎞

⎟
⎟
⎠

◦

⎛

⎜
⎜
⎝

{
H(i,i),D(i)

}

(3)

+ √
α

U∑

j=1
j 
=i

{
H(i,j),D(j)

}

(3)
+ N(i)

⎞

⎟
⎟
⎠

∗⎤
⎥
⎥
⎦

=
{

H(i,i),
(
H(i,i)

)H
}

(3)
+ RV (177)

where we have used the fact that E [{H(i,i),D(i)}(3) ◦
({H(i,j),D(j)}(3))∗] = 0 when i 
= j, and

RV = E

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

√
α

U∑

j=1
j
=i

{
H(i,j),D(j)

}

(3)
+ N(i)

⎞

⎟
⎟
⎠

◦

⎛

⎜
⎜
⎝

√
α

U∑

j=1
j
=i

{
H(i,j),D(j)

}

(3)
+ N(i)

⎞

⎟
⎟
⎠

∗⎤
⎥
⎥
⎦

= α E

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

U∑

j=1
j
=i

{
H(i,j),D(j)

}

(3)

⎞

⎟
⎟
⎠ ◦

⎛

⎜
⎜
⎝

U∑

j=1
j
=i

{
H(i,j),D(j)

}

(3)

⎞

⎟
⎟
⎠

∗⎤
⎥
⎥
⎦
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+ N0I3

= α

U∑

j=1
j
=i

E

[{

H(i,j),
(
H(i,j)

)H
}

(3)

]

+ N0I3 (178)

The components of E [{H(i,j), (H(i,j))H}(3)] are
(

E

[{

H(i,j),
(
H(i,j)

)H
}

(3)

])

p′,k′,m′,p,k,m

=
P,K,M∑

x=1,y=1,z=1

E

[

H
(i,j)
p′,k′,m′,x,y,z

(
H(i,j)

)∗
p,k,m,x,y,z

]

=
{∑P,K,M

x=1,y=1,z=1 1 if p′ = p, k′ = k,m′ = m
0 otherwise

(179)

which in tensor form becomes E [{H(i,j), (H(i,j))H}(3)] =
PMK · I3. Substituting this in (178) gives

RV = ((U − 1)PMKα + N0)I3 (180)

Hence, the equalizer for user i becomes

G
(i)
MMSE2

=
{
(
H(i,i)

)H
,

[{

H(i,i),
(
H(i,i)

)H
}

(3)

+ ((U − 1)PMKα + N0)I3

]−1
⎫
⎬

⎭
(3)

(181)

Notice that the second type of equalizer improves on the first
type by accounting for the inter-user interference as noise,
but does not harness the information included in cross-talk
to aid in the detection of the other users data. The third type
of equalizer is designed to simultaneously consider both the
inter-user interference and the intra-user interference. Here
we define a fourth order data tensor D ∈ C

P×M×K×U such
that D:,:,:,i = D(i) and a channel tensor of order 8 such that

H:,:,:,i,:,:,:j = H(i,j) (182)

We can write the received tensor as

Y = {H,D}(4) + N (183)

where N is a noise tensor of order 4 such that N:,:,:,i = N(i).
The equalizer for this case becomes

GMMSE3 =
{

HH,

[{
H,HH

}

(4)
+ N0I4

]−1
}

(4)

(184)

To illustrate the influence of α on the multi-user equalizer we
write (184), for the two user case, in terms of its sub-tensors
as shown in (185) on bottom the page.
where G(i,j) = (GMMSE3):,:,:,i,:,:,:,j. Further, to allow us

to compare the mean squared errors of the three types of
equalizers we define the MMSE as the total minimum mean
squared error per user, i.e., we have

MMSE = 1

U
trace

(
E

[(
D − D̂

)
◦
(
D − D̂

)∗])

= 1

U

U∑

i=1

trace

(

E

[(
D(i) − D̂

(i)) ◦
(
D(i) − D̂

(i))∗])

(186)

The MSE and SER versus SNR curves for different values
of Total Interference Power (IT ) in dB for the equaliz-
ers discussed in this section are illustrated in Fig. 12 and
Fig. 13 respectively. For the simulations we have used
U = 2, K = 16, M = 5 and P = 2. The Total interference
power is defined as the energy of the inter-user interference
in each component of the received tensor. Consider the
received components of Y(1).

Y
(1)
p′k′m′ =

∑

p,k,m

H
(1,1)
p′k′m′pkmD

(1)
pkm +

∑

p,k,m

√
αH

(1,2)
p′k′m′pkmD

(2)
pkm

+ N
(1)
p′k′m′ (187)

The inter-user interference is the second term on the RHS
of (187) and the total interference power IT is defined as
the power of (

∑

p,k,m

√
αH

(1,2)
p′k′m′pkmD

(2)
pkm). Hence we have

IT = α E

⎡

⎣
∑

p,k,m

H
(1,2)
p′,k′,m′,p,k,mD

(2)
p,k,m

×
⎛

⎝
∑

x,y,z

H
(1,2)
p′,k′,m′,x,y,zD

(2)
x,y,z

⎞

⎠

∗⎤

⎦

= α
∑

p,k,m

E

[
H
(1,2)
p′,k′,m′,p,k,m · H(1,2)∗

p′,k′,m′,p,k,m

]

× E

[
D
(2)
p,k,m · D(2)∗

p,k,m

]

= PMKα (188)

The first per-user equalizer (MMSE1) does not consider the
inter user interference and equalizes each user separately
while the second per-user equalizer (MMSE2) uses the sec-
ond order statistics of the inter-user interference. It can be

[
G(1,1) G(1,2)

G(2,1) G(2,2)

]

=

⎧
⎪⎨

⎪⎩

[
H(1,1) √

αH(1,2)
√
αH(2,1) H(2,2)

]

,

⎛

⎝

{[
H(1,1) √

αH(1,2)
√
αH(2,1) H(2,2)

]

,

[
H(1,1) √

αH(1,2)
√
αH(2,1) H(2,2)

]H}

(4)

+ N0I4

⎞

⎠

−1
⎫
⎪⎬

⎪⎭
(4)

(185)
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FIGURE 14. MSE and SER vs SNR for the multi-user equalizer with different values
of interference power.

seen that the latter has improved performance in terms of the
mean squared error (MSE) and the symbol error rate (SER).
The multi-user equalizer (MMSE3) allows for simultaneous
equalization of all the users at once and hence efficiently
counteracts the effects of inter user interference. At low val-
ues of interference power IT , the difference between the
performance of the three equalizers is small. This implies
that for systems where the inter-user interference is small,
it might be more suitable to use per-user equalization as
the performance gain in performing multi-domain equal-
ization is small. However, as the value of IT increases
and the inter-user interference becomes more pronounced,
the performance of the per-user equalizer deteriorates. The
change in the performance of the multi-user MMSE equal-
izer is negligible when compared to the per-user equalizer for
the values of interference shown and hence only the curve
for IT = 10dB is presented for the Multi-domain MMSE.
To better understand the variation in performance of the

multi-user equalizer, the MSE and SER curves for three
different values of interference power IT are illustrated in
Fig. 14. It can be seen that the multi-user equalizer at IT =
50dB has a higher MSE and SER as compared to IT = 20dB.
However, when the interference power is increased further to
70dB, it can be seen that the performance actually improves.
This is because, beyond a certain interference power, the
equalizer stars using the cross-talk for detection and the
data from the direct link is treated as interference instead.
This effectively improves the signal to noise ratio as signal
power is now proportional to the cross-talk which is much
stronger than the noise. To this end, the MSE vs interference
power curves for different values of SNR are illustrated in
Fig. 15. As we can see, the mean squared error initially
increases with the interference power. However, it reaches

FIGURE 15. MSE of multi-user equalizer vs IT for different values of SNR.

a tipping point beyond which the cross-talk takes over as
the main signal and hence causes the mean squared error
to decrease with increasing interference power. This is an
important distinction between the multi-user equalizer and
the per-user equalizers. The former is able to make efficient
use of the inter-user interference unlike the latter which either
ignores it completely or treats it as noise.

VII. CONCLUSION
This paper presented a unified tensor framework, which can
be used to represent, design and analyse communication
systems that span several domains. The transmitted signals
are represented by Nth order time function tensors which
are coupled, using a system tensor of order N + M, with
the received signals which are represented by another sig-
nal tensor of order M through the contracted convolution.
The notion of a tensor of functions forms the basis for the
definition of signal and system tensors. A generalization of
the Nyquist’s criterion for zero inter symbol interference was
derived which allows unifying treatment of interference from
several domains, dubbed multi domain interference (MDI).
It is shown that known generalizations of the Nyquist’s crite-
rion are special cases of this tensor based Nyquist criterion.
Furthermore, for the tensor case, a relaxation of the Nyquist
criterion is possible, allowing recovery of data symbols even
in the presence of intra-tensor interference. As examples, this
tensor framework was used to model existing systems such as
OFDM, GFDM and FBMC. Using the tensor framework, an
example of higher domain extension for GFDM and FBMC
was derived where different filters are used at the analysis
and synthesis filter banks of each antenna.
As examples of using our tensor framework we derived

joint domain linear tensor based equalizers for ZF and
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MMSE criteria. The performance of the MMSE linear equal-
izer was found to be better than that of the ZF equalizer,
which is consistent with the scalar case. For such linear
tensor equalizers the mean squared error decreases as the
number of domains at the receiver is increased while keep-
ing the size of each domain the same. This implies that
domain diversity can be leveraged to improve performance
in cases where there are restrictions of the size of any partic-
ular domain, as is often the case in practice due to bandwidth
limitations (frequency domain) or restrictions on the num-
ber of antennas (space domain). Further, it was found that
the performance of the MMSE and ZF equalizers for the
case when there is no inter-tensor interference can be worse
than the case when there is inter-tensor and intra-tensor
interference. Simulations were performed to investigate this
phenomenon, and it was found that the performance of the
equalizers in the latter improve as we increase the number
of equalizer taps. This is because the residual interference
and hence the error floor decreases as the number of tensor
taps increases, and the performance tends towards that of
an infinite tap equalizer. This is not true for the case when
there is no inter-tensor interference as the performance of an
equalizer with a single tap is the same as that of an infinite
tap equalizer.
As a specific example of an application, we studied the

use of the tensor framework for equalization in Multi-
User MIMO GFDM for three different cases where the
interference was treated differently. The first type of equal-
izer is a per domain equalizer (PDE) that equalizes only the
interference from a single user while ignoring the inter-user
interference completely. The second type of equalizer uti-
lizes the second order statistics of the inter-user interference
to achieve improvements in performance. The third type
of equalizer, called the multi-domain equalizer, operates
jointly in all domains and accounts for both inter-user
interference and intra-user interference, and provides the
best performance. Joint multi-domain equalization allows
for efficient use of inter-user interference to aid in data
detection as it is able to harness the information con-
tained in cross-talk. The tensor framework can be used to
efficiently design multi-user equalizers that are able to uti-
lize the information contained in the interference between
users. This concept can easily be extended to systems with
any number of domains to design efficient multi-domain
equalizers.
In order to keep the length of this paper reasonable, we

present only examples of using the tensor framework for
designing various linear equalizer/detector types. However
in our work we have also considered decision-feedback type
of tensor equalization, using this framework. Furthermore, it
is known that significant improvement in performance can be
achieved using iterative techniques instead of linear equaliza-
tion, such as in [49]. The tensor framework of this paper can
be used to derive such techniques capable of jointly operat-
ing in several domains, a subject that forms our following
up work.

APPENDIX A
A CAUCHY-SCHWARTZ INEQUALITY
For two tensors A(t) ∈ C

J1×···×JM
t and B(t) ∈ C

J1×···×JM
t

the following inequality holds:
∣
∣
∣
∣
∣
∣

∑

j1...jM

+∞∫

−∞
Aj1...jM (t)Bj1...jM (t)dt

∣
∣
∣
∣
∣
∣

2

≤
∑

j1...jM

+∞∫

−∞

∣
∣Aj1...jM (t)

∣
∣2dt

∑

j1...jM

+∞∫

−∞

∣
∣Bj1...jM (t)

∣
∣2dt.

(189)

Proof: Let λ be a complex scalar. We have

0 ≤
∑

j1...jM

+∞∫

−∞

∣
∣Aj1...jM (t)+ λBj1...jM (t)

∣
∣2dt

=
∑

j1...jM

+∞∫

−∞

∣
∣Aj1...jM (t)

∣
∣2dt + |λ|2

∑

j1...jM

+∞∫

−∞

∣
∣Bj1...jM (t)

∣
∣2dt

+ 2�
⎧
⎨

⎩
λ∗ ∑

j1...jM

+∞∫

−∞
Aj1...jM (t)B

∗
j1...jM (t)dt

⎫
⎬

⎭
(190)

Choose λ = y
∑

j1...jM

+∞∫
−∞

Aj1...jM (t)B
∗
j1...jM (t)dt where y ∈

R. This gives

0 ≤

y2

∣
∣
∣
∣
∣
∣

∑

j1...jM

+∞∫

−∞
Aj1...jM (t)B

∗
j1...jM (t)dt

∣
∣
∣
∣
∣
∣

2
∑

j1...jM

+∞∫

−∞

∣
∣Bj1...jM (t)

∣
∣2dt (191)

+ 2y

∣
∣
∣
∣
∣
∣

∑

j1...jM

+∞∫

−∞
Aj1...jM (t)B

∗
j1...jM (t)dt

∣
∣
∣
∣
∣
∣

2

+
∑

j1...jM

+∞∫

−∞

∣
∣Aj1...jM (t)

∣
∣2dt

(192)

Define

p =
∣
∣
∣
∣
∣
∣

∑

j1...jM

+∞∫

−∞
Aj1...jM (t)B

∗
j1...jM (t)dt

∣
∣
∣
∣
∣
∣

2

r =
∑

j1...jM

+∞∫

−∞

∣
∣Bj1...jM (t)

∣
∣2dt

q =
∑

j1...jM

+∞∫

−∞

∣
∣Aj1...jM (t)

∣
∣2dt. (193)

Hence from (192)

0 ≤ pry2 + 2py+ q (194)

Since (194) is a non-negative quadratic polynomial, the dis-
criminant is non-positive, i.e., (2p)2 − 4prq ≤ 0 or p ≤ rq.
Substituting for p,q and r gives (189), with equality when
Bi1,...,iN ,j1,...,jM (t) = A∗

j1,...,jM,i1,...,iN (−t).
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APPENDIX B
PROOF OF THEOREM 2
Consider the general system where a data sequence
D[k] ∈ C

I1×···×IN
k is the input to a channel H[k] ∈

C
L1×···×LM×I1×···×IN
k and is corrupted by additive noise

V[k] ∈ C
L1×···×LM
k . The observation Y[k] ∈ C

L1×···×LM
k is

Y[k] =
+∞∑

m=−∞
{H[m],D[k − m]}(N) + V[k] (195)

The estimate of the data sequence is

D̂[k] =
+∞∑

m=0

{G[m],Y[k − m]}(M) (196)

where G[m] ∈ C
I1×···×IN×L1×···×LM . Denote the error by

E[k] = D̂[k] − D[k]. We wish to prove that for the G[m]
that minimizes the mean squared error between the estimate
and the data, the error is uncorrelated with the observation,
i.e., we wish to show that if

E
[
E[k] ◦ Y∗[k − i]

] = 0T for all i (197)

then the error is minimized in the mean squared sense.
Proof: Assuming that the equalizer co-efficients are com-
plex, the equalizer tensor may be written as G[m] =
A[m] + jB[m]. Extending the gradient vector in [50], we
define a corresponding tensor gradient operator ∇, with
components

∇i1,...,iN ,m,l1,...,lM

= ∂

∂Ai1,...,iN ,l1,...,lM [m′]
+ j

∂

∂Bi1,...,iN ,l1,...,lM [m′]
(198)

Define the cost function

J(G) = trace
(
E
[
E[k] ◦ E∗[k]

])

=
∑

i1...iN

E
[
Ei1...iN [k]E∗

i1...iN [k]
]

(199)

Due to the quadratic nature of the error surface, finding
a stationary point assures global optimization of the cost
function [50]. Minimizing the cost function is thus a convex
unconstrained optimization problem [51] and can be solved
be equating each component of the gradient tensor of the
cost function to zero:

∇i1,...,iN ,m,l1,...,lM J
(
Gopt

) = 0 (200)

Let us consider one particular component of the gradient ten-
sor where the indices have values i′1, . . . , i′N,m′, l′1, . . . , l′M .
From (199) we get

∇i′1,...,i′N ,m′,l′1,...,l′MJ(G)

= ∇i′1,...,i′N ,m′,l′1,...,l′M E

⎡

⎣
∑

i1,...,iN

Ei1,...,iN [k]E∗
i1...iN [k]

⎤

⎦

= ∂ E
[∑

i1,...,iN Ei1,...,iN [k]E∗
i1...iN [k]

]

∂Ai′1,...,i′N ,l′1,...,l′M [m′]

+ j
∂ E

[∑
i1,...,iN Ei1,...,iN [k]E∗

i1...iN [k]
]

∂Bi′1...i′Nl′1...l′M [m′]

= E

⎡

⎣
∑

i1,...,iN

∂Ei1,...,iN [k]E∗
i1...iN [k]

∂Ai′1...i′Nl′1...l′M [m′]
+ j

∂Ei1...iNE
∗
i1...iN

∂Bi′1...i′Nl′1...l′M [m′]

⎤

⎦

= E

⎡

⎣
∑

i1,...,iN

∂Ei1,...,iN [k]

∂Ai′1...i′Nl′1...l′M [m′]
E∗
i1...iN [k]

+ ∂E∗
i1...iN [k]

∂Ai′1...i′Nl′1...l′M [m′]
Ei1...iN [k]

+ ∂Ei1...iN [k]

∂Bi′1...i′Nl′1...l′M [m′]
jE∗

i1...iN [k]

+ ∂E∗
i1...iN [k]

∂Bi′1...i′Nl′1...l′M [m′]
jEi1...iN [k]

⎤

⎦ (201)

The first term on the right hand side of (201) can be expanded
as shown in (202) at the bottom of the page.
Similarly we have

∂E∗
i1...iN [k]

∂Ai′1,...,i′N ,l′1,...,l′M [m′]
Ei1...iN [k] = Y∗

l′1...l′M

[
k − m′]Ei′1...i′N [k]

(203)
∂Ei1...iN [k]

∂Bi′1...i′Nl′1...l′M [m′]
jE∗

i1...iN [k] = −Yl′1...l′M
[
k − m′]E∗

i′1...i′N
[k]

(204)
∑

i1...iN

∂E∗
i1...iN [k]

∂Bi′1...i′Nl′1...l′M [m′]
jEi1...iN [k] = Y∗

l′1...l′M

[
k − m′]Ei′1...i′N [k]

(205)

∑

i1,...,iN

∂Ei1,...,iN [k]

∂Ai′1,...,i′N ,l′1,...,l′M [m′]
E∗
i1...iN [k]

=
∑

i1,...,iN

∂
{∑

m
∑

l1...lM Gi1...iN l1...lM [m]Yl1...lM [k − m] − Di1...iN [k]
}

∂Ai′1,...,i′N ,l′1,...,l′M [m′]
E∗
i1...iN [k]

=
∑

i1,...,iN

∑

m

∑

l1...lM

∂
{(
Ai1...iN l1...lM [m] + jBi1...iN l1...lM [m]

)
Yl1...lM [k − m] − Di1...iN [k]

}

∂Ai′1,...,i′N ,l′1,...,l′M [m′]
E∗
i1...iN [k]

= Yl′1...l′M
[
k − m′]E∗

i′1...i′N
[k] (202)
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Substituting these in (201) we get

∇i′1,...,i′N ,m′,l′1,...,l′MJ(G)

= E

[
Yl′1...l′M

[
k − m′]E∗

i′1...i′N
[k] + Y∗

l′1...l′M

[
k − m′]Ei′1...i′N [k]

− Yl′1...l′M
[
k − m′]E∗

i′1...i′N
[k] + Y∗

l′1...l′M

[
k − m′]Ei′1...i′N [k]

]

= 2E
[
Y∗
l′1...l′M

[
k − m′]Ei′1...i′N [k]

]
(206)

The optimal G[m] is found by equating (206) to 0 for all
values of i′1, . . . , i′N,m′, l′1, . . . , l′M . This gives

E

[
Y∗
l′1...l′M

[
k − m′]Ei′1...i′N [k]

]
= 0 ∀ i′1 . . . i′N,m′, l′1, . . . , l′M

(207)

We can see that the LHS of (207) is the auto-correlation
between the error and the observation. We have

RE,Yi′1 ...i′Nm′ l′1 ...l′M

[−m′] = E

[
El′1...l′M [k]Y∗

l′1...l′M

[
k − m′]]

= 0 ∀ i′1 . . . i′N,m′, l′1 . . . l′M
(208)

Since (208) holds for all values of m′, we can write this in
tensor notation as

RE,Y[m] = E
[
E[k] ◦ Y∗[k − m]

]

= 0T (209)

showing that for the optimal G[m], the error is uncorrelated
with the observation. This can be considered as a tensor
orthogonality condition.
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